Supporting Information

Multifunctional FeS2@SRF@BSA nanoplatform for chemo-

combine photothermal enhanced photodynamic/ chemodynamic

combination therapy

Miao Feng^a, Meiting Li^a, Rui Dai^a, Shuting Xiao^a, Junjie Tang^a, Xiaoge Zhang^a, Baizhu Chen^{a,*} and Jie Liu^{a,*}

^a School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, P.R. China

*E-mail: chenbzh8@mail.sysu.edu.cn; liujie56@mail.sysu.edu.cn.

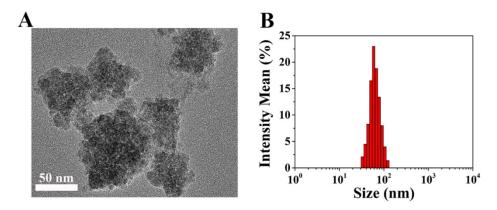


Fig S1. (A) TEM image and (B) particle size distribution of $FeS_2@SRF@BSA$ NPs after incubation with the supernatant of lysed 4T1 cells.

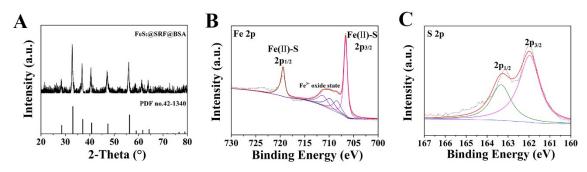


Fig S2. (A) XRD of FeS₂@SRF@BSA NPs. (B) XPS spectra of Fe 2p and (C) S 2p for FeS₂@SRF@BSA NPs.

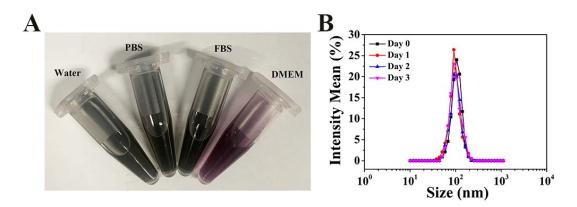


Fig S3. (A) Photos of FeS₂@SRF@BSA NPs dispersed in different solvents (water, PBS, FBS and DMEM). (B) Hydrodynamic radius of FeS₂@SRF@BSA NPs in PBS for 3 days.

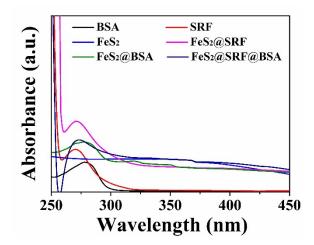


Fig S4. UV–Vis absorbance spectra of BSA, SRF, FeS₂ NPs, FeS₂@SRF NPs, FeS₂@BSA NPs and FeS₂@SRF@BSA NPs.

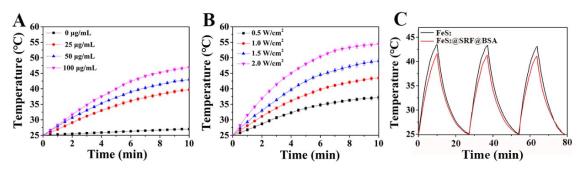


Fig S5. Temperature increment curves of FeS_2 suspensions at (A) different concentrations and (B) irradiation densities. (C) Three cycles of temperature variation of FeS_2 and $FeS_2@SRF@BSA$ solution with continuous laser irradiation (808 nm, 1.0 W/cm², 10 min) and natural cooling.

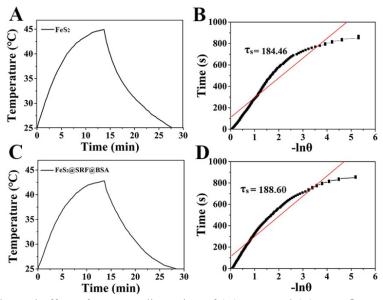


Fig S6. Photothermal effect of aqueous dispersion of (A) FeS_2 and (C) $FeS_2@SRF@BSA$ solution under irradiation with the NIR laser. Laser was then shut off after reaching the steady maximum

temperature. Linear time data vs $-ln(\theta)$ gained from the cooling period of (B) FeS₂ and (D) FeS₂@SRF@BSA NPs to get the τ_s .

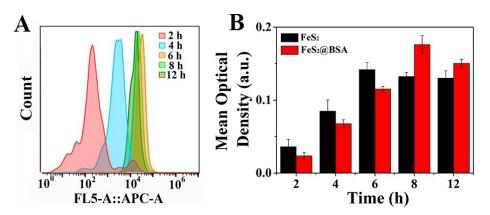


Fig S7. (A) Fluorescence histograms of the 4T1 cells incubated with $FeS_2@C6$ NPs for different time. (B) Fluorescence semi-quantitative analysis of fluorescence images in Fig 3C.

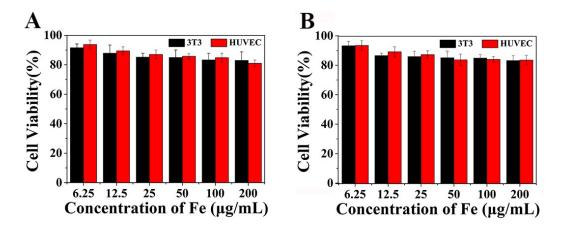


Fig S8. Viabilities of HUVECs cells and 3T3 cells incubated with various concentrations of (A) FeS_2 NPs and (B) $FeS_2@BSA$ NPs.

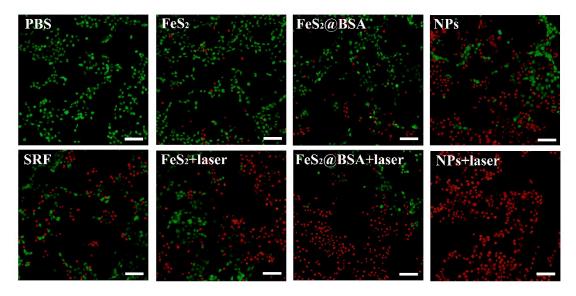


Fig S9. Fluorescence microscopy images of 4T1 cells stained with PI and Calcein-AM after treating with the NPs for 8 h with or without NIR laser irradiation (808 nm, 1.0 W/cm², 5 min), where NPs in the figure refers to the FeS₂@SRF@BSA NPs. (Scale bar: 100 μ m)

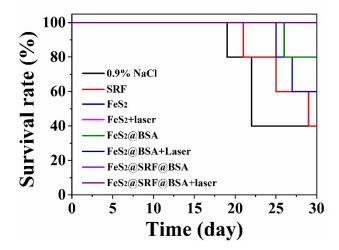


Figure S10. The survival rates of the mice after different treatments. The endpoint was considered when mice died or the tumor was larger than 1500 mm^3 (n=5).

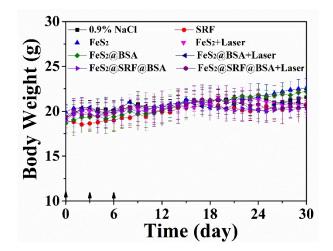


Fig S11. Variations of body weight scaled during various treatments.

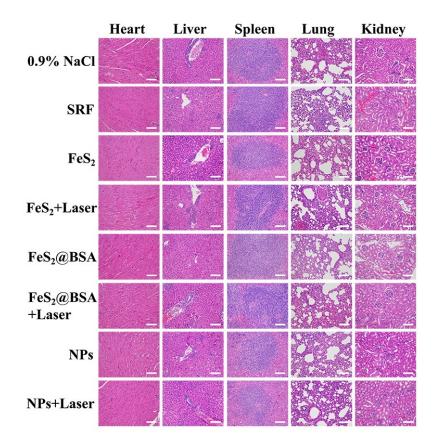


Fig S12. H&E staining of tissues dissected from the mice in various groups, where NPs in the figure refers to the FeS₂@SRF@BSA NPs. (Scale bars: $100 \ \mu m$)

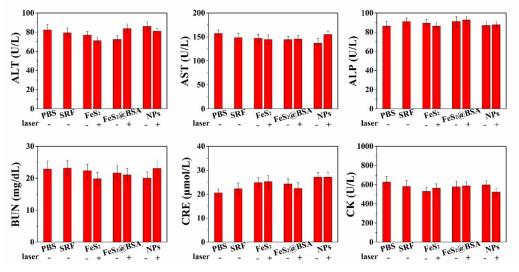


Fig S13. Blood biochemical analysis of mice at 30 days after injection of NPs, where NPs in the figure refers to the FeS₂@SRF@BSA NPs. (5 mg of Fe/kg mouse, 100 μ L, n = 5, Mean ± S.D.)