Synthesis, characterisation and evaluation of hyperbranched N-(2hydroxypropyl) methacrylamides for transport and delivery in pancreatic cell lines *in vitro* and *in vivo*

Akosua B. Anane-Adjei,^a Nicholas L. Fletcher,^b Robert J. Cavanagh,^a Zachary H. Houston,^b Theodore Crawford,^b Amanda K. Pearce,^a Vincenzo Taresco,^a Alison A. Ritchie,^c Phillip Clarke,^c Anna M. Grabowska,^c Paul R. Gellert,^d Marianne B. Ashford,^e Barrie Kellam,^a Kristofer J. Thurecht^{b*} and Cameron Alexander.^{a*}

Contents

Table S1 Reaction conditions used for the synthesis of the hyperbranched HPMA polymers 4
Table S2 Details of physical properties of different batches of the hyperbranched polymers. 4
Figure S1 Representative ¹ H NMR spectrum of hyperbranced HPMA polymer (HB-HPMA) in
DMSO-d64
Figure S2 Representative SEC-MALLS traces of (A) HB-HPMA polymers (HB-HPMA-20)
and (B) HB-HPMA-GEM polymers5
Figure S3 ¹ H NMR spectrum of HPMA-GEM monomer in DMSO-d ₆ 6
Figure S4 FT-IR spectra of (A) GEM, (B) control HPMA polymer and (C) HPMA-GEM
prodrug polymer
Figure S5. In vitro 2D cell viability assay at 72h post-treatment with different concentrations
of the three HB-HPMA polymers on MIA PaCa-2 pancreatic cancer cell line using trypan
blue dye exclusion test of cell viability
Figure S6 Evaluation of HB-HPMA polymers biocompatibility in RAW 264.7 macrophages
polymers applied in 10 % FBS/DMEM for 24 hours, (1) PrestoBlue™ cell metabolic assay (2)
LDH release assay. Data are presented as mean ± S.D (N = 3, n = 3)7
Figure S7 PET-CT imaging of ⁸⁹ Zr-labelled HB-HPMA polymers in MIA PaCa-2 xenograft
models. Representative two orientation maximum intensity projection (MIP) images of all

three polymers showing the majority of the particles in circulation at 3 H post-injection. This is followed by the retention of the particles mostly in the liver in the later time points. The intensity bar represents the %ID/g whereby black = 0 %, white = 15 %ID/g, dark blue = 1 %ID/g and red = approx. 10 %ID/g. Hollow arrowhead highlights the accumulation of particles in the liver.

Figure S9 Comparison between the in vitro time-dependent uptake of HB-HPMA and HB-HPMA-DFO polymers in RAW264.7 macrophage cells at a concentration of 50 μ g/m. Cells were cultured for 24h before assay. Hyperbranched polymers were applied in DMEM containing 10 % (v/v) FBS. Data are presented as mean ± S.D (N = 3, n=3)......10

Figure S11 Graphs showing changes in spheroid volume over the 72 hours of incubation with: (A) HB-HPMA-7 and (B) HB-HPMA-20 polymers, (N = 4)......11

Figure S12 Graphs showing changes in spheroid volume over the 72 hours of incubation with: (A) Free GEM and (B) HB-HPMA GEM with monoculture MIA PaCa-2 pancreatic cancer cell line, (N = 4).

Figure S14 Graphs showing changes in spheroid volume over the 72 hours of incubation
with: (A) free GEM and (B) HB-HPMA GEM with co-culture MIA PaCa-2 pancreatic cancer
cell line, (N = 4)12
Figure S15 Representative ¹ H NMR spectra for HPMA-DFO conjugation. Top) HPMA-DFO
polymer. Middle) HPMA polymer and Bottom) DFO12
Figure S16 Radiographic TLC of all three polymers after 89Zr labelling +/-DTPA. The signals
at the bottom of the TLC represent polymer-bound radioisotope and any movement up the
plate represents unbound 89Zr (+DTPA plate) or free DFO in the sample bound to 89Zr (-
DTPA plate)
Figure S17 ¹ H NMR spectrum of HPMA monomer in CDCI313
Figure S18 13C NMR spectrum of HPMA monomer in CDCI ₃ 14
Figure S19 ¹ H NMR spectrum of EDMA in CDCI ₃ 14
Figure S20 ¹³ C NMR spectrum of EDMA in CDCI ₃ 15
Figure S21 ¹ H NMR spectrum of Alkyne-CTA in CDCI ₃ 15
Figure S22 ¹³ C NMR spectrum of Alkyne-CTA in CDCl ₃ 16

Table S1 Reaction conditions used for the synthesis of the hyperbranched HPMA polymers

Polymer	HPMA	EDMA	RAFT agent	Initiator	Solvent	Time	%	Yield	
	(mg)	(mg)	(mg)	(mg)	(mL)	(hr)	conversion	(%)	
HPMA-HB-7	200	13.71	21	2.3	1.6	24	90	76	
HPMA-HB-20	200	13.71	21	2.3	1.2	18	93	74	
НРМА-НВ-40	200	13.71	21	2.3	0.8	14	97	82	

Table S2 Details of physical properties of different batches of the hyperbranched polymers.

	НВ-НРМА-7			HB-HPMA-20			HB-HPMA-40	
	Batch 1	Batch 2	Batch 3	Batch 1	Batch 2	Batch 3	Batch 1	Batch 2
M _n GPC (g/mol)	1.8 x 104	2.4 x 10 ⁴	1.5 x 104	1.1 x 10 ⁵	9.4 x 10 ⁴	1.6 x 10⁵	1.8 x 10 ⁶	1.1 x 10 ⁶
Ð	2.1	2.2	2.1	2.5	1.3	2.0	3.1	3.9
Size DLS (nm)	7	7	7	20	20	19	40	39

Figure S1 Representative ¹H NMR spectrum of hyperbranced HPMA polymer (HB-HPMA) in DMSO-d6.

Figure S2 Representative SEC-MALLS traces of (A) HB-HPMA polymers (HB-HPMA-20) and (B) HB-HPMA-GEM polymers.

Figure S3 ¹H NMR spectrum of HPMA-GEM monomer in DMSO-d₆

Figure S4 FT-IR spectra of (A) GEM, (B) control HPMA polymer and (C) HPMA-GEM prodrug polymer.

Figure S5. In vitro 2D cell viability assay at 72h post-treatment with different concentrations of the three HB-HPMA polymers on MIA PaCa-2 pancreatic cancer cell line using trypan blue dye exclusion test of cell viability.

Figure S6 Evaluation of HB-HPMA polymers biocompatibility in RAW 264.7 macrophages polymers applied in 10 % FBS/DMEM for 24 hours, (1) PrestoBlue™ cell metabolic assay (2) LDH release assay. Data are presented as mean ± S.D (N = 3, n = 3).

Figure S7 PET-CT imaging of ⁸⁹Zr-labelled HB-HPMA polymers in MIA PaCa-2 xenograft models. Representative two orientation maximum intensity projection (MIP) images of all three polymers showing the majority of the particles in circulation at 3 H post-injection. This is followed by the retention of the particles mostly in the liver in the later time points. The intensity bar represents the %ID/g whereby black = 0 %, white = 15 %ID/g, dark blue = 1 %ID/g and red = approx. 10 %ID/g. Hollow arrowhead highlights the accumulation of particles in the liver.

Figure S8 Representative in vivo PET-CT images of the ⁸⁹Zr-labelled HB-HPMA polymers at 3H, 27H and 72H post-injection in MIA PaCa-2 xenograft mice models. (A-C) Distribution behaviour of HB-HPMA-7, HB-HPMA-20 and HB-HPMA-40 at the indicated time points post-injection. White circles highlight the tumour location in each image. The intensity bar of the PET images represents the %ID/g whereby black = 0 %, blue = approx. 4 % and red = approx. 16 %.

Figure S9 Comparison between the in vitro time-dependent uptake of HB-HPMA and HB-HPMA-DFO polymers in RAW264.7 macrophage cells at a concentration of 50 μ g/m. Cells were cultured for 24h before assay. Hyperbranched polymers were applied in DMEM containing 10 % (v/v) FBS. Data are presented as mean ± S.D (N = 3, n=3).

Figure S10 In vitro CellTiter-Glo® 3D cell viability assay for HB-HPMA-7 and HB-HPMA-20 polymers in MIA PaCa-2 pancreatic cancer cell line, (N = 4).

Figure S11 Graphs showing changes in spheroid volume over the 72 hours of incubation with: (A) HB-HPMA-7 and (B) HB-HPMA-20 polymers, (N = 4).

Figure S12 Graphs showing changes in spheroid volume over the 72 hours of incubation with: (A) Free GEM and (B) HB-HPMA GEM with monoculture MIA PaCa-2 pancreatic cancer cell line, (N = 4).

A

Figure S13 In vitro CellTiter-Glo® 3D cell viability assay for free GEM and HB-HPMA-GEM in monoculture MIA PaCa-2 pancreatic cancer cell line, (N = 4)

Figure $\frac{414}{6}$ Physical Showing changes in spheroid volume over the 72 boure of increatic carcer cell line, (N = 4). $\frac{1}{2}$ $\frac{$

В

Figure S15 Representative ¹H NMR spectra for HPMA-DFO conjugation. Top) HPMA-DFO polymer. Middle) HPMA polymer and Bottom) DFO.

Figure S16 Radiographic TLC of all three polymers after 89Zr labelling +/-DTPA. The signals at the bottom of the TLC represent polymer-bound radioisotope and any movement up the plate represents unbound 89Zr (+DTPA plate) or free DFO in the sample bound to 89Zr (-DTPA plate).

Figure S17 ¹H NMR spectrum of HPMA monomer in CDCl3.

Figure S18 13C NMR spectrum of HPMA monomer in $\ensuremath{\mathsf{CDCI}}_3$.

Figure S19 ^1H NMR spectrum of EDMA in CDCl_3.

Figure S20 $^{\rm 13}{\rm C}$ NMR spectrum of EDMA in CDCl_3.

Figure S21 ^1H NMR spectrum of Alkyne-CTA in CDCl_3.

Figure S22 ¹³C NMR spectrum of Alkyne-CTA in CDCl₃.