Electronic Supplementary information (ESI): Biodegradable Self-assembly Micelles Significantly Enhanced Solubility, Biological Stability and *in vivo* Antitumor Efficacy of

Hexylselen

Jinzhang Fang[‡], Zhao Chen[‡], Jun Song, Jinxiu Li, Yunying Han, Wei Hou, Wenxi Wang and

Benfang H. Ruan*

Dissolving substances		Solubility (mg/mL)	
Aqueous solvent	Water	0.0016 ± 0.00005	
	HCl solution (pH=1.2)	0.0022 ± 0.00026	
	Sodium Acetate buffer (pH=4.5)	0.0013 ± 0.00047	
	Phosphate Buffer Saline (pH=7.4)	0.0008 ± 0.00015	
Hydrophilic solvent	DMSO	33.81 ± 0.70	
	DMF	17.31 ± 0.32	
	MeOH	1.41 ± 0.13	
	EtOH	1.28 ± 0.04	
	Acetonitrile	0.42 ± 0.005	
	Acetone	0.44 ± 0.04	
	Isopropyl Alcohol	0.98 ± 0.06	
Hydrophobic solvent	Ethyl Acetate	0.24 ± 0.02	
	1-Octanol	1.06 ± 0.08	
	DCM	3.17 ± 0.16	
Liquid excipient	Propylene glycol	1.05 ± 0.02	
	Glycerine	0.04 ± 0.001	
	PEG200	2.95 ± 0.07	
	PEG400	2.38 ± 0.08	
	Tween20	1.06 ± 0.02	
	Tween80	0.51 ± 0.02	
Solid excipients (10%	Poloxamer 188 (F68)	0.013 ± 0.003	
solution)	Poloxamer 407 (F127)	0.098 ± 0.008	
	Soluplus	0.515 ± 0.008	
	Hyropropyl-β-Cyclodextrin (HP-β-CD)	0.060 ± 0.003	
	Sulfobutylether-\beta-Cyclodextrin (SBE -	0.071 ± 0.004	
	β-CD)	0.071 ± 0.004	
	PEG2000	0.007 ± 0.002	
	PEG4000	0.008 ± 0.001	
	PEG6000	0.006 ± 0.001	

Table S1. The Solubility of CPD-3B in Different Solvents (25 °C, $n \ge 3$)

Samples	H22 (IC ₅₀ : μM)	Α549 (IC ₅₀ : μM)	
Free CPD-3B	1.51 ± 0.04	1.39 ± 0.07	
CPD-3B@SOL micelles	1.75 ± 0.02	2.79 ± 0.18	
Blank SOL micelles	> 30	> 30	

Table S2. The Inhibition Tumor Cell Growth by CPD-3B@SOL Micelles

Table S3. The $t_{1/2}$ and Clearance rates of CPD-3B vehicle and CPD-3B@SOL micelles in

Samples	Fitted equation	k _e	t _{1/2} (h)	CL (L/h/g)
Free CPD-3B	$lnC = -1.1204t + 4.4351; R^2 = 0.9782$	-1.1204	0.62	134.4
CPD-3B@SOL micelles	$lnC = -0.1298t + 4.4975; R^2 = 0.9505$	-0.1298	5.34	15.6
Coumarin	$lnC = -0.5783t + 4.6404; R^2 = 0.9922$	-0.5783	1.20	69.4

liver microsomes $(n \ge 3)$

Notes: k_e : the slope of the relationship of lnC (compound concentration) and t (incubated

time); $t_{1/2}$: half-time life; CL_{int} : intrinsic Clearance.

Figure S1. The HPLC (A, B, C, D) and UV (a, b, c, d) Spectrograms of CPD-3B, Ebselen,

CPD-3B BME Derivative and Ebselen BME Derivative.

Figure S2. The Correlation of Peak Area to deriving time (A-t) of CPD-3B-BME and Ebselen-BME and Standard Curve for CPD-3B Quantification. A: The optimizing derivatization time for CPD-3B and Ebselen; B: The standard curve for quantifying CPD-3B by CPD-3B-BME and internal standard Ebselen-BME: Peak areas of CPD-3B-BME (A_m) and Ebselen-BME (A_n), and the relation of A_m/A_n to C_{CPD-3B} produced equation $A_m/A_n = 42.984C - 0.1155$, R²=0.9995, range of 1-200 µg/mL.