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Instrumentation
'H nuclear magnetic resonance spectroscopy ('H-NMR): 'H-NMR was

performed on a Bruker AV 400 MHz spectrometer. Chemical shifts () were reported
in the units of ppm and referenced to the TMS.

Fourier transform-infrared spectroscopy (FTIR): FTIR was recorded on a
BRUKER Vertex 70 in the range of 400-4000 cm™'. Total of 32 scans were
accumulated with a resolution of 4 cm™ for each spectrum.

Gel permeation chromatography (GPC): GPC was performed on a system
equipped with an isocratic pump (Model 1100, Agilent Technology, Santa Clara, CA,
USA),a DAWN HELEOS multi-angle laser light scattering detector (MALLS) detector
(Wyatt Technology, Santa Barbara, CA, USA), and an Optilab rEX refractive index
detector (Wyatt Technology, Santa Barbara, CA, USA). The detection wavelength of
HELEOS was set at 658 nm. Separations were performed using serially connected size
exclusion columns (100 A, 500 A, 103 A and 10* A Phenogel columns, 5 um, 300 x 7.8
mm, Phenomenex, Torrance, CA, USA) at 60 °C using DMF containing 0.05 M LiBr
as the eluent phase at a flow rate of 1.0 mL min-!.

Mass spectrometry (MS): The purity of Gx-PAMAM were confirmed by MS
(Bruker Daltonics flexAnalysis). The samples were dissolved in DMF to obtain a
solution with a concentration of 1 mg mL-! for testing.

Circular dichroism (CD): CD measurements were carried out on a JASCO J-700

CD spectrometer. The AMPs solution with a concentration of 0.2 mg mL-!' in 10 mM
PBS buffer was filled in a quartz cell with a path length of 0.1 cm. Three scans were
performed and averaged between 190-250 nm by subtracting the solvent background.
The CD spectra were expressed in mean residue ellipticity (MRE, [6]; in deg cm?
dmol-") which was calculated by the following equation:

[0],= MRW x 6, /10 x d x c,

where MRW is the mean residue weight (here refers to the molecular weight of
polypeptide repeating unit), 8, is the observed ellipticity (mdeg) at the wavelength 4, d
is the path length (mm) and c is the concentration (mg mL-") of the AMPs.! The relative
helical content, namely the fractional helicity (fy) was calculated based on the mean
residue ellipticity at 222 nm:

fH = (_[0]222 + 3,000)/39,000.2

Dynamic light scattering (DLS): DSL and zeta potential were measured on a

Zetasizer Nano ZS90 (Malvern Instruments, Ltd., UK) with a He-Ne laser (A= 633 nm)
at a scattering angle of 90° (25 °C). Measurements were performed at concentrations of
1 mg mL! in 10 mM PBS buffer. All samples were filtered through 0.45 pm nylon
filters before measurement.



Transmission electron microscope (TEM): The assembled structure of the AMPs
in solution was observed by TEM (JEM-1400 Flash). The AMPs were dissolved in 10
mM PBS buffer with a concentration of 1 mg mL-!, then a droplet of 5 pL of the above
solution was added on the T11023 formvar carbon coated grids, followed by air drying
at room temperature for observation.

X-ray photoelectron spectroscopy (XPS, VG Scientific ESCA MK II Thermo
Avantage V3.20 analyzer equipped with an Al Ka anode mono-X-ray source, hv=
1486.6 eV) was adopted to study the surface composition. Data treatment was analyzed
with the XPSPEAK Version 4.0 software.

Atomic force microscope (AFM): Surface morphology and roughness were
characterized by AFM (SPA300HV with a SPI 3800 controller, Seiko Instruments
Industry, Japan) with contact mode. The root-mean-square (RMS) roughness was
evaluated directly from AFM images.

Water contact angles (WCAs) of the surfaces were measured by a sessile-drop
method in air with a drop shape analysis instrument (DSA, KRUSS GMBH, Hamburg
100) at room temperature. For each sample, a 2 pl. water droplet was dropped each
time and at least five places were measured for calculating the average value.

Scanning electron microscopy (SEM): The cellular morphologies of the bacteria

attached on surface were acquired by SEM (XL 30 FESEM FEG, FEI Company, USA,
at an accelerating voltage of 10 kV). Before imaging, the prepared samples were
sputter-coated with gold palladium.

Confocal laser-scanning microscope (CLSM): The cellular activities of the
bacteria on surface were measured by CLSM (LSM 700, Carl Zeiss). The samples were
dyed with LIVE/DEAD Baclight Bacterial Viability Kit (L-7012) according to the
manufacturer’s procedure.

Preparation and Characterization of the NCAs.

Synthesis of Boc-L-Lys-NCA: H-Lys(Boc)-OH (10.0 g, 40.6 mmol) was
suspended in 180 mL of THF in a round bottom flask at 50 °C, followed by addition of
a solution of triphosgene (4.4 g, 14.9 mmol) in THF (20 mL). The reaction media
clarified around 10 min after the complete addition of triphosgene. Then the reaction
mixture was cooled to room temperature, and the solvent was removed by rotary
evaporation to yield a crude product, which was recrystallized three times using ethyl
acetate and hexane to yield a white powder (5.1 g, 46.1% yield). 'H NMR (400 MHz,
DMSO-dp) 6 (ppm): 9.06 (s, 1H-1.00, -CONHCH-), 6.77 (t, 1H-1.00, -CH,NHCOO-),
4.46-4.36 (m, 1H-1.00,-NHCHCH2-), 2.90 (q, 2H-2.05, -CHCH,CH,-), 1.81-1.58 (m,
2H-2.05, -CH,NHCOO-), 1.39-1.22 (m, 13H-13.45, -CH,CH,CH,NHCOOC(CH3);).

Synthesis of D-Phe-NCA: A solution of triphosgene (6.60 g, 22.2 mmol) in THF
(20 mL) was added into 10.0 g of D-Phe (60.5 mmol) that was pre-dispersed in THF
(180 mL) in a round bottom flask at 50 °C. The mixture was stirred vigorously until the
solution became clear (approximately 60 min). White powdery product (6.2 g, 53.6%



yield) was obtained after three recrystallizations from ethyl acetate/hexane. 'H NMR
(400 MHz, CDCls) 6 (ppm): 7.43-7.03 (m, 5H-5.47, ArHCH2-), 6.38 (s, 1H-1.00, -
CONHCH-), 4.53 (dd, 1H-1.10, -NHCHCH2-), 3.25 (dd, 1H-1.10, ArCH,CH-), 3.01
(dd, 1H-1.10, ArCH,CH-).
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Figure S1. "H NMR spectra of (A) L-BOC-Lys-NCA and (B) D-Phe-NCA.

Table 1. The feeds of all polymers and their yields before and after deprotection.

G- G- G- Gy.i- G;.p- Gy.3-
Sample-K content (%) L;-70 L,-60 L3-50 70 60 50 70 60 50
Boc-L-Lys-NCA 381.2 326.8 272.3 381.2 326.8 272.3 381.2 326.8 272.3
mg (mmol) (1.4) 1.2) 1.2) (1.4) 1.2 1.2) (1.4) 1.2 (1.2)
D-Phe-NCA 114.7 153.0 191.2 114.7 153.0 191.2 114.7 153.0 191.2
mg (mmol) (0.6) 0.8) (1.0) (0.6) (0.8) (1.0) (0.6) (0.8) (1.0)
Initiator 445 445 445 400 400 400 200 200 200
pL(nmol) (66.7)  (66.7) (66.7) 8.49) 8.4) 8.9 “4.2) 4.2) 4.2)
Yield (before/after 82.0/ 85.3/ 88.4/ 89.3/ 90.9/ 93.1/ 85.6/ 87.0/ 89.3/
deprotection) (%) 84.5 88.4 92.1 83.8 83.8 83.8 83.8 83.8 83.8

Before polymerization, the purity of the Gx-PAMAM initiators were checked by
MALDI-TOF MS (Figure S2&S3). Tentative experiments showed that the impurity in
the Gx-PAMAM, i.e.,, low generation side products, could cause the multi-peak
dispersity of the AMPs (Figure S8A-B). Therefore, the Gx-PAMAM initiators with
high purity (according to MALDI-TOF) were used for the subsequent NCA
polymerization. Previous studies® # points out that the polymerization of NCAs has a
self-catalysis feature when employing solvents with low dielectric constants. With this
in mind, THF (¢=7.58) instead of commonly used DMF (¢=37.6) was chosen as the
solvent in this study. GPC analysis (Figure S8C-D) showed that polymerization in THF
were more controllable than it in DMF, which was consistent with previous reports> ©
that attributed the superiority of THF to the higher stability of NCAs in this solvent
than in DMF.
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Figure S2. MALDI-TOF MS spectra of pure (A) Gi-PAMAM and (B) G,-PAMAM
for synthesis of star-shaped AMPs.
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Figure S3. MALDI-TOF MS spectra of Impure (A) G-PAMAM and (B) G,-

PAMAM.
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Figure S8. GPC data of the obtained Boc-AMPs. The influence of purity of G1-
PAMAM and G2-PAMAM on polymerization is given in (A) and (B); The
influence of solvent on polymerization is shown in (C)-(E); The GPC data of
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Figure S10. MICs of Linear and star-shaped AMPs against E. Coli. (A) L1; (B)
L2; (C) L3; (D) G1-1; (E) G1-2; (F) G1-3; (G) G2-1; (H) G2-2; (I) G2-3;
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Figure S11. Biocompatibility of Linear and star-shaped AMPs against fresh
rabbit red blood cells and L929 murine fibroblasts cells in solution. (A)
Hemolysis data of L4 and G,.1 from 1 pg/mL to 1000 pg/mL; (B) Hemolysis data
of AMPs from 1 pg/mL to 100 pg/mL that enlarged from Figure A; (C)
Representative pictures of Hemolysis assays corresponding to Figure A; (D)
CCK-8 cytotoxicity assays.
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