Supporting Information

Muscle-inspired MXene/PVA hydrogel with high toughness and photothermal therapy for promoting bacteria-infected wound healing

Yan Li^a, Miaomiao Han^a, Yue Cai^a, Bing Jiang^a, Yuanxin Zhang^a, Biao Yuan^a, Feng Zhou^{*b}, Chongjiang Cao^{*a}

^a Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing 211198, China.

^b School of food science, NanJing XiaoZhuang University, Nanjing, Jiangsu, China

*Corresponding Author:

Chongjiang Cao*, College of Engineering, China Pharmaceutical University, Nanjing, Jiangsu, 211198: Tel +86 13770625999; E-mail: ccj33@163.com

Feng Zhou*, School of food science, NanJing XiaoZhuang University, Nanjing, Jiangsu, E-mail: zfibcas@163.com

Figure S1. (a) Water content and (b) swelling ratio of DF, DF-S, F and F-S hydrogels;

Rheological properties of DF, DF-S, F and F-S hydrogels.

Figure S2. Rheological properties of DF, DF-S, F and F-S hydrogels. Frequency dependence of (a) viscosity and shears rate dependence of (b) stress.

Figure S3. (a) SEM images of MXene@PVA (1 µm); (b) The contact angle measurement

of MXene@PVA; (c) EDS spectrum of MXene@PVA hydrogel.

Figure S4. Rheological properties of PVA and MXene@PVA hydrogels. Shears rate

dependence of (a) viscosity and frequency dependence of (b) viscosity.

Figure S5. SEM images of S. aureus (a) and E. coli (b) cells with various treatments.

Figure S6. Bacterial membrane permeability assays of *S. aureus* (a) and *E. coli* (b) using NPN fluorescence assay

Table S1. Proportion of elements in MXene@PVA hydrogel

Element	С	0	Ti
weight ratio (%)	39.08	57.81	3.03

.