Electronic Supplementary Material (ESI) for RSC Chemical Biology. This journal is © The Royal Society of Chemistry 2021

Measuring Redox Markers in Plant Cells

S Akter,^{a,b} MS Khan,^{a,b} E Smith^c and E Flashman^a

Supplementary Information

ContentsPageSupplementary Table S1: Summary of methods used to directly detect and quantify ROS.2Supplementary Table S2: Summary of methods used to detect and quantify redox markers.5Supplementary Table S3: Summary of methods used to detect and quantify NAD(P)/H7Supplementary Table S4: Summary of methods used to detect and quantify ROS scavengers8Supplementary Table S5: Summary of methods used to detect and quantify O29References10

Supplementary Table S1. Summary of methods used to directly detect and quantify ROS.

Target	Method/Probe	Quantitative/ qualitative	Ratiometric?	Examples of plant species	Spatial and/or temporal resolution	Applications	Limitations				
	Chemical Probes										
02*-	Tetrazolium dyes	Semi-quantitative (requires extraction and chromatographic measurement)	No	Tobacco suspension cells, strawberry plant leaves	Tissue-level resolution	Measuring hypersensitive response of tobacco to parasite infection ¹ , quantification of ROS in strawberry plants exposed to different stress conditions ² .	Non-specific to $O_2^{\bullet-}$, affected by O_2 availability and can generate $O_2^{\bullet-}$				
	Dihydroethidium	Semi-quantitative (requires extraction and chromatographic measurement)	No	Pea and rice seedlings	Cytosolic	Investigating silver nanoparticle toxicity in rice ³ and Cd toxicity responses in pea ⁴	Specificity requires chromatographic verification of oxidation product. Can react with other cellular components				
	MitoSOX	Quantitative	No	Arabidopsis	Mitochondrially-targeted but extraction may be required	Salicylic acid induced ROS generation and signaling pathway ⁵	Specificity requires chromatographic verification of oxidation product				
H ₂ O ₂	Cerium chloride	Quantitative with transmission electron microscopy	No	Lettuce leaves	5h-8h incubation required; targets cell wall	Hypersensitivity in response to bacterial infection ⁶	Requires long incubation times and specialized equipment				
	3,3'- Diaminobenzidine (DAB)	Qualitative	No	Arabidopsis leaves, tomato fruit, roots and stems	4h-5h incubation required; shorter (15s) with tissue printing ⁷	Peroxidase-dependent oxidative burst in Arabidopsis immunity ⁸ ; H ₂ O ₂ localization in large and thick plant organs; stem, roots and fruits ⁷ .	Requires long incubation time and peroxidase activity				
	Luminol (Chemi- luminescence)	Quantitative for relative changes	No	Garden cress, rosehip, coltsfoot and English plantain.	Fast detection (seconds)	Abiotic stress (salt, drought, cold, and heat) response of the antioxidative system ⁹ ; Antioxidants in herbal extracts ¹⁰	Signal quenching by other cellular components				
	Amplex Red	Quantitative for relative changes	No	Arabidopsis and tobacco leaves	Extracellular	Detection of extracellular H_2O_2 in Arabidopsis ¹¹ and tobacco leaves ¹² ; H_2O_2	Cell-impermeable, photochemical oxidation is				

						production in response to	possible, may cause cellular
	Dihudaofluoreesia	Qualitative and	No	Tabaaaa waxay	Internalizione ficiaria anno 1	heavy metals ¹³	stress
	Dinyarofluorescein	Qualitative and	NO	nlants and	dovelops within minutes	tube development ¹⁴ : Self	can react with other ROS,
	molecules	quantitative			of H_2O_2 exposure	incompatibility response of	photooxidation and
	molecules			///////////////////////////////////////		poppy ¹⁵ : plant pathogen	photobleaching
						interaction ¹⁶ ; role of H_2O_2 in	p
						ethylene-induced stomatal	
						closure. ¹⁷	
	Boronate probes	Qualitative	No	Arabidopsis	Intracellular using	Response to bacterial	Can also be oxidized by
					confocal microscopy	infection ¹⁸	HOCI and ONOO ⁻
	Single-walled	Quantitative	Yes	Arabidopsis,	Spatial resolution at	H ₂ O ₂ fluctuations post	Not (yet) commercially
	carbon nanotube	(ratiometric)		lettuce, arugula,	tissue level (leaf regions).	wounding and light stress ¹⁹	available
				spinach,	Temporal resolution		
				strawberry, sorrel.	limited by camera frame		
					rate of 2 frames per		
					second; quenching 1-2		
	Hybrid of silicon	Quantitative with	Ves	Lettuce	Snatial resolution at	Wound-induced H ₂ O ₂	Eluorescence signal
	oxide quantum dots	ontimisation	103		tissue level (leaf regions)	formation in lettuce 20	overlaps with chlorophyll
	and silver	optimisation			lissue level (lear regions).		fluorescence
	nanoclusters						
¹ O ₂	DanePy	Quantitative for	No	Broad bean leaves,	Thylakoid membranes,	Photoinhibition of broad	ROS mediated quenching of
		relative changes		Arabidopsis	Arabidopsis chloroplast	bean leaves ²¹ ; Excess	fluorescence
						photosynthetically active	
			-			radiation in Arabidopsis ²²	
	Singlet Oxygen	Quantitative for	No	Arabidopsis	Spatial resolution at	High light-dark treatment,	UV photobleaching and
	Sensor Green	relative changes			tissue level; ~20 mins	wounding and herbicide	high photosensitivity. Cell
	(SOSG)				required for signal	(DCMU) treatment ²³ .	impermeable.
					detection		
				Fluorescent E	Biosensors		
Redox	roGFP1 and roGFP2	Quantitative and	Yes	Arabidopsis	Cytosol, mitochondria,	Measurement of glutathione	Global cellular redox status
status		qualitative			ER, peroxisomes	redox potential in the cytosol	only, lack specificity,
						²⁴ ; drought ²⁵ and salinity	requires transformation
						stress ²⁶	
H ₂ O ₂	HyPer and roGFP2-	Qualitative and	Yes	Tobacco,	Chloroplast stroma,	Photosynthesis-dependent	pH-sensitivity needs to be
	Orp1	quantitative		Arabidopsis,	cytosol, nuclei and	$H_2 U_2$ transfer in <i>Nicotiana</i> ²⁷ ;	carefully controlled;
				legume-rhizobium	mitochondria; rhizobium	monitoring <i>in vivo</i> H ₂ U ₂	requires transformation
				sympioses	nodules	aynamics during elicitor-	

						induced oxidative burst in Arabidopsis ²⁸ ; dynamic changes in H_2O_2 in Arabidopsis roots induced by aluminum treatment ²⁹ ; imaging H_2O_2 accumulation in root nodules ³⁰ .					
	EPR-based detection										
Spin traps	5										
¹ O ₂	DMPO	Quantitative	No	Arabidopsis	Organellar level (with extraction); limited temporal resolution due	Photoinhibition-dependent singlet oxygen and free radical production 31Solvation prop spin-traps can incompatible v	Solvation properties of spin-traps can be incompatible with				
	DEPMPO	Quantitative	No	Maize	to time required for preparation and analysis.	Optimization of method for apoplastic fluid extraction ³²	biological tissue; low sensitivity requires high				
	TEMPD	Quantitative No Pea plants			Assessing the photobleaching of chlorophyll ³³ .	concentrations of spin trap (10-100 mM).					
•он	4-POBN	Qualitative and quantitative	No	Pea plants, Arabidopsis, Cucumber, Maize seedling		Diffusion of hydrogen peroxide through the chloroplast envelope ³⁴ ; hydroxyl radical production in cucumber roots and Arabidopsis seedlings ³⁵ ; ROS role in maize root wall loosening and elongation ³⁶ .					
Spin prob	es		1	•		· · · · · · · · · · · · · · · · · · ·					
Total radical product ion	5-SASL	Qualitative and quantitative	No	Pea leaves	Organellar level (with extraction), e.g. thylakoid lipid vesicles. Slow preparation.	Photobleaching of chlorophyll in Light-Harvesting Complex II ³³	Lipid soluble (can be a benefit)				
02*-	PTM-TC	Qualitative and quantitative	No	Arabidopsis root	Extracellular	ROS generation in root due to leaf injury ³³ .	Cell impermeable				
	TMT-H	Qualitative and quantitative	No	Rice	Limited temporal resolution due to time required for preparation and analysis.	Influence of ethylene on ROS levels ³⁷ ; role of ROS signaling in post-submergence recovery ³⁸	Lipid soluble; unspecific interaction with ROS; auto- oxidation in the presence of metal ions ³⁹				

Supplementary Table S2. Summary of methods used to detect and quantify redox markers.

Target	Method	Quantitative/	Examples of plant	Application	Limitation
		qualitative	species/cell types		
Cysteine oxidative modifications (general)	'Tag-Switch': differential alkylation and subsequent identification	Qualitative or quantitative	Arabidopsis (whole cell, chloroplast, leaves, roots, shoots), wheat seeds, tomato leaves, soybean leaves.	H ₂ O ₂ -sensitive proteome of the chloroplast ⁴⁰ ; dormant, non-dormant, abscisic acid- or gibberellic acid-treated seed protein extracts of wheat ⁴¹ ; redox-modified proteins in response to methyl jasmonate ⁴² ; profiling the thiol redox proteome in tomato leaves after bacterial infection ⁴³ ; H ₂ O ₂ - sensitive proteins in Arabidopsis leaves ⁴⁴ ; ozone-induced response in soybean ⁴⁵ ; H ₂ O ₂ treatment of Arabidopsis ⁴⁶ .	Does not reliably differentiate CysOxPTMs, incomplete or unspecific thiol blocking, incomplete reduction, sample degradation.
Disulfide, S-S	Modified tag-switch method including specific reduction by thioredoxin	Qualitative	Wheat endosperm, sweet tobacco, barrelclover, barley	Understanding thioredoxin-linked metabolic processes of cereal ⁴⁷ ⁴⁸ ; role of cystines in pollen rejection ⁴⁹ ; role of thioredoxin-linked proteins in germination ⁵⁰ ; identification of thioredoxin targets in barley embryo ⁵¹ .	Lack of specificity as Trxs or Trx-like enzymes can reduce S-glutathionylation and sulfhydration.
	chromatography	Qualitative	Arabidopsis, spinach,	Identification of thioredoxin targets 323334 48	
Cys-sulfenic acid, SOH	Direct Detection: specific labelling with chemical probes (dimedone, dimedone-functionalised DCP-Bio1, DYn-2, BTD)	Qualitative and globally quantitative	Arabidopsis, barrelclover	Quantification of redox-sensitive sites ⁵⁵ ; identification of sulfenylated proteins in H ₂ O ₂ - stressed Arabidopsis seedlings. ⁵⁶⁵⁷ ; role of sulfenylation in the development and functioning of symbiotic interactions ⁵⁸ .	Limited to site specific quantification of the modification
	YAP1C biosensor	Qualitative and globally quantitative	Arabidopsis	H_2O_2 -dependent sulfenome characterisation ⁵⁹⁻⁶¹	Requires transformation
S- glutathionylation (-SSG)	35S-radiolabelled Cys labelling	Qualitative	Arabidopsis cells, <i>C.reinhardtii</i> green algae	Impact of external oxidative stress ⁶² and <i>in vivo</i> targets of S-thiolation ⁶³	
	Biotinylated glutathione or glutathione ethyl ester	Qualitative and quantitative	Arabidopsis cells, <i>C.reinhardtii</i> green algae	Impact of external oxidative stress ⁶² and <i>in vivo</i> targets of glutathionylation ⁶⁴	
	Glutaredoxin affinity trapping	Qualitative	Poplar, Arabidopsis, potato and pea	Identification of plant glutaredoxin targets ⁶⁵	

Methionine	Affinity chromatography	Qualitative	Arabidopsis	H ₂ O ₂ treatment to validate MSRB-interacting	Only identifies MSRB
sulfoxide	using a methionine			proteins as MSRB substrates. 66	substrates.
	sulfoxide reductase (MSRB) Combined fractional diagonal chromatography (COFRADIC)	Qualitative and globally quantitative	Arabidopsis	Oxidative stress induced by photorespiration impairment, high light treatment ⁶⁷	
Tryptophan oxidation	Detection of N- formylkynurenin via 2D electrophoresis coupled with LC-MS/MS	Qualitative	Potato and rice	Selectivity of tryptophan oxidation 68	
Protein carbonylation	Derivatisation with 2,4- dinitrophenylhydrazine, spectroscopic/ immunogenic detection and tandem MS.	Qualitative	Rice	Identification of oxidised proteins following mild external H ₂ O ₂ exposure ⁶⁹	
	Fluorescein-5- thiosemicarbazide (FTC)	Quantitative and qualitative	Wheat	Protein carbonylation during natural leaf senescence	
Lipid oxidation products	Chemiluminescence	Qualitative for relative changes	Almond and almond- derived foodstuffs	Monitoring lipoxidation during almond processing ⁷¹ .	Non-specific
	Thiobarbituric acid-reactive substances (TBARS) assay; fluorescence microscopy.	Qualitative with calibration	Beet, red cabbage, carrot, eggplant, bell pepper, radish, spinach, tomato and Arabidopsis	Improving the TBARS assay in plant tissues containing anthocyanin and other compounds ⁷² ; mapping (potentially toxic) malondialdehyde pools in Arabidopsis. ⁷³	Anthocyanins can interfere with absorbance; non- specific
	Antibody-based detection	Qualitative	Spinach	Malondialdehyde causes protein modification in heat-stressed plants ⁷⁴	
	DNP-derivatization of carbonyls coupled with LC-FTICR-MS analysis	Quantitative	Arabidopsis	Determination of source fatty acids of potentially damaging short lipid peroxides in leaves ⁷⁵	
Sugar oxidation products	Extraction and LC-MS/MS	Qualitative	Arabidopsis and barley	Identification of sugars as *OH scavengers ⁷⁶	Several extraction steps required
Nucleic acid oxidation products (8-bydroxy-2-	Antibody-based immunoassays	Qualitative	Arabidopsis	Quantification of 8-OHdG levels allowed characterisation of AtOGG1 as having a role in DNA damage repair . ⁷⁷	
deoxyguanosine (8-OHdG) in DNA)	HPLC	Qualitative	Currant	To assess 80HdG as a biomarker of oxidative stress and genetic stability in cryopreservation ⁷⁸	Requires extraction

Supplementary Table S3. Summary of methods used to detect and quantify NAD(P)/H.

Target	Probe	Quantitative/qualitative	Ratiometric?	Examples of plant species/ cell types	Spatial and temporal resolution	Application	Limitations
NAD(P)H	Autofluorescence	Can be quantitative with calibration ⁷⁹	No	Any	Not compartment specific; signals often dominated by mitochondria. Temporal resolution seconds to minutes	Applied to isolated plant mitochondria to quantify bound and free NADH ⁸⁰	Cannot detect oxidised forms, NAD ⁺ or NADP ⁺
Free ^a NADH:NAD ⁺	SoNar (biosensor)	Quantitative for relative changes but still requires development of calibration for absolute quantification in plants	Yes	Arabidopsis cotyledons/ seedlings	Compartment specific (cytosol and plastids). Temporal resolution seconds to minutes	Export of excess reductant form chloroplasts in the light ⁸¹	Requires pH correction with additional fluorescent sensor. Requires genetic transformations.
Free NADH:NAD⁺	Peredox-mCherry (biosensor)	Quantitative for relative changes but still requires development of calibration for absolute quantification in plants	Yes	Arabidopsis mature leaves and seedlings	Compartment specific (cytosol). ⁸² Temporal resolution seconds to minutes	Immune response ⁸² , NAD ⁺ -transporters, stomatal development, ⁸³ reductant export from chloroplasts in the light ⁸⁴	Requires genetic transformation.
Free NADPH	iNap (biosensor)	Quantitative for relative changes but still requires development of calibration for absolute quantification in plants	Yes	Arabidopsis cotyledons/ seedlings	Compartment specific (cytosol plastids and peroxisomes). Temporal resolution seconds to minutes	Export of excess reductant from chloroplasts in the light ⁸¹	Requires pH correction with additional fluorescent sensor. Requires genetic transformations.

^a Free as opposed to protein bound metabolites

Target	Method	Quantitative/ qualitative	Examples of plant species/cell types	Degree of spatial resolution	Application	Limitation
Ascorbate	Spectrophotometric measurement	Quantitative	Barley and Arabidopsis	Leaves	Is ascorbate content of leaf responsible for overestimation of H_2O_2 in leaves? ⁸⁵	Risk of ascorbate oxidation in sample preparation
	HPLC	Quantitative	Range of horticultural products ⁸⁶ ; Arabidopsis ⁸⁷ .	Leaves, stems, flowers	Quantitative differentiation of ascorbate at organ and growth phase of plant.	Risk of ascorbate oxidation in sample preparation
	Histochemical labelling (silver nitrate)	Qualitative	Pumpkin.	Cells and tissues of the root apex	Localization of ascorbic acid in <i>C. maxima</i> root ⁸⁸ .	Requires cold and acidic conditions
	Antibody labelling	Qualitative	Arabidopsis and tobacco	Chloroplasts, mitochondria and peroxisome	Ascorbate distribution in response to light stress ⁸⁹ .	Primary antibody cannot distinguish between ascorbate, dehydroascorbate (DHA) and monodehydroascorbate
Glutathione	Ellman's reagent or DTNB method	Quantitative	Arabidopsis, soybean	Organelle level (following extraction)	Role of nuclear glutathione in cell cycling ⁹⁰ ; glutathione estimation in crude plant extracts ⁹¹ .	DTNB also reacts with other cellular thiols
	Chromatographic (HPLC, Capillary electrophoresis, LC-MS)	Quantitative	Maize, spinach, watermelon, potato, tomato and French beans	Endosperms, scutella, roots, and shoots of maize seedlings; vascular plant extracts; soft-rot of French beans	Glutathione distribution in maize seedlings in response to Cd treatment ⁹² ; fungal infection effect on redox markers ⁹³ .	Limited specificity and alteration of the glutathione pool during extraction
	Fluorescent dyes (Monochlorobimane and monobromobimane)	Quantitative (for relative changes)	Arabidopsis	Trichoblast (root hair cells), atrichoblasts of Arabidopsis root; nuclei and cytosol of Arabidopsis root.	Direct measurement of glutathione in epidermal cells of Arabidopsis ⁹⁴ ; measurement of glutathione levels in intact roots of Arabidopsis ⁹⁵	Cell toxicity, reacts with other cellular thiols, cannot enter chloroplasts
	GRX1-roGFP2	Quantitative	Arabidopsis, Tobacco	Chloroplasts, mitochondria, cytosol, ER	Quantification of glutathione redox potential during seed germination and redox stress ^{96,97}	Measures glutathione redox potential rather than concentration; requires transformation

Supplementary Table S4. Summary of methods used to detect and quantify ROS scavengers.

		فامممن ماممطعممم الم	a dataat and au antifu	$\cdot \cap \cdot \square$	minute colle and ticques.
Supplementary	v rable 55. Summar	v or mernoas usea r	o delect and duantity		DIANT CENS AND LISSUES.
				- - 2 ····	

Method	Quantitative/qualitative	Examples of plant species/cell types	Degree of spatial and temporal resolution	Application	Limitation
Clark-type electrode	Quantitative	Arabidopsis, chickpea, potato, castor plants	10 μm spatial resolution, <1 s temporal resolution	Measurement of intrinsic O ₂ in different plant tissues ⁹⁸ ; identification of developmentally important hypoxic niche in shoot apical meristems ⁹⁹	Invasive and physically damaging, consume O ₂ so may disrupt local O ₂ homeostasis. Only allow local measurement.
Luminescent (optic) probes	Quantitative	Range of seeds (e.g. pea, barley, maize, sunflower), sea grass, rice and algae	50 μm spatial resolution, <1 s temporal resolution	Role of hypoxia in seed germination ¹⁰⁰ , O_2 dynamics during submergence in rice ¹⁰¹ , O_2 dynamics during heat stress of sea grass at low tide ¹⁰²	Invasive and physically damaging; can be light sensitive. Only allow local measurement.
Human O ₂ -sensing cassette coupled to luciferase	Quantitative within limits	Arabidopsis seedlings and protoplasts	Slow temporal resolution (hours).	Proof of principle of O ₂ - responsiveness ¹⁰³	Slow temporal resolution, limited dynamic range and O ₂ -sensitivity.
Hypoxia-responsive promoter element-linked UnaG-mCherry reporter	Quantitative within limits (ratiometric)	Nicotiana benthamiana	Slow temporal resolution (hours)	Proof of principle of O ₂ - responsiveness ¹⁰⁴	Slow temporal resolution, limited dynamic range and O ₂ -sensitivity.

References

- 1 A. J. Able, D. I. Guest and M. W. Sutherland, *Plant Physiol.*, 1998, **117**, 491–499.
- 2 C. F. Grellet Bournonville and J. C. Díaz-Ricci, *Phytochem. Anal.*, 2011, **22**, 268–271.
- 3 P. M. G. Nair and I. M. Chung, *Chemosphere*, 2014, **112**, 105–113.
- 4 M. Rodríguez-Serrano, M. C. Romero-Puertas, D. M. Pazmino, P. S. Testillano, M. C. Risueno, L. A. Del Río and L. M. Sandalio, *Plant Physiol.*, 2009, **150**, 229–243.
- 5 S. Nie, H. Yue, J. Zhou and D. Xing, *PLoS One*, 2015, **10**, e0119853.
- 6 C. S. Bestwick, I. R. Brown, M. H. R. Bennett and J. W. Mansfield, *Plant Cell*, 1997, 9, 209–221.
- 7 Y. H. Liu, C. E. Offler and Y. L. Ruan, *Front. Plant Sci.*, 2014, **5**, 1–6.
- 8 A. Daudi, Z. Cheng, J. A. O'Brien, N. Mammarella, S. Khan, F. M. Ausubel and G. Paul Bolwell, Plant Cell, 2012, 24, 275–287.
- 9 L. Saleh and C. Plieth, *Plant Methods*, 2009, **5**, 1–18.
- 10 L. Pogačnik and N. P. Ulrih, in *Luminescence*, John Wiley & Sons, Ltd, 2012, vol. 27, pp. 505–510.
- 11 Z. Kolbert, A. Petô, N. Lehotai, G. Feigl, A. Ördög and L. Erdei, Acta Biol. Szeged., 2012, 56, 37–41.
- 12 I. Šnyrychová, F. Ayaydin and É. Hideg, *Physiol. Plant.*, 2009, **135**, 1–18.
- 13 C. Ortega-Villasante, L. E. Hernández, R. Rellán-Álvarez, F. F. Del Campo, R. O. Carpena-Ruiz and L. E. Hernández, New Phytol., 2007, 176, 96–107.
- 14 M. Potocký, M. A. Jones, R. Bezvoda, N. Smirnoff and V. Žárský, *New Phytol.*, 2007, **174**, 742–751.
- 15 K. A. Wilkins, J. Bancroft, M. Bosch, J. Ings, N. Smirnoff and V. E. Franklin-Tong, *Plant Physiol.*, 2011, **156**, 404–416.
- 16 L. Zeng, J. Zhou, B. Li and D. Xing, *Front. Plant Sci.*, 2015, **6**, 96.
- 17 R. Desikan, K. Last, R. Harrett-Williams, C. Tagliavia, K. Harter, R. Hooley, J. T. Hancock and S. J. Neill, Plant J, 2006, 47, 907–916.
- 18 V. P. Ledoux Quentin, Cutsem Pierre Van, Markó Istvan E, *Plant Signal Behav.*
- 19 H. Wu, R. Nißler, V. Morris, N. Herrmann, P. Hu, S.-J. Jeon, S. Kruss and J. Pablo Giraldo, *Nano Lett.*, 2021, 13, 26.
- 20 R. Dong, Y. Yao, D. Li, H. Zhang, W. Li, M. Molokee, Y. Liu and B. Lei, Sensors Actuators, B Chem., 2020, 321, 128643.
- 21 É. Hideg, T. Kálai, K. Hideg and I. Vass, *Biochemistry*, 1998, **37**, 11405–11411.
- 22 É. Hideg, K. Ogawa, T. Kálai and K. Hideg, *Physiol. Plant.*, 2001, **112**, 10–14.
- 23 C. Flors, M. J. Fryer, J. Waring, B. Reeder, U. Bechtold, P. M. Mullineaux, S. Nonell, M. T. Wilson and N. R. Baker, J. Exp. Bot., 2006, 57, 1725–1734.
- 24 I. Aller, N. Rouhier and A. J. Meyer, Front. Plant Sci., 2013, 4, 506.
- 25 T. Jubany-Mari, L. Alegre-Batlle, K. Jiang and L. J. Feldman, FEBS Lett., 2010, 584, 889–897.
- 26 M. Schwarzländer, M. D. Fricker and L. J. Sweetlove, *Biochim. Biophys. Acta Bioenerg.*, 2009, **1787**, 468–475.
- 27 M. Exposito-Rodriguez, P. P. Laissue, G. Yvon-Durocher, N. Smirnoff and P. M. Mullineaux, Nat. Commun., 2017, 8, 4.
- 28 T. Nietzel, M. Elsässer, C. Ruberti, J. Steinbeck, J. M. Ugalde, P. Fuchs, S. Wagner, L. Ostermann, A. Moseler, P. Lemke, M. D. Fricker, S. J. Müller-Schüssele, B. M. Moerschbacher, A. Costa, A. J. Meyer and M. Schwarzländer, New Phytol., 2019, 221, 1649–1664.
- 29 A. Hernández-Barrera, A. Velarde-Buendía, I. Zepeda, F. Sanchez, C. Quinto, R. Sánchez-Lopez, A. Y. Cheung, H. M. Wu and L. Cardenas, Sensors (Switzerland), 2015, 15, 855–867.
- 30 D. Marino, E. Andrio, E. G. J. Danchin, E. Oger, S. Gucciardo, A. Lambert, A. Puppo and N. Pauly, *New Phytol.*, 2011, **189**, 580–592.
- 31 É. Hideg, C. Spetea and I. Vass, *BBA Bioenerg.*, 1994, **1186**, 143–152.
- J. J. J. Dragišic Maksimovic, B. D. Živanović, V. M. Maksimović, M. D. Mojović, M. T. Nikolic and Ž. B. Vučinić, *Plant Sci.*, 2014, 223, 49–58.
- 33 M. Lingvay, P. Akhtar, K. Sebők-Nagy, T. Páli and P. H. Lambrev, Front. Plant Sci., 2020, 11, 849.
- 34 M. M. Borisova, M. A. Kozuleva, N. N. Rudenko, I. A. Naydov, I. B. Klenina and B. N. Ivanov, *Biochim. Biophys. Acta Bioenerg.*, 2012, **1817**, 1314–1321.
- 35 S. Renew, E. Heyno, P. Schopfer and A. Liszkay, *Plant J.*, 2005, 44, 342–347.
- 36 A. Liszkay, E. Van Der Zalm and P. Schopfer, *Plant Physiol.*, 2004, **136**, 3114–3123.
- 37 B. Steffens, A. Steffen-Heins and M. Sauter, Front. Plant Sci., 2013, 4, 179.
- 38 E. Yeung, H. van Veen, D. Vashisht, A. L. S. Paiva, M. Hummel, T. Rankenberg, B. Steffens, A. Steffen-Heins, M. Sauter, M. de Vries, R. C. Schuurink, J. Bazin, J. Bailey-Serres, L. A. C. J.

Voesenek and R. Sasidharan, Proc. Natl. Acad. Sci. U. S. A., 2018, 115, E6085–E6094.

- 39 S. Dikalov, B. Fink, M. Skatchkov and E. Bassenge, *Free Radic. Biol. Med.*, 1999, **27**, 170–176.
- 40 M. Muthuramalingam, A. Matros, R. Scheibe, H.-P. Mock and K.-J. Dietz, Front. Plant Sci., 2013, 4, 54.
- 41 N. V Bykova, B. Hoehn, C. Rampitsch, T. Banks, J.-A. Stebbing, T. Fan and R. Knox, *Proteomics*, 2011, 11, 865–82.
- 42 S. Alvarez, M. Zhu and S. Chen, J. Proteomics, 2009, **73**, 30–40.
- 43 J. Parker, N. Zhu, M. Zhu and S. Chen, J. Vis. Exp., 2012, 3766.
- 44 H. Wang, S. Wang, Y. Lu, S. Alvarez, L. M. Hicks, X. Ge and Y. Xia, J. Proteome Res., 2012, 11, 412–424.
- 45 A. Galant, R. P. Koester, E. a Ainsworth, L. M. Hicks and J. M. Jez, New Phytol., 2012, **194**, 220–9.
- 46 Y. X. Pei Liu, Huoming Zhang, Hai Wang, *Proteomics*, 2014, **14**, 750–762.
- 47 J. H. Wong, Y. Balmer, N. Cai, C. K. Tanaka, W. H. Vensel, W. J. Hurkman and B. B. Buchanan, FEBS Lett., 2003, 547, 151–156.
- 48 J. H. Wong, N. Cai, Y. Balmer, C. K. Tanaka, W. H. Vensel, W. J. Hurkman and B. B. Buchanan, Phytochemistry, 2004, 65, 1629–1640.
- 49 J. A. Juárez-Díaz, B. McClure, S. Vázquez-Santana, A. Guevara-García, P. León-Mejía, J. Márquez-Guzmán and F. Cruz-García, J. Biol. Chem., 2006, 281, 3418–24.
- 50 F. Alkhalfioui, M. Renard, W. H. Vensel, J. Wong, C. K. Tanaka, W. J. Hurkman, B. B. Buchanan and F. Montrichard, *Plant Physiol.*, 2007, 144, 1559–79.
- 51 P. Hägglund, J. Bunkenborg, K. Maeda, B. Svensson, and B. S. Per Hagglund, Jakob Bunkenborg, Kenji Maeda and Enzyme, J. Proteome Res., 2008, 7, 5270–5276.
- 52 C. H. Marchand, H. Vanacker, V. Collin, E. Issakidis-Bourguet, P. Le Maréchal and P. Decottignies, *Proteomics*, 2010, **10**, 2418–2428.
- 53 K. Yoshida, K. Noguchi, K. Motohashi and T. Hisabori, Plant Cell Physiol., 2013, 54, 875–892.
- 54 Y. Balmer, W. H. Vensel, C. K. Tanaka, W. J. Hurkman, E. Gelhaye, N. Rouhier, J. P. Jacquot, W. Manieri, P. Schürmann, M. Droux and B. B. Buchanan, *Proc. Natl. Acad. Sci. U. S. A.*, 2004, **101**, 2642–2647.
- 55 J. Huang, P. Willems, B. Wei, C. Tian, R. B. Ferreira, N. Bodra, S. A. Martínez Gache, K. Wahni, K. Liu, D. Vertommen, K. Gevaert, K. S. Carroll, M. Van Montagu, J. Yang, F. Van Breusegem and J. Messens, *Proc. Natl. Acad. Sci. U. S. A.*, 2019, **116**, 20256–20261.
- 56 S. Akter, J. Huang, N. Bodra, B. De Smet, K. Wahni, D. Rombaut, J. Pauwels, K. Gevaert, K. Carroll, F. Van Breusegem and J. Messens, *Mol. Cell. Proteomics*, 2015, 14, 1183–1200.
- 57 S. Akter, S. Carpentier, F. Van Breusegem and J. Messens, Biochem. Biophys. Reports, 2017, 9, 106–113.
- 58 E. Oger, D. Marino, J. M. Guigonis, N. Pauly and A. Puppo, J. Proteomics, 2012, 75, 4102–4113.
- 59 C. Waszczak, S. Akter, D. Eeckhout, G. Persiau, K. Wahni, N. Bodra, I. Van Molle, B. De Smet, D. Vertommen, K. Gevaert, G. De Jaeger, M. Van Montagu, J. Messens and F. Van Breusegem, *Proc Natl Acad Sci U S A*, 2014, **111**, 11545–11550.
- 60 B. Wei, P. Willems, J. Huang, C. Tian, J. Yang, J. Messens and F. Van Breusegem, Front. Plant Sci., 2020, 11, 777.
- 61 B. De Smet, P. Willems, A. D. Fernandez-Fernandez, S. Alseekh, A. R. Fernie, J. Messens and F. Van Breusegem, *Plant J.*, 2019, **97**, 765–778.
- 62 D. P. D. Dixon, M. Skipsey, N. M. N. Grundy, R. Edwards, B. Sciences and U. Kingdom, *Plant Physiol.*, 2005, **138**, 2233–2244.
- 63 L. Michelet, M. Zaffagnini, H. Vanacker, P. Le Maréchal, C. Marchand, M. Schroda, S. D. Lemaire and P. Decottignies, J. Biol. Chem., 2008, 283, 21571–21578.
- 64 M. Zaffagnini, M. Bedhomme, H. Groni, C. H. Marchand, C. Puppo, B. Gontero, C. Cassier-Chauvat, P. Decottignies and S. D. Lemaire, *Mol. Cell. Proteomics*, 2012, **11**, M111.014142.
- 65 N. Rouhier, A. Villarejo, M. Srivastava, E. Gelhaye, O. Keech, M. Droux, I. Finkemeier, G. Samuelsson, K. J. Dietz, J.-P. Jacquot and G. Wingsle, Antioxid. Redox Signal., 2005, 7, 919–29.
- 66 L. Tarrago, S. Kieffer-Jaquinod, T. Lamant, M. Marcellin, J. Garin, N. Rouhier and P. Rey, Antioxidants Redox Signal., 2012, 16, 79–84.
- 67 S. Jacques, B. Ghesquière, P. J. De Bock, H. Demol, K. Wahni, P. Willems, J. Messens, F. Van Breusegem and K. Gevaert, Mol. Cell. Proteomics, 2015, 14, 1217–1229.
- 68 I. M. Møller and B. K. Kristensen, *Free Radic. Biol. Med.*, 2006, **40**, 430–435.
- 69 B. K. Kristensen, P. Askerlund, N. V. Bykova, H. Egsgaard and I. M. Møller, *Phytochemistry*, 2004, **65**, 1839–1851.
- 70 M. Havé, L. Leitao, M. Bagard, J. F. Castell and A. Repellin, *Plant Biol.*, 2015, 17, 973–979.
- 71 S. Tazi, A. Puigserver and E. H. Ajandouz, *Food Chem.*, 2009, **116**, 999–1004.
- 72 D. M. Hodges, J. M. DeLong, C. F. Forney and R. K. Prange, *Planta*, 1999, **207**, 604–611.
- L. Mène-Saffrané, C. Davoine, S. Stolz, P. Majcherczyk and E. E. Farmer, J. Biol. Chem., 2007, 282, 35749–35756.
- 74 Y. Yamauchi, A. Furutera, K. Seki, Y. Toyoda, K. Tanaka and Y. Sugimoto, *Plant Physiol. Biochem.*, 2008, 46, 786–793.
- J. Mano, S. Khorobrykh, K. Matsui, Y. Iijima, N. Sakurai, H. Suzuki and D. Shibata, *Plant Biotechnol.*, 2014, **31**, 535–543.

- A. Matros, D. Peshev, M. Peukert, H.-P. Mock and W. Van den Ende, *Plant J.*, 2015, **82**, 822–839.
- 77 H. Chen, P. Chu, Yuliang Zhou, Y. Li, J. Liu, Y. Ding, E. W. T. Tsang, L. Jiang, K. Wu and S. Huang, J. Exp. Bot., 2012, 63, 4107–4121.
- J. W. Johnston, I. Pimbley, K. Harding and E. E. Benson, *Cryo-Letters*, 2010, **31**, 1–13.
- 79 N. Ma, M. A. Digman, L. Malacrida and E. Gratton, Biomed. Opt. Express, 2016, 7, 2441.
- 80 M. R. Kasimova, *Plant Cell Online*, 2006, **18**, 688–698.
- 81 S. Lim, C. P. Voon and B. L. Lim, *Nat. Commun.*, 2020, 3238.
- J. Steinbeck, P. Fuchs, Y. L. Negroni, M. Elsässer, S. Lichtenauer, Y. Stockdreher, E. Feitosa-Araujo, J. B. Kroll, J. O. Niemeier, C. Humberg, E. N. Smith, M. Mai, A. Nunes-Nesi, A. J. Meyer, M. Zottini, B. Morgan, S. Wagner and M. Schwarzländer, *Plant Cell*, 2020, 32, 3324–3345.
- 83 E. Feitosa-Araujo, P. da Fonseca-Pereira, M. M. Pena, D. B. Medeiros, L. Perez de Souza, T. Yoshida, A. P. Weber, W. L. Araújo, A. R. Fernie, M. Schwarzländer and A. Nunes-Nesi, *Plant J.*, 2020, **104**, 1149–1168.
- 84 M. Elsässer, E. Feitosa-Araujo, S. Lichtenauer, S. Wagner, P. Fuchs, J. Giese, F. Kotnik, M. Hippler, A. J. Meyer, V. G. Maurino, I. Finkemeier, M. Schallenberg-Rüdinger and M. Schwarzländer, *bioRxiv*, 2020, 1–45.
- 85 S. Veljovic-Jovanovic, G. Noctor and C. H. Foyer, *Plant Physiol. Biochem.*, 2002, 40, 501–507.
- 86 V. Spínola, B. Mendes, J. S. Câmara and P. C. Castilho, Anal. Bioanal. Chem., 2012, 403, 1049–1058.
- 87 N. Kka, J. Rookes and D. Cahill, *Plant Growth Regul.*, 2017, **81**, 283–292.
- 88 R. Liso, M. C. De Tullio, S. Ciraci, R. Balestrini, N. La Rocca, L. Bruno, A. Chiappetta, M. B. Bitonti, P. Bonfante and O. Arrigoni, J. Exp. Bot., 2004, 55, 2589–2597.
- 89 B. Zechmann, M. Stumpe and F. Mauch, *Planta*, 2011, 233, 1–12.
- 90 T. K. Pellny, V. Locato, P. D. Vivancos, J. Markovic, L. De Gara, F. V. Pallardó and C. H. Foyer, Mol. Plant, 2009, 2, 442–456.
- 91 I. K. Smith, T. L. Vierheller and C. A. Thorne, *Anal. Biochem.*, 1988, **175**, 408–413.
- 92 W. E. Rauser, R. Schupp and H. Rennenberg, *Plant Physiol.*, 1991, **97**, 128–138.
- 93 I. Muckenschnabel, B. Williamson, B. A. Goodman, G. D. Lyon, D. Stewart and N. Deighton, Planta, 2001, 212, 376–381.
- 94 A. J. Meyer and M. D. Fricker, J. Microsc., 2000, **198**, 174–181.
- 95 M. D. Fricker, M. May, A. J. Meyer, N. Sheard and N. S. White, J. Microsc., 2000, 198, 162–173.
- T. Nietzel, J. Mostertz, C. Ruberti, G. Nee, P. Fuchs, S. Wagner, A. Moseler, S. Muller-Schussele, A. Benamar, G. Poschet, M. Buttner, I. M. Møller, C. H. Lillig, D. Macherel, M. Wirtz, R. Hell, I. Finkemeier, A. J. Meyer, F. Hochgräfe and M. Schwarzländer, *Proc Natl Acad Sci U S A*, 2020, **117**, 741–751.
- 97 L. Marty, W. Siala, M. Schwarzlä Nder C, M. D. Fricker, M. Wirtz, L. J. Sweetlove, Y. Meyer, A. J. Meyer, J.-P. Reichheld and R. Diger Hell, *Proc Natl Acad Sci U S A*, 2009, **106**, 9109–9114.
- 98 D. A. Weits, J. T. van Dongen and F. Licausi, *New Phytol.*, 2021, **229**, 24–35.
- D. A. Weits, A. B. Kunkowska, N. C. W. Kamps, K. M. S. Portz, N. K. Packbier, Z. Nemec Venza, C. Gaillochet, J. U. Lohmann, O. Pedersen, J. T. van Dongen and F. Licausi, *Nature*, 2019, 569, 714–717.
- 100 H. Rolletschek, A. Stangelmayer and L. Borisjuk, *Sensors*, 2009, **9**, 3218–3227.
- 101 Y. Mori, Y. Kurokawa, M. Koike, A. I. Malik, T. D. Colmer, M. Ashikari, O. Pedersen and K. Nagai, *Plant Cell Physiol.*, 2019, 60, 973–985.
- 102 O. Pedersen, T. D. Colmer, J. Borum, A. Zavala-Perez and G. A. Kendrick, *New Phytol.*, 2016, **210**, 1207–1218.
- 103 S. Iacopino, S. Jurinovich, L. Cupellini, L. Piccinini, F. Cardarelli, P. Perata, B. Mennucci, B. Giuntoli and F. Licausi, *Plant Physiol.*, 2019, **179**, 986–1000.
- 104 G. Panicucci, S. Iacopino, E. De Meo, P. Perata and D. A. Weits, *Biosensors*, 2020, **10**, 197.