Supporting Information for:

Inner residues of macrothiolactone in autoinducer peptides I/IV circumvents spontaneous *S*-to-*O* acyl transfer to the upstream serine residue

Masanobu Nagano, Satoshi Ishida, Hiroaki Suga* Graduate School of Science, The University of Tokyo, Japan 113-0033

Table of Contents

Supplementary Figures	2
Figure S1	2
Figure S2	3
Figure S3	4
Figure S4	5
Figure S5	6
Supplementary Tables	7
Table S1	7
Table S2	8
Table S3	9
Table S4	10

Figure S1. MALDI-TOF-MS of *in vitro*-translated AIP-Ia analogs mutated at the position 7 and its IAA labeling. Mutational scanning the STCD motif in AIP-I. Thr7 in pre-AIP-Ia was mutated to eight distinct amino acids (X = A, Y, K, N, Q, E P and G). Red spectra: samples after 30 min of transcription/translation. Blue spectra: samples after IAA alkylation of free thiol group of the SXCD motif. Pre: linear precursor peptide.

Figure S2. MALDI-TOF-MS of *in vitro*-translated AIP-Ia analogs mutated at the position 9 and its IAA labeling. Mutational scanning the STCD motif in AIP-I. Asp9 in pre-AIP-Ia was mutated to six distinct amino acids (X = A, Y, K, N, Q, E). Red spectra: samples after 30 min of transcription/translation. Blue spectra: samples after IAA alkylation of free thiol group of the STCX motif. Side products - 1a; alkylated hydrolyzed peptide, 2a; tri-alkylated DTT adduct, 3a; bi-alkylated Cys adduct, whch were attributed to the lower stability of the thioester in the *in vitro* translation mixture (*Ref-17*). Pre: linear precursor peptide.

Figure S3. LC-MS of *in vitro* expressed AIP-1a and its mutants, D9G. Precursor peptide was *in vitro*-expressed by FIT system via incubation for 30 or 60 min, then analyzed by LC-MS. After the 30 min reaction point was also applied to IAA alkylation for 60 min and analyzed by LC-MS. Displayed are EIC (extracted ion chromatogram) LC-MS chromatograms and composite mass spectra of desired AIP-1a or the mutant in the corresponding chromatograms. EIC chromatogram corresponding to [M+H]⁺ of CDP-AA is drawn in blue. Each EIC chromatogram was exhibited by searching calculated m/z in +/- 0.05 *m/z* range. Note, no precursor peptides were detected by LC-MS.

Figure S4. MALDI-TOF-MS of *in vitro*-translated AIP-Ia analogs mutated in a cyclic part and its IAA labeling. Mutational scanning of the C-terminal residue flanking the backbone thioester by MALDI-TOF-MS and IAA labeling of *in vitro* expressed cyclic depsipeptides. Red spectra: samples after 30 min of transcription/translation. Blue spectra: samples after IAA alkylation of free thiol group of the Cys in the STCX motif. 2a; tri-alkylated DTT adduct, which was attributed to the lower stability of the thioester in the *in vitro* translation mixture (*Ref-17*).Pre: linear precursor peptide.

Figure S5. MALDI-TOF MS and IAA labeling analysis of *in vitro* expressed AIP-Ia with varying ring sizes. MALDI-TOF MS analysis of *in vitro* expressed peptides. Red spectra: samples after 30 min of transcription/translation. Blue spectra: samples after IAA alkylation of free thiol group of the SPCG motif.

Table S1. Peptide list and the summary of the MALDI-TOF MS analyses of CDP formation. The product names in brackets correspond to minor peaks. No pre was detected after 30 min translation.

Entry	Precursor peptide (pre)	Sequence	Product after IAA labeling
1	preAIP-1a	fMRGGYSTCDFIM ^S F ^{4C1} YRA	CTP
2	T7A	SACSF ^{4C1}	CTP
3	T7Y (preAIP-4a)	S <mark>YC-</mark> ^S F ^{4C1}	CTP
4	T7K	<mark>SKC-</mark> ^S F ^{4C1}	CTP
5	T7N	<mark>SNC-</mark> ^S F ^{4C1}	CTP
6	T7Q	<mark>SQC-</mark> ^S F ^{4C1}	CTP
7	T7E	SECSF ^{4C1}	CTP
8	T7G	<mark>SGC</mark> ^S F ^{4Cl}	CTP
9	T7P	SPC ^S F ^{4C1}	CTP
10	D9A	S-CA ^S F ^{4C1}	CTP
11	D9Y	<mark>S-CY</mark> ^S F ^{4C1}	CTP
12	D9K	S-CK ^S F ^{4C1}	CTP
13	D9N	S-CN ^S F ^{4C1}	CTP
14	D9Q	<mark>S-CQ</mark> ^S F ^{4C1}	CTP
15	D9E	S-CE ^S F ^{4C1}	CTP
16	D9G	$S-CGSF^{4C1}$	CDP-AA (CTP)

b	Entry	Precursor peptide (pre)	Sequence 9 12 13	Product(s) after IAA labeling
	1	preAIP-1a	fMRGGY <mark>STCD</mark> FIM ^S F ^{4C1} YRA	CTP
	2	D9G	S-CG ^S F ^{4C1}	CDP-AA (CTP)
	3	F10G	S-C- <mark>G</mark> ^S F ^{4Cl}	CTP
	4	l11G	S-C <mark>G-^SF^{4C1}</mark>	CTP
	5	M12G	S-C <mark>G^SF^{4C1}</mark>	CTP (CDP-AA)
	6	D9G,M12G	S-CGG ^S F ^{4C1}	CDP-AA (CTP)
	7	9–12GS	S-CG <mark>GSG^SF^{4C1}</mark>	CDP-AA

С

Entry	Precursor peptide (pre)	Sequence	Product(s) after IAA labeling
1	preAIP-1a	9 12 FMRGGYSTCDFIM ^S F ^{4C1} YRA	СТР
2	5-ring	S-CD <mark>GGM^SF^{4C1}YRA</mark>	CTP
3	6-ring	S-CD <mark>GSG</mark> M ^S F ^{4C1} YRA	CTP
4	7-ring	S-CD <mark>GSGSM^SF^{4C1}YRA</mark>	CTP
5	8-ring	S-CD <mark>GSGSGM^SF^{4C1}YRA</mark>	CDP-AA (CTP)

Table S2. Known AIP-thiolactones from various Gram-positive species. In the sequence, a thiol sidechain of the Cys is thiolactonized at the C-terminal, respectively. Discovered important positions in the thiolactone avoiding *S*-to-*O* acyl transfer are highlighted in green. S, Streptococcus; *B, Bacillus; C, Crostridium; L, Listeria*.

Entry	AIPs bearing a thiolactone structure	Matured sequence	SX ₁ CX ₂ motif
1	S. aureus AIP-I	Y <mark>S</mark> TCDFIM	+
2	S. aureus AIP-II	GVNACSSLF	-
3	S. aureus AIP-III	INCDFLL	-
4	S. aureus AIP-IV	Y <mark>STC</mark> YFIM	+
5	S. saprophyticus AIP	INPCFGYT	
6	<i>S. arlettae</i> AIP	VNPCGGWF	-
7	S. auricularis AIP-I	AKTCTVLY	-
8	S. auricularis AIP-II	TKTCTVLY	-
9	<i>S. capitis</i> AIP-I	ANPCQLYY	-
10	S. capitis AIP-II	ANPCALYY	-
11	<i>S. carnosus</i> AIP	YNPCVGYF	_
12	S. cohnii cohnii AIP	GKVCSAYF	_
13	S. cohnii urealyticus AIP	VKPCTGFA	_
14	S. gallinarum AIP	ARPCGGF	_
15	S. lugdunensis AIP-I	DICDAYF	_
16	S. lugdunensis AIP-II	DMCDGYF	_
17	S. epidermidis AIP-I	D <mark>SVC</mark> ASYF	+
18	S. epidermidis AIP-II	NASKYNPCSDYL	_
19	S. epidermidis AIP-III	NAAKYNPCASYL	_
20	S. argenteus AIP (S. aureus AIP-I)	Y <mark>STC</mark> DFIM	+
21	S. schweitzeri AIP (S. aureus AIP-IV)	Y <mark>STC</mark> YFIM	+
22	S. caprae AIP-I	Y <mark>STC</mark> SYYF	+
23	S. caprae AIP-II	YRTCNTYF	_
24	S. lugdunensis AIP-II		_
25	S. schleiferi AIP	KYPFCIGYF	_
26	S. simulans AIP-I	KYNPCLGFL	_
27	S. simulans AIP-II	YYPCFGYF	_
28	S. saphrophyticus AIP	INPCEGYT	_
29	S. hivcus AIP	KINPCTVFF	_
30	S. chromogenes AIP	SINPCTGEF	_
31	S. warneri AIP	YSPCTNEF	+
32	S. vitulinus AIP	VTRGCTAFI	_
33	S. hominis AIP	TYSTCYGYF	+
34	S. haemolyticus AIP	SFTPCTTYF	+
35	<i>B. cereus</i> AIP	EKLCIGEG	_
36	B. sphaericus AIP	HNECVLYS	_
37	C. beijerincki AIP	KCCESGGI	_
38	C. botulinum AIP-I	SSACYWCV	+
39	C. botulinum AIP-II		+
40	C. difficile AIP-I	NSTCPWTT	+
41	L. welshimeri AIP	SKACFMFV	—

Table S3. Primer list corresponding to the AIP peptides. O1-F48 was used as a forward primer in all steps of extension, PCR1 and PCR2. F: Forward primer, R: Reverse primer.

Encoded	Step	Oligo name	Sequence (5' -> 3')
AIP-la	Extension	O1-F48	TAATACGACTCACTATAGGGTTAACTTTAAGAAGGAGATATACATATG
	Extension	O1-R40	GTACCCGCCACGCATATGTATATCTCCTTCTTAAAGTTAA
	PCR1	O2-R46	GTACCACATAATAAAGTCACAAGTTGAGTACCCGCCACGCATATGT
	PCR2	O3-R42	TTTCCGCCCCCGTCTTATGCACGGTACCACATAATAAAGTC
T7A	Extension	O1-R40	GTACCCGCCACGCATATGTATATCTCCTTCTTAAAGTTAA
	PCR1	O4-R44	TACCACATAATAAAGTCACAAGCTGAGTACCCGCCACGCATATG
	PCR2	O3-R42	TTTCCGCCCCCGTCTTATGCACGGTACCACATAATAAAGTC
T7Y	Extension	O1-R40	GTACCCGCCACGCATATGTATATCTCCTTCTTAAAGTTAA
	PCR1	O5-R44	TACCACATAATAAAGTCACAGTATGAGTACCCGCCACGCATATG
	PCR2	O3-R42	TTTCCGCCCCCGTCTTATGCACGGTACCACATAATAAAGTC
T7K	Extension	O1-R40	GTACCCGCCACGCATATGTATATCTCCTTCTTAAAGTTAA
	PCR1	O6-R44	TACCACATAATAAAGTCACATTTTGAGTACCCGCCACGCATATG
	PCR2	O3-R42	TTTCCGCCCCCGTCTTATG <u>CAC</u> GGTACCACATAATAAAGTC
T7N	Extension	O1-R40	GTACCCGCCACGCATATGTATATCTCCTTCTTAAAGTTAA
	PCR1	07-R44	TACCACATAATAAAGTCACAGTTTGAGTACCCGCCACGCATATG
	PCR2	O3-R42	TTTCCGCCCCCGTCTTATGCACGGTACCACATAATAAAGTC
T7Q	Extension	O1-R40	GTACCCGCCACGCATATGTATATCTCCTTCTTAAAGTTAA
	PCR1	O8-R44	TACCACATAATAAAGTCACA <u>CTG</u> TGAGTACCCGCCACGCATATG
	PCR2	O3-R42	TTTCCGCCCCCGTCTTATGCACGGTACCACATAATAAAGTC
T7E	Extension	O1-R40	GTACCCGCCACGCATATGTATATCTCCTTCTTAAAGTTAA
	PCR1	O9-R44	TACCACATAATAAAGTCACA <u>TTC</u> TGAGTACCCGCCACGCATATG
	PCR2	O3-R42	TTTCCGCCCCCGTCTTATGCACGGTACCACATAATAAAGTC
T7G	Extension	O1-R40	GTACCCGCCACGCATATGTATATCTCCTTCTTAAAGTTAA
	PCR1	O10-R44	TACCACATAATAAAGTCACA <u>TCC</u> TGAGTACCCGCCACGCATATG
	PCR2	O3-R42	TTTCCGCCCCCGTCTTATGCACGGTACCACATAATAAAGTC
T7P	Extension	O1-R40	GTACCCGCCACGCATATGTATATCTCCTTCTTAAAGTTAA
	PCR1	O11-R44	TACCACATAATAAAGTCACA <u>TGG</u> TGAGTACCCGCCACGCATATG
	PCR2	O3-R42	TTTCCGCCCCCGTCTTATGCACGGTACCACATAATAAAGTC
D9A	Extension	O1-R40	GTACCCGCCACGCATATGTATATCTCCTTCTTAAAGTTAA
	PCR1	O12-R51	GCACGGTACCACATAATAAAGTAACAAGTTGAGTACCCGCCACGCATATGT
	PCR2	O13-R39	TTTCCGCCCCCGTCTTATGCACGGTACCACATAATAAA
D9Y (AIP-IVa)	Extension	O1-R40	GTACCCGCCACGCATATGTATATCTCCTTCTTAAAGTTAA
	PCR1	O14-R51	GCACGGTACCACATAATAAAGTAACAAGTTGAGTACCCGCCACGCATATGT
	PCR2	O12-R39	TTTCCGCCCCCGTCTTATGCACGGTACCACATAATAAA
D9K	Extension	O1-R40	GTACCCGCCACGCATATGTATATCTCCTTCTTAAAGTTAA
	PCR1	O15-R51	GCACGGTACCACATAATAAAAGCACAAGTTGAGTACCCGCCACGCATATGT
	PCR2	O12-R39	TTTCCGCCCCCGTCTTATGCACGGTACCACATAATAAA
D9N	Extension	O1-R40	GTACCCGCCACGCATATGTATATCTCCTTCTTAAAGTTAA
	PCR1	O16-R51	GCACGGTACCACATAATAAAGTTACAAGTTGAGTACCCGCCACGCATATGT
	PCR2	O12-R39	TTTCCGCCCCCGTCTTATGCACGGTACCACATAATAAA
D9Q	Extension	O1-R40	GTACCCGCCACGCATATGTATATCTCCTTCTTAAAGTTAA
	PCR1	O17-R51	GCACGGTACCACATAATAAACTGACAAGTTGAGTACCCGCCACGCATATGT
	PCR2	O12-R39	TTTCCGCCCCCGTCTTATGCACGGTACCACATAATAAA
D9E	Extension	O1-R40	GTACCCGCCACGCATATGTATATCTCCTTCTTAAAGTTAA
	PCR1	O18-R51	GCACGGTACCACATAATAAATTCACAAGTTGAGTACCCGCCACGCATATGT
	PCR2	O12-R39	TTTCCGCCCCCGTCTTATGCACGGTACCACATAATAAA
D9G	Extension	O1-R40	GTACCCGCCACGCATATGTATATCTCCTTCTTAAAGTTAA
	PCR1	O19-R51	GCACGGTACCACATAATAAAACCACAAGTTGAGTACCCGCCACGCATATGT
	PCR2	O12-R39	TTTCCGCCCCCGTCTTATGCACGGTACCACATAATAAA

Table S4. Primer list corresponding to the AIP analogs. O1-F48 was used as a forward primer in all steps of extension, PCR1 and PCR2. F: Forward primer, R: Reverse primer.

Encoded	Step	Oligo name	Sequence (5' -> 3')
F10G	Extension	O1-R40	GTACCCGCCACGCATATGTATATCTCCTTCTTAAAGTTAA
	PCR1	O20-R51	GCACGGTACCACATAATACCGTCACAAGTTGAGTACCCGCCACGCATATGT
	PCR2	O21-R39	TTTCCGCCCCCGTCTTATGCACGGTACCACATAATACC
l11G	Extension	O1-R40	GTACCCGCCACGCATATGTATATCTCCTTCTTAAAGTTAA
	PCR1	O22-R51	GCACGGTACCACATACCAAAGTCACAAGTTGAGTACCCGCCACGCATATGT
	PCR2	O23-R39	TTTCCGCCCCCGTCTTATGCACGGTACCACATACCAAA
M12G	Extension	O1-R40	GTACCCGCCACGCATATGTATATCTCCTTCTTAAAGTTAA
	PCR1	O24-R51	GCACGGTACCA <u>ACC</u> AATAAAGTCACAAGTTGAGTACCCGCCACGCATATGT
	PCR2	O25-R39	TTTCCGCCCCCGTCTTATGCACGGTACCAACCAATAAA
F10G-I11G	Extension	O1-R40	GTACCCGCCACGCATATGTATATCTCCCTTCTTAAAGTTAA
	PCR1	O28-R51	GCACGGTACCACATTCCACCGTCACAAGTTGAGTACCCGCCACGCATATGT
	PCR2	O29-R39	TTTCCGCCCCCGTCTTATGCACGGTACCACATTCCACC
D9G-M12G	Extension	O1-R40	GTACCCGCCACGCATATGTATATCTCCTTCTTAAAGTTAA
	PCR1	O30-R51	GCACGGTACCATCCAATAAAACCACAAGTTGAGTACCCGCCACGCATATGT
	PCR2	O31-R39	TTTCCGCCCCCGTCTTATGCACGGTACCAACCAATAAA
9-12GS	Extension	O1-R40	GTACCCGCCACGCATATGTATATCTCCTTCTTAAAGTTAA
	PCR1	O32-R51	ACGGTACCAACCTGATCCACCACAAGTTGAGTACCCGCCACGCATATGT
	PCR2	O33-R39	TTTCCGCCCCCGTCTTATGCACGGTACCAACCTGATCC
6-ring	Extension	O1-R40	GTACCCGCCACGCATATGTATATCTCCTTCTTAAAGTTAA
	PCR1	O36-R51	CGGTACCACATTCCTGAACCGTCACAAGTTGAGTACCCGCCACGCATATGT
	PCR2	O37-R42	TTTCCGCCCCCGTCTTATGCACGGTACCACATTCCTGAACC
7-ring	Extension	O1-R40	GTACCCGCCACGCATATGTATATCTCCTTCTTAAAGTTAA
	PCR1	O38-R51	TACCACATTGATCCTGAACCGTCACAAGTTGAGTACCCGCCACGCATATGT
	PCR2	O39-R45	TTTCCGCCCCCGTCTTATGCACGGTACCACATTGATCCTGAACC
8-ring	Extension	O1-R40	GTACCCGCCACGCATATGTATATCTCCTTCTTAAAGTTAA
	PCR1	O40-R52	CAACCCATTGATCCTGAACCGTCACAAGTTGAGTACCCGCCACGCATATGT
	PCR2	O41-R48	TTTCCGCCCCCGTCTTATGCACGGTACCAACCCATTGATCCTGAACC