Supporting information

Intelligent tumor microenvironment responsive nanotheranostic agent for T1/T2 dual-modal magnetic resonance imaging-guided and self-augmented photothermal therapy

Junlie Yao,^{‡a,b} Fang Zheng,^{‡a} Fang Yang,^{‡*a,c,d} Chenyang Yao,^{a,b} Jie Xing,^{a,b} Zihou Li,^a Sijia Sun,^a Jia Chen,^a Xiawei Xu,^a Yi Cao,^{a,b} Norbert Hampp,^d and Aiguo Wu^{*a,c}

^aCixi Institute of Biomedical Engineering, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, P. R. China.

^bCollege of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China.

^cAdvanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, P.R. China

^dFachbereich Chemie, Philipps Universität Marburg, Marburg, 35032, Germany

*corresponding author: yangf@nimte.ac.cn (F. Y.); aiguo@nimte.ac.cn (A. W.)

Fig. S1 SAED pattern of Zn_{0.2}Fe_{2.8}O₄@PDA@MnO₂ NPs.

Fig. S2 XPS survey spectrum of $Zn_{0.2}Fe_{2.8}O_4@PDA@MnO_2 NPs$.

Fig. S3 Zeta potentials of CTAC modified $Zn_{0.2}Fe_{2.8}O_4$ NPs, $Zn_{0.2}Fe_{2.8}O_4$ @PDA NPs, and $Zn_{0.2}Fe_{2.8}O_4$ @PDA@MnO₂ NPs under aqueous condition. Data are presented as the mean ± SD (n = 3).

Fig. S4 Heating and cooling curve of $Zn_{0.2}Fe_{2.8}O_4@PDA@MnO_2 NPs$ (150 µg mL⁻¹) irradiated by 808 nm laser irradiation (1.5 W cm⁻²).

Fig. S5 Linear time data obtained from the nature cooling period.

Fig. S6 UV-vis absorption spectra of Zn_{0.2}Fe_{2.8}O₄@PDA NPs with/without GSH (10 mM). Inset: Colour change of the Zn_{0.2}Fe_{2.8}O₄@PDA NPs dispersion after adding 10 mM GSH.

Fig. S7 •OH measurement via ESR spectra ($Zn_{0.2}Fe_{2.8}O_4@PDA@MnO_2 NPs: 150 \ \mu g \ mL^1$, H_2O_2 : 1 mM).

Fig. S8 Cell viability of 4T1/MCF-7 cells co-incubated with $Zn_{0.2}Fe_{2.8}O_4$ @PDA NPs (0-200 µg mL⁻¹).

Fig. S9 Cell viability of 4T1 cells incubated with H_2O_2 (0-200 μ M) and $Zn_{0.2}Fe_{2.8}O_4$ @PDA@MnO₂ NPs (150 μ g mL⁻¹).

Fig. S10 Degradation of MB (10 μ g mL⁻¹) after incubating with GSH-treated Zn_{0.2}Fe_{2.8}O₄@PDA@MnO₂ NPs (Mn: 500 μ M, H₂O₂: 10 mM, 60 min) in the NaHCO₃/5% CO₂ buffer solution at various temperature.

Fig. S11 Mean fluorescence intensity of DCF in 4T1 cells after different treatments $(Zn_{0.2}Fe_{2.8}O_4@PDA@MnO_2 NPs: 150 \ \mu g \ mL^{-1}; H_2O_2: 100 \ \mu M).$

Fig. S12 Representative digital photographs of the mice under different treatments on day 12.

Fig. S13 Bio-distribution of the Fe element in major organs at 0, 24, and 48 h after intravenous injection of Zn_{0.2}Fe_{2.8}O₄@PDA@MnO₂ NPs (100 μL, 4 mg mL⁻¹).

Fig. S14 Bio-distribution of the Mn element in major organs at 0, 24, and 48 h after intravenous injection of $Zn_{0.2}Fe_{2.8}O_4@PDA@MnO_2 NPs$ (100 µL, 4 mg mL⁻¹).

Fig. S15 Immunohistochemical analysis of the expression of HSP70 on the tumor tissues exposed to 808 nm laser irradiation (1.5 W cm⁻²) after intratumoral injection of saline, $Zn_{0.2}Fe_{2.8}O_4@PDA$ NPs or $Zn_{0.2}Fe_{2.8}O_4@PDA@MnO_2$ NPs (100 µL, 4 mg mL⁻¹).