Supplementary materials

Ultrahigh SERS Activity of TiO₂@Ag Nanostructure Leveraged for

Accurately Detecting CTCs in Peripheral Blood

Yanping Xu,^{a,b,c†} Dinghu Zhang,^{c†} Jie Lin,^{b,d*} Xiaoxia Wu,^{b,c} Xiawei Xu,^{b,d} Ozioma

Udochukwu Akakuru,^{b,d} Hao Zhang,^{b,d} Zhewei Zhang,^c Yujiao Xie,^{b,d} Aiguo Wu^{b,d*}&

Guoliang Shao^{c*}

^a Second clinical college, Zhejiang Chinese Medical University, Hang Zhou 310053, China.

^bCixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 ZhongGuan West Road, Ningbo 315201, China.

^cDepartment of Interventional Radiology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China.

^dAdvanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, P.R. China.

*Corresponding authors.

Email addresses:

linjie@nimte.ac.cn (Jie Lin) aiguo@nimte.ac.cn (Aiguo Wu) shaogl@zjcc.org.cn (Guoliang Shao)

 \dagger Y. Xu and D. Zhang contributed equally to this work.

Fig. S1 X-ray diffraction (XRD) spectra of TiO₂, TiO₂@Ag, and Ag.

Fig. S2 Element distributions mapping images of Ti, O, and Ag in $TiO_2@Ag$ nanostructures.

Fig. S3 Energy-dispersive spectroscopy (EDS) characterization of $TiO_2@Ag$.

Fig. S4 XPS spectra of survey spectrum (a), Ag 3d (b), Ti 2p (c), and O 1s (d) of TiO_2 and $TiO_2@Ag$ samples, respectively.

Fig. S5 UV-vis spectroscopy of TiO₂@Ag, and TiO₂.

Fig. S6 Raman spectra of R6G molecule (5×10^{-5} M) adsorbed on TiO₂@Ag NPs and pure SERS signal of R6G molecules (5×10^{-2} M).

Enhancement factor (EF) calculation of TiO₂@Ag NPs was based on equation (1):

$$EF = (I_{SERS} / N_{ads}) / (I_{bulk} / N_{bulk}) (1)$$

Where N_{ads} and N_{bulk} imply the number of R6G molecules adsorbed on the TiO₂@Ag NPs substrate and R6G molecules in normal Raman substrate, respectively. I_{SERS} and I_{bulk} are the vibration peak (1356 cm⁻¹) intensity of R6G molecules on TiO₂@Ag NPs substrate, and normal Raman spectrum of R6G molecules, respectively.

During the SERS experiment, 100 μ L of ethanol aqueous R6G solution (5 × 10⁻² M) was dried onto 0.4 cm × 0.4 cm⁻² silicon wafer. N _{Raman} was lied on equation (2).

$$N_{bulk} = 100 \ \mu L \times 5 \times 10^{-2} \ mol/L \times 8 \times 6.02 \times 10^{23} \ mol^{-1} \times 1.3 \ \mu m^2 \ / \ 0.16 \ cm^{-2} \ (2)$$

where *d* is the diameter of the light spot estimated as $d = 1.22 \lambda$ /NA, λ is incident wavelength 532 nm, the numerical aperture of the objective lens N_A=0.5, the laser spot is ~ 1.3 µm². On the basis of equation (2), N_{bulk} was estimated as ~1.95× 10¹².

In addition, N_{ads} is synergistically determined by laser spot illuminating the TiO₂@Ag-R6G substrate, and the density of R6G molecules, N_{ads} is concluded as:

$$N_{ads} = \sigma \times 1.3 \ \mu m^2 \times 6.02 \times 10^{23} \ mol^{-1}(3)$$

Where σ is the density of R6G molecule absorbed onto TiO₂@Ag substrate, which is approximated to ~0.5 nM cm⁻²(3). N_{ads} is concluded as ~ 3.91 × 10⁶. I_{SERS} is the Raman peak intensity at 1356 cm⁻¹ of R6G molecules on TiO₂@Ag NPs, while I_{bulk} represents the Raman peak intensity at 1356 cm⁻¹ of pure R6G molecule (fig S6). I_{SERS} = ~ 135065 and I_{bulk} = ~ 882. Substituting these values into equation (1), EF of TiO₂@Ag NPs was concluded to be ~ 7.61× 10⁷.

Fig. S7 SERS signal of R6G (5×10^{-7} M) molecule adsorbed on TiO₂@Ag nanostructure, and Ag NPs.

Fig. S8 FI-TR spectra of FA, rBSA, $TiO_2@Ag-rBSA$, and $TiO_2@Ag-rBSA-FA$.

Fig. S9 SERS spectra of R6G (5×10^{-3} M) molecule collected from six TiO₂@Ag-rBSA-FA SERS bioprobes; Excitation wavelength: 532 nm; Laser power: 0.1 mW; Lens: $50 \times$ objective; Accumulations: 10 s.

Fig. S10 Cell viability of A549 and MCF-7 cells co-incubated with $TiO_2@Ag-R6G-$ rBSA-FA bioprobe for 24 h with different $TiO_2@Ag$ concentrations.

Fig. S11 FCS analysis of MCF-7 and A549 cells incubated with 20 μL FA-PEG-FITC (red) and PBS (blue).

Fig. S12 HeLa cell count of bright field under laser scanning confocal microscope. Scale bar: 25 μ m.

Fig. S13 Detection sensitivity of the $TiO_2@Ag-R6G-rBSA-FA$ SERS bioprobe for different numbers of HeLa cells in the rabbit blood.

Fig. S14 TiO₂@Ag-R6G-rBSA-FA SERS bioprobe was utilized for CTCs detection in peripheral blood of four liver cancer patients.