Electronic Supplementary Material (ESI) for RSC Chemical Biology. This journal is © The Royal Society of Chemistry 2022

Table of Contents

	page
General information	2–3
X-ray crystallography	4
Compound characterization data and procedures	5–65
NMR spectra	66–178
References	179

General information

Except where stated, all reagents were purchased from commercial sources and used without further purification. Anhydrous CH₂Cl₂, THF, acetonitrile, hexane, Et₂O and DMF were obtained from an Innovative Technology Inc. PureSolv[®] solvent purification system. DME, DMSO, DMA, NMP, MeOH, and EtOH, advertised as dry solvents, were purchased from various commercial vendors and used as supplied without additional drying or purification. Standard grade i-PrOH, t-BuOH, TFE and HFIP (i.e. all likely to be wet) were obtained from commercially suppliers and were used as supplied. Water used in reactions was deionized. ¹H NMR, ¹³C NMR, and ¹⁹F spectra were recorded on a JEOL ECX400 or JEOL ECS400 spectrometer (operating at 400 MHz, 100 MHz, and 376 MHz), a Bruker Avance III 300 NMR spectrometer (operating at 300 MHz, 75 MHz, and 282 MHz), a Bruker Avance I 500 MHz spectrometer (operating at 500 MHz, 125 MHz, and 470 MHz), a Bruker Avance III HD 500 NMR spectrometer (operating at 500 MHz, 125 MHz, and 470 MHz), a Bruker Avance III HD 600 NMR spectrometer (operating at 600 MHz, 151 MHz, and 565 MHz), or a Bruker Avance Neo 700 NMR spectrometer (operating at 700 MHz, 176 MHz, and 659 MHz). All spectral data was acquired at 295 K unless stated otherwise. Chemical shifts (δ) are quoted in parts per million (ppm). The residual solvent peaks, $\delta_{\rm H}$ 7.26 and δ_c 77.16 for CDCl₃ were used as a reference. Coupling constants (J) are reported in Hertz (Hz) to the nearest 0.1 Hz. The multiplicity abbreviations used are: br s broad singlet, s singlet, d doublet, br d broad doublet, t triplet, br t broad triplet, q quartet, p pentet, dd, doublet of doublets, ddd doublet of doublet of doublets, dddd doublet of doublet of doublet of doublets, dt doublet of triplets, ddt doublet of doublet of triplets, td triplet of doublets, m multiplet. Signal assignment was achieved by analysis of DEPT, COSY, HMBC and HSQC experiments where required. Infrared (IR) spectra were recorded on a PerkinElmer UATR 2 spectrometer as a thin film dispersed from either CH₂Cl₂ or CDCl₃. Mass spectra (high-resolution) were obtained by the University of York Mass Spectrometry Service, using Electrospray Ionisation (ESI) on a Bruker Daltonics, Micro-tof spectrometer. Melting points were determined using Gallenkamp apparatus. Thin layer chromatography was carried out on Merck silica gel 60F₂₅₄ pre-coated aluminium foil sheets and were visualised using UV light (254 nm) and stained

with basic aqueous potassium permanganate. In most cases, flash column chromatography was carried out using slurry packed Fluka silica gel (SiO₂), 35–70 μm, 60 Å, under a light positive pressure, eluting with the specified solvent system. However, when noted in the procedures that products were purified using automated column chromatography (3 cases), this was done using a Teledyne ISCO NextGen 300+ automated flash column chromatography unit equipped with UV–Vis (200–800 nm) and evaporative light scattering (ELS) detectors. Crude materials were loaded onto pre-packed RediSep Rf Gold columns (SiO₂: 40–60 mesh) either by direct liquid injection or dry loading from adsorbed Celite.

X-ray crystallography

Diffraction data were collected at 110 K on an Oxford Diffraction SuperNova diffractometer with Cu- K_{α} radiation (λ = 1.54184 Å) using an EOS CCD camera. The crystal was cooled with an Oxford Instruments Cryojet. Diffractometer control, data collection, initial unit cell determination, frame integration and unit-cell refinement were carried out with CrysAlisPro.¹ Face-indexed absorption corrections were applied using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.² OLEX2³ was used for overall structure solution, refinement and preparation of computer graphics and publication data. Within OLEX2, the algorithm used for structure solution was ShelXT dual-space⁴. Refinement by full-matrix least-squares used the SHELXL⁵ algorithm within OLEX2.³ All non-hydrogen atoms were refined anisotropically. Hydrogens were located by difference map and allowed to refine. For **14a**, there were two molecules in the asymmetric unit but the figure above and in the manuscript shows one for clarity (see CCDC 2122955 for further detail).

1-Acryloyl-piperidin-2-one (11a)

To a stirring solution of δ -valerolactam (992 mg, 10.0 mmol) in dry THF (36.4 mL) cooled to 0 °C was added a solution of MeMgBr (3.0 M in diethyl ether, 3.65 mL, 11.0 mmol) *via* dropwise addition using a syringe pump over 30 min. The reaction mixture was allowed to stir for 10 min at 0 °C after addition was completed, before acryloyl chloride (1.22 mL, 15.0 mmol) was added in a single portion and the reaction mixture was stirred for an additional 30 min at 0 °C. The reaction was then quenched with sat. aq. NH₄Cl (30 mL) and the mixture was extracted with Et₂O (50 mL). The organic layer was washed with sat. aq. NaHCO₃ (2 × 30 mL), and organic extracts dried over MgSO₄ and concentrated *in vacuo*. Purification by flash column chromatography (SiO₂, 1:1 diethyl ether: hexane) afforded the *title compound* as a viscous colourless liquid (1.06 g, 69%); Rf 0.59 (ethyl acetate); v_{max}/cm⁻¹ (thin film) 2953, 1679, 1404, 1384, 1289, 1211, 1156, 1004, 796; δ_{H} (400 MHz, CDCl₃), 6.97 (1H, dd, *J* = 17.0, 10.5 Hz, NCOCHCHH'), 6.33 (1H, dd, *J* = 17.0, 1.7 Hz, NCOCHCHH'), (5.69 (1H, dd, *J* = 10.5, 1.7 Hz, NCOCHCHH'), 3.76 – 3.71 (2H, m, NCH₂), 2.60 – 2.53 (2H, m, CH₂CON), 1.90 – 1.81 (4H, m, 2 × CH₂); δ_{C} (100 MHz, CDCl₃), 173.8 (CO), 169.7 (CO), 132.0 (NCOCHCHH'), 128.0 (NCOCHCHH'), 44.7 (NCH₂), 34.9 (CH₂CON), 22.6 (CH₂), 20.8 (CH₂); HRMS (ESI): calcd. for C₈H₁₁NNaO₂, 176.0682. Found: [MNa]⁺, 176.0684 (–0.9 ppm error).

5-(4-Fluorobenzyl)-1,5-diazecane-2,6-dione (14a)

To a solution of 1-acryloyl-piperidin-2-one **11a** (766 mg, 5.00 mmol) in dry methanol (10.0 mL), was added 4-fluorobenzylamine (0.63 mL, 5.50 mmol) in a single portion. The reaction mixture was allowed to stir for 4 h at RT and then the solvent was removed *in vacuo*. Purification by flash column chromatography (SiO₂, 1:4 ethyl acetate: hexane \rightarrow 1:1 ethyl acetate: hexane \rightarrow ethyl acetate \rightarrow 1:19 methanol: ethyl acetate \rightarrow 1:9 methanol: ethyl acetate) afforded the *title compound* as a peach-coloured solid (1.20 g, 86%). In solution in CDCl₃, this compound exists as a 2:15 mixture of rotameric forms; m.p. 162 – 165 °C, R_f 0.20 (1:9 methanol: ethyl acetate); v_{max}/cm⁻¹ (thin film) 3294, 2933, 1620, 1509, 1443, 1350, 1221, 1096, 812, 501; NMR data for the major rotamer only: δ_{H} (400 MHz, CDCl₃) 7.29 – 7.22 (2H, m, ArH), 7.03 – 6.96 (2H, m, ArH), 5.37 – 5.19 (1H, m, NH), 4.96 (1H, d, *J* = 14.6 Hz, CH₂), 4.21 (1H, d, *J* = 14.6 Hz, CH₂), 3.98 – 3.73 (2H, m, CH₂), 4.21 (1H, dt, *J* = 15.8, 3.9 Hz, CH₂), 2.96 – 2.79 (1H, m, CH₂), 2.76 – 2.57 (1H, m, CH₂), 2.26 – 2.00 (4H, m, CH₂), 1.82 – 1.36 (3H, m, CH₂); δ_{C} (100

MHz, CDCl₃) 174.1 (**C**O), 171.0 (**C**O), 162.4 (Ar**C**F, ${}^{1}J_{CF}$ = 246.4 Hz), 133.9 (Ar**C**, ${}^{4}J_{CF}$ = 3.3 Hz), 130.0 (2 × Ar**C**H, ${}^{3}J_{CF}$ = 8.1 Hz), 115.9 (2 × Ar**C**H, ${}^{2}J_{CF}$ = 21.3 Hz), 48.7 (**C**H₂), 45.3 (**C**H₂), 39.3 (**C**H₂), 37.7 (**C**H₂), 28.4 (**C**H₂), 25.9 (**C**H₂), 23.9 (**C**H₂); δ_{F} (376 MHz, CDCl₃) –114.12 (1F, m, Ar**F**); HRMS (ESI): calcd. for C₁₅H₁₉FN₂NaO₂, 301.1323. Found: [MNa]⁺, 301.1321 (0.5 ppm error).

Characteristic NMR data for the minor rotamer can be found at: δ_{H} (400 MHz, CDCl₃) 7.15 – 7.09 (2H, m, Ar**H**), 5.89 (1H, br d, *J* = 10.3 Hz, N**H**), 4.81 (1H, d, *J* = 16.3 Hz, C**H**₂), 4.28 (1H, d, *J* = 16.3 Hz, C**H**₂), 4.17 – 4.09 (2H, m, C**H**₂), 2.43 – 2.36 (2H, m, C**H**₂); δ_{C} (100 MHz, CDCl₃) 171.3 (**C**O), 128.5 (2 × Ar**C**H, ³*J*_{CF} = 8.2 Hz), 42.4 (**C**H₂), 40.2 (**C**H₂), 35.2 (**C**H₂), 27.5 (**C**H₂), 25.1 (**C**H₂); δ_{F} (376 MHz, CDCl₃) –114.43 (1F, m, Ar**F**).

The same compound **14a** was also made using the group's published SuRE chemistry⁶ to provide an authentic product standard prior to optimisation, using the method below.

Oxalyl chloride (0.77 mL, 9.00 mmol) was added to a suspension of 3-((((9H-fluoren-9yl)methoxy)carbonyl)(4-fluorobenzyl)amino)propanoic acid (1.26 g, 3.00 mmol) in DCM (30 mL), followed by a catalytic amount of DMF (3 drops). The resulting mixture was stirred at RT for 1 h and concentrated in vacuo to remove all solvent and excess oxalyl chloride. The resulting acid chloride [(9H-fluoren-9-yl)methyl (3-chloro-3-oxopropyl)(4-fluorobenzyl)carbamate] was the dissolved in DCM (15 mL) and added to a pre-stirred mixture of δ -valerolactam (200 mg, 2.01 mmol), DMAP (24.2 mg, 0.200 mmol) and pyridine (0.977 mL, 12.1 mmol) in DCM (40 mL) under an argon atmosphere and heated at reflux at 50 °C for 18 h. The crude mixture was concentrated in vacuo. The mixture was then diluted with DCM (60 mL) and washed with 10% aq. HCl (60 mL). The aqueous layer was then extracted with DCM (3 × 30 mL) and the combined organic extracts dried over MgSO₄ and concentrated in vacuo form (9H-fluoren-9-yl)methyl (4-fluorobenzyl)(3-oxo-3-(2-oxopiperidin-1to crude yl)propyl)carbamate, which was carried forward without further purification. Thus, a solution of this crude imide was dissolved in DCM (40 mL) and DBU (2.99 mL, 20.0 mmol) was added, followed by stirring at RT for 18 h, before the solvent was removed in vacuo. Purification by flash column chromatography (SiO₂, 1:9 ethyl acetate: hexane \rightarrow 1:1 ethyl acetate: hexane \rightarrow ethyl acetate \rightarrow 9:1 ethyl acetate: methanol) afforded the *title compound* **14a** as an orange solid (489 mg, 87% from δ valerolactam).

1-Acryloyl-azetidin-2-one (11b)

A stirring solution of 2-azetidinone (357 mg, 5.02 mmol) and DIPEA (2.18 mL, 12.5 mmol) in THF (5.0 mL) was cooled to 0 °C. To this was added a 0 °C cooled solution of acryloyl chloride (0.81 mL, 10.0 mmol) in THF (5.0 mL) dropwise. Under an argon atmosphere this mixture was stirred at 0 °C for 2.5 hours. Afterwards it was allowed to warm to RT and stirred for a further 3.5 hours. The reaction mixture was then quenched with sat. aq. NH₄Cl (15 mL), extracted with Et₂O (20 mL), then the organic layer washed with was washed with sat. aq. NaHCO₃ (2 × 15 mL), and sat. aq. NaCl (2 × 15 mL). The organic extracts were dried over MgSO₄ and concentrated *in vacuo*. Purification by flash column chromatography (SiO₂, 1:1 diethyl ether: hexane) afforded the *title compound* as a fluffy white solid (237 mg, 38%); m.p. 48 – 50°C; R_f 0.16 (1:1 diethyl ether: hexane); v_{max}/cm⁻¹ (thin film) 2976, 1783, 1686, 1624, 1409, 1328, 1303, 1264, 1207, 1148, 1072, 1047, 1004, 918, 787, 602; $\delta_{\rm H}$ (400 MHz, CDCl₃), 7.00 (1H, dd, *J* = 17.1, 10.4 Hz, NCOCHCHH'), 6.58 (1H, dd, *J* = 17.1, 1.6 Hz, NCOCHCHH'), 5.90 (1H, dd, *J* = 10.4, 1.6 Hz, NCOCHCHH'), 3.65 (2H, t, *J* = 5.4 Hz, CH₂), 3.09 (2H, t, *J* = 5.4 Hz, CH₂); $\delta_{\rm C}$ (100 MHz, CDCl₃) 165.2 (CO), 162.7 (CO), 131.7 (NCOCHCHH'), 129.1 (NCOCHCHH'), 36.6 (CH₂), 36.2 (CH₂); HRMS (ESI): calcd. for C₆H₇NNaO₂, 148.0369. Found: [MNa]⁺, 148.0372 (-2.1 ppm error).

1-(4-Fluorobenzyl)-1,5-diazocane-2,6-dione (14b)

To a solution of 1-acryloyl-azetidin-2-one **11b** (71.0 mg, 0.568 mmol) in dry DCM (1.1 mL), was added 4-fluorobenzylamine (71 μ L, 0.624 mmol) dropwise over the course of 1 min. The reaction mixture was allowed to stir for 3 days at RT and then the solvent was removed *in vacuo*. Purification by flash column chromatography (SiO₂, 1:1 ethyl acetate: hexane \rightarrow ethyl acetate \rightarrow 1:32 methanol: ethyl acetate \rightarrow 1:14 methanol: ethyl acetate \rightarrow 1:9 methanol: ethyl acetate \rightarrow 1:6 methanol: ethyl acetate) afforded the *title compound* as a white crystalline solid (96.7 mg, 68%); m.p. 179 – 181 °C, R_f 0.38 (1:4 methanol: ethyl acetate); v_{max}/cm⁻¹ (thin film) 3266, 1627, 1509, 1476, 1414, 1320, 1220, 1157, 1099, 985, 920, 824, 730, 576, 548; $\delta_{\rm H}$ (500 MHz, CDCl₃), 7.25 – 7.19 (2H, m, Ar**H**), 7.02 – 6.96 (2H, m, Ar**H**) 6.64 (1H, br t, *J* = 7.5 Hz, N**H**), 4.55 (2H, s, ArCH₂), 3.59 – 3.50 (4H, m, 2 × NCH₂), 2.93 (2H, t, *J* = 6.9 Hz, COCH₂), 2.78 (2H, t, *J* = 6.9 Hz, COCH₂); $\delta_{\rm C}$ (125 MHz, CDCl₃), 173.0 (**C**O), 170.9 (**C**O), 162.4 (Ar**C**F, ¹*J*_{CF} = 246.1 Hz), 132.7 (Ar**C**, ⁴*J*_{CF} = 3.2 Hz), 130.1 (Ar**C**H, ³*J*_{CF} = 8.2 Hz), 115.5 (Ar**C**H, ²*J*_{CF} = 21.5 Hz), 48.3 (Ar**C**H₂),

41.7 (CH₂), 38.0 (CH₂), 37.5 (CH₂), 35.3 (CH₂); δ_F (470 MHz, CDCl₃), -114.66 (1F, m, ArF); HRMS (ESI): calcd. for C₁₃H₁₅FN₂NaO₂, 273.1010. Found: [MNa]⁺, 273.1013 (-1.3 ppm error). For X-ray crystallographic data, see page 4 and CCDC 2122961.

The outcome of the reaction when the synthesis of **14b** was attempted using methanol as the reaction solvent is also described below:

To a solution of 1-acryloyl-azetidin-2-one (58.2 mg, 0.465 mmol) in dry methanol (0.93 mL), was added 4-fluorobenzylamine (58 μ L, 0.511 mmol) in a single portion. The reaction mixture was allowed to stir for 4 h at RT and then the solvent was removed *in vacuo*. Purification by flash column chromatography (SiO₂, 1:4 ethyl acetate: hexane \rightarrow 1:1 ethyl acetate: hexane \rightarrow ethyl acetate \rightarrow 1:49 methanol: ethyl acetate \rightarrow 1:24 methanol: ethyl acetate \rightarrow 1:15 methanol: ethyl acetate \rightarrow 1:9 methanol: ethyl acetate \rightarrow 1:6 methanol: ethyl acetate \rightarrow 1:4 methanol: ethyl acetate \rightarrow 1:3 methanol: ethyl acetate \rightarrow 1:2 methanol: ethyl acetate \rightarrow 9:19 methanol: ethyl acetate) afforded methyl 3-(3-((4fluorobenzyl)amino)propanamido)propanoate (9.7 mg, 7%) and *N*-(4-fluorobenzyl)-3-(3-((4fluorobenzyl)amino)propanamido)propanamide (13.6 mg, 8%). Data for each compound is included below.

Methyl 3-(3-((4-fluorobenzyl)amino)propanamido)propanoate

A brown paste (9.7 mg, 7%). The isolated material contained minor unidentified impurities, but the NMR data obtained were sufficient to identify this unwanted side product. $R_f 0.15$ (3:7 methanol: ethyl acetate); v_{max}/cm^{-1} (thin film) 3283, 2952, 1735, 1646, 1551, 1510, 1439, 1367, 1221, 825; ¹H and ¹³C NMR data for the major rotamer only. δ_H (500 MHz, CDCl₃), 7.59 – 7.51 (1H, br m, CONH), 7.36 – 7.30 (2H, m, ArH), 7.02 (2H, t, *J* = 8.5 Hz, ArH), 3.82 (2H, s, ArCH₂), 3.66 (3H, s, CH₃), 3.50 (2H, q, *J* = 6.1 Hz, CONHCH₂), 3.72 (1H, br s, CH₂NHCH₂), 2.92 (2H, t, *J* = 6.0 Hz, CH₂NHCH₂Ar), 2.53 (2H, t, *J* = 6.1 Hz, CH₂CO₂CH₃), 2.44 (2H, t, *J* = 6.0 Hz, NCOCH₂CH₂NHCH₂Ar); δ_C (125 MHz, CDCl₃), 173.1 (CO), 172.1 (CO), 162.4 (ArCF, ¹*J*_{CF} = 246.0 Hz), 133.6 (ArC, ⁴*J*_{CF} = 3.3 Hz), 130.4 (ArCH, ³*J*_{CF} = 8.1 Hz), 115.6 (ArCH, ²*J*_{CF} = 21.4 Hz), 52.6 (ArCH₂), 51.9 (CH₃), 44.8 (NCOCH₂CH₂NHCH₂Ar), 35.0 (NCOCH₂CH₂NHCH₂Ar), 34.1 (CH₂CO₂CH₃); δ_F (470 MHz, CDCl₃) –114.73 (1F, br s, ArF); HRMS (ESI): calcd. for C₁₄H₁₉FN₂NaO₃, 305.1272. Found: [MNa]⁺, 305.1275 (-1.0 ppm error).

N-(4-fluorobenzyl)-3-(3-((4-fluorobenzyl)amino)propanamido)propanamide

A white solid (13.6 mg, 8%); m.p. 108 – 110°C, R_f 0.15 (3:7 methanol: ethyl acetate); v_{max}/cm^{-1} (thin film) 3286, 1644, 1604, 1548, 1509, 1435, 1221, 1158, 1097, 1016, 824; δ_{H} (400 MHz, CDCl₃), 7.84 (1H, br t, *J* = 6.1 Hz, CONH), 7.32 – 7.25 (2H, m, ArH), 7.24 – 7.17 (2H, m, ArH), 7.05 – 6.94 (4H, m, ArH), 6.47 (1H, br t, *J* = 5.8 Hz, CONH), 4.34 (2H, d, *J* = 5.8 Hz, ArCH₂), 3.74 (2H, s, ArCH₂), 3.51 (2H, q, *J* = 6.1 Hz, CONHCH₂CH₂), 3.05 (1H, br s, CH₂NHCH₂), 2.83 (2H, dd, *J* = 6.6, 5.4 Hz, CH₂NHCH₂Ar), 2.43 (2H, m, CH₂CONCH₂Ar), 2.34 (2H, t, *J* = 6.6, 5.4 Hz, NCOCH₂CH₂NHCH₂Ar); δ_{C} (100 MHz, CDCl₃), 172.7 (CO), 171.5 (CO), 162.3 (2 × ArCF, ¹*J*_{CF} = 245.7 Hz), 134.4 (ArC, ⁴*J*_{CF} = 3.3 Hz), 134.1 (ArC, ⁴*J*_{CF} = 3.3 Hz), 130.2 (2 × ArCH, ³*J*_{CF} = 8.1 Hz), 129.6 (2 × ArCH, ³*J*_{CF} = 8.1 Hz), 115.6 (2 × ArCH, ²*J*_{CF} = 21.4 Hz), 115.5 (2 × ArCH, ²*J*_{CF} = 21.4 Hz), 52.6 (ArCH₂), 44.9 (NCOCH₂CH₂NHCH₂Ar), 42.9 (ArCH₂), 36.1 (CH₂CONCH₂Ar), 34.5 (2 × CH₂ (CH₂CH₂NHCO and NCOCH₂CH₂NHCH₂Ar); δ_{F} (282 MHz, CDCl₃) –114.9 (1F, m, ArF), –115.2 (1F, m, ArF); HRMS (ESI): calcd. for C₂₀H₂₄F₂N₃O₂, 376.1831. Found: [MNa]⁺, 376.1832 (-0.2 ppm error)

1-Acryloyl-pyrrolidin-2-one (11c)

To a stirring solution of 2-pyrrolidone (426 mg, 5.01 mmol) in dry THF (18.2 mL) cooled to 0 °C was added a solution of MeMgBr (3.0 M in diethyl ether, 1.83 mL) *via* dropwise addition using a syringe pump over 30 min. The reaction mixture was allowed to stir for 10 min at 0 °C after addition was completed. Acryloyl chloride (0.61 mL, 7.51 mmol) was then added in a single portion and the reaction mixture was stirred for an additional 30 min at 0 °C. The reaction was then quenched with sat. aq. NH₄Cl (15 mL) and the mixture was extracted with Et₂O (25 mL). The organic layer was washed with sat. aq. NH₄Cl (15 mL) and the mixture was extracted with Et₂O (25 mL). The organic layer was washed with sat. aq. NaHCO₃ (2 × 15 mL), and organic extracts dried over MgSO₄ and concentrated *in vacuo*. Purification by flash column chromatography (SiO₂, 1:1 diethyl ether: hexane afforded the *title compound* as a viscous colorless liquid (391 mg, 56%); R_f 0.19 (1:1 diethyl ether: hexane); v_{max}/cm⁻¹ (thin film) 2980, 1733, 1675, 1617, 1460, 1406, 1359, 1312, 1247, 1223, 1192, 1062, 1021, 980, 930, 887, 839, 799, 674, 639, 587; $\delta_{\rm H}$ (400 MHz, CDCl₃) 7.74 (1H, dd, *J* = 17.1, 10.5 Hz, NCOCHCHH'), 6.49 (1H, dd, *J* = 17.1, 1.9 Hz, NCOCHCHH'), 5.84 (1H, dd, *J* = 10.5, 1.9 Hz, NCOCHCHH'), 3.89 – 3.84 (2H, m, NCH₂), 2.62 (2H, t, *J* = 8.1 Hz CH₂CON), 2.11 – 2.01 (2H, m, CH₂); $\delta_{\rm C}$ (100 MHz, CDCl₃), 175.7 (CO), 166.2 (CO), 131.0 (NCOCHCHH'), 129.2 (NCOCHCHH'), 45.7 (NCH₂), 33.9 (CH₂CON), 17.4 (CH₂); HRMS (ESI): calcd. for C₇H₃NNaO₂, 162.0525. Found: [MNa]⁺, 162.0527 (-0.6 ppm error).

5-(4-Fluorobenzyl)-1,5-diazonane-2,6-dione (14c)

To a solution of 1-acryloyl-pyrrolidin-2-one 11c (139 mg, 0.998 mmol) in dry methanol (2.0 mL), was added 4-fluorobenzylamine (125 µL, 1.10 mmol) in a single portion. The reaction mixture was allowed to stir for 4 h at RT and then the solvent was removed in vacuo. Purification by flash column chromatography (SiO₂, 1:4 ethyl acetate: hexane \rightarrow 1:1 ethyl acetate: hexane \rightarrow ethyl acetate \rightarrow 1:49 methanol: ethyl acetate \rightarrow 1:19 methanol: ethyl acetate) afforded the *title compound* as a colourless oil (121 mg, 46%). In solution in CDCl₃, this compound exists as a mixture of rotameric forms (1 major rotamer and up to 3 minor rotamers, best seen in the ¹⁹F NMR). The ¹H NMR spectrum is significantly affected by rotameric broadening, with product identity and purity best determined using ¹³C NMR data collected in CDCl₃ at 55 °C; R_f 0.06 (1:9 methanol: ethyl acetate); v_{max}/cm⁻¹ (thin film) 3280, 2941, 1622, 1508, 1461, 1413, 1359, 1219, 1157, 1098, 1053, 1015, 907, 825, 771, 730, 646, 565, 498; $\delta_{\rm H}$ (400 MHz, CDCl₃), 7.26 – 7.14 (2H, m, ArH), 7.00 – 6.90 (2H, m, ArH), 6.69 (1H, br t, J = 7.5 Hz, NH, major rotamer), 6.35 – 6.27 (1H, br m, NH, other rotamers), 5.26 – 2.95 (6H, m, 3 × CH₂), 2.90 – 1.64 (6H, m, 3 × CH₂); δ_C (100 MHz, CDCl₃, 55 °C), 174.7 (**C**O), 173.8 (**C**O), 162.5 (Ar**C**F, ¹*J*_{CF} = 246.3 Hz), 133.2 $(ArC, {}^{4}J_{CF} = 3.2 Hz), 130.1 (2 \times ArCH, {}^{3}J_{CF} = 7.9 Hz), 115.7 (2 \times ArCH, {}^{2}J_{CF} = 21.4 Hz), 49.7 (CH₂), 44.6 (CH₂),$ 41.6 (CH₂), 34.7 (CH₂), 30.6 (CH₂), 29.2 (CH₂); δ_F (282 MHz, CDCl₃), -114.54 (1F, m, ArF, major rotamer), -115.12 (1F, m, ArF), -115.24 (1F, m, ArF), -115.74 (1F, m, ArF); HRMS (ESI): calcd. for C₁₄H₁₇FN₂NaO₂, 287.1166. Found: [MNa]⁺, 287.1171 (–1.5 ppm error).

1-Acryloyl-azepan-2-one (11d)

To a stirring solution of caprolactam (226.3 mg, 2.00 mmol) in dry THF (7.3 mL) cooled to 0 °C was added a solution of MeMgBr (3.0 M in diethyl ether, 0.73 mL) *via* dropwise addition using a syringe pump over 30 min. The reaction mixture was allowed to stir for 10 min at 0 °C after addition was completed. Acryloyl chloride (0.240 mL, 3.00 mmol) was then added in a single portion and the reaction mixture was stirred for an additional 30 min at 0 °C. The reaction mixture was then quenched with sat. aq. NH₄Cl (8 mL) and the mixture was extracted with Et₂O (10 mL). The organic layer was washed with sat. aq. NaHCO₃ (2 × 10 mL), and organic extracts dried over MgSO₄ and concentrated *in vacuo*. Purification by flash column chromatography (SiO₂, 1:1 diethyl ether: hexane) afforded the *title*

compound as viscous colorless liquid (219 mg, 72%); R_f 0.67 (ethyl acetate); v_{max}/cm^{-1} (thin film) 2932, 1701, 1683, 1404, 1383, 1333, 1240, 1209, 1181, 1152, 1098, 980, 795; δ_{H} (400 MHz, CDCl₃), 6.91 (1H, dd, *J* = 16.8, 10.3 Hz, NCOCHCHH'), 6.28 (1H, dd, *J* = 16.8, 1.8 Hz, NCOCHCHH'), 5.66 (1H, dd, *J* = 10.3, 1.8 Hz, NCOCHCHH'), 3.91 – 3.86 (2H, m, NCH₂), 2.72 – 2.66 (2H, m, CH₂CON), 1.81 – 1.63 (6H, m, 3 × CH₂); δ_{C} (100 MHz, CDCl₃), 178.1 (CO), 168.9 (CO), 131.9 (NCOCHCHH'), 128.0 (NCOCHCHH'), 43.7 (NCH₂), 39.4 (CH₂CON), 29.3 (CH₂), 28.7 (CH₂), 23.7 (CH₂); HRMS (ESI): calcd. for C₉H₁₃NNaO₂, 190.0838. Found: [MNa]⁺, 190.0841 (–1.3 ppm error).

5-(4-Fluorobenzyl)-1,5-diazacycloundecane-2,6-dione (14d)

To a solution of 1-acryloyl-azepan-2-one **11d** (156 mg, 0.933 mmol) in dry methanol (2.0 mL), was added 4-fluorobenzylamine (126 µL, 1.10 mmol) in a single portion. The reaction mixture was allowed to stir for 4 h at RT and then the solvent was removed in vacuo. Purification by flash column chromatography (SiO₂, 1:4 ethyl acetate: hexane \rightarrow 1:1 ethyl acetate: hexane \rightarrow ethyl acetate \rightarrow 1:49 methanol: ethyl acetate \rightarrow 1:19 methanol: ethyl acetate) afforded the *title compound* as a white solid (228 mg, 84%). In solution in CDCl₃, this compound exists as a mixture of rotameric forms (1 major rotamer and 1 minor rotamer based on the ¹⁹F NMR data). The ¹H NMR spectrum is severely complicated by rotameric broadening, with product identity and purity best determined using ¹³C NMR data; m.p. 180 – 183 °C, R_f 0.34 (1:9 methanol: ethyl acetate); v_{max}/cm⁻¹ (thin film) 3297, 2934, 1625, 1556, 1509, 1452, 1352, 1223, 1183, 1154, 909, 821, 731; δ_{H} (400 MHz, CDCl₃), 7.32 – 7.25 (2H, m, ArH), 7.05 – 6.98 (2H, m, ArH), 5.78 – 5.56 (1H, m, NH), 5.23 – 3.07 (5H, m, 2.5 × CH₂), 3.03 – 0.65 (11H, m, 5.5 × CH₂); δ_C (100 MHz, CDCl₃), 173.6 (**C**O), 171.4 (**C**O), 162.4 (Ar**C**F, ¹*J*_{CF} = 246.7 Hz), 134.1 $(ArC, {}^{4}J_{CF} = 3.2 Hz), 130.1 (2 \times ArCH, {}^{3}J_{CF} = 8.1 Hz), 115.9 (2 \times ArCH, {}^{2}J_{CF} = 21.5 Hz), 48.3 (CH₂), 44.9 (CH₂),$ 41.9 (CH₂), 37.1 (CH₂), 28.6 (CH₂), 25.3 (CH₂), 24.4 (CH₂), 22.8 (CH₂); δ_F (282 MHz, CDCl₃), -114.30 (1F, m, ArF, major rotamer), -114.73 (1F, m, ArF, minor rotamer); HRMS (ESI): calcd. for C₁₆H₂₁FN₂NaO₂, 315.1479. Found: [MNa]⁺, 315.1479 (-0.1 ppm error).

1-Acryloyl-azocan-2-one (11e)

To a stirring solution of 1-aza-2-cyclooctanone (1.28 g, 10.1 mmol) in dry THF (36 mL) cooled to 0 °C was added a solution of MeMgBr (3.0 M in diethyl ether, 3.65 mL) via dropwise addition using a syringe pump over 30 min. The reaction mixture was allowed to stir for 10 min at 0 °C after addition was completed. Acryloyl chloride (1.22 mL, 15.0 mmol) was then added in a single portion and the reaction mixture was stirred for an additional 30 min at 0°C. The reaction was then quenched with sat. aq. NH₄Cl (30 mL) and the mixture was extracted with Et_2O (50 mL). The organic layer was washed with sat. aq. NaHCO₃ (2 \times 30 mL), and organic extracts dried over MgSO₄ and concentrated *in vacuo*. Purification by flash column chromatography (SiO₂, 1:1 diethyl ether: hexane) afforded the title compound as an oil that turned to a white crystalline solid (1.08 g, 59%); m.p. 29–33 °C; R_f 0.67 (9:1 ethyl acetate: methanol); v_{max}/cm⁻¹ (thin film) 2926, 2859, 1677, 1616, 1445, 1401, 1378, 1333, 1303, 1248, 1201, 1174, 1126, 1092, 1019, 996, 972, 867, 797, 777, 695, 585); δ_{H} (400 MHz, CDCl₃) 6.81 (1H, dd, *J* = 16.9, 10.3 Hz, NCOCHCHH'), 6.24 (1H, dd, *J* = 16.9, 1.7 Hz, NCOCHCHH'), 5.61 (1H, dd, *J* = 10.3, 1.7 Hz, NCOCHCHH'), 3.89 – 3.82 (2H, m, CH₂N), 2.63 – 2.57 (2H, m, CH₂CON), 1.86 – 1.77 (2H, m, CH₂), 1.74 – 1.65 (2H, m, CH₂), 1.58 – 1.50 (2H, m, CH₂), 1.44 – 1.36 (2H, m, CH₂); δ_C (100 MHz, CDCl₃), 178.9 (CON), 169.4 (COCHCH₂), 131.9 (COCHCH₂), 127.6 (COCHCH₂), 43.8 (CH₂N), 36.7 (CH₂CON), 29.9 (CH₂), 29.3 (CH₂), 26.2 (CH₂), 23.9 (CH₂); HRMS (ESI): calcd. for C₁₀H₁₆NO₂, 182.1176. Found: [MH]⁺, 182.1180 (-2.3 ppm error).

5-(4-Fluorobenzyl)-1,5-diazacyclododecane-2,6-dione (14e)

To a solution of 1-acryloyl-azocan-2-one **11e** (103 mg, 0.566 mmol) in dry methanol (1.1 mL), was added 4-fluorobenzylamine (71 μ L, 0.622 mmol) in a single portion. The reaction mixture was allowed to stir for 4 h at RT and then the solvent was removed *in vacuo*. Purification by flash column chromatography (SiO₂, 1:4 ethyl acetate: hexane \rightarrow 1:1 ethyl acetate: hexane \rightarrow ethyl acetate \rightarrow 1:49 methanol: ethyl acetate \rightarrow 1:19 methanol: ethyl acetate \rightarrow 1:19 methanol: ethyl acetate \rightarrow 1:19 methanol: ethyl acetate) afforded the *title compound* as a white solid (119 mg, 69%); m.p. 149 – 155°C, R_f 0.36 (1:9 methanol: ethyl acetate); v_{max}/cm⁻¹ (thin film) 3295, 2931, 1640, 1555, 1510, 1456, 1414, 1355, 1222, 1156, 1096, 731; δ_{H} (400 MHz, CDCl₃), 7.15 – 7.09

(2H, m, ArH), 7.07 – 6.97 (2H, m, ArH), 6.39 – 6.28 (1H, br d, J = 9.5 Hz, NH), 4.86 (1H, d, J = 16.7 Hz, 0.5 × ArCH₂), 4.54 – 4.46 (1H, m, 0.5 × CH₂), 4.38 (1H, d, J = 16.7 Hz, 0.5 × ArCH₂), 3.81 – 3.70 (1H, m, 0.5 × CH₂), 2.91 – 2.74 (3H, m, 1.5 × CH₂), 2.61 – 2.39 (2H, m, CH₂), 2.30 – 1.99 (2H, m, CH₂), 1.66 – 1.31 (6H, m, 3 × CH₂), 1.28 – 1.06 (1H, m, 0.5 × CH₂); δ_{c} (100 MHz, CDCl₃) 175.9 (CO), 170.3 (CO), 162.4 (ArCF, ¹ $_{J_{CF}} = 246.5$ Hz), 132.3 (ArC, ⁴ $_{J_{CF}} = 3.3$ Hz), 128.2 (2 × ArCH, ³ $_{J_{CF}} = 8.0$ Hz), 116.1 (2 × ArCH, ² $_{J_{CF}} = 21.6$ Hz), 51.3 (CH₂), 41.0 (CH₂), 39.3 (CH₂), 35.3 (CH₂), 32.5 (CH₂), 27.4 (CH₂), 25.7 (CH₂), 24.0 (CH₂), 22.3 (CH₂); δ_{F} (282 MHz, CDCl₃), –114.48 (1F, m, ArF); HRMS (ESI): calcd. for C₁₇H₂₃FN₂NaO₂, 329.1636. Found: [MNa]⁺, 329.1639 (–0.9 ppm error).

4-Acryloylthiomorpholin-3-one (16a)

A stirring solution of thiomorpholin-3-one (56.2 mg, 0.480 mmol) and DIPEA (0.21 mL, 1.20 mmol) in THF (1.9 mL) was cooled to 0 °C. To this was added a 0 °C cooled solution of acryloyl chloride (0.078 mL, 0.96 mmol) in THF (0.9 mL) dropwise. Under an argon atmosphere this mixture was stirred at 0 °C for 3 hours. Afterwards it was allowed to warm to RT and stirred for a further 2 hours. The reaction mixture was then quenched with sat. aq. NH₄Cl (5 mL), extracted with Et₂O (5 mL), then the organic layer washed with washed with sat. aq. NaHCO₃ (2 × 5 mL). The organic extracts were dried over MgSO₄ and concentrated *in vacuo*. Purification by flash column chromatography (SiO₂, 1:1 diethyl ether: hexane) afforded the *title compound* as a colorless oil (37.9 mg, 46%); R_f 0.21 (1:1 diethyl ether: hexane); v_{max}/cm^{-1} (thin film) 1707, 1684, 1405, 1369, 1334, 1274, 1244, 1198, 1163, 1124, 1021, 977, 869, 794; δ_{H} (400 MHz, CDCl₃), 7.16 (1H, dd, *J* = 16.9, 10.4 Hz, NCOCHCHH'), 6.42 (1H, dd, *J* = 16.9, 1.7 Hz, NCOCHCHH'), 5.81 (1H, dd, *J* = 10.4, 1.7 Hz, NCOCHCHH'), 4.22 – 4.16 (2H, m, SCH₂CH₂N), 3.40 (2H, s, CH₂CON), 2.99 – 2.94 (2H, m, SCH₂CH₂N); δ_{C} (100 MHz, CDCl₃) 170.3 (**C**O), 167.9 (**C**O), 131.2 (NCOCHCHH'), 130.2 (NCOCHCHH'), 41.5 (SCH₂CH₂N), 31.5 (**C**H₂CON), 26.0 (S**C**H₂CH₂N); HRMS (ESI): calcd. for C₇H₉NNaO₂S, 194.0246. Found: [MNa]⁺, 194.0248 (–1.1 ppm error).

tert-Butyl 4-acryloyl-5-oxo-1,4-diazepane-1-carboxylate (16b)

To a stirring solution of tert-butyl 5-oxo-1,4-diazepane-1-carboxylate (642.8 mg, 3.0 mmol) in dry THF (11 mL) cooled to 0 °C was added a solution of MeMgBr (3.0 M in diethyl ether, 1.1 mL) via dropwise addition using a syringe pump over 30 min. The reaction mixture was allowed to stir for 10 min at 0 °C after addition was completed. Acryloyl chloride (0.360 mL, 4.5 mmol) was then added in a single portion and the reaction mixture was stirred for an additional 30 min at 0°C. The reaction mixture was then quenched with sat. aq. NH₄Cl (10 mL) and the mixture was extracted with Et₂O (15 mL). The organic layer was washed with sat. aq. NaHCO₃ (2 × 10 mL), and organic extracts dried over MgSO₄ and concentrated *in vacuo*. Purification by flash column chromatography (SiO₂, 2:1 diethyl ether: hexane) afforded the title compound as colourless liquid (676 mg, 84%); Rf 0.65 (ethyl acetate); v_{max}/cm^{-1} (thin film) 2979, 1685, 1366, 1329, 1245, 1165, 1116, 1042, 957, 795; δ_H (400 MHz, CDCl₃d): δ 6.84 (dd, J = 16.8, 10.3 Hz, 1H, NCOCHCHH'), 6.25 (dt, J = 2.0, 16.9 Hz, 1H, NCOCHCHH'), 5.64 (dt, J = 2.0, 10.4 Hz, 1H, NCOCHCHH'), 3.95 – 3.87 (m, 2H, CH₂), 3.60 – 3.55 (m, 2H, CH₂), 3.54 – 3.49 (m, 2H, CH₂), 2.79 – 2.70 (m, 2H, CH₂), 1.36 (s, 9H, 3 × OCCH₃); δ_c (100 MHz, CDCl₃-d, 50 °C): 175.7 (CO), 168.4 (CO), 154.6 (CO), 131.4 (NCOCHCHH'), 128.8 (NCOCHCHH'), 80.7 (COOC), 47.2 (CH₂), 44.0 (CH₂), 41.3 (2 × CH₂), 28.4 (3 × OCCH₃); HRMS (ESI): calcd. for C₁₃H₂₀N₂NaO₄, 291.1315. Found: [MNa]⁺, 291.1319 (-1.3 ppm error).

tert-Butyl 4-acryloyl-3-oxopiperazine-1-carboxylate (16c)

To a stirring solution of *tert*-butyl 3-oxopiperazine-1-carboxylate (401 mg, 2.00 mmol) in dry THF (7.3 mL) cooled to 0 °C was added a solution of MeMgBr (3.0 M in diethyl ether, 0.73 mL) *via* dropwise addition using a syringe pump over 30 min. The reaction mixture was allowed to stir for 10 min at 0 °C after addition was completed. Acryloyl chloride (0.243 mL, 3.00 mmol) was then added in a single portion and the reaction was stirred for an additional 30 min at 0 °C. The reaction was then quenched with sat. aq. NH₄Cl (15 mL) and the mixture was extracted with Et₂O (15 mL). The organic layer was washed with sat. aq. NaHCO₃ (2 × 15 mL), and organic extracts dried over MgSO₄ and concentrated *in vacuo*. Purification by flash column chromatography (SiO₂, 1:1 diethyl ether: hexane) afforded the *title*

compound as a colourless oil (361 mg, 71%); R_f 0.16 (1:1 hexane: diethyl ether); v_{max}/cm^{-1} (thin film) 2977, 1685, 1616, 1406, 1389, 1365, 1303, 1243, 1160, 1131, 1097, 1021, 974, 919, 864, 795, 769, 608, 527; δ_{H} (400 MHz, CDCl₃) 7.13 (1H, dd, *J* = 16.9, 10.4 Hz, NCOCHCHH'), 6.40 (1H, dd, *J* = 16.9, 1.7 Hz, NCOCHCHH'), 5.79 (1H, dd, *J* = 10.4, 1.7 Hz, NCOCHCHH'), 4.21 (2H, s, N(Boc)CH₂CON), 3.89 – 3.84 (2H, m, CH₂), 3.65 – 3.58 (2H, m, CH₂), 1.45 (9H, s, 3 × CH₃); δ_{C} (100 MHz, CDCl₃) 168.8 (CO), 168.0 (CO), 153.7 (*t*-BuO-CO), 131.1 (NCOCHCHH'), 130.2 (NCOCHCHH'), 81.3 (C), 49.3 (CH₂), 42.3 (CH₂), 41.7 (CH₂), 28.4 (3 × CH₃); HRMS (ESI): calcd. for C₁₂H₁₈N₂NaO₄, 277.1159. Found: [MNa]⁺, 277.1156 (1.0 ppm error).

1-Acryloyl-6-allylpiperidin-2-one (16d)

To a stirring solution of 6-allylpiperidin-2-one (126 mg, 0.903 mmol) in dry THF (3.6 mL) cooled to 0 °C was added a solution of MeMgBr (3.0 M in diethyl ether, 0.37 mL) via dropwise addition using a syringe pump over 30 min. The reaction mixture was allowed to stir for 10 min at 0°C after addition was completed. Acryloyl chloride (1.22 mL, 1.36 mmol) was then added in a single portion and the reaction mixture was stirred for an additional 30 min at 0 °C. The reaction mixture was then quenched with sat. aq. NH₄Cl (15 mL) and the mixture was extracted with Et₂O (15 mL). The organic layer was washed with sat. aq. NaHCO₃ (2×15 mL), and organic extracts dried over MgSO₄ and concentrated *in vacuo*. Purification by flash column chromatography (SiO₂, 1:1 diethyl ether: hexane) afforded the title compound as a colourless oil (73.3 mg, 42%); Rf 0.25 (1:1 hexane: diethyl ether); v_{max}/cm⁻¹ (thin film) 3211, 3077, 2944, 1664, 1448, 1406, 1347, 1309, 1209, 1167, 996, 916, 796; δ_H (400 MHz, CDCl₃) 6.79 (1H, dd, J = 16.8, 10.3 Hz, NCOCH=CHH'), 6.28 (1H, dd, J = 16.8, 1.8 Hz, NCOCH=CHH'), 5.71 (1H, dddd, J = 17.1, 10.2, 8.2, 6.1 Hz, NCHCH₂CH=CH₂), 5.64 (1H, dd, J = 10.3, 1.8 Hz, NCOCH=CHH'), 5.11 - 5.01 (2H, m, NCHCH₂CHCH₂), 4.54 – 4.46 (1H, m, NCHCH₂CHCH₂), 2.61 – 2.42 (3H, m, 1.5 × CH₂), 2.19 (1H, dddt, J = 13.7, 10.1, 8.2, 0.9 Hz, 0.5 × CH₂), 2.00 − 1.87 (2H, m, CH₂), 1.83 − 1.68 (2H, m, CH₂); δ_c (100 MHz, CDCl₃) 174.3 (CO), 169.1 (CO), 134.0 (NCHCH₂CHCH₂), 131.9 (NCOCHCHH'), 127.7 (NCOCHCHH'), 118.1 (NCHCH₂CHCH₂), 53.2 (NCHCH₂CHCH₂), 37.8 (CH₂), 34.3 (CH₂), 24.8 (CH₂), 16.9 (CH₂); HRMS (ESI): calcd. for C₁₁H₁₅NNaO₂, 216.0995. Found: [MNa]⁺, 216.0996 (-0.3 ppm error).

(1SR,4RS)-2-acryloyl-2-azabicyclo[2.2.1]hept-5-en-3-one (16e)

Acryloyl chloride (0.300 mL, 3.45 mmol), Et₃N (0.480 mL, 3.40 mmol) and DMAP (30 mg, 0.230 mmol) were added to a solution of (1*SR*,4*SR*)-2-azabicyclo[2.2.1]hept-5-en-3-one (249 mg, 2.30 mmol) in DCM (11 mL) under argon at 0 °C. The reaction mixture was stirred at RT for 18 h. After this time, 0.5 M aq. HCl was added (15 mL). The crude reaction mixture was washed with sat. aq. NaHCO₃ (15 mL) and sat. aq. NaCl (15 mL) and the organic layer dried with MgSO₄ and concentrated *in vacuo*. Purification by flash column chromatography (SiO₂, 1:1 diethyl ether: hexane) afforded the *title compound* as a colourless oil (63.8 mg, 17%); Rf 0.28 (1:1 hexane: diethyl ether); v_{max}/cm^{-1} (thin film) 1734, 1672, 1619, 1405, 1327, 1236, 1174, 1146, 1066, 968, 914, 838, 795, 758, 694, 598; δ_{H} (400 MHz, CDCl₃) 7.28 (1H, dd, *J* = 17.1, 10.4 Hz, NCOCHCHH'), 6.89 (1H, ddd, *J* = 5.3, 2.4, 0.8 Hz), 6.62 (1H, ddd, *J* = 5.1, 3.2, 1.5 Hz), 6.44 (1H, dd, *J* = 17.1, 1.9 Hz, NCOCHCHH'), 5.77 (1H, dd, *J* = 10.4, 1.9 Hz, NCOCHCHH'), 5.29 (1H, ddt, *J* = 4.1, 2.5, 1.6 Hz), 3.42 (1H, ddtd, *J* = 3.2, 2.3, 1.5, 0.7 Hz), 2.30 (1H, dt, *J* = 8.7, 1.8 Hz, 0.5 × CH₂), 2.19 (1H, dt, *J* = 8.7, 1.5 Hz, 0.5 × CH₂); δ_c (100 MHz, CDCl₃) 177.5 (CO), 164.7 (CO), 140.5 (CH), 138.1 (CH), 130.7 (NCOCHCH₂), 128.7 (NCOCHCH₂), 60.5 (CH), 54.7 (CH), 54.5 (CH₂); HRMS (ESI): calcd. for C₉H₉NNaO₂, 186.0525. Found: [MNa]⁺, 186.0527 (-0.7 ppm error).

4aR,4bS,6aS,7S,9aS,9bS,11aR)-1-Acryloyl-*N*-(*tert*-butyl)-4a,6a-dimethyl-2-oxo-2,4a,4b,5, 6,6a,7,8,9,9a,9b,10,11,11a-tetradecahydro-1*H*-indeno[5,4-*f*]quinoline-7-carboxamide (16f)

To a stirring solution of finasteride (125 mg, 0.335 mmol) and DIPEA (0.14 mL, 0.84 mmol) in THF (1.3 mL) was cooled to 0 °C. To this was added a 0 °C cooled solution of acryloyl chloride (0.053 mL, 0.67 mmol) in THF (0.3 mL) dropwise. Under an argon atmosphere this mixture was stirred at 0 °C for 3 hours. Afterwards it was allowed to warm to RT and stirred for a further 2 hours. The reaction mixture was then quenched with sat. aq. NH₄Cl (1.5 mL), extracted with Et₂O (2.0 mL), then the organic layer washed with washed with sat. aq. NaHCO₃ (2 × 1.5 mL). The organic extracts were dried over MgSO₄ and concentrated *in vacuo*. Purification by flash column chromatography (SiO₂, 2:1 hexane: ethyl

acetate \rightarrow 1:1 hexane: ethyl acetate) afforded the *title compound* as a colourless oil (89.3 mg, 62%); R_f 0.63 (ethyl acetate); v_{max}/cm⁻¹ (thin film) 3365, 2966, 2940, 2243, 1665, 1619, 1517, 1451, 1391, 1363, 1334, 1302, 1287, 1254, 1196, 1170, 1155, 1125, 1088, 1051, 1027, 975, 914, 867, 821, 729, 646, 600; δ_H (400 MHz, CDCl₃) 6.94 (1H, d, J = 10.0 Hz, CHCHCONCOCHCHH'), 6.52 (1H, dd, J = 17.0, 10.2 Hz, CHCHCONCOCHCHH'), 6.27 (1H, dd, J = 17.0, 1.5 Hz, CHCHCONCOCHCHH'), 5.81 (1H, d, J = 10.0 Hz, CHCHCONCOCHCHH'), 5.67 (1H, dd, J = 10.2, 1.5 Hz, CHCHCONCOCHCHH'), 5.12 (1H, s, NH), 3.62 (1H, ddd, J = 12.2, 3.5, 1.5 Hz), 2.41 (1H, dd, J = 13.3, 3.6 Hz), 2.16 – 2.03 (1H, m), 2.03 – 1.89 (2H, m), 1.78 – 1.57 (4H, m), 1.50 – 1.33 (3H, m), 1.30 (9H, s, CONC(CH₃)₃), 1.27 – 1.15 (2H, m, CH₂), 1.09 – 0.87 (6H, m), 0.66 (3H, s, CH₃); δ_c (100 MHz, CDCl₃) 171.68 (CO), 171.66 (CO), 166.5 (CO), 153.4 (CHCHCONCOCHCH₂), 133.6 (CHCHCONCOCHCH₂), 128.1 (CHCHCONCOCH CH_2), 122.6 (CHCHCONCOCHCH₂), 65.1 (CH), 57.4 (CH), 55.6 (CH), 51.1 (NHC(CH₃)₃), 47.9 (CH), 43.8 (C), 40.0 (C), 38.4 (CH₂), 35.0 (CH), 29.9 (CH₂), 29.1 (NHC(CH₃)₃), 24.2 (CH₂), 23.6 (CH₂), 23.4 (CH₂), 21.4 (CH₂), 13.4 (CH₃), 13.3 (CH₃); HRMS (ESI): calcd. for C₂₆H₃₈N₂NaO₃, 449.2775. Found: [MNa]⁺, 449.2779 (-1.0 ppm error).

4-(4-Fluorobenzyl)-1,4,8-thiadiazecane-3,7-dione (17a)

To a solution of 4-acryloylthiomorpholin-3-one **16a** (37.9 mg, 0.222 mmol) in dry methanol (0.44 mL), was added 4-fluorobenzylamine (28 μ L, 0.244 mmol) in a single portion. The reaction mixture was allowed to stir for 4 h at RT and then the solvent was removed *in vacuo*. Purification by flash column chromatography (SiO₂, 1:1 ethyl acetate: hexane \rightarrow 2:1 ethyl acetate: hexane \rightarrow ethyl acetate \rightarrow 1:49 methanol: ethyl acetate \rightarrow 1:24 methanol: ethyl acetate \rightarrow 1:16 methanol: ethyl acetate \rightarrow 1:12 methanol: ethyl acetate) afforded the *title compound* as a colorless oil (48.2 mg, 73%). In solution in CDCl₃, this compound exists as a mixture of 2 rotameric forms (5:2 ratio, best seen in the ¹⁹F NMR). The ¹H NMR spectrum is difficult to interpret due rotameric broadening, even when recorded at 80 °C in d₆-DMSO, with product identity and purity best determined using ¹³C NMR data; R_f 0.11 (1:9 methanol: ethyl acetate); v_{max}/cm⁻¹ (thin film) 3299, 2928, 1628, 1553, 1509, 1413, 1359, 1222, 1156, 1098, 826, 731, 500; $\delta_{\rm H}$ (400 MHz, d₆-DMSO, 80 °C), 8.00 (1H, br s, NH), 7.36 – 7.22 (2H, m, ArH), 7.20 – 6.99 (2H, m, ArH), 5.09 – 4.17 (2H, m, CH₂), 3.80 – 2.61 (8H, m, CH₂), 2.44 – 2.07 (2H, m, CH₂); $\delta_{\rm C}$ (100 MHz, CDCl₃), 172.3 (**CO**, major rotamer), 172.0 (**CO**, minor rotamer), 171.4 (**CO**, minor), 170.7 (**CO**, major), 162.5 (Ar**CF**, ¹J_{CF} = 246.5 Hz, minor), [overlapping]), 162.4 (Ar**C**F, ¹J_{CF} = 246.5 Hz, major) [overlapping]), 133.0 (Ar**C**, ⁴J_{CF} = 3.1 Hz, minor), 132.1 (Ar**C**, ⁴J_{CF} = 3.1 Hz, major), 130.1 (2 × Ar**C**H, ³J_{CF})

= 8.0 Hz, minor), 128.2 (2 × ArCH, ${}^{3}J_{CF}$ = 8.2 Hz, major), 116.1 (2 × ArCH, ${}^{2}J_{CF}$ = 21.7 Hz, major, [overlapping]), 115.9 (2 × ArCH, ${}^{2}J_{CF}$ = 21.7 Hz, minor [overlapping]), 52.4 (CH₂, major), 48.6 (CH₂, minor), 45.3 (CH₂, minor), 43.2 (CH₂, minor), 42.4 (CH₂, major), 39.5 (CH₂, major), 36.9 (CH₂, minor), 35.4 (CH₂, major), 34.8 (CH₂, major), 34.5 (CH₂, minor), 32.4 (CH₂, major), 30.8 (CH₂, minor); δ_{F} (282 MHz, CDCl₃) –114.11 (1F, m, ArF, minor rotamer), –114.13 (1F, m, ArF, major rotamer); HRMS (ESI): calcd. for C₁₄H₁₇FN₂NaO₂S, 319.0887. Found: [MNa]⁺, 319.0891 (–1.4 ppm error).

tert-Butyl 8-(4-fluorobenzyl)-5,9-dioxo-1,4,8-triazacycloundecane-1-carboxylate (17b)

To a solution of tert-butyl 4-acryloyl-5-oxo-1,4-diazepane-1-carboxylate 16b (268 mg, 1.00 mmol) in dry methanol (2.0 mL), was added 4-flurobenzylamine (126 µL, 1.10 mmol) in a single portion. The reaction mixture was allowed to stir for 4 h at RT and then the solvent was removed in vacuo. Purification by flash column chromatography (SiO₂, ethyl acetate \rightarrow 1:10 methanol: ethyl acetate) afforded the title compound as a colourless oil (370 mg, 94%). In solution in CDCl₃, this compound exists as a mixture of 3 rotameric forms (28:5:1 ratio, based on the ¹⁹F NMR data). The ¹H NMR and ¹³C NMR spectra are both affected by rotameric broadening, even when recorded at elevated temperatures; R_f 0.22 (ethyl acetate); v_{max}/cm⁻¹ (thin film) 3304, 2975, 2932, 1644, 1509, 1409, 1365, 1222, 1165, 919, 731, 592; δ_H (400 MHz, DMSO-d₆ at 50 °C): δ 7.99 (s, 1H, NH), 7.35 – 7.05 (m, 4H, Ph-CH), 4.89 – 4.12 (m, 2H, NCH₂Ph), 3.70 – 3.36 (m, 4H, 2 × CH₂), 3.25 (d, J = 9.9 Hz, 2H, CH₂), 3.19 – 3.07 (m, 2H, CH₂), 2.66 – 2.03 (m, 4H, 2 × CH₂), 1.42 (s, 9H, 3 × CH₃); δ_C (125 MHz, DMSO-*d*₆ at 90 °C): 175.4 (CO), 171.8 (CO), 161.9 (Ph-CF, ¹J_{CF} = 243.0 Hz), 155.6 (CO), 134.8 (Ph-C), 130.1 (Ph-CH, ³J_{CF} = 7.5 Hz), 115.5 (Ph-CH, ²J_{CF} = 23.0 Hz), 79.1 (COOCCH3), 48.6 (NCH₂Ph), 47.1 (CH₂), 45.2 (CH₂), 44.1 (CH₂), 38.5 (CH₂), 36.1 (CH₂), 31.7 (CH₂), 28.7 ($3 \times$ CH₃); Diagnostic ¹³C NMR resonances for the minor rotamer: 171.3 (CO), 79.6 (COOCCH₃), 28.6 (3 × CH₃); δ_F (376 MHz, DMSO-d₆ at 50 °C), 3 rotamers in a 28:5:1 ratio: -115.46 (1F, m, ArF), -115.89 (1F, m, ArF, major rotamer), -16.26 (1F, m, ArF); HRMS (ESI): calcd. for C₂₀H₂₈FN₃NaO₄, 416.1956. Found: [MNa]⁺, 416.1959 (-0.6 ppm error).

tert-Butyl 1-(4-fluorobenzyl)-2,8-dioxo-1,4,7-triazecane-4-carboxylate (17c)

To a solution of *tert*-butyl 4-acryloyl-3-oxopiperazine-1-carboxylate **16c** (128 mg, 0.503 mmol) in dry methanol (1.0 mL), was added 4-fluorobenzylamine (63 μ L, 0.553 mmol) in a single portion. The reaction mixture was allowed to stir for 4 h at RT and then the solvent was removed in vacuo. Purification by flash column chromatography (SiO₂, 1:1 ethyl acetate: hexane \rightarrow 2:1 ethyl acetate: hexane \rightarrow ethyl acetate \rightarrow 1:49 methanol: ethyl acetate \rightarrow 1:19 methanol: ethyl acetate \rightarrow 1:13 methanol: ethyl acetate) afforded the *title compound* as a white solid (158 mg, 83%). In solution in CDCl₃, this compound exists as a mixture of 3 rotameric forms (20:5:4 ratio, best seen in the ¹⁹F NMR); m.p. 169–172 °C; R_f 0.18 (1:9 methanol: ethyl acetate); v_{max}/cm⁻¹ (thin film) 2977, 1652, 1510, 1405, 1366, 1222, 1159, 910, 832, 728, 646, 499; ¹H and ¹³C NMR data for the major rotamer. δ_{H} (400 MHz, CDCl₃) 7.19 − 7.10 (2H, m, Ar**H**), 7.07 − 6.96 (2H, m, Ar**H**), 5.74 − 5.64 (1H, m, N**H**), 5.11 (1H, d, *J* = 16.3 Hz, CH₂), 5.03 (1H, d, J = 14.2 Hz, CH₂), 4.28 – 4.04 (3H, m, CH₂), 3.79 – 3.70 (1H, m, CH₂), 3.27 (1H, d, J = 14.2 Hz, CH₂), $3.11 - 2.69 (4H, m, CH₂), <math>2.52 - 2.39 (1H, m, CH₂), 1.51 (9H, s, 3 × CH₃); <math>\delta_{C} (100 \text{ MHz})$, CDCl₃) 172.7 (**C**O), 170.8 (**C**O), 155.2 (**C**O), 162.4 (Ar**C**F, ¹*J*_{CF} = 246.3 Hz), 132.7 (Ar**C**, ⁴*J*_{CF} = 3.5 Hz), 128.9 (2 × ArCH, ³*J*_{CF} = 7.9 Hz), 115.8 (2 × ArCH, ²*J*_{CF} = 21.3 Hz), 81.5 (quat C), 52.3 (CH₂), 51.7 (CH₂), 49.3 (CH₂), 41.6 (CH₂), 38.9 (CH₂), 35.2 (CH₂), 28.35 (3 × CH₃); δ_F (470 MHz, CDCl₃), -113.85 (1F, m, ArF, minor rotamer), -114.36 (1F, m, ArF, minor rotamer), -114.87 (1F, m, ArF, major rotamer); HRMS (ESI): calcd. for C₁₉H₂₆FN₃NaO₄, 402.1800. Found: [MNa]⁺, 402.1808 (-2.1 ppm error).

Characteristic NMR data for the minor rotamers can be found at: δ_{H} (400 MHz, CDCl₃) 4.69 (1H, d, *J* = 14.3 Hz, CH₂), 3.52 (1H, d, *J* = 14.3 Hz, CH₂), 1.46 (9H, s, 3 × CH₃), 1.37 (9H, s, 3 × CH₃); δ_{C} (100 MHz, CDCl₃) 172.0 (CO), 130.2 (2 × ArCH, ³*J*_{CF} = 8.3 Hz), 128.4 (2 × ArCH, ³*J*_{CF} = 8.3 Hz), 116.1 (2 × ArCH, ²*J*_{CF} = 22.9 Hz), 42.3 (CH₂), 41.3 (CH₂), 38.7 (CH₂), 34.9 (CH₂), 28.42 (3 × CH₃).

10-Allyl-5-(4-fluorobenzyl)-1,5-diazecane-2,6-dione (17d)

To a solution of 1-acryloyl-6-allylpiperidin-2-one **16d** (73.2 mg, 0.379 mmol) in dry methanol (0.76 mL), was added 4-fluorobenzylamine (48 μ L, 0.417 mmol) in a single portion. The reaction mixture was allowed to stir for 4 h at RT and then the solvent was removed *in vacuo*. Purification by flash column

chromatography (SiO₂, 1:1 ethyl acetate: hexane → 2:1 ethyl acetate: hexane → ethyl acetate → 1:49 methanol: ethyl acetate → 1:24 methanol: ethyl acetate → 1:16 methanol: ethyl acetate) afforded the *title compound* as a white solid (88.3 mg, 73%). In solution in CDCl₃, this compound exists as a mixture of 2 rotameric forms (12:1 ratio, best seen in the ¹⁹F NMR); m.p. 195–198 °C; R_f 0.46 (1:9 methanol: ethyl acetate); v_{max}/cm^{-1} (thin film) 3287, 2933, 1621, 1552, 1509, 1414, 1361, 1221, 1157, 1096, 994, 915, 810, 729, 645, 600, 483; ¹H and ¹³C NMR data for the major rotamer. δ_{H} (400 MHz, CDCl₃) 7.34 – 7.23 (2H, m, ArH), 6.99 (2H, t, *J* = 8.5 Hz, ArH), 5.68 (1H, ddt, *J* = 17.3, 10.4, 7.1 Hz, CHCH₂), 5.10 – 4.90 (3H, m, CHCH₂ and NH), 4.82 (1H, d, *J* = 14.5 Hz, CH₂), 4.34 (1H, d, *J* = 14.5 Hz, CH₂), 4.05 – 3.84 (2H, m, CH₂), 3.26 (1H, dt, *J* = 15.6, 3.8 Hz, CH₂), 2.69 – 2.56 (1H, m, CH₂), 2.24 – 1.92 (6H, m, CH₂), 1.71 – 1.53 (2H, m, CH₂), 1.42 – 1.28 (1H, m, CH₂); δ_{C} (100 MHz, CDCl₃) 173.9 (CO), 170.3 (CO), 162.4 (ArCF, ¹*J*_{CF} = 246.7 Hz), 134.1 (ArC, ⁴*J*_{CF} = 3.5 Hz), 134.0 (CHCH₂), 130.1 (2 × ArCH, ³*J*_{CF} = 8.1 Hz), 118.1 (CHCH₂), 31.0 (CH₂), 28.0 (CH₂), 23.3 (CH₂); δ_{F} (282 MHz, CDCl₃), −114.15 (1F, m, ArF, major rotamer), −114.15 (1F, m, ArF, major rotamer); HRMS (ESI): calcd. for C₁₈H₂₃FN₂NaO₂, 341.1636. Found: [MNa]⁺, 341.1643 (−2.0 ppm error).

Characteristic NMR data for the minor rotamers can be found at: δ_{H} (400 MHz, CDCl₃) 7.14 – 7.09 (2H, m, ArH), 4.75 (1H, d, *J* = 16.3 Hz, CH₂), 4.26 (1H, d, *J* = 16.3 Hz, CH₂); δ_{C} (100 MHz, CDCl₃) 176.4 (**C**O), 134.5 (**C**HCH₂), 128.5 (2 × ArCH, ³*J*_{CF} = 8.1 Hz), 117.7 (CHCH₂), 115.87 (2 × ArCH, ²*J*_{CF} = 21.4 Hz), 50.2 (**C**H₂), 41.7 (**C**H₂), 40.2 (**C**H₂), 36.0 (**C**H₂), 35.2 (**C**H₂), 32.5 (**C**H₂).

(1SR,8SR)-6-(4-fluorobenzyl)-2,6-diazabicyclo[6.2.1]undec-9-ene-3,7-dione (17e)

To a solution of (1*SR*,4*SR*)-2-acryloyl-2-azabicyclo[2.2.1]hept-5-en-3-one **16e** (63.8 mg, 0.391 mmol) in dry methanol (0.78 mL), was added 4-fluorobenzylamine (49 μ L, 0.430 mmol) in a single portion. The reaction mixture was allowed to stir for 5 h at RT and then the solvent was removed *in vacuo*. Purification by flash column chromatography (SiO₂, 1:1 ethyl acetate: hexane \rightarrow 3:1 ethyl acetate: hexane \rightarrow ethyl acetate \rightarrow 1:19 methanol: ethyl acetate \rightarrow 1:9 methanol: ethyl acetate) afforded the *title compound* as an off-white solid (98.7 mg, 88%); m.p. 125–131 °C; R_f 0.19 (1:9 methanol: ethyl acetate); v_{max}/cm⁻¹ (thin film) 3277, 1627, 1605, 1509, 1413, 1348, 1320, 1220, 1157, 1097, 1049, 992, 965, 910, 841, 727, 645, 550, 494; δ_{H} (400 MHz, CDCl₃) 7.21 – 7.14 (2H, m, Ar**H**), 7.00 (1H, d, *J* = 6.9 Hz, N**H**), 6.98 – 6.91 (2H, m, Ar**H**), 6.15 (1H, ddd, *J* = 5.5, 2.9, 1.4 Hz, CHC**H**=CHCH), 5.84 (1H, dt, *J* = 5.3, 2.5 Hz, CHCH=CHCH), 4.61 (1H, d, J = 14.4 Hz, 0.5 × CH₂), 4.48 – 4.39 (1H, m, CHCH=CHCH), 4.36 (1H, d, J = 14.4 Hz, 0.5 × CH₂), 4.04 – 3.89 (2H, m, 0.5 × CH₂, and CHCH=CHCH), 3.36 (1H, dt, J = 16.6, 7.3 Hz, 0.5 × CH₂), 2.75 – 2.50 (3H, m, 1.5 × CH₂), 2.31 (1H, ddd, J = 14.7, 7.4, 5.6 Hz, 0.5 × CH₂); δ_{C} (100 MHz, CDCl₃) 174.7 (CO), 171.9 (CO), 162.3 (ArCF, ${}^{1}J_{CF} = 246.3$ Hz), 134.9 (CHCH=CHCH), 133.8 (CHCH=CHCH, CH), 133.0 (ArC, ${}^{4}J_{CF} = 3.3$ Hz), 130.1 (2 × ArCH, ${}^{3}J_{CF} = 8.1$ Hz), 115.6 (2 × ArCH, ${}^{2}J_{CF} = 21.5$ Hz), 58.8 (CHCH=CHCH), 54.7 (CHCH=CHCH), 51.7 (CH₂), 40.4 (CH₂), 38.6 (CH₂), 30.1 (CH₂); δ_{F} (282 MHz, CDCl₃), –114.48 (1F, m, ArF); HRMS (ESI): calcd. for C₁₆H₁₇FN₂NaO₂, 311.1166. Found: [MNa]⁺, 311.1169 (-0.7 ppm error).

(8aR,8bS,10aS,11S,13aS,13bS,15aR,Z)-*N*-(*tert*-Butyl)-5-(4-fluorobenzyl)-8a,10a-dimethyl-2,6-dioxo-2,3,4,5,6,8a,8b,9,10,10a,11,12,13,13a,13b,14,15,15a-octadecahydro-1*H*cyclopenta[5,6]naphtho[2,1-*f*][1,5]diazecine-11-carboxamide trione (17f)

To a solution of 4aR,4bS,6aS,7S,9aS,9bS,11aR)-1-acryloyl-N-(tert-butyl)-4a,6a-dimethyl-2-oxo-2,4a,4b,5,6,6a,7,8,9,9a,9b,10,11,11a-tetradecahydro-1*H*-indeno[5,4-*f*]quinoline-7-carboxamide **16** (89.3 mg, 0.209 mmol) in dry methanol (0.42 mL), was added 4-fluorobenzylamine (26 μL, 0.23 mmol) in a single portion. The reaction mixture was allowed to stir for 4 h at RT and then the solvent was removed in vacuo. Purification by flash column chromatography (SiO₂, 1:1 ethyl acetate: hexane \rightarrow ethyl acetate) afforded the title compound as a white crystalline solid (83.5 mg, 77%); m.p. 226–229 °C; R_f 0.12 (ethyl acetate); v_{max}/cm⁻¹ (thin film) 3319, 2934, 1632, 1542, 1509, 1452, 1414, 1365, 1222, 1157, 910, 821, 729, 645, 537; δ_H (400 MHz, CDCl₃) 7.29 (2H, dd, J = 8.6, 5.5 Hz, Ar**H**), 7.02 (2H, t, J = 8.6 Hz, ArH), 6.03 (1H, d, J = 13.4 Hz, =CH), 5.48 – 5.42 (1H, m, NH), 5.39 (1H, d, J = 13.4 Hz, =CH), 5.07 (1H, s, NH), 4.97 (1H, d, J = 14.1 Hz, ArCH₂), 4.15 (1H, d, J = 14.1 Hz, ArCH₂), 3.84 – 3.67 (2H, m, CH₂), 3.32 - 3.22 (1H, m, CH₂), 2.28 - 1.96 (4H, m), 1.90 - 1.60 (7H, m), 1.53 - 1.36 (3H, m), 1.33 (9H, s, CONC(CH₃)₃), 1.27 – 1.16 (2H, m), 1.12 – 0.95 (2H, m, [overlapping] CH), 1.06 (3H, s, CH₃,[overlapping]), 0.66 (3H, s, CH₃); δ_c (100 MHz, CDCl₃) 172.3 (CO), 171.8 (CO), 169.9 (CO), 162.5 (ArCF, ¹/_{CF} = 246.6 Hz), 143.3 (CH), 133.1 (ArC, ⁴J_{CF} = 3.2 Hz), 130.4 (2 × ArCH, ³J_{CF} = 7.9 Hz), 125.4 (CH), 115.9 (2 × ArCH, ²J_{CF} = 21.3 Hz), 57.6 (CH), 55.8 (CH), 53.8 (CH), 53.6 (CH), 51.2 (quat C), 48.4 (CH₂), 47.2 (C), 47.0 (CH₂), 44.1 (C), 38.8 (CH₂), 37.8 (CH₂), 33.9 (CH), 30.2 (CH₂), 29.2 (NHC(CH₃)₃), 26.6 (CH₂), 24.3 (CH₂), 24.0 (CH₂),

23.2 (**C**H₂), 13.3 (**C**H₃), 12.5 (**C**H₃); δ_F (376 MHz, CDCl₃), –113.99 (1F, m, ArF); HRMS (ESI): calcd. for C₃₃H₄₆FN₃NaO₃, 574.3415. Found: [MNa]⁺, 574.3431 (–2.8 ppm error).

1-Methacryloylpiperidin-2-one (18a)

To a stirring solution of δ -valerolactam (300 mg, 3.03 mmol) in dry THF (11.0 mL) cooled to 0°C was added a solution of MeMgBr (3.0 M in diethyl ether, 1.10 mL) *via* dropwise addition using a syringe pump over 30 min. The reaction mixture was allowed to stir for 10 min at 0°C after addition was completed. Methacryloyl chloride (0.436 mL, 4.50 mmol) was then added in a single portion and the reaction mixture was stirred for an additional 30 min at 0°C. The reaction mixture was then quenched with sat. aq. NH₄Cl (10 mL) and the mixture was extracted with Et₂O (15 mL). The organic layer was washed with sat. aq. NaHCO₃ (2 × 10 mL), and organic extracts dried over MgSO₄ and concentrated *in vacuo*. Purification by flash column chromatography (SiO₂, 1:1 diethyl ether: hexane) afforded the *title compound* as a white solid (237 mg, 47%); m.p. 33–39 °C; R_f 0.21 (1:1 hexane: diethyl ether); v_{max}/cm⁻ ¹ (thin film) 2953, 1677, 1455, 1387, 1324, 1288, 1268, 1196, 1173, 1148, 1111, 1093, 994, 918, 822, 787, 558; $\delta_{\rm H}$ (400 MHz, CDCl₃) 5.20 (1H, app h, *J* = 1.0, NCOC(CH₃)CHH'), 5.15 – 5.13 (1H, m, NCOC(CH₃)CHH'), 1.88 – 1.81 (4H, m, 2 × CH₂); $\delta_{\rm C}$ (100 MHz, CDCl₃) 175.8 (CO), 173.3 (CO), 142.8 (NCOC(CH₃)CHH'), 117.0 (NCOC(CH₃)CHH'), 45.3 (NCH₂), 34.6 (CH₂CON), 22.6 (CH₂), 21.3 (CH₂), 18.9 (CH₃); HRMS (ESI): calcd. for C₉H₁₃NNaO₂, 190.0838. Found: [MNa]⁺, 190.0841 (–1.3 ppm error).

(E)-1-(But-2-enoyl)piperidin-2-one (18b)

To a stirring solution of δ -valerolactam (300 mg, 3.03 mmol) in dry THF (11.0 mL) cooled to 0 °C was added a solution of MeMgBr (3.0 M in diethyl ether, 1.13 mL) *via* dropwise addition using a syringe pump over 30 min. The reaction mixture was allowed to stir for 10 min at 0 °C after addition was completed. Crotonoyl chloride (0.431 mL, 4.50 mmol) was then added in a single portion and the reaction mixture was stirred for an additional 30 min at 0 °C. The reaction mixture was then quenched with sat. aq. NH₄Cl (10 mL) and the mixture was extracted with Et₂O (15 mL). The organic layer was washed with sat. aq. NaHCO₃ (2 × 10 mL), and organic extracts dried over MgSO₄ and concentrated *in vacuo*. Purification by flash column chromatography (SiO₂, 1:1 diethyl ether: hexane) afforded an impure batch of product (contaminated with crotonic acid), that was further purified by diluting with Et₂O (5 mL) and washing with sat. aq. NaHCO₃ (3 × 5 mL). The organic extract dried over MgSO₄ and concentrated *in vacuo* to afford the *title compound* as a colourless oil (96.4 mg, 19%). Trace impurities were evident in the ¹H NMR data for this compound, but the purity was deemed sufficient to test the subsequent CARE reaction; R_f 0.19 (1:1 hexane: diethyl ether); v_{max}/cm^{-1} (thin film) 2951, 1679, 1637, 1445, 1385, 1328, 1290, 1202, 1154, 1086, 966, 924, 828, 614; δ_H (400 MHz, CDCl₃) 6.98 (1H, dq, *J* = 15.2, 6.9 Hz, CH₃CHCHCON), 6.77 (1H, dd, *J* = 15.2, 1.6 Hz, CH₃CHCHCON), 3.75 – 3.68 (2H, m, CH₂N), 2.59 – 2.51 (2H, m, CH₂CON), 1.90 (3H, dd, *J* = 6.9, 1.6 Hz, CH₃), 1.87 – 1.81 (4H, m, CH₂); δ_C (100 MHz, CDCl₃) 173.9 (CON), 169.7 (COCHCH(CH₃)), 143.3 (COCHCH(CH₃)), 126.6 (COCHCH(CH₃)), 44.6 (CH₂N), 35.0 (CH₂CON), 22.7 (CH₂), 20.8 (CH₂), 18.4 (CH₃); HRMS (ESI): calcd. for C₉H₁₄NO₂, 168.1019. Found: [MNa]⁺, 168.1021 (-1.0 ppm error).

1-(2-Phenylacryloyl)piperidin-2-one (18c)

A mixture of δ -valerolactam (991 mg, 10.0 mmol), DMAP (122 mg, 1.00 mmol), and pyridine (4.86 mL, 60.0 mmol) in dry CH₂Cl₂ (20 mL) under an argon atmosphere was stirred at RT for 30 mins. Next, a solution of atropic acid chloride (15 mmol, freshly prepared using a published method)⁶ in dry CH₂Cl₂ (20 mL) was added and resulting mixture was refluxed at 50 °C for 18 h. The mixture was then diluted with DCM (50 mL) and washed with 10% aq. HCl (50 mL), the aqueous layer was then extracted with DCM (2 × 30 mL) and the combined organic extracts dried over MgSO₄ and concentrated *in vacuo*. Purification by flash column chromatography (SiO₂, 4: 1 hexane: ethyl acetate \rightarrow 3:1 hexane: ethyl acetate) afforded the *title compound* as a yellow oil (1.55 g, 68%); R_f 0.55 (1:1 hexane: ethyl acetate); v_{max}/cm^{-1} (thin film) 2951, 1704, 1674, 1382, 1327, 1288, 1210, 1146, 1090, 996, 904, 775, 697, 595, 555, 459; δ_{H} (400 MHz, CDCl₃-*d*): δ 7.33 – 7.20 (m, 5H, Ph-CH), 5.55 (s, 1H, PhC=CHH'), 5.48 (s, 1H, PhC=CHH'), 3.77 – 3.72 (m, 2H, CH₂), 2.35 – 2.13 (m, 2H, CH₂), 1.89 – 1.62 (m, 4H, 2 × CH₂); δ_{C} (100 MHz, CDCl₃-*d*): 173.2 (CO), 172.2 (CO), 147.3 (PhC=CH₂), 136.5 (Ph-C), 128.1 (2 × Ph-CH), 127.8 (Ph-CH), 126.2 (2 × Ph-CH), 116.2 (PhC=CH₂), 44.8 (CH₂), 34.1 (CH₂), 22.3 (CH₂), 20.7 (CH₂); HRMS (ESI): calcd. for C₁₄H₁₅NNaO₂, 225.0995. Found: [MNa]⁺, 252.0994 (0.5 ppm error).

1-Cinnamoylpiperidin-2-one (18d)

To a solution of cinnamoyl chloride (1.66 g, 10 mmol) in CH₂Cl₂ (20 mL) were added triethylamine (4.18 mL, 30.0 mmol) and δ -valerolactam (1.19 g, 12.0 mmol). The reaction mixture was stirred at room temperature overnight before it was quenched with saturated aqueous NH₄Cl (30 mL) and extracted with CH₂Cl₂ (2 × 30 mL). The combined organic phases were washed with brine and dried over MgSO₄ then the solvent was removed *in vacuo*. Purification by flash column chromatography (SiO₂, 9:1 hexane: ethyl acetate \rightarrow 5:1 hexane: ethyl acetate) afforded the *title compound* as a white solid (740 mg, 33%); m.p: 40– 42 °C; R_f 0.55 (1:1 hexane: ethyl acetate); v_{max}/cm⁻¹ (thin film) 2951, 1690, 1672, 1617, 1449, 1386, 1332, 1289, 1203, 1154, 1018, 973, 766, 565; δ_{H} (400 MHz, CDCl₃-*d*): δ 7.67 (d, *J* = 15.6 Hz, 1H, COCH=CHPh), 7.55 – 7.50 (m, 2H, Ph-CH), 7.42 (d, *J* = 15.6 Hz, 1H, COCH=CHPh), 7.35 – 7.28 (m, 3H, Ph-CH), 3.85 – 3.64 (m, 2H, CH₂), 2.58 – 2.45 (m, 2H, CH₂), 1.94 – 1.67 (m, 4H, 2 × CH₂); δ_{C} (100 MHz, CDCl₃-*d*): 173.8 (CO), 169.6 (CO), 142.9 (Ph-CH), 135.0 (Ph-C), 129.9 (COCH=CHPh), 128.7 (2 × Ph-CH), 128.2 (2 × Ph-CH), 122.1 (COCH=CHPh), 44.5 (CH₂), 34.8 (CH₂), 22.4 (CH₂), 20.5 (CH₂); HRMS (ESI): calcd. for C₁₄H₁₅NNaO₂, 225.0995. Found: [MNa]⁺, 252.0991 (1.7 ppm error).

5-(4-Fluorobenzyl)-3-methyl-1,5-diazecane-2,6-dione (19a)

To a solution of 1-methacryloylpiperidin-2-one **18a** (168 mg, 1.01 mmol) in dry methanol (2.0 mL), was added 4-fluorobenzylamine (126 μ L, 1.11 mmol) in a single portion. The reaction mixture was allowed to stir for 4 h at RT and then the solvent was removed *in vacuo*. Purification by flash column chromatography (SiO₂, 1:4 ethyl acetate: hexane \rightarrow 1:1 ethyl acetate: hexane \rightarrow 2:1 ethyl acetate: hexane \rightarrow ethyl acetate) afforded the *title compound* as a colourless oil (78.0 mg, 37%). In solution in CDCl₃, this compound exists largely as a single rotamer, along with 3 minor rotamers (most clearly seen in the ¹⁹F NMR data); R_f 0.36 (1:9 methanol: ethyl acetate); v_{max}/cm⁻¹ (thin film) 3303, 2932, 1621, 1553, 1509, 1442, 1414, 1350, 1219, 1181, 1157, 1097, 1072, 909, 815, 727, 645, 585, 48j1; NMR data for the major rotamer only. $\delta_{\rm H}$ (400 MHz, CDCl₃) 7.25 – 7.19 (2H, m, ArH), 7.01 – 6.94 (2H, m, ArH), 5.46 (1H, d, *J* = 10.0 Hz, NH), 5.00 (1H, d, *J* = 14.6 Hz, CH₂), 4.16 (1H, d, *J* = 14.6 Hz, CH₂), 3.90 – 3.76 (1H, m, CH₂), 3.65 – 3.53 (1H, m, CH₂), 2.95 – 2.77 (2H, m, CH₂), 2.64 – 2.52 (1H, m, CH₂), 2.20 – 2.02 (2H, m, CH₂, [overlapping]), 2.20 – 2.10 (1H, m, CH, [overlapping]), 1.70 – 1.38 (3H, m, CH₂), 1.00 (3H,

d, J = 6.8 Hz, CH_3); δ_C (100 MHz, $CDCl_3$) 174.0 (CO), 173.3 (CO), 162.3 (ArCF, ${}^{1}J_{CF} = 246.4$ Hz), 133.8 (ArC, ${}^{4}J_{CF} = 3.3$ Hz), 129.9 (2 × ArCH, ${}^{3}J_{CF} = 8.1$ Hz), 115.8 (2 × ArCH, ${}^{2}J_{CF} = 21.2$ Hz), 52.2 (CH₂), 48.9 (CH₂), 40.5 (CH), 38.9 (CH₂), 28.1 (CH₂), 25.8 (CH₂), 23.9 (CH₂), 13.6 (CH₃); δ_F (376 MHz, $CDCl_3$), -114.25 (1F, m, ArF); HRMS (ESI): calcd. for $C_{16}H_{21}FN_2NaO_2$, 315.1479. Found: [MNa]⁺, 315.1480 (-0.2 ppm error).

Characteristic NMR data for the minor rotamers can be found at: δ_{H} (400 MHz, CDCl₃) 5.88 (1H, d, J = 10.4 Hz, NH), 4.80 (1H, d, J = 16.4 Hz, CH₂), 4.21 (1H, d, J = 16.4 Hz, CH₂); δ_{C} (100 MHz, CDCl₃) 176.0 (CO), 174.2 (CO), 132.5 (ArC, ${}^{4}J_{CF} = 3.3$ Hz), 128.4 (2 × ArCH, ${}^{3}J_{CF} = 8.1$ Hz), 54.9 (CH₂), 39.95 (CH₂), 38.8 (CH), 35.4 (CH₂), 27.6 (CH₂), 25.4 (CH₂), 15.1 (CH₃); δ_{F} (376 MHz, CDCl₃) –114.55 (1F, m, ArF), –115.23 (1F, m, ArF), –116.05 (1F, m, ArF).

5-(4-Fluorobenzyl)-4-methyl-1,5-diazecane-2,6-dione (19b)

To a solution of (E)-1-(but-2-enoyl)piperidin-2-one 18b (92.6 mg, 0.554 mmol) in dry methanol (1.10 mL), was added 4-fluorobenzylamine (70 μ L, 0.609 mmol) in a single portion. The reaction mixture was allowed to stir for 4 h at RT and then the solvent was removed in vacuo. Purification by flash column chromatography (SiO₂, 1:4 ethyl acetate: hexane \rightarrow 1:1 ethyl acetate: hexane \rightarrow 2:1 ethyl acetate: hexane \rightarrow ethyl acetate \rightarrow 1:49 methanol: ethyl acetate) afforded the *title compound* as a colourless oil (84.3 mg, 72%). In solution in CDCl₃, this compound exists as a roughly 3:2:1 mixture of rotamers, based on the CH₃ signals in the ¹H NMR spectrum; R_f 0.23 (1:9 methanol: ethyl acetate); v_{max}/cm⁻¹ (thin film) 3299, 2934, 1607, 1555, 1510, 1463, 1412, 1337, 1221, 1156, 1097, 812, 731, 501; $\delta_{\rm H}$ (400 MHz, CDCl₃) 7.28 – 6.91 (4H, m, Ar**H**, all rotamers), 6.12 (1H, d, J = 10.5 Hz, N**H**, rotamer), 5.93 (1H, d, J = 9.3 Hz, NH, rotamer), 5.82 (1H, d, J = 15.4 Hz, NH, rotamer), 5.46 (1H, dp, J = 10.7, 6.8 Hz, CH, rotamer), 4.83 – 3.99 (2H, m, CH₂ overlapping]), 4.51 – 4.41 (1H, m, CH, rotamer [overlapping]), 3.90 - 3.56 (1H, m, CH₂), 3.50 (1H, dp, J = 10.7, 6.8 Hz, CH, rotamer), 3.22 - 2.66 (3H, m, CH₂), 2.41-2.29 (1H, m, CH₂), 2.21–1.48 (5H, m, CH₂), 1.22 (3H, d, J = 6.8 Hz, CH₃, major rotamer), 1.16 (3H, d, J = 6.8 Hz, CH₃, minor rotamer), 1.06 (3H, d, J = 6.8 Hz, CH₃, minor rotamer); δ_c (100 MHz, CDCl₃) where possible, equivalent signals from the 3 rotamers are grouped in square brackets – [177.7, 176.4, 174.6, 171.8, 170.8 and 170.7 (2 × CO from the 3 rotamers)], [162.4 (ArCF, ¹J_{CF} = 246.0 Hz), 162.0 (ArCF, ¹J_{CF} = 246.0 Hz), 161.9 (Ar**C**F, ${}^{1}J_{CF}$ = 246.0 Hz)], [135.4 (Ar**C**, ${}^{4}J_{CF}$ = 3.2 Hz), 134.2 (Ar**C**, ${}^{4}J_{CF}$ = 3.2 Hz), 132.6 (Ar**C**, ${}^{4}J_{CF}$ = 3.2 Hz)], [129.4 (2 × Ar**C**H, ${}^{3}J_{CF}$ = 8.1 Hz), 129.15 (2 × Ar**C**H, ${}^{3}J_{CF}$ = 8.1 Hz), 129.19 (2 × Ar**C**H, ${}^{3}J_{CF}$ = 8.1 Hz)], [115.76 (2 × Ar**C**H, ²J_{CF} = 21.5 Hz), 115.73 (2 × Ar**C**H, ²J_{CF} = 21.5 Hz), 115.57 (2 × Ar**C**H, ²J_{CF} = 21.5 Hz)], 57.1 (CH), 56.5 (CH₂), 51.8 (CH), 46.0 (CH), 45.4 (CH₂), 44.3 (CH₂), 44.1 (CH₂), 43.3 (CH₂), 42.5

(CH₂), 40.2 (CH₂), 40.1 (CH₂), 39.6 (CH₂), 37.1 (CH₂), 35.6 (CH₂), 28.6 (CH₂), 28.0 (CH₂), 26.4 (CH₂), 25.3 (CH₂), 25.1 (CH₂), 24.2 (CH₂), 24.0 (CH₂), [21.4 (CH₃), 19.1 (CH₃), 18.7 (CH₃)]; δ_F (376 MHz, CDCl₃), - 114.14 (1F, m, ArF, major rotamer), -115.24 (1F, m, ArF, minor rotamer), -115.32 (1F, m, ArF, minor rotamer); HRMS (ESI): calcd. for C₁₆H₂₁FN₂NaO₂, 315.1479. Found: [MNa]⁺, 315.1471 (2.7 ppm error).

5-(4-Fluorobenzyl)-3-phenyl-1,5-diazecane-2,6-dione (19c)

To a solution of 1-(2-phenylacryloyl)piperidin-2-one (229 mg, 1.00 mmol) in dry methanol (2.0 mL), was added 4-flurobenzylamine (126 µL, 1.10 mmol) in a single portion. The reaction mixture was allowed to stir for 4 h at RT and then the solvent was removed in vacuo. Purification by flash column chromatography (SiO₂, 1: 1 hexane: ethyl acetate \rightarrow ethyl acetate) afforded the *title compound* as a colourless oil (196 mg, 55%). In solution in CDCl₃, this compound exists as a roughly 10:1 mixture of rotamers; R_f 0.30 (ethyl acetate); v_{max}/cm⁻¹ (thin film) 3299, 2931, 1620, 1508, 1442, 1218, 1155, 1095, 816, 700, 590, 502; δ_H (400 MHz, CDCl₃-d) δ 7.32–7.23 (m, 5H, Ph-C**H**, both rotamers), 7.22–7.12 (m, 2H, both rotamers), 7.03–6.91 (m, 2H, both rotamers), 6.64–6.49 (m, 1H, NH, major rotamer), 6.26 (d, J = 9.9 Hz, 1H, NH, minor rotamer), 5.17 (d, J = 14.6 Hz, 1H, CHPh, major rotamer), 4.95 (d, J = 16.2 Hz, 1H, CHPh, minor rotamer), 4.25–4.01 (m, 2H, CH₂, both rotamers), 3.91–3.35 (m, 2H, CH₂, both rotamers), 3.28–3.10 (m, 1H, CH₂, both rotamers), 2.99–2.74 (m, 2H, CH₂, both rotamers), 2.30–2.12 (m, 2H, CH₂, both rotamers), 1.77 - 1.46 (m, 3H, CH₂, both rotamers); δ_c (100 MHz, CDCl₃-d) data for major rotamer: 173.8 (CO), 171.2 (CO), 162.2 (Ph-CF, ¹J_{CF} = 246.4 Hz), 136.5 (Ph-C), 133.5 (Ph-C, ⁴J_{CF} = 2.7 Hz), 129.7 (Ph-CH, ³J_{CF} = 8.0 Hz), 128.4 (Ph-CH), 128.2 (Ph-CH), 127.5 (Ph-CH), 115.6 (Ph-CH, ²J_{CF} = 21.4 Hz), 51.5 (CHPh), 51.3 (NCH₂Ph), 48.5 (CH₂), 39.0 (CH₂), 28.0 (CH₂), 25.8 (CH₂), 23.9 (CH₂); Diagnostic ¹³C NMR resonances for the minor rotamer: 175.9 (**C**O), 171.9 (**C**O), 137.1 (Ph-**C**), 132.3 (Ph-C), 128.5 (Ph-CH), 128.5 (Ph-CH), 128.3 (Ph-CH), 127.3 (Ph-CH), 115.8 (Ph-CH), 115.6 (Ph-CH), 55.0 (CHPh), 52.7 (NCH₂Ph), 50.1 (CH₂), 40.1 (CH₂), 35.4 (CH₂), 27.5 (CH₂), 25.2 (CH₂); δ_F (376 MHz, CDCl₃d): -114.15 (s, 1F, Ph-F, major rotamer), -114.28 (s, 1F, Ph-F, minor rotamer); HRMS (ESI): calcd. for C₂₁H₂₃FN₂NaO₂, 377.1636. Found: [MNa]⁺, 377.1635 (0.1 ppm error).

5-Benzyl-1,5-diazecane-2,6-dione (20a)

To a solution of 1-acryloyl-piperidin-2-one **11a** (153 mg, 1.00 mmol) in dry methanol (2.0 mL), was added benzylamine (120 μ L, 1.10 mmol) in a single portion. The reaction mixture was allowed to stir for 4 h at RT and then the solvent was removed *in vacuo*. Purification by flash column chromatography (SiO₂, 1:4 ethyl acetate: hexane \rightarrow 1:1 ethyl acetate: hexane \rightarrow ethyl acetate \rightarrow 1:49 methanol: ethyl acetate \rightarrow 1:19 methanol: ethyl acetate) afforded the *title compound* as an off-white solid (217 mg, 83%). In solution in CDCl₃, this compound exists as a roughly 10:1 mixture of rotamers; m.p. 165–167 °C; R_f 0.21 (1:9 methanol: ethyl acetate); v_{max}/cm⁻¹ (thin film) 3293, 2931, 1617, 1559, 1449, 1349, 1204, 1110, 919, 728, 699, 618; δ_{H} (400 MHz, CDCl₃) 7.36 – 7.25 (5H, m, ArH), 5.88 (1H, br d, *J* = 9.9 Hz, NH), 4.91 (1H, d, *J* = 14.4 Hz, CHH'), 4.39 (1H, d, *J* = 14.4 Hz, CHH'), 4.01 – 3.69 (2H, m, CH₂), 4.21 (1H, dt, *J* = 15.6, 3.8 Hz, CH₂), 2.92 – 2.80 (1H, m, CH₂), 2.78 – 2.59 (1H, m, CH₂), 2.25 – 1.99 (4H, m, CH₂), 1.84 – 1.43 (3H, m, CH₂); δ_{C} (100 MHz, CDCl₃) 174.1 (CO), 171.1 (CO), 138.2 (ArC), 129.1 (2 × ArCH), 128.3 (2 × ArCH), 128.0 (ArCH), 49.5 (ArCH₂), 45.4 (CH₂), 39.3 (CH₂), 37.7 (CH₂), 28.3 (CH₂), 25.9 (CH₂), 23.9 (CH₂); HRMS (ESI): calcd. for C₁₅H₂₀N₂NaO₂, 283.1417. Found: [MNa]⁺, 283.1421 (-1.3 ppm error).

Characteristic NMR data for the minor rotamers can be found at: δ_{H} (400 MHz, CDCl₃) 5.94 (1H, br d, J = 10.4 Hz, NH), 4.32 (1H, d, J = 16.5 Hz, CH₂), 4.22 – 4.13 (1H, m, CH₂), 3.00 – 2.92 (1H, m, CH₂), 2.42 (1H, ddd, J = 12.4, 8.7, 3.5 Hz, CH₂); δ_{C} (100 MHz, CDCl₃) 176.4 (CO), 171.4 (CO), 136.7 (ArC), 129.0 (2 × ArCH), 127.8 (ArCH), 126.8 (2 × ArCH), 54.4 (CH₂), 42.5 (CH₂), 40.2 (CH₂), 35.2 (CH₂), 27.4 (CH₂), 25.1 (CH₂).

5-Methyl-1,5-diazecane-2,6-dione (20b)

To a solution of 1-acryloyl-piperidin-2-one **11a** (154 mg, 1.00 mmol) in dry methanol (2.0 mL), was added methylamine solution (33 wt% in EtOH, 136 μ L, 1.10 mmol) in a single portion. The reaction mixture was allowed to stir for 4 h at RT and then the solvent was removed *in vacuo*. Purification by flash column chromatography (SiO₂, 1:1 ethyl acetate: hexane \rightarrow ethyl acetate \rightarrow 1:49 methanol: ethyl acetate \rightarrow 1:19 methanol: ethyl acetate \rightarrow 1:13 methanol: ethyl acetate

→ 1:6 methanol: ethyl acetate → 1:4 methanol: ethyl acetate) afforded the *title compound* as a sticky white paste (118 mg, 64%); In solution in CDCl₃, this compound exists as a roughly 7:1 mixture of rotamers. R_f 0.19 (1:4 methanol: ethyl acetate); v_{max}/cm^{-1} (thin film) 3287, 2933, 1609, 1443, 1401, 1332, 1259, 1198, 1168, 1081, 1033, 729; δ_H (400 MHz, CDCl₃) 6.00 – 5.88 (1H, br m, NH, minor rotamer), 5.80 – 5.64 (1H, br m, NH, major rotamer), 4.11 – 3.94 (2H, m, CH₂), 3.81 – 3.65 (2H, m, CH₂), 3.33 – 3.13 (2H, m, CH₂), 3.06 (3H, s, CH₃, minor rotamer), 2.98 (3H, s, CH₃, major rotamer), 2.95 – 2.83 (2H, m, CH₂), 2.74 – 2.53 (2H, m, CH₂), 2.36 – 2.22 (4H, m, 2 × CH₂), 2.14 – 1.98 (4H, m, 2 × CH₂), 1.75 – 1.38 (6H, m, 3 × CH₂); δ_C (100 MHz, CDCl₃) 174.1 (CO), 171.1 (CO), 47.9 (CH₂), 39.5 (CH₂), 37.3 (CH₂), 34.0 (CH₃), 28.3 (CH₂), 25.7 (CH₂), 23.8 (CH₂); HRMS (ESI): calcd. for C₉H₁₆N₂NaO₂, 207.1104. Found: [MNa]⁺, 207.1101 (1.3 ppm error).

Characteristic ¹³C NMR data for the minor rotamers can be found at: δ_c (100 MHz, CDCl₃) 176.2 (**C**O), 171.2 (**C**O), 44.8 (**C**H₂), 40.1 (**C**H₂), 38.8 (**C**H₂), 35.3 (**C**H₂), 35.1 (**C**H₂), 27.4 (**C**H₂), 24.3 (**C**H₂).

5-Cyclopropyl-1,5-diazecane-2,6-dione (20c)

To a solution of 1-acryloylpiperidin-2-one 11a (153.2 mg, 1.00 mmol) in dry methanol (2.0 mL), was added cyclopropylamine (62.8 mg, 76.2 μ L, 1.10 mmol) in a single portion. The reaction mixture was allowed to stir for 4 h at RT then the solvent was removed in vacuo. Purification by flash column chromatography (SiO₂, 1:1 ethyl acetate: hexane \rightarrow 1:50 methanol: ethyl acetate \rightarrow 1:10 methanol: ethyl acetate) afforded the title compound as a colourless oil (189 mg, 90%). In solution in CDCl₃, this compound exists as a roughly 20:1 mixture of rotamers. $R_f 0.21$ (1:9 methanol: ethyl acetate); v_{max}/cm^- ¹ (thin film) 3300, 3087, 2929, 1649, 1550, 1442, 1324, 1270, 1195, 1065; $\delta_{\rm H}$ (400 MHz, CDCl₃-d) 6.66 (s, 1H, NH, minor rotamer), 6.01 (d, J = 4.0 Hz, 1H, NH, major rotamer), 4.30 (dt, J = 14.1, 7.2 Hz, 1H, NCH₂, major rotamer), 4.19 – 4.09 (m, 1H, NCH₂, minor rotamer), 3.94 – 3.85 (m, 1H, NCH, minor rotamer), 3.79 – 3.65 (m, 1H, NCH, major rotamer), 3.38 – 3.30 (m, 1H, NCH₂, minor rotamer), 3.12 (dt, J = 13.5, 7.8 Hz, 1H, NCH₂, major rotamer), 3.07 – 2.94 (m, 1H, NCH₂, both rotamers), 2.84 – 2.73 (m, 1H, COCH₂, both rotamers), 2.76 – 2.63 (m, 2H, COCH₂, both rotamers), 2.52 – 2.41 (m, 1H, NCH₂, both rotamers), 2.11 – 1.95 (m, 1H, COCH₂, both rotamers), 1.86 – 1.75 (m, 2H, CH₂, both rotamers), 1.73 – 1.56 (m, 2H, CH₂, both rotamers), 1.00 – 0.72 (m, 2H, CH₂, both rotamers), 0.71 – 0.53 (m, 2H, CH₂, both rotamers); δ_c (100 MHz, CDCl₃-*d*) for the major rotamer: 179.0 (CO), 171.5 (CO), 43.8 (NCH₂), 40.0 (NCH₂), 36.0 (COCH₂), 35.5 (COCH₂), 30.9 (NCH), 27.5 (CH₂), 24.2 (CH₂), 12.1 (CH₂), 7.5 (CH₂); ¹³C NMR resonances for the minor rotamer: 176.0 (CO), 171.3 (CO), 46.6 (NCH₂), 39.2 (NCH₂), 38.0 (COCH₂), 29.6 (COCH₂), 29.1 (NCH), 25.0 (CH₂), 23.2 (CH₂), 9.2 (CH₂), 6.6 (CH₂); HRMS (ESI): calcd. for C₁₁H₁₈N₂NaO₂, 233.1260. Found: [MNa]⁺, 233.1259 (0.6 ppm error).

5-Isopropyl-1,5-diazecane-2,6-dione (20d)

To a solution of 1-acryloyl-piperidin-2-one **11a** (154 mg, 1.00 mmol) in dry DMF (2.0 mL), was added isopropylamine (95 μ L, 1.10 mmol) in a single portion. The reaction mixture was allowed to stir for 4 h at RT and then the solvent was removed *in vacuo*, with dry loading onto Celite using DCM to aid the removal of most of the DMF. Purification of the crude material loaded onto Celite by flash column chromatography (SiO₂, ethyl acetate \rightarrow 1:19 methanol: ethyl acetate \rightarrow 1:9 methanol: ethyl acetate \rightarrow 1:6 methanol: ethyl acetate) afforded the *title compound* as a colorless oil (106 mg, 50%). In solution in CDCl₃, this compound exists as a roughly 11:1 mixture of rotamers. Rf 0.24 (1:9 methanol: ethyl acetate); v_{max}/cm⁻¹ (thin film) 3297, 2932, 1608, 1422, 1368, 1314, 1241, 1212, 1160, 1062, 1043, 922, 727, 644, 581; NMR data for the major rotamer: δ_{H} (400 MHz, CDCl₃) 5.75 – 5.63 (1H, br m, NH), 4.77 (1H, hept, *J* = 6.9 Hz, CH), 3.81 – 3.56 (2H, m, CH₂), 3.34 – 3.20 (1H, m, CH₂), 2.92 – 2.77 (1H, m, CH₂), 2.61 – 2.46 (1H, m, CH₂), 2.34 – 1.88 (4H, m, CH₂), 1.63 – 1.31 (3H, m, CH₂), 1.17 (3H, d, *J* = 7.0 Hz, CH₃), 1.10 – 0.99 (3H, m, CH₃); δ_{C} (100 MHz, CDCl₃) 174.0 (CO), 171.2 (CO), 45.6 (CH), 40.3 (CH₂), 39.6 (CH₂), 39.2 (CH₂), 29.2 (CH₂), 25.7 (CH₂), 23.8 (CH₂), 20.8 (CH₃), 20.2 (CH₃); HRMS (ESI): calcd. for C₁₁H₂₀N₂NaO₂, 235.1417. Found: [MNa]⁺, 235.1414 (1.2 ppm error).

Characteristic NMR data for the minor rotamer can be found at: δ_{H} (400 MHz, CDCl₃) 5.97 – 5.86 (1H, br m, NH), 3.95 (1H, hept, *J* = 6.7 Hz, CH); δ_{C} (100 MHz, CDCl₃) 49.9 (CH), 22.5 (CH₃), 20.5 (CH₃).

The same reaction was also performed using methanol as solvent, as detailed below:

To a solution of 1-acryloyl-piperidin-2-one **11a** (153 mg, 1.00 mmol) in dry methanol (2.0 mL), was added isopropylamine (95 μ L, 1.10 mmol) in a single portion. The reaction mixture was allowed to stir for 5 h at RT and then the solvent was removed *in vacuo*. Purification by flash column chromatography (SiO₂, ethyl acetate \rightarrow 1:49 methanol: ethyl acetate \rightarrow 1:19 methanol: ethyl acetate \rightarrow 1:9 methanol: ethyl acetate \rightarrow 1:6 methanol: ethyl acetate \rightarrow 1:6 methanol: DCM \rightarrow 1:4 methanol: DCM \rightarrow 1:3 methanol: DCM \rightarrow 1:2 methanol: DCM) afforded 5-isopropyl-1,5-diazecane-2,6-dione **20d** as a colourless oil (100 mg, 47%), a trace amount of δ -valerolactam (not quantified) and methyl 5acrylamidopentanoate **26** as a pale-yellow oil (57.9 mg, 31%). Data for **20d** is included above. Data for methyl 5-acrylamidopentanoate **26**: R_f 0.56 (1:9 methanol: ethyl acetate); v_{max}/cm⁻¹ (thin film) 3285, 2939, 1735, 1658, 1625, 1547, 1437, 1409, 1366, 1242, 1167, 1100, 986, 959, 806, 702; δ_{H} (400 MHz, CDCl₃) 6.30 (1H, dd, *J* = 17.0, 1.5 Hz, NCOCHCHH'), 6.11 (1H, dd, *J* = 17.0, 10.2 Hz, NCOCHCHH'), 5.81 (1H, br s, NH), 5.65 (1H, dd, *J* = 10.2, 1.5 Hz, NCOCHCHH'), 3.69 (3H, s, CH₃), 3.37 (2H, td, *J* = 6.8, 5.8 Hz, NCH₂), 2.37 (2H, t, *J* = 7.1 Hz, CH₂CO₂CH₃), 1.75 – 1.54 (4H, m, 2 × CH₂); δ_{C} (100 MHz, CDCl₃) 174.2 (CO), 165.7 (CO), 131.0 (NCOCHCHH'), 126.5 (NCOCHCHH'), 51.8 (CH₃), 39.2 (NCH₂), 33.6 (CH₂CO₂CH₃), 29.0 (CH₂), 22.1 (CH₂); HRMS (ESI): calcd. for C₉H₁₅NNaO₃, 208.0944. Found: [MNa]⁺, 208.0940 (1.8 ppm error).

5-(4-Methoxyphenyl)-1,5-diazecane-2,6-dione (20f)

To a solution of 1-acryloylpiperidin-2-one **11a** (153 mg, 1.00 mmol) in dry methanol (2.0 mL), was added 4-methoxybenzenamine (136 mg, 1.10 mmol) in a single portion. The reaction mixture was allowed to stir for 4 h at RT and then the solvent was removed *in vacuo*. Purification by flash column chromatography (SiO₂, 1:50 methanol: ethyl acetate \rightarrow 1:10 methanol: ethyl acetate) afforded the *title compound* as a white solid (240 mg, 88%). In solution in CDCl₃, this compound largely as a single rotamer, with a trace amount of a minor rotamer visible in the ¹H and ¹³C NMR spectra; R_f 0.30 (1:9 methanol: ethyl acetate); m.p. 52 –55°C, v_{max}/cm⁻¹ (thin film) 3301, 2934, 1622, 1510, 1444, 1244, 1174, 1030, 835, 729; NMR data for the major rotamer only. δ_{H} (400 MHz, CDCl₃-*d*) δ 7.30 – 7.07 (m, 2H, Ph-CH), 6.90 – 6.80 (m, 2H, Ph-CH), 6.21 (d, *J* = 9.3 Hz, 1H, NH), 4.34 (dd, *J* = 13.6, 7.9 Hz, 1H, NCH₂), 3.82 (dt, *J* = 13.7, 4.4 Hz, 1H, NCH₂), 3.76 (s, 3H, OCH₃), 3.38 (dt, *J* = 14.2, 8.7 Hz, 1H, NCH₂), 3.09 (dt, *J* = 11.6, 8.6 Hz, 1H, NCH₂), 2.65 – 2.51 (m, 1H, COCH₂), 2.46 – 2.24 (m, 2H, COCH₂), 2.08 – 1.90 (m, 1H, COCH₂), 1.72 – 1.34 (m, 4H, CH₂); δ_{C} (400 MHz, CDCl₃-*d*) 177.1 (CO), 172.6 (CO), 158.7 (Ph-C), 137.4 (Ph-C), 128.4 (2 × Ph-CH), 114.7 (2 × Ph-CH), 55.5 (OCH₃), 49.1 (NCH₂), 40.1 (NCH₂), 36.3 (COCH₂), 35.6 (COCH₂), 27.8 (CH₂), 25.2 (CH₂); HRMS (ESI): calcd. for C₁₅H₂₀N₂NaO₃, 299.1366. Found: [MNa]⁺, 299.1358 (2.8 ppm error).

Characteristic NMR data for the minor rotamers can be found at: δ_{H} (400 MHz, CDCl₃) 7.13 (2H, m, Ph-CH), 6.87 (2H, m, Ph-CH), 5.97 (1H, m, NH), 3.60 (1H, m, CH₂); δ_{C} (100 MHz, CDCl₃) 174.2 (CO), 171.0 (CO), 158.3 (Ph-C), 128.6 (Ph-CH), 49.4 (CH₂), 39.6 (CH₂), 38.2 (CH₂), 28.8 (CH₂), 26.0 (CH₂), 24.0 (CH₂).

5-Phenyl-1,5-diazecane-2,6-dione (20g)

To a solution of 1-acryloyl-piperidin-2-one **11a** (153 mg, 1.00 mmol) in dry methanol (2.0 mL), was added aniline (100 μ L, 1.10 mmol) in a single portion. The reaction mixture was allowed to stir for 3 days at RT and then the solvent was removed *in vacuo*. Purification by flash column chromatography (SiO₂, 1:4 ethyl acetate: hexane \rightarrow 1:1 ethyl acetate: hexane \rightarrow ethyl acetate \rightarrow 1:49 methanol: ethyl acetate \rightarrow 1:19 methanol: ethyl acetate) afforded the *title compound* as a fluffy white solid (118 mg, 48%); m.p. 70–75 °C; Rf 0.25 (1:9 methanol: ethyl acetate); v_{max}/cm^{-1} (thin film) 3312, 2933, 1623, 1593, 1548, 1493, 1444, 1416, 1321, 1244, 1165, 1105, 911, 764, 726, 698, 645, 588, 503; δ_{H} (400 MHz, CDCl₃) 7.41 – 7.16 (5H, m, ArH), 6.12 (1H, br d, *J* = 10.2 Hz, NH), 4.35 (1H, ddd, *J* = 13.7, 8.5, 1.9 Hz, 0.5 × CH₂), 3.81 (1H, ddt, *J* = 14.1, 9.5, 4.5 Hz, 0.5 × CH₂), 3.45 (1H, dt, *J* = 13.5, 8.6 Hz, 0.5 × CH₂), 3.11 (1H, dt, *J* = 12.4, 8.9 Hz, 0.5 × CH₂), 2.57 (1H, ddt, *J* = 13.3, 9.8, 3.2 Hz, 0.5 × CH₂), 2.40 (1H, ddd, *J* = 12.4, 8.0, 1.8 Hz, 0.5 × CH₂), 2.33 (1H, ddd, *J* = 13.6, 10.3, 3.6 Hz, 0.5 × CH₂), 2.00 (1H, ddd, *J* = 13.0, 7.1, 3.1 Hz, 0.5 × CH₂), 1.74 – 1.52 (3H, m, 1.5 × CH₂), 1.47 – 1.34 (1H, m, 0.5 × CH₂); δ_{C} (100 MHz, CDCl₃) 177.0 (CO), 172.5 (CO), 144.5 (ArC), 129.8 (2 × ArCH), 127.6 (ArCH), 127.3 (2 × ArCH), 49.2 (CH₂), 40.1 (CH₂), 36.5 (CH₂), 35.6 (CH₂), 27.8 (CH₂), 25.2 (CH₂); HRMS (ESI): calcd. for C₁₄H₁₈N₂NaO₂, 269.1260. Found: [MNa]⁺, 269.1260 (0.2 ppm error).

5-(4-Nitrophenyl)-1,5-diazecane-2,6-dione (20h)

To a solution of 1-acryloylpiperidin-2-one **11a** (60 mg, 0.39 mmol) in dry methanol (2.0 mL), was added 4-nitroaniline (59.2 mg, 0.43 mmol) in a single portion. The reaction mixture was allowed to stir for 3 days at RT and then the solvent was removed *in vacuo*. Purification by flash column chromatography (SiO₂, 1:1 hexane: ethyl acetate) afforded the *title compound* as a yellow solid (24 mg, 21%); R_f 0.25 (1:1 hexane: ethyl acetate); m.p. 118 – 120 °C, v_{max}/cm^{-1} (thin film) 3374, 2958, 1686,1600, 1503, 1474, 1307, 1193, 1110, 835, 754; δ_{H} (400 MHz, CDCl₃-*d*) δ 8.05 (dd, *J* = 9.2, 0.6 Hz, 2H, Ph-CH), 6.55 – 6.50 (dd, *J* = 9.2, 0.6 Hz, 2H, Ph-CH), 3.75 – 3.70 (m, 2H, NCH₂), 3.58 (t, *J* = 6.0 Hz, 2H, NCH₂), 3.21 (t, *J* = 6.0 Hz, 2H, COCH₂), 2.60 – 2.50 (m, 2H, COCH₂), 1.88 – 1.80 (m, 4H, 2 × CH₂); δ_{C} (400 MHz, CDCl₃-*d*) 175.2 (CO), 173.9 (CO), 153.2 (Ph-C), 138.0 (Ph-C), 126.6 (2 × Ph-CH), 111.1 (2 × Ph-CH), 44.3 (NCH₂), 39.2

(NCH₂), 38.9 (COCH₂), 34.9 (COCH₂), 22.4 (CH₂), 20.3 (CH₂); HRMS (ESI): calcd. for C₁₄H₁₇N₃NaO₄, 314.1111. Found: [MNa]⁺, 314.1110 (0.5 ppm error).

Ethyl 2-(4,10-dioxo-1,5-diazecan-1-yl)acetate (20i)

To a solution of 1-acryloyl-piperidin-2-one **11a** (159 mg, 1.04 mmol) in dry methanol (2.0 mL), was added glycine ethyl ester (115 μ L, 1.14 mmol) in a single portion. The reaction mixture was allowed to stir for 4 h at RT and then the solvent was removed *in vacuo*. Purification by flash column chromatography (SiO₂, 1:1 ethyl acetate: hexane \rightarrow ethyl acetate \rightarrow 1:49 methanol: ethyl acetate \rightarrow 1:19 methanol: ethyl) afforded the *title compound* as a white solid (204 mg, 77%); m.p. 143–145 °C; Rf 0.18 (1:9 methanol: ethyl acetate); v_{max}/cm⁻¹ (thin film) 3316, 2932, 1721, 1640, 1555, 1477, 1441, 1380, 1212, 1153, 1112, 1071, 1022, 861, 715, 658, 566, 524, 499; δ_{H} (400 MHz, CDCl₃) 7.58 (1H, br d, J = 10.0 Hz, NH), 4.74 (1H, d, J = 17.2 Hz, CH₂CO₂CH₂CH₃), 4.23 – 4.14 (2H, m, CH₂CO₂CH₂CH₃), 4.09 (1H, ddd, J = 15.2, 13.0, 1.6 Hz, CH₂), 3.81 (1H, dddd, J = 13.5, 11.6, 10.0, 1.6 Hz, CH₂), 3.32 (1H, d, J = 17.2 Hz, CH₂CO₂CH₂CH₃), 3.24 (1H, dd, J = 15.6, 3.6 Hz, CH₂), 2.95 – 2.86 (1H, m, CH₂), 2.62 (1H, dddd, J = 16.8, 14.0, 4.0 Hz, CH₂), 2.41 (1H, td, J = 12.8, 3.2 Hz, CH₂), 2.21 (1H, ddd, J = 12.6, 4.0, 1.6 Hz, CH₂), 2.12 – 2.00 (2H, m, CH₂), 1.67 – 1.53 (2H, m, CH₂), 1.52 – 1.38 (1H, m, CH₂), 1.29 (3H, t, J = 7.2 Hz, CH₂CO₂CH₂CH₃); δ_{C} (100 MHz, CDCl₃) 174.4 (CO), 172.3 (CO), 170.7 (CO), 62.1 (CH₂CO₂CH₂CH₃), 51.5 (CH₂CO₂CH₂CH₃), 4.99 (CH₂), 37.5 (CH₂), 27.9 (CH₂), 25.2 (CH₂), 24.1 (CH₃); HRMS (ESI): calcd. for C₁₂H₂₀N₂NaO₄, 279.1315. Found: [MNa]⁺, 279.1316 (-0.2 ppm error).

Methyl (S)-2-(4,10-dioxo-1,5-diazecan-1-yl)propanoate (20j)

To a solution of 1-acryloylpiperidin-2-one **11a** (153.2 mg, 1.00 mmol) in dry methanol (2.0 mL), was added *L*-alanine methyl ester (113.4 mg, 1.10 mmol) in a single portion. The reaction mixture was allowed to stir for 4 h at RT and then the solvent was removed *in vacuo*. Purification by flash column chromatography (SiO₂, 1:9 methanol: ethyl acetate) afforded the *title compound* as a colourless oil (154 mg, 60%). In solution in CDCl₃, this compound as a roughly 2:1 mixture of rotamers; R_f 0.23 (1:9 methanol: ethyl acetate); v_{max}/cm^{-1} (thin film) 3320, 2937, 1717, 1633, 1557, 1443, 1316, 1260, 1213, 1159, 1103, 1061, 1030, 719; δ_{H} (400 MHz, CDCl₃-*d*) δ 7.39 (d, *J* = 9.7 Hz, 1H, N**H**, minor rotamer), 7.29

(d, J = 9.1 Hz, 1H, NH, major rotamer), 4.81 (q, J = 7.8 Hz, 1H, NCH, minor rotamer), 3.89 – 3.68 (m, 2H, NCH₂, major rotamer), 3.67 (s, 3H, OCH₃, major rotamer), 3.65 (s, 3H, OCH₃, minor rotamer), 3.60 – 3.58 (m, 1H, NCH₂, minor rotamer), 3.44 (q, J = 6.9 Hz, 1H, NCH, major rotamer), 3.43 – 3.31 (m, 1H, NCH, minor rotamer), 3.17 (dt, J = 15.4, 3.6 Hz, 1H, NCH₂, both rotamers), 2.78 (dd, J = 13.7, 3.9 Hz, 1H, NCH₂, both rotamers), 2.45 – 1.83 (m, 6H, 3 × CH₂, both rotamers), 1.52 – 1.42 (m, 2H, CH₂, both rotamers), 1.40 (d, J = 6.9 Hz, 3H, CH₃, major rotamer), 1.35 (d, J = 7.9 Hz, 3H, CH₃, minor rotamer); $\delta_{\rm C}$ (100 MHz, CDCl₃-d) for major rotamer: 173.3 (CO), 173.0 (CO), 170.5 (CO), 58.5 (OCH₃), 52.7 (NCH), 47.2 (NCH₂), 38.8 (NCH₂), 36.7 (COCH₂), 27.8 (COCH₂), 24.6 (CH₂), 23.6 (CH₂), 14.1 (CH₃); Diagnostic ¹³C NMR resonances for minor rotamer: 176.0 (CO), 174.6 (CO), 170.8 (CO), 53.1 (NCH), 40.4 (NCH₂), 38.7 (NCH₂), 38.0 (COCH₂), 28.4 (COCH₂), 24.9 (CH₂), 23.8 (CH₂), 14.6 (CH₃); HRMS (ESI): calcd. for C₁₂H₂₀N₂NaO₄, 279.1315. Found: [MNa]⁺, 279.1316 (-0.2 ppm error).

5-(4-Bromobenzyl)-1,5-diazecane-2,6-dione (20k)

To a solution of 1-acryloylpiperidin-2-one 11a (153.2 mg, 1.00 mmol) in dry methanol (2.0 mL), was added 4-bromobenzylamine (204.6 mg, 1.11 mmol) in a single portion. The reaction mixture was allowed to stir for 2 h at RT until a white solid precipitated out of solution and then the solvent was removed in vacuo. Purification by flash column chromatography (SiO₂, 1:1 ethyl acetate: hexane \rightarrow ethyl acetate \rightarrow 1:50 methanol: ethyl acetate) afforded the *title compound* as a white solid (330 mg, 97%). In solution in CDCl₃, this compound as a roughly 10:1 mixture of rotamers; m.p. 167 - 170 °C, R_f 0.23 (1:9 methanol: ethyl acetate); v_{max}/cm⁻¹ (thin film) 3291, 3092, 2931, 1618, 1560, 1487, 1264, 1010, 731; $\delta_{\rm H}$ (400 MHz, CDCl₃-d) 7.43 (d, J = 8.2 Hz, 2H, Ar**H**, both rotamers), 7.14 (d, J = 8.3 Hz, 2H, Ph-CH, major rotamer), 7.03 (d, J = 8.2 Hz, 2H, Ph-CH, minor rotamer), 5.94 (d, J = 10.0 Hz, 1H, NH, minor rotamer), 5.53 (d, J = 9.3 Hz, 1H, NH, major rotamer), 5.02 (d, J = 14.7 Hz, 1H, NCH₂Ph, major rotamer), 4.79 (d, J = 16.6 Hz, 1H, NCH₂Ph, minor rotamer), 4.28 (d, J = 16.6 Hz, 1H, NCH₂Ph, minor rotamer), 4.10 (d, J = 14.7 Hz, 1H, NCH₂Ph, major rotamer), 3.97 – 3.73 (m, 2H, NCH₂, both rotamers), 3.28 – 3.19 (d, 1H, NCH₂, both rotamers), 2.95 – 2.82 (m, 1H, NCH₂, both rotamers), 2.73 – 2.61 (m, 1H, COCH₂, both rotamers), 2.27 - 2.07 (m, 4H, $2 \times CH_2$, both rotamers), 1.64 (m, 2H, COCH₂, both rotamers), 1.56 - 1.40 (m, 1H, COCH₂, both rotamers); δ_{C} (100 MHz, CDCl₃-d) for major rotamer: 174.2 (CO), 171.0 (CO), 137.0 (Ph-CBr), 132.1 (2 × Ph-CH), 129.9 (2 × Ph-CH), 121.8 (Ph-C), 48.7 (CH₂), 45.2 (CH₂), 39.3 (CH₂), 37.6 (CH₂), 28.3 (CH₂), 25.9 (CH₂), 23.8 (CH₂); Diagnostic ¹³C NMR resonances for the minor rotamer: 176.4 (CO), 171.3 (CO), 135.8 (Ph-CBr), 128.5 (Ph-CH), 53.9 (CH₂), 42.5 (CH₂), 40.2

(CH₂), 35.1 (CH₂), 27.4 (CH₂), 25.0 (CH₂); HRMS (ESI): calcd. for C₁₅H₁₉BrN₂NaO₂, 361.0519. Found: [MNa]⁺, 361.0522 (1.0 ppm error).

5-(2-(1H-Indol-3-yl)ethyl)-1,5-diazecane-2,6-dione (20l)

To a solution of 1-acryloyl-piperidin-2-one **11a** (153 mg, 1.00 mmol) in dry methanol (1.0 mL), was added a solution of tryptamine (176 mg, 1.10 mmol) in dry methanol (1.0 mL). The reaction mixture was allowed to stir for 4 h at RT and then the solvent was removed *in vacuo*. Purification by automated flash column chromatography (using a 24 g pre-packed SiO₂ column, $0\% \rightarrow 100\%$ ethyl acetate in hexanes, then $0\% \rightarrow 10\%$ methanol in ethyl acetate) afforded the *title compound* as a white solid (220 mg, 70%).; m.p. 189–196 °C; R_f 0.11 (1:9 methanol: ethyl acetate); v_{max}/cm⁻¹ (thin film) 3263, 2933, 2404, 1612, 1457, 1351, 1199, 1107, 744; δ_{H} (400 MHz, d₄-MeOD) 7.59 (1H, dt, *J* = 8.0, 1.1 Hz, ArH), 7.30 (1H, dt, *J* = 8.0, 1.1 Hz, ArH), 7.09 – 7.03 (2H, m, ArH), 7.01 – 6.95 (1H, m, ArH), 4.28 – 4.13 (1H, m, CH₂), 3.81 – 3.64 (1H, m, CH₂), 3.30 – 3.36 (1H, m, CH₂), 3.23 – 3.15 (1H, m, CH₂), 3.07 – 2.85 (4H, m, 2 × CH₂), 2.76 – 2.55 (1H, m, CH₂), 2.34 – 2.19 (1H, m, CH₂), 2.14 – 1.93 (3H, m, 1.5 × CH₂), 1.61 – 1.38 (3H, m, 1.5 × CH₂); δ_{C} (100 MHz, d₄-MeOD) 175.9 (CO), 173.6 (CO), 138.1 (ArC), 128.8 (ArC), 123.5 (ArCH), 122.4 (ArCH), 119.7 (ArCH), 119.3 (ArCH), 113.2 (ArC), 112.3 (ArCH), 48.8 (CH₂), 46.9 (CH₂), 40.5 (CH₂), 37.6 (CH₂), 29.6 (CH₂), 26.2 (CH₂), 25.1 (CH₂), 24.3 (CH₂);; HRMS (ESI): calcd. for C₁₈H₂₃N₃NaO₂, 336.1682. Found: [MNa]⁺, 336.1685 (–0.6 ppm error).

tert-Butyl (3-(4,10-dioxo-1,5-diazecan-1-yl)propyl)carbamate (20m)

To a solution of 1-acryloyl-piperidin-2-one **11a** (153 mg, 1.00 mmol) in dry methanol (2.0 mL), was added *N*-Boc-1,3-diaminopropane (192 μ L, 1.10 mmol) in a single portion. The reaction mixture was allowed to stir for 4 h at RT and then the solvent was removed *in vacuo*. Purification by flash column chromatography (SiO₂, ethyl acetate \rightarrow 1:19 methanol: ethyl acetate \rightarrow 1:9 methanol: ethyl acetate \rightarrow 1:19 methanol: ethyl acetate \rightarrow 1:9 methanol: ethyl acetate \rightarrow 1:6 methanol: ethyl acetate) afforded the *title compound* as an off-white solid (225 mg, 69%); m.p. 151–153 °C; R_f 0.11 (1:9 methanol: ethyl acetate); v_{max}/cm⁻¹ (thin film) 3302, 2934, 1692, 1617, 1513, 1428, 1366, 1250, 1165, 914, 727, 645; δ_{H} (400 MHz, CDCl₃) 6.63 – 6.53 (1H, m, NH), 5.42 (1H, t, *J* = 6.3)

Hz, NH), 4.19 - 3.46 (3H, m, CH₂), 3.27 - 3.05 (2H, m, CH₂), 2.99 - 2.72 (3H, m, CH₂), 2.67 - 2.49 (1H, m, CH₂), 2.35 - 2.11 (2H, m, CH₂), 2.07 - 1.87 (2H, m, CH₂), 1.76 - 1.42 (5H, m, CH₂), 1.32 (9H, s, $3 \times CH_3$); δ_C (100 MHz, CDCl₃) 174.5 (CO), 171.0 (CO), 156.2 (NCO₂), 79.0 (C), 45.4 (CH₂), 43.1 (CH₂), 39.1 (CH₂), 37.8 (CH₂), 37.5 (CH₂), 28.4 ($3 \times CH_3$, and $1 \times CH_2$ [overlapping]), 28.2 (CH₂), 25.7 (CH₂), 23.7 (CH₂); HRMS (ESI): calcd. for C₁₆H₂₉N₃NaO₄, 350.2050. Found: [MNa]⁺, 350.2051 (-0.3 ppm error).

5-(Prop-2-yn-1-yl)-1,5-diazecane-2,6-dione (20n)

To a solution of 1-acryloyl-piperidin-2-one **11a** (123 mg, 0.806 mmol) in dry methanol (1.61 mL), was added propargylamine (57 μ L, 0.886 mmol) in a single portion. The reaction mixture was allowed to stir for 4 h at RT and then the solvent was removed *in vacuo*. Purification by flash column chromatography (SiO₂, 1:1 ethyl acetate: hexane \rightarrow ethyl acetate \rightarrow 1:49 methanol: ethyl acetate) afforded the *title compound* as a colourless oil (128 mg, 77%); Rf 0.25 (1:9 methanol: ethyl acetate); ν_{max}/cm^{-1} (thin film) 3288, 2933, 1625, 1560, 1447, 1351, 1205, 1149, 701; δ_{H} (400 MHz, CDCl₃) 6.05 (1H, br s, NH), 4.45 – 4.30 (1H, m, CH₂), 4.07 – 3.86 (2H, m, CH₂), 3.81 – 3.65 (1H, m, CH₂), 3.53 – 3.42 (1H, m, CH₂), 2.92 – 2.79 (1H, m, CH₂), 2.71 – 2.49 (2H, m, CH₂), 2.31 – 2.28 (1H, m, C=CH), 2.26 – 2.17 (1H, m, CH₂), 2.10 – 1.94 (2H, m, CH₂), 1.66 – 1.34 (3H, m, CH₂); δ_{C} (100 MHz, CDCl₃) 173.6 (CO), 171.0 (CO), 80.5 (CCH), 72.3 (CCH), 46.6 (CH₂), 39.2 (CH₂), 37.4 (CH₂), 36.0 (CH₂), 28.2 (CH₂), 25.5 (CH₂), 23.9 (CH₂); HRMS (ESI): calcd. for C₁₁H₁₆N₂NaO₂, 231.1104. Found: [MNa]⁺, 231.1106 (–0.8 ppm error).

5-(2-(Methylthio)ethyl)-1,5-diazecane-2,6-dione (200)

To a solution of 1-acryloylpiperidin-2-one **11a** (153 mg, 1.00 mmol) in dry methanol (2.0 mL), was added 2-(methylthio)ethylamine (102 μ L, 1.10 mmol) in a single portion. The reaction mixture was allowed to stir for 4 h at RT and then the solvent was removed *in vacuo*. Purification by flash column chromatography (SiO₂, 1:10 methanol: ethyl acetate \rightarrow 1:9 methanol: ethyl acetate) afforded the *title compound* as a colourless oil (178 mg, 72%); Rf 0.35 (1:9 methanol: ethyl acetate); v_{max}/cm⁻¹ (thin film) 3291, 2928, 1617, 1432, 1350, 1199, 1173, 1107, 700; δ_{H} (400 MHz, CDCl₃-*d*) δ 6.67 (d, *J* = 9.2 Hz, 1H, NH), 3.92 (t, *J* = 13.7 Hz, 1H, NCH₂), 3.79 – 3.58 (m, 2H, NCH₂), 3.41 (dt, *J* = 13.0, 5.6 Hz, 1H, NCH₂), 3.23 – 3.14 (m, 1H, NCH₂), 2.85 – 2.70 (m, 2H), 2.64 – 2.47 (m, 2H, CH₂), 2.32 – 2.14 (m, 2H, CH₂), 2.07

(s, 3H, SCH₃), 2.04 – 1.90 (m, 2H, CH₂), 1.63 – 1.44 (m, 2H, CH₂), 1.42 – 1.30 (m, 1H, CH₂); δ_c (400 MHz, CDCl₃-*d*) 174.2 (NCO), 170.8 (NCO), 46.5 (NCH₂), 46.0 (NCH₂), 39.0 (NCH₂), 38.2 (COCH₂), 32.2 (COCH₂), 28.4 (CH₂), 25.7 (CH₂), 23.9 (CH₂), 15.1 (SCH₃); HRMS (ESI): calcd. for C₁₁H₂₁N₂O₂S, 245.1318. Found: [MH]⁺, 245.1315 (1.4 ppm error).

5-(3-(2-Oxopyrrolidin-1-yl)propyl)-1,5-diazecane-2,6-dione (20p)

To a solution of 1-acryloylpiperidin-2-one **11a** (153 mg, 1.00 mmol) in dry methanol (2.0 mL), was added 1-(3-aminopropyl)-2-pyrrolidinone (154 μ L, 1.10 mmol) in a single portion. The reaction mixture was allowed to stir for 4 h at RT and then the solvent was removed *in vacuo*. Purification by flash column chromatography (SiO₂, 1:1 hexane: ethyl acetate \rightarrow 1:2 methanol: ethyl acetate \rightarrow 1:1 methanol: ethyl acetate) afforded the *title compound* as a colourless oil (263 mg, 89%); R_f 0.22 (1:1 methanol: ethyl acetate); v_{max}/cm^{-1} (thin film) 3288, 2933, 1651, 1614, 1562, 1427, 1295, 1008, 815; $\delta_{\rm H}$ (400 MHz, CDCl₃-*d*) δ 7.00 (m, 1H, NH), 4.02 – 3.62 (m, 2H, NCH₂), 3.43 – 3.17 (m, 6H, 3 × NCH₂), 3.16 – 2.78 (m, 2H, NCH₂), 2.72 – 2.57 (m, 1H, CH₂), 2.34 – 2.16 (m, 4H, 2 × CH₂), 2.07 – 1.88 (m, 4H, 2 × CH₂), 1.85 – 1.73 (m, 1H, CH₂), 1.66 – 1.28 (m, 4H, 2 × CH₂); $\delta_{\rm C}$ (100 MHz, CDCl₃-*d*) 175.2 (CO), 174.3 (CO), 171.1 (CO), 47.1 (NCH₂), 46.8 (NCH₂), 45.3 (NCH₂), 40.5 (NCH₂), 39.0 (NCH₂), 38.9 (COCH₂), 30.9 (COCH₂), 28.2 (COCH₂), 26.7 (CH₂), 26.1 (CH₂), 23.9 (CH₂), 17.9 (CH₂); HRMS (ESI): calcd. for C₁₅H₂₅N₃NaO₃, 318.1788. Found: [MNa]⁺, 318.1783 (1.6 ppm error).

tert-Butyl 2-((4*R*,6*R*)-6-(2-(4,10-dioxo-1,5-diazecan-1-yl)ethyl)-2,2-dimethyl-1,3-dioxan-4-yl)acetate (20q)

To a solution of 1-acryloylpiperidin-2-one **11a** (153 mg, 1.00 mmol) in dry methanol (2.0 mL), was added tert-butyl [(4R,6R)-6-aminoethyl-2,2-dimethyl-1,3-dioxan-4-yl]acetate (301 mg, 1.10 mmol) in a single portion. The reaction mixture was allowed to stir for 4 h at RT and then the solvent was removed *in vacuo*. Purification by flash column chromatography (SiO₂, 1:20 methanol: ethyl acetate \rightarrow 1:10 methanol: ethyl acetate) afforded the *title compound* (as a 1:1 mixture of rotamers) as a colourless oil (292 mg, 68%); R_f 0.35 (1:9 methanol: ethyl acetate); v_{max}/cm⁻¹ (thin film) 3299, 2979, 2936, 1726, 1614, 1427, 1367, 1267, 1201, 1155, 951, 842, 732; $\delta_{\rm H}$ (400 MHz, Methanol-*d*₄): δ 4.40 –
4.28 (m, 1H, OCH), 4.13 – 3.93 (m, 3H, OCH + CH₂), 3.65 – 3.44 (m, 2H, CH₂), 3.22 – 2.72 (m, 3H, CH₂ + CH₂), 2.49 – 2.20 (m, 4H, 2 × CH₂), 2.17 – 1.98 (m, 2H, CH₂), 1.88 – 1.54 (m, 6H, 3 × CH₂), 1.49 (s, 12H, 3 ×COOCCH₃ + OCCH₃), 1.36 (s, 3H, OCCH₃), 1.27 – 1.16 (m, 1H, CH₂); δ_c (100 MHz, Methanol-*d*₄): 174.4 and 174.3 (CO), 172.1 (CO, both rotamers), 170.6 (CO, both rotamers), 98.7 and 98.6 (OCO), 80.4 (COOC, both rotamers), 67.3 and 66.7 (OCH), 66.3 (OCH, both rotamers), 45.6 (NCH₂, both rotamers), 44.8 (NCH₂, both rotamers), 42.4 (NCH₂, both rotamers), 39.2 (CH₂, both rotamers), 36.3 (CH₂, both rotamers), 36.2 (CH₂, both rotamers), 33.9 and 33.8 (CH₂), 29.3 (OCCH₃, both rotamers), 28.2 (CH₂, both rotamers), 18.9 (OCCH₃, both rotamers); HRMS (ESI): calcd. for C₂₂H₃₈N₂NaO₆, 449.2622. Found: [MNa]⁺, 449.2628 (-1.3 ppm error).

5-(2,2-Difluoroethyl)-1,5-diazecane-2,6-dione (20r)

To a solution of 1-acryloylpiperidin-2-one **11a** (153 mg, 1.00 mmol) in dry methanol (2.0 mL), was added 2,2-difluoroethylamine (76.0 μ L, 1.10 mmol) in a single portion. The reaction mixture was allowed to stir for 4 h at RT and then the solvent was removed *in vacuo*. Purification by flash column chromatography (SiO₂, 1: 1 hexane: ethyl acetate \rightarrow 1:20 methanol: ethyl acetate \rightarrow 1:10 methanol: ethyl acetate) afforded the *title compound* as a colourless oil (220 mg, 94%); R_f 0.40 (1:9 methanol: ethyl acetate); v_{max}/cm⁻¹ (thin film) 3285, 2940, 1624, 1438, 1163, 1115, 1056, 860; δ_{H} (400 MHz, CDCl₃-*d*) δ 6.17 (ttd, *J* = 57.0, 4.4, 0.9 Hz, 1 H, CHF₂), 5.61 (d, *J* = 6.6 Hz, 1H, NH), 4.07 (t, *J* = 13.8 Hz, 1H, NCH₂), 3.95 – 3.68 (m, 2H, NCH₂), 3.68 – 3.49 (m, 1H, NCH₂), 3.39 – 3.29 (m, 1H, NCH₂), 2.95 – 2.86 (m, 1H, NCH₂), 2.65 (t, *J* = 15.1 Hz, 1H, CH₂), 2.41 – 2.26 (m, 2H, CH₂), 2.15 – 2.01 (m, 3H, CH₂), 1.78 – 1.50 (m, 1H, CH₂), 5.08 (CH₂CHF₂, ²*J*_{CF} = 26.8 Hz), 48.2 (NCH₂), 39.2 (NCH₂), 37.9 (COCH₂), 28.3 (COCH₂), 26.0 (CH₂), 23.9 (CH₂); δ_{F} (376 MHz, CDCl₃-*d*) –120.0 (1F, dddd, *J* = 290, 57, 16, 13 Hz, CHF₂), -121.4 (1F, dddd, *J* = 290, 57, 16, 13, CHF₂); HRMS (ESI): calcd. for C₁₀H₁₆F₂N₂NaO₂, 257.1072. Found: [MNa]⁺, 257.1067 (1.8 ppm error).

5-(2-(1,3-Dioxolan-2-yl)ethyl)-1,5-diazecane-2,6-dione (20s)

To a solution of 1-acryloylpiperidin-2-one **11a** (153 mg, 1.00 mmol) in dry methanol (2.0 mL), was added 1,3-dioxolane-2-ethanamine (120 µL, 1.10 mmol) in a single portion. The reaction mixture was allowed to stir for 4 h at RT and then the solvent was removed in vacuo. Purification by flash column chromatography (SiO₂, 1:1 hexane: ethyl acetate \rightarrow 1:10 methanol: ethyl acetate) afforded the *title* compound as a colourless oil (216 mg, 80%). In solution in CDCl₃, this compound exists as a 10:1 mixture of rotamers; R_f 0.20 (1:9 methanol: ethyl acetate); v_{max}/cm^{-1} (thin film) 3299, 2933, 1615, 1427, 1137, 1025, 942; $\delta_{\rm H}$ (400 MHz, CDCl₃-*d*) δ 6.48 (d, J = 9.7 Hz, 1H, N**H**, major rotamer), 5.90 (d, J = 9.6 Hz, 1H, NH, minor rotamer), 4.98 – 4.91 (m, 1H, OCH, major rotamer), 4.80 – 4.77 (m, 1H, OCH, minor rotamer), 4.02 – 3.65 (m, 7H, OCH₂ + NCH₂, both rotamers), 3.46 – 3.33 (m, 1H, NCH₂, both rotamers), 3.30 – 3.19 (m, 1H, NCH₂, both rotamers), 2.92 – 2.79 (m, 1H, NCH₂, both rotamers), 2.64 - 2.48 (m, 1H, CH₂, both rotamers), 2.40 - 2.20 (m, 2H, CH₂, both rotamers), 2.13 - 1.80 (m, 4H, CH₂, both rotamers), 1.68 - 1.36 (m, 3H, CH₂, both rotamers); $\delta_{\rm C}$ (400 MHz, CDCl₃-d) for the major rotamer: 174.2 (CO), 171.2 (CO), 103.6 (OCH), 64.8 (OCH₂), 64.5 (OCH₂), 46.8 (NCH₂), 43.9 (NCH₂), 39.2 (NCH₂), 38.8 (COCH₂), 32.8 (COCH₂), 28.5 (CH₂), 25.6 (CH₂), 23.9 (CH₂); ¹³C NMR resonances for the minor rotamer: 176.2 (CO), 172.3 (CO), 101.9 (OCH), 65.1 (OCH₂), 64.9 (OCH₂), 45.8 (NCH₂), 42.3 (NCH₂), 40.1(NCH₂), 35.1 (COCH₂), 31.5 (COCH₂), 25.1 (CH₂), 22.3 (CH₂), 20.9 (CH₂); HRMS (ESI): calcd. for C₁₃H₂₂N₂NaO₄, 293.1472. Found: [MNa]⁺, 293.1471 (0.4 ppm error).

2-(4,10-Dioxo-1,5-diazecan-1-yl)acetamide (20t)

To a solution of 1-acryloylpiperidin-2-one **11a** (153 mg, 1.00 mmol) in dry methanol (2.0 mL), was added glycinamide (81.5 mg, 1.10 mmol, made from glycinamide hydrochloride using reported method)¹ in a single portion. The reaction mixture was allowed to stir for 4 h at RT and then the solvent was removed *in vacuo*. Purification by flash column chromatography (SiO₂, 1:9 methanol: ethyl acetate \rightarrow 1:3 methanol: ethyl acetate) afforded the *title compound* as a colourless oil (203 mg, 89%); R_f 0.13 (1:9 methanol: ethyl acetate); v_{max}/cm⁻¹ (thin film) 3268, 2933, 1618, 1457, 1308, 1210, 1154, 1110, 1072, 736; $\delta_{\rm H}$ (400 MHz, Methanol- d_4) δ 4.56 – 3.98 (m, 2H, NCH₂CO), 3.72 (m, 2H, NCH₂), 3.43 (m, 1H, NCH₂), 2.94 (m, 1H, NCH₂), 2.68 – 2.47 (m, 2H, COCH₂), 2.22 – 1.47 (m, 6H, 3 × CH₂); $\delta_{\rm C}$ (100 MHz,

Methanol-*d*₄) 176.5 (CO), 175.0 (CO), 173.6 (CO), 52.4 (NCH₂CO), 49.3 (NCH₂), 40.0 (NCH₂), 37.5 (COCH₂), 29.1 (COCH₂), 26.0 (CH₂), 25.2 (CH₂); HRMS (ESI): calcd. for C₁₀H₁₇N₃NaO₃, 250.1162. Found: [MNa]⁺, 250.1165 (-1.3 ppm error).

3-(4,10-Dioxo-1,5-diazecan-1-yl)propanamide (20u)

To a solution of 1-acryloylpiperidin-2-one **11a** (153 mg, 1.00 mmol) in dry methanol (2.0 mL), was added 3-aminopropanamide (97 mg, 1.10 mmol) in a single portion. The reaction mixture was allowed to stir for 4 h at RT and then the solvent was removed *in vacuo*. Purification by flash column chromatography (SiO₂, 1:3 methanol: ethyl acetate \rightarrow 1:2 methanol: ethyl acetate) afforded the *title compound* as a colourless oil (173 mg, 72%); R_f 0.17 (1:3 methanol: ethyl acetate); v_{max}/cm⁻¹ (thin film) 3299, 2934, 1612, 1434, 1349, 1201, 1151, 1108, 1070, 608; δ_{H} (400 MHz, Methanol-*d*₄) δ 4.07 – 3.91 (m, 2H, NCH₂), 3.66 – 3.43 (m, 2H, NCH₂), 3.34 – 3.23 (m, 1H, CH₂), 3.16 – 2.67 (m, 2H, CH₂), 2.59 – 2.48 (m, 2H, CH₂), 2.51 – 2.40 (m, 1H, CH₂), 2.33 – 2.20 (m, 1H, CH₂), 2.13 – 1.96 (m, 2H, CH₂), 1.68 – 1.39 (m, 3H, CH₂ + CH₂); δ_{C} (100 MHz, Methanol-*d*₄) 176.7 (CO), 175.9 (CO), 173.4 (CO), 47.0 (NCH₂), 44.6 (NCH₂), 40.3 (NCH₂), 37.8 (COCH₂), 34.7 (COCH₂), 29.4 (COCH₂), 26.2 (CH₂), 25.0 (CH₂); HRMS (ESI): calcd. for C₁₁H₁₉N₃NaO₃, 264.1319. Found: [MNa]⁺, 264.1315 (1.5 ppm error).

tert-Butyl 2-((4,10-dioxo-1,5-diazecan-1-yl)methyl)piperidine-1-carboxylate (20v)

To a solution of 1-acryloylpiperidin-2-one **11a** (153 mg, 1.00 mmol) in dry methanol (2.0 mL), was added 2-(aminomethyl)-1-*N*-Boc-piperidine (233 μ L, 1.10 mmol) in a single portion. The reaction mixture was allowed to stir for 4 h at RT and then the solvent was removed *in vacuo*. Purification by flash column chromatography (SiO₂, 1:20 methanol: ethyl acetate \rightarrow 1:10 methanol: ethyl acetate) afforded the *title compound* as a colourless oil (265 mg, 72%). In methanol-*d*₄ at 50 °C the 1H NMR spectra is severely broadened due to rotamer interconversion, while the ¹³C NMR spectrum shows it exists as a roughly 1:1 mixture of rotamers under the same conditions; R_f 0.33 (1:9 methanol: ethyl acetate); v_{max}/cm^{-1} (thin film) 3288, 2933, 1640, 1415, 1364, 1272, 1154, 1089, 927, 767, 729; δ_{H} (400 MHz, Methanol-*d*₄ at 50 °C): δ 4.82 – 4.68 (m, 1H, NCH), 4.39 – 4.11 (m, 2H, NCH₂), 3.92 – 3.62 (m, 3H, CH₂ + CH₂), 3.53 – 3.16 (m, 2H, CH₂), 3.17 – 2.87 (m, 1H, CH₂), 2.84 – 2.18 (m, 4H, 2 × CH₂), 2.11 – 1.78

(m, 8H, 4 × CH₂), 1.72 (s, 9H, 3 × CCH₃), 1.69 – 1.53 (m, 2H, CH₂); $\delta_{\rm C}$ (100 MHz, Methanol- d_4 at 50 °C): 175.9 and 175.7 (CO), 173.4 and 173.3 (CO), 156.7 (CO, both rotamers), 80.9 and 80.6 (COOC), 50.7 (NCH, both rotamers), 46.7 and 46.1 (NCH₂), 40.4 (NCH₂, both rotamers), 37.6 (NCH₂, both rotamers), 29.5 (NCH₂, both rotamers), 28.8 (3 × CCH₃, both rotamers), 28.4 (CH₂, both rotamers), 27.6 (CH₂, both rotamers), 26.5 (CH₂, both rotamers), 26.1 (CH₂, both rotamers), 24.8 (CH₂, both rotamers), 20.6 (CH₂, both rotamers), 20.2 (CH₂, both rotamers); HRMS (ESI): calcd. for C₁₉H₃₃N₃NaO₄, 390.2363. Found: [MNa]⁺, 390.2358 (1.4 ppm error).

5-(Furan-2-ylmethyl)-1,5-diazecane-2,6-dione (20w)

To a solution of 1-acryloylpiperidin-2-one **11a** (153 mg, 1.00 mmol) in dry methanol (2.0 mL), was added 2-furanylmethyl amine (97 μ L, 1.10 mmol) in a single portion. The reaction mixture was allowed to stir for 4 h at RT and then the solvent was removed *in vacuo*. Purification by flash column chromatography (SiO₂, 1:1 hexane: ethyl acetate \rightarrow ethyl acetate \rightarrow 1:10 methanol: ethyl acetate) afforded the *title compound* as a colourless oil (150 mg, 60%); R_f 0.35 (1:9 methanol: ethyl acetate); v_{max}/cm^{-1} (thin film) 3288, 2931, 1615, 1442, 1349, 1174, 1011, 813, 730; δ_H (400 MHz, CDCl₃-*d*) δ 7.39 – 7.34 (m, 1H, OCH), 6.36 – 6.29 (m, 2H, CHCH), 5.56 (d, *J* = 8.9 Hz, 1H, NH), 5.10 (d, *J* = 15.2 Hz, 1H, NCH₂), 4.16 (d, *J* = 15.2 Hz, 1H, NCH₂), 4.04 – 3.68 (m, 2H, NCH₂), 3.41 – 2.78 (m, 2H, NCH₂), 2.66 – 2.02 (m, 4H, 2 × CH₂), 1.90 – 1.32 (m, 4H, 2 × CH₂); δ_C (400 MHz, CDCl₃-*d*) 173.9 (CO), 171.1 (CO), 151.3 (OCCH), 142.1 (OCHCH), 111.3 (CHCH), 109.0 (CHCH), 46.4 (NCH₂), 43.3 (NCH₂), 39.2 (NCH₂), 37.6 (COCH₂), 28.3 (COCH₂), 25.8 (CH₂), 24.0 (CH₂); HRMS (ESI): calcd. for C₁₃H₁₈N₂NaO₃, 273.1210. Found: [MNa]⁺, 273.1204 (2.0 ppm error).

5-(Pyridin-4-ylmethyl)-1,5-diazecane-2,6-dione (20x)

To a solution of 1-acryloylpiperidin-2-one **11a** (153 mg, 1.00 mmol) in dry methanol (2.0 mL), was added 4-(aminomethyl)pyridine (112 μ L, 1.10 mmol) in a single portion. The reaction mixture was allowed to stir for 4 h at RT and then the solvent was removed *in vacuo*. Purification by flash column chromatography (SiO₂, 1:9 methanol: ethyl acetate \rightarrow 1:3 methanol: ethyl acetate) afforded the *title compound* as a pale-yellow oil (240 mg, 92%). In solution in CDCl₃, this compound exists as a 10:1

mixture of rotamers; $R_f 0.36$ (1:1 methanol: ethyl acetate); v_{max}/cm^{-1} (thin film) 3285, 2932, 1620, 1561, 1416, 1349, 1205, 1001,794; δ_{H} (400 MHz, CDCl₃-*d*) δ 8.55 – 8.47 (m, 2H, ArH, both rotamers), 7.15 – 7.05 (m, 2H, ArH, both rotamers), 6.21 (d, *J* = 9.1 Hz, 1H, NH, major rotamer), 5.96 (d, *J* = 10.1 Hz, 1H, NH, minor rotamer), 5.29 (d, *J* = 15.5 Hz, 1H, NCH₂Py, major rotamer), 4.82 (d, *J* = 17.4 Hz, 1H, NCH₂Py, minor rotamer), 4.35 (d, *J* = 17.5 Hz, 1H, NCH₂Py, minor rotamer), 4.03 – 3.91 (m, 1H, NCH₂, both rotamers), 3.84 (d, *J* = 15.6 Hz, 1H, NCH₂Py, major rotamer), 3.80 – 3.67 (m, 1H, NCH₂, both rotamers), 3.18 (m, 1H, NCH₂, both rotamers), 2.90 (m, 1H, NCH₂, both rotamers), 2.80 – 2.66 (m, 1H, NCH₂, both rotamers), 3.68 – 1.44 (m, 2H, CH₂, both rotamers); δ_c (400 MHz, CDCl₃-*d*) for the major rotamer: 174.3 (CO), 170.8 (CO), 150.1 (2 × ArCH), 146.9 (ArC), 122.7 (2 × ArCH), 48.0 (NCH₂Py), 45.4 (NCH₂), 39.3 (NCH₂), 37.4 (COCH₂), 28.2 (COCH₂), 25.7 (CH₂), 23.0 (CH₂); ¹³C NMR resonances for the minor rotamer: 176.3 (CO), 171.1 (CO), 150.2 (ArCH), 146.3 (ArC), 121.6 (ArCH), 53.5 (NCH₂Py), 43.0 (NCH₂), 40.1 (NCH₂), 35.1 (COCH₂), 35.0 (COCH₂), 27.3 (CH₂), 24.9 (CH₂); HRMS (ESI): calcd. for C₁₄H₂₀N₃O₂, 262.1550. Found: [MH]⁺, 262.1555 (–2.0 ppm error).

5-(2-Morpholinoethyl)-1,5-diazecane-2,6-dione (20y)

To a solution of 1-acryloylpiperidin-2-one **11a** (153 mg, 1.00 mmol) in dry methanol (2.0 mL), was added 4-(2-aminoethyl)morpholine (143 mg, 144 μ L, 1.10 mmol) in a single portion. The reaction mixture was allowed to stir for 4 h at RT and then the solvent was removed *in vacuo*. Purification by flash column chromatography (SiO₂, 1:9 methanol: ethyl acetate \rightarrow 1:2 methanol: ethyl acetate \rightarrow 1:1 methanol: ethyl acetate) afforded the *title compound* as a colourless oil (252 mg, 89%); R_f 0.23 (1:1 methanol: ethyl acetate); v_{max}/cm⁻¹ (thin film) 3436, 2927, 2855, 1615, 1443, 1356, 1213, 1171, 1115, 921, 765; δ_{H} (400 MHz, CDCl₃-*d*) δ 7.89 (d, *J* = 10.1 Hz, 1H, NH), 4.76 – 4.66 (m, 1H, NCH₂CH₂N), 4.01 (m, 1H, NCH₂CH₂N), 3.96 – 3.80 (m, 1H, NCH₂CH₂N), 3.71 – 3.56 (m, 4H, 2 × OCH2), 3.16 (dt, *J* = 15.5, 3.8 Hz, 1H, NCH₂CH₂N), 2.88 – 2.52 (m, 7H, CH₂), 2.44 – 2.34 (m, 2H, CH₂), 2.28 – 2.20 (m, 2H, CH₂), 2.10 – 1.96 (m, 2H, CH₂), 1.70 – 1.51 (m, 2H, CH₂), 1.45 – 1.32 (m, 1H, CH₂); δ_{C} (400 MHz, CDCl₃-*d*) 174.6 (CO), 170.8 (CO), 66.6 (2 × OCH₂), 57.0 (NCH₂), 53.7 (2 × NCH₂), 46.6 (NCH₂), 44.0 (COCH₂), 38.5 (2 × NCH₂), 28.6 (COCH₂), 26.0 (CH₂), 24.3 (CH₂); HRMS (ESI): calcd. for C₁₄H₂₅N₃NaO₃, 306.1788. Found: [MNa]⁺, 306.1787 (0.4 ppm error).

5-(2-(1H-Imidazol-4-yl)ethyl)-1,5-diazecane-2,6-dione (20z)

To a solution of 1-acryloylpiperidin-2-one **11a** (153 mg, 1.00 mmol) in dry methanol (2.0 mL), was added histamine (122 mg, 1.10 mmol) in a single portion. The reaction mixture was allowed to stir for 4 h at RT and then the solvent was removed *in vacuo*. Purification by flash column chromatography (SiO₂, 1:3 methanol: ethyl acetate \rightarrow 1:1 methanol: ethyl acetate) afforded the *title compound* as a colourless oil (135 mg, 51%). In solution in methanol-*d*₄, this compound experiences rotameric broadening; R_f 0.22 (1:1 methanol: ethyl acetate); v_{max}/cm⁻¹ (thin film) 3261, 2934, 1612, 1436, 1199, 1174, 1106, 822, 664, 623; δ_{H} (400 MHz, Methanol-*d*₄) δ 7.34 (d, *J* = 1.2 Hz, 1H, Ar-CH), 6.58 (d, *J* = 1.2 Hz, 1H, Ar-CH), 3.88 – 3.51 (m, 2H, NCH₂), 3.45 – 2.77 (m, 4H, 2 × NCH₂), 2.66 – 2.41 (m, 3H, CH₂ + CH₂), 2.19 – 2.06 (m, 1H, CH₂), 1.98 – 1.87 (m, 1H, CH₂), 1.85 – 1.70 (m, 2H, CH₂), 1.39 – 1.16 (m, 3H, CH₂ + CH₂); δ_{C} (100 MHz, Methanol-*d*₄) 175.8 (CO), 173.4 (CO), 136.1 (2 × Ar-CH), 117.8 (Ar-C), 47.7 (NCH₂), 46.7 (NCH₂), 40.4 (NCH₂), 37.7 (COCH₂), 29.4 (COCH₂), 26.3 (CH₂), 25.9 (CH₂Ar), 25.0 (CH₂); HRMS (ESI): calcd. for C₁₃H₂₁N₄O₂, 265.1659. Found: [MH]⁺, 265.1657 (0.7 ppm error).

5-Methoxy-1,5-diazecane-2,6-dione (20za)

To a solution of 1-acryloylpiperidin-2-one **11a** (100 mg, 0.65 mmol) in dry methanol (2.0 mL), was added methoxyamine (51.8 mg, 0.95 mmol) in a single portion. The reaction mixture was allowed to stir for 4 h at RT and then the solvent was removed *in vacuo*. Purification by flash column chromatography (SiO₂, 1:9 methanol: ethyl acetate) afforded the *title compound* as a colourless oil (110 mg, 85%). In solution in CDCl₃, this compound exists predominantly as a single rotamer, but with rotameric broadening seen in the ¹H NMR spectrum and traces of a minor rotamer evident in the ¹³C NMR spectrum; R_f 0.18 (1:9 methanol: ethyl acetate); v_{max}/cm^{-1} (thin film) 3317, 3087, 2935, 1652, 1545, 4443, 1318, 1178, 1013, 946, 572; δ_{H} (400 MHz, CDCl₃-*d*) δ 5.60 (d, *J* = 3.0 Hz, 1H, NH), 4.61 – 4.49 (m, 1H, NCH₂), 3.63 (s, 3H, OCH₃), 3.48 – 3.31 (m, 1H, NCH₂), 3.32 – 3.16 (m, 1H, NCH₂), 2.90 (m, 1H, NCH₂), 2.86 – 2.75 (m, 1H, CH₂), 2.57 – 2.40 (m, 1H, CH₂), 2.15 – 2.02 (m, 2H, CH₂), 1.89 – 1.79 (m, 1H, CH₂), 1.78 – 1.64 (m, 2H, CH₂), 3.9.7 (NCH₂), 34.1 (COCH₂), 31.1 (COCH₂), 27.4 (CH₂), 23.3 (CH₂); HRMS (ESI): calcd. for C₉H₁₆N₂NaO₃, 223.1053. Found: [MNa]⁺, 223.1053 (0.0 ppm error).

Characteristic ¹³C NMR data for the minor rotamers can be found at: δ_{H} (400 MHz, CDCl₃-*d*) 6.30 (1H, m, NH), 4.00 (1H, m, NCH₂); δ_{C} (100 MHz, CDCl₃) 171.0 (**C**O), 61.0 (O**C**H₃), 47.3 (**C**H₂), 36.5 (**C**H₂), 28.9 (**C**H₂), 24.6 (**C**H₂), 22.7 (**C**H₂).

5-(((1*S*,4a*R*,10a*S*)-7-Isopropyl-1,4a-dimethyl-1,2,3,4,4a,9,10,10aoctahydrophenanthren-1yl)methyl)-1,5-diazecane-2,6-dione (20zb)

To a solution of 1-acryloylpiperidin-2-one **11a** (153.2 mg, 1.00 mmol) in dry methanol (2.0 mL), was added leelamine (314 mg, 1.10 mmol) in a single portion. The reaction mixture was allowed to stir for 4 h at RT and then the solvent was removed *in vacuo*. Purification by flash column chromatography (SiO₂, 1:1 hexane: ethyl acetate \rightarrow ethyl acetate) afforded the *title compound* as a colourless oil (215 mg, 49%). In solution in methanol- d_4 , this compound exists as a roughly 3:2 mixture of rotamers; R_f 0.30 (ethyl acetate); v_{max}/cm⁻¹ (thin film) 3291, 3085, 2928, 2867, 1768, 1643, 1556, 1448, 1417, 1375, 1304, 1167, 1105, 1046, 820, 733; δ_H (400 MHz, Methanol-d₄): δ 7.13 – 7.03 (m, 1H, Ph-C**H**, both rotamers), 6.96 – 6.84 (m, 1H, Ph-CH, both rotamers), 6.88 – 6.79 (m, 1H, Ph-CH, both rotamers), 4.34 - 4.14 (m, 1H, PhCHCH₃, both rotamers), 4.13 - 3.87 (m, 1H, CCHC, both rotamers), 3.77 - 3.40 (m, 2H, NCH₂C, both rotamers), 2.97 – 2.67 (m, 4H, CH₂, both rotamers), 2.59 – 2.38 (m, 2H, CH₂, both rotamers), 2.32 – 2.20 (m, 1H, CH₂, CH₂, both rotamers), 2.10 – 1.96 (m, 3H, CH₃, both rotamers), 1.84 - 1.38 (m, 9H, CH₂, both rotamers), 1.35 - 1.24 (m, 2H CH₂, both rotamers), 1.20 - 1.14 (m, 9H, CH₃, both rotamers), 1.02 – 0.78 (m, 4H, CH₂, both rotamers); δ_c (100 MHz, Methanol- d_4): 176.9 and 176.7 (CO), 173.5 (CO, both rotamers), 148.6 and 148.5 (Ph-C), 146.6 and 146.5 (Ph-C), 135.8 and 135.3 (Ph-C), 127.7 (Ph-CH, both rotamers), 124.9 and 124.8 (Ph-CH), 124.7 and 124.6 (Ph-CH), 49.9 (PhCHCH₃, both rotamers), 48.0 (NCH₂C, both rotamers), 47.6 (CCHC, both rotamers), 41.3 and 41.0 (CCHC), 39.7 and 39.5 (CH₂), 38.7 and 38.6 (CCHC), 38.2 (CH₂, both rotamers), 37.3 (CH₂, both rotamers), 34.7 (CCH₃, both rotamers), 31.2 and 31.1 (CH₂), 29.1 (CH₂, both rotamers), 26.5 and 26.4 (CH₃), 25.6 (CH₂, both rotamers), 24.6 (CH₃, both rotamers), 24.4 (CH₂, both rotamers), 20.7 (CH₂, both rotamers), 20.5 and 20.4 (CH₂, both rotamers), 19.7 and 19.6 (CH₂, both rotamers), 18.9 (CH₃, both rotamers); HRMS (ESI): calcd. for C₂₈H₄₂N₂NaO₂, 461.3138. Found: [MNa]⁺, 461.3152 (-2.8 ppm error).

(4-Hydroxylbenzyl)-1,5-diazecane-2,6-dione (20zc)

To a solution of 1-acryloylpiperidin-2-one **11a** (153.2 mg, 1.00 mmol) in dry methanol (2.0 mL), was added 4-aminomethylphenol (135.5 mg, 1.10 mmol) in a single portion. The reaction mixture was allowed to stir for 4 h at RT and then the solvent was removed *in vacuo*. Purification by flash column chromatography (SiO₂, 1:50 methanol: ethyl acetate \rightarrow 1:20 methanol: ethyl acetate \rightarrow 1:10 methanol: ethyl acetate) afforded the *title compound* as a white solid (205 mg, 74%). Rotameric broadening is evident in both the ¹H and ¹³C NMR spectra; m.p. 70–72°C, R_f 0.32 (1:9 methanol: ethyl acetate); v_{max}/cm⁻¹ (thin film) 3275, 2934, 1609, 1514, 1349, 1229, 1101, 813, 776; $\delta_{\rm H}$ (400 MHz, Methanol-*d*₄) δ 7.05 (d, *J* = 8.5 Hz, 2H, ArH), 6.70 (d, *J* = 8.5 Hz, 2H, ArH), 5.33 (d, *J* = 14.7 Hz, 1H, NCH₂Ar), 3.90 – 3.74 (m, 1H, NCH₂), 3.66 (d, *J* = 14.7 Hz, 1H, NCH₂Ar), 3.30 – 3.22 (m, 1H, NCH₂), 3.10 – 2.91 (m, 1H, CH₂), 2.84 – 2.62 (m, 1H, CH₂), 2.49 – 2.36 (m, 1H, CH₂), 2.24 – 2.13 (m, 1H, CH₂), 2.13 – 1.93 (m, 2H, CH₂), 1.65 – 1.41 (m, 3H, CH₂); $\delta_{\rm C}$ (100 MHz, Methanol-*d*₄) 175.9 (CO), 173.6 (CO), 157.9 (Ar-COH), 130.4 (2 × Ar-CH), 129.4 (Ar-C), 116.4 (2 × Ar-CH), 49.9 (NCH₂Ar), 44.9 (NCH₂), 40.4 (NCH₂), 37.1 (COCH₂), 29.4 (COCH₂), 26.2 (CH₂), 25.1 (CH₂); HRMS (ESI): calcd. for C₁₅H₂₀N₂NaO₂, 299.1366. Found: [MNa]^{*}, 299.1362 (1.4 ppm error).

5-(4-Hydroxyphenethyl)-1,5-diazecane-2,6-dione (20zd)

To a mixture of 1-acryloyl-piperidin-2-one **11a** (154 mg, 1.00 mmol) and tyramine (151 mg, 1.10 mmol) was added dry methanol (2.0 mL). The reaction mixture was allowed to stir for 4 h at RT and then the solvent was removed *in vacuo*. Purification by automated flash column chromatography (using a 24 g pre-packed SiO₂ column, $0\% \rightarrow 100\%$ ethyl acetate in hexanes, then $0\% \rightarrow 15\%$ methanol in ethyl acetate) afforded the *title compound* as a white solid (164 mg, 56%). Rotameric broadening is evident in both the ¹H and ¹³C NMR spectra; m.p. 102–108 °C; Rf 0.21 (1:9 methanol: ethyl acetate); v_{max}/cm⁻¹ (thin film) 3271, 2940, 1636, 1613, 1516, 1495, 1447, 1353, 1329, 1232, 1200, 1173, 1111, 940, 830, 526, 460; $\delta_{\rm H}$ (400 MHz, d₄-MeOD) 7.03 (2H, d, *J* = 8.4 Hz, ArH), 6.70 (2H, d, *J* = 8.4 Hz, ArH), 4.10 (1H, dt, *J* = 13.5, 7.6 Hz, 0.5 × CH₂), 3.88 – 3.71 (1H, m, 0.5 × CH₂), 3.27 – 3.17 (2H, m, CH₂), 2.90 (1H, dt, *J* = 13.5, 7.6 Hz, 0.5 × CH₂), 2.74 (2H, t, *J* = 7.6 Hz, **CH**₂), 2.38 – 2.24 (2H, m, CH₂), 2.21 – 1.97 (2H, m, CH₂),

1.81 – 1.68 (3H, m, 1.5 × CH₂), 1.61 – 1.46 (2H, m, CH₂); δ_{c} (100 MHz, d₄-MeOD) data for major rotamer: 175.7 (CO), 173.5 (CO), 157.0 (ArCOH), 131.1 (ArC),130.8 (2 × ArCH), 116.3 (2 × ArCH), 46.8 (CH₂), 42.9 (CH₂), 37.7 (CH₂), 33.7 (CH₂), 32.0 (CH₂), 25.0 (CH₂), 23.0 (CH₂), 21.7 (CH₂), Characteristic NMR signal for minor rotamer: 174.9 (CO); HRMS (ESI): calcd. for C₁₆H₂₂N₂NaO₃, 313.1523. Found: [MNa]⁺, 313.1527 (–1.3 ppm error).

5-(2-Hydroxyethyl)-1,5-diazecane-2,6-dione (20ze)

To a solution of 1-acryloyl-piperidin-2-one **11a** (154 mg, 1.00 mmol) in dry methanol (2.0 mL), was added ethanolamine (66 μ L, 1.10 mmol) in a single portion. The reaction mixture was allowed to stir for 4 h at RT and then the solvent was removed *in vacuo*. Purification by flash column chromatography (SiO₂, ethyl acetate \rightarrow 1:39 methanol: ethyl acetate \rightarrow 1:19 methanol: ethyl acetate \rightarrow 1:9 methanol: ethyl acetate \rightarrow 1:9 methanol: ethyl acetate \rightarrow 1:9 methanol: ethyl acetate \rightarrow 1:6 methanol: ethyl acetate) afforded the *title compound* as a white solid (149 mg, 69%). Rotameric broadening is evident in both the ¹H and ¹³C NMR spectra; m.p. 164–166 °C; R_f 0.11 (1:4 methanol: ethyl acetate); ν_{max}/cm^{-1} (thin film) 3351, 2937, 2412, 1604, 1487, 1460, 1442, 1351, 1238, 1203, 1069, 1038, 549, 462; δ_{H} (400 MHz, d₄-MeOD) 4.13 – 3.19 (7H, m, CH₂), 3.14 – 2.42 (3H, m, CH₂), 2.37 – 1.83 (3H, m, CH₂), 1.78 – 1.24 (3H, m, CH₂); δ_{c} (100 MHz, d₄-MeOD) 176.4 (CO), 173.7 (CO), 60.1 (CH₂), 51.0 (CH₂), 48.3 (CH₂), 40.2 (CH₂), 37.6 (CH₂), 29.6 (CH₂), 26.5 (CH₂), 25.3 (CH₂); HRMS (ESI): calcd. for C₁₀H₁₈N₂NaO₃, 237.1210. Found: [MNa]⁺, 237.1208 (0.7 ppm error).

5-(4-Aminobenzyl)-1,5-diazecane-2,6-dione (20zf)

To a solution of 1-acryloyl-piperidin-2-one **11a** (154 mg, 1.00 mmol) in dry methanol (2.0 mL), was added 4-aminobenzylamine (125 μ L, 1.10 mmol) in a single portion. The reaction mixture was allowed to stir for 4 h at RT and then the solvent was removed *in vacuo*. Purification by flash column chromatography (SiO₂, DCM \rightarrow 1:19 methanol: DCM \rightarrow 1:9 methanol: DCM) afforded the *title compound* as a white solid (140 mg, 51%). Rotameric broadening is evident in the ¹H NMR spectrum. Product identity and purity is best seen in the ¹³C NMR data; m.p. 165–176 °C; R_f 0.21 (1:9 methanol: DCM); v_{max}/cm⁻¹ (thin film) 3314, 2931, 1613, 1517, 1424, 1282, 1201, 1177, 1140, 910, 729, 506; δ_{H} (400 MHz, CDCl₃) 7.14 – 7.10 (2H, m, Ar**H**), 6.66 – 6.61 (2H, m, Ar**H**), 5.28 (1H, s, ArNH₂), 5.25 – 5.17

(1H, m, NH), 4.53 (2H, s, ArCH₂), 3.96 - 3.66 (3H, m, $1.5 \times CH_2$ and 1H, s, ArNH₂ [overlapping]), 3.30 (1H, dt, J = 15.6, 3.8 Hz, $0.5 \times CH_2$), 2.90 - 2.79 (1H, m, $0.5 \times CH_2$), 2.68 - 2.56 (1H, m, $0.5 \times CH_2$), 2.22 - 1.95 (3H, m, $1.5 \times CH_2$), 1.73 - 1.42 (3H, m, $1.5 \times CH_2$); δ_C (100 MHz, CDCl₃) 173.9 (CO), 171.2 (CO), 146.3 (ArCNH₂), 129.7 (2 × ArCH), 128.2 (ArC), 115.5 (2 × ArCH), 49.5 (CH₂), 45.5 (CH₂), 39.3 (CH₂), 37.8 (CH₂), 28.4 (CH₂), 25.9 (CH₂), 24.0 (CH₂); HRMS (ESI): calcd. for C₁₅H₂₁N₃NaO₂, 298.1526. Found: [MNa]⁺, 298.1515 (3.6 ppm error).

5,5'-(1,4-Phenylenebis(methylene))bis(1,5-diazecane-2,6-dione) (20zg)

To a solution of 1,4-phenylenedimethanamine (103 mg, 0.75 mmol) in dry DMF (1.5 mL), was added a solution of 1-acryloyl-piperidin-2-one 11a (230 mg, 1.50 mmol) in dry DMF (1.5 mL) dropwise. The reaction mixture was allowed to stir for 4 h at RT and then the solvent was removed in vacuo. Purification by flash column chromatography (SiO₂, 1:4 ethyl acetate: hexane \rightarrow 1:1 ethyl acetate: hexane \rightarrow ethyl acetate \rightarrow 1:49 methanol: ethyl acetate \rightarrow 1:24 methanol: ethyl acetate \rightarrow 1:16 methanol: ethyl acetate \rightarrow 1:9 methanol: ethyl acetate \rightarrow 1:6 methanol: ethyl acetate) afforded the *title compound* as a white solid (98.3 mg, 30%). Severe rotameric broadening is evident in the ¹H NMR spectrum. Product identity and purity is best seen in the ¹³C NMR data. The product exists primarily as a single rotamer, with traces of a minor rotamer also evident; m.p. 163-170 °C; Rf 0.37 (1:4 methanol: DCM); v_{max}/cm⁻¹ (thin film) 3290, 2931, 1615, 1557, 1416, 1349, 1202, 1177, 1145, 1109, 1054, 910, 726, 645, 497; δ_H (400 MHz, CDCl₃) 7.21 – 7.05 (4H, m, Ar**H**), 6.19 – 5.80 (2H, m, 2 × N**H**), 5.20 – 4.98 (2H, m, CH₂), 4.17 – 3.55 (6H, m, CH₂), 3.28 – 3.10 (2H, m, CH₂), 2.98 – 2.43 (5H, m, CH₂), 2.23 - 2.03 (7H, m, CH₂), 1.81 - 1.38 (6H, m, CH₂); δ_{C} (100 MHz, CDCl₃) 174.1 (2 × CO) 171.1 (2 × CO), 137.4 (2 × ArC), 128.5 (4 × ArCH), 48.5 (2 × CH₂), 45.0 (2 × CH₂), 39.3 (2 × CH₂), 37.3 (2 × CH₂), 28.3 (2 × CH₂), 25.7 (2 × CH₂), 23.9 (2 × CH₂); HRMS (ESI): calcd. for C₂₄H₃₄N₄NaO₄, 465.2472. Found: [MNa]⁺, 465.2481 (-1.8 ppm error).

Characteristic NMR data for the minor rotamers can be found at: δ_{H} (400 MHz, CDCl₃) 4.81 (2H, d, *J* = 16.3 Hz, CH₂), 4.27 (2H, d, *J* = 16.3 Hz, CH₂); δ_{C} (100 MHz, CDCl₃) 176.3 (2 × CO), 171.3 (2 × CO), 127.3 (4 × ArCH), 35.1 (2 × CH₂), 27.3 (2 × CH₂), 24.9 (2 × CH₂).

4-Acryloylmorpholin-3-one (21)

To a stirring solution of morpholin-3-one (202 mg, 1.99 mmol) in dry THF (7.3 mL) cooled to 0 °C was added a solution of MeMgBr (3.0 M in diethyl ether, 0.73 mL) *via* dropwise addition using a syringe pump over 30 min. The reaction mixture was allowed to stir for 10 min at 0 °C after addition was completed. Acryloyl chloride (0.240 mL, 3.00 mmol) was then added in a single portion and the reaction mixture was stirred for an additional 30 min at 0 °C. The reaction mixture was then quenched with sat. aq. NH₄Cl (10 mL) and the mixture was extracted with Et₂O (10 mL). The organic layer was washed with sat. aq. NH₄Cl (10 mL) and the mixture was extracted with Et₂O (10 mL). The organic layer was washed with sat. aq. NaHCO₃ (2 × 8 mL), and organic extracts dried over MgSO₄ and concentrated *in vacuo*. Purification by flash column chromatography (SiO₂, 1:1 diethyl ether: hexane) afforded the *title compound* as a fluffy white powder (106 mg, 34%); m.p. 44 – 47°C; R_f 0.16 (1:1 diethyl ether: hexane); v_{max}/cm⁻¹ (thin film) 1686, 1396, 1345, 1312, 1204, 1148, 1114, 940; $\delta_{\rm H}$ (400 MHz, CDCl₃), 7.22 (1H, dd, *J* = 16.9, 10.5 Hz, NCOCHCHH'), 6.43 (1H, dd, *J* = 16.9, 1.7 Hz, NCOCHCHH'), 5.81 (1H, dd, *J* = 10.5, 1.7 Hz, NCOCHCHH'), 4.28 (2H, s, OCH₂CON), 3.96 – 3.92 (2H, m, OCH₂CH₂N), 3.85 – 3.80 (2H, m, OCH₂CH₂N); $\delta_{\rm C}$ (100 MHz, CDCl₃) 169.8 (CO), 168.3 (CO), 131.3 (NCOCHCHH'), 130.3 (NCOCHCHH'), 69.0 (OCH₂CON), 64.1 (OCH₂CH₂N), 43.8 (OCH₂CH₂N); HRMS (ESI): calcd. for C₇H₉NNaO₃, 178.0475. Found: [MNa]⁺, 178.0475 (-0.3 ppm error).

Methyl 2-(2-acrylamidoethoxy)acetate (23) and *N*-(2-(2-((4-fluorobenzyl)amino)-2-oxoethoxy)ethyl)acrylamide (24)

To a solution of 4-acryloylmorpholin-3-one **21** (77.8 mg, 0.501 mmol) in dry methanol (1.0 mL), was added 4-fluorobenzylamine (63 μ L, 0.551 mmol) in a single portion. The reaction mixture was allowed to stir for 4 h at RT and then the solvent was removed *in vacuo*. Purification by flash column chromatography (SiO₂, 1:4 ethyl acetate: hexane \rightarrow 1:1 ethyl acetate: hexane \rightarrow ethyl acetate \rightarrow 1:49 methanol: ethyl acetate) afforded methyl 2-(2-acrylamidoethoxy)acetate (**23**) as a colorless oil (61.4 mg, 65%), *N*-(2-(2-((4-fluorobenzyl)amino)-2-oxoethoxy)ethyl)acrylamide (**24**), contaminated with morpholin-3-one, as an orange oil (25.3 mg, 18%).

Data for **23**: R_f 0.45 (1:9 methanol: ethyl acetate); v_{max}/cm^{-1} (thin film) 3292, 2954, 1742, 1659, 1626, 1543, 1437, 1216, 1139, 985, 888, 806, 705, 580; δ_{H} (400 MHz, CDCl₃) 6.73 (1H, br s, NH), 6.27 (1H, dd, J = 17.0, 1.6 Hz, NCOCHCHH'), 6.14 (1H, dd, J = 17.0, 10.2 Hz, NCOCHCHH'), 5.62 (1H, dd, J = 10.2, 1.6 Hz, NCOCHCHH'), 4.10 (2H, s, OCH₂CO₂CH₃), 3.74 (3H, s, CO₂CH₃), 3.66 – 3.62 (2H, m, CH₂), 3.55 – 3.48 (2H, m, CH₂); δ_{C} (100 MHz, CDCl₃) 171.5 (CO), 165.8 (CO), 131.0 (NCOCHCHH'), 126.3 (NCOCHCHH'), 70.5 (CH₂), 68.0 (CH₂), 52.1 (CH₃), 39.5 (CH₂); HRMS (ESI): calcd. for C₈H₁₃NNaO₄, 210.0737. Found: [MNa]⁺, 210.0737 (-0.2 ppm error).

Data for **24** (isolated as a roughly 2:1 mixture of **24** and morpholin-3-one): R_f 0.23 (1:9 methanol: ethyl acetate); v_{max}/cm^{-1} (thin film) 3296, 2927, 1660, 1544, 1511, 1414, 1347, 1222, 1124, 983, 822; δ_H (400 MHz, CDCl₃) 7.27 – 7.20 (2H, m, ArH), 7.03 – 6.96 (2H, m, ArH), 6.51 (1H, br s, NH), 6.30 (1H, br s, NH), 6.24 (1H, dd, *J* = 16.9, 1.5 Hz, NCOCHCHH'), 6.05 (1H, dd, *J* = 16.9, 10.2 Hz, NCOCHCHH'), 5.61 (1H, dd, *J* = 10.2, 1.5 Hz, NCOCHCHH'), 4.42 (2H, d, *J* = 6.1 Hz, CH₂), 3.99 (2H, s, CH₂), 3.63 – 3.58 (2H, m, CH₂), 3.55 – 3.48 (2H, m, CH₂); δ_C (100 MHz, CDCl₃): 169.0 (CO), 165.9 (CO), 162.3 (ArCF, ¹*J*_{CF} = 245.6 Hz), 134.0 (ArC, ⁴*J*_{CF} = 3.5 Hz), 132.6 (NCOCHCHH'), 129.6 (2 × ArCH, ³*J*_{CF} = 7.9 Hz), 127.0 (NCOCHCHH'), 115.6 (2 × ArCH, ²*J*_{CF} = 21.8 Hz), 70.7 (CH₂), 70.5 (CH₂), 42.2 (CH₂), 39.3 (CH₂); δ_F (376 MHz, CDCl₃), - 114.75 (1F, m, ArF); HRMS (ESI): calcd. for C₁₄H₁₇FN₂NaO₃, 303.1115. Found: [MNa]⁺, 303.1116 (–0.1 ppm error).

Data for morpholin-3-one : δ_{H} (400 MHz, CDCl₃) 7.06 (1H, br s, NH), 4.15 (2H, s, CH₂), 3.85 – 3.80 (2H, m, CH₂), 3.44 – 3.39 (1H, m, CH₂); δ_{C} (100 MHz, CDCl₃) 169.4 (CO), 68.1 (CH₂), 63.4 (CH₂), 41.7 (CH₂).

Methyl 5-acrylamidopentanoate (26)

The synthetic procedure and data for **26** can be found with the information about compound **20d** on page S30.

5-Acryloyl-1-oxa-5-azacycloheptadecane-4,17-dione (27)

A stirring solution of 1-oxa-5-azacycloheptadecane-4,17-dione⁷ (111 mg, 0.413 mmol) and DIPEA (0.180 mL, 1.03 mmol) in THF (1.6 mL) was cooled to 0 °C. To this was added a 0 °C cooled solution of acryloyl chloride (0.067 mL, 0.825 mmol) in THF (0.8 mL) dropwise. Under an argon atmosphere this mixture was stirred at 0 °C for 3 hours. It was then allowed to warm to RT and stirred for a further 2

hours. The reaction mixture was then quenched with sat. aq. NH₄Cl (2 mL), extracted with DCM (4 mL), and the organic layer washed with washed with sat. aq. NaHCO₃ (2 × 2 mL). The organic extracts were dried over MgSO₄ and concentrated *in vacuo*. Purification by flash column chromatography (SiO₂, 1:1 diethyl ether: hexane) afforded the *title compound* as a colourless oil (21.5 mg, 12%); R_f 0.27 (1:1 hexane: diethyl ether); v_{max}/cm⁻¹ (thin film) 2927, 2857, 1732, 1687, 1618, 1460, 1404, 1365, 1220, 1133, 1103, 1061, 979, 797, 736; δ_{H} (300 MHz, CDCl₃) 6.73 (1H, dd, *J* = 16.7, 10.3 Hz, NCOCHCHH'), 6.41 (1H, dd, *J* = 16.7, 1.7 Hz, NCOCHCHH'), 5.80 (1H, dd, *J* = 10.3, 1.7 Hz, NCOCHCHH'), 4.43 (2H, t, *J* = 5.9 Hz, CO₂CH₂CH₂CON), 3.75 – 3.65 (2H, m, CH₂CH₂CH₂NCO), 3.07 (2H, t, *J* = 5.9 Hz, CO₂CH₂CH₂CON), 2.35 – 2.25 (2H, m, CH₂CQ₂), 1.72 – 1.51 (4H, m, 2 × CH₂), 1.41–1.21 (14H, m, 7 × CH₂); δ_{C} (75 MHz, CDCl₃) 173.9 (CO), 173.3 (CO), 168.9 (CO), 130.6 (CHCH₂), 130.2 (CHCH₂), 59.8 (CO₂CH₂CH₂CON), 44.3 (CH₂CH₂NCO), 37.2 (CO₂CH₂CH₂CON), 34.2 (CH₂CH₂CO₂), 28.1 (CH₂), 27.8 (CH₂), 27.7 (CH₂), 27.3 (CH₂), 27.2 (CH₂), 27.0 (CH₂), 26.8 (CH₂), 25.2 (CH₂), 24.7 (CH₂); HRMS (ESI): calcd. for C₁₈H₂₉NNaO₄, 346.1989. Found: [MNa]⁺, 346.1993 (–1.2 ppm error).

5-(4-Fluorobenzyl)-1-oxa-5,9-diazacyclohenicosane-4,8,21-trione (28)

To a solution of **27** (21.5 mg, 0.066 mmol) in dry methanol (0.13 mL), was added 4-fluorobenzylamine (8 μ L, 0.073 mmol) in a single portion. The reaction mixture was allowed to stir for 4 h at RT and then the solvent was removed *in vacuo*. Purification by flash column chromatography (SiO₂, 2:1 hexane: ethyl acetate \rightarrow ethyl acetate) afforded the *title compound* as a colourless oil (19.3 mg, 65%). In solution in CDCl₃, this compound exists as a roughly 2:1 mixture of rotamers; Rf 0.22 (ethyl acetate); v_{max}/cm^{-1} (thin film) 3313, 2927, 2855, 1732, 1638, 1553, 1510, 1460, 1415, 1358, 1222, 1156, 1101, 1016, 824, 732; δ_{H} (400 MHz, CDCl₃) 7.27 – 7.20 (2H, m, ArH, minor rotamer), 7.16 – 7.09 (2H, m, ArH, major rotamer), 7.08 – 7.02 (2H, m, ArH, minor rotamer), 7.01 – 6.95 (2H, m, ArH, minor rotamer), 6.32 (1H, t, *J* = 5.8 Hz, NH, major rotamer), 5.64 (1H, t, *J* = 5.8 Hz, NH, minor rotamer), 4.56 (4H, s, 2 × CH₂, both rotamers), 4.45 (2H, t, *J* = 6.9 Hz, CH₂, minor rotamer), 4.39 (2H, t, *J* = 6.5 Hz, CH₂, major rotamer), 3.65 – 3.55 (4H, m, CH₂, both rotamers), 3.31 – 3.20 (4H, m, CH₂, both rotamers), 2.77 (2H,

t, J = 6.9 Hz, CH₂, minor rotamer), 2.66 (2H, t, J = 6.5 Hz, CH₂, major rotamer), 2.49 (2H, t, J = 6.4 Hz, CH₂, major rotamer), 2.38 – 2.24 (6H, m, CH₂, both rotamers), 1.69 – 1.56 (4H, m, CH₂, both rotamers), 1.55 – 1.43 (4H, m, CH₂, both rotamers), 1.37 – 1.18 (28H, m, CH₂, both rotamers); δ_C (100 MHz, CDCl₃) 174.2 (CO, minor rotamer), 173.9 (CO, major rotamer), 171.0 (CO, major rotamer), 170.9 (CO, major rotamer), 170.2 (**C**O, minor rotamer), 169.6 (**C**O, minor rotamer), 162.4 (Ar**C**F, ${}^{1}J_{CF}$ = 246.0 Hz, major rotamer), 161.3 (Ar**C**F, ¹J_{CF} = 246.0 Hz, minor rotamer), 133.5 (Ar**C**F, ⁴J_{CF} = 3.0 Hz, minor rotamer), 132.1 (Ar**C**F, ${}^{4}J_{CF}$ = 3.0 Hz, major rotamer), 130.0 (Ar**C**H, ${}^{3}J_{CF}$ = 8.0 Hz, minor rotamer), 128.1 (Ar**C**H, ${}^{3}J_{CF}$ = 8.0 Hz, major rotamer), 116.1 (Ar**C**H, ${}^{2}J_{CF}$ = 21.5 Hz, major rotamer), 115.6 (Ar**C**H, ${}^{2}J_{CF}$ = 21.5 Hz, minor rotamer), 61.1 (CH₂, minor rotamer), 60.4 (CH₂, major rotamer), 51.6 (CH₂, major rotamer), 48.4 (CH₂, minor rotamer), 44.3 (CH₂, minor rotamer), 43.7 (CH₂, major rotamer), 39.7 (CH₂, major rotamer), 39.3 (CH₂, minor rotamer), 36.0 (CH₂, minor rotamer), 35.6 (CH₂, major rotamer), 34.1 (CH₂, major rotamer), 32.7 (CH₂, major rotamer), 32.3 (CH₂, minor rotamer), 29.3 (CH₂, major rotamer), 28.9 (CH₂, minor rotamer), 28.8 (CH₂, major rotamer), 28.4 (CH₂, rotamer), 28.3 (CH₂, rotamer), 28.2 (CH₂, rotamer), 28.10 (CH₂, rotamer), 28.07 (CH₂, rotamer), 27.94 (CH₂, rotamer), 27.93 (CH₂, rotamer), 27.89 (CH₂, rotamer), 27.6 (CH₂, minor rotamer), 27.2 (CH₂, minor rotamer), 26.4 (CH₂, major rotamer), 25.7 (CH₂, minor rotamer), 24.7 (**C**H₂, major rotamer), 24.6 (**C**H₂, minor rotamer); δ_F (376 MHz, CDCl₃), two rotamers in a 2:1 ratio: -114.34 (1F, m, ArF, major rotamer), -114.76 (1F, m, ArF); HRMS (ESI): calcd. for C₂₅H₃₇FN₂NaO₄, 471.2630. Found: [MNa]⁺, 471.2632 (-0.5 ppm error).

5-Acryloyl-1-thia-5-azacyclododecane-4,12-dione (29)

A stirring solution of 1-thia-5-azacyclododecane-4,12-dione⁸ (31.5 mg, 0.147 mmol) and DIPEA (0.064 mL, 0.366 mmol) in THF (0.6 mL) was cooled to 0 °C. To this was added a 0 °C cooled solution of acryloyl chloride (0.024 mL, 0.293 mmol) in THF (0.3 mL) dropwise. Under an argon atmosphere this mixture was stirred at 0 °C for 2 hours. It was then allowed to warm to RT and stirred for a further 5 hours. The reaction mixture was then quenched with sat. aq. NH₄Cl (1 mL), extracted with DCM (2 mL), then the organic layer washed with washed with sat. aq. NaHCO₃ (2 × 1 mL). The organic extracts were dried over MgSO₄ and concentrated *in vacuo*. Purification by flash column chromatography (SiO₂, 1:1 diethyl ether: hexane) afforded the *title compound* as a colourless oil (24.5 mg, 62%); R_f 0.29 (1:1 hexane: diethyl ether); v_{max}/cm^{-1} (thin film) 2938, 1683, 1618, 1404, 1352, 1301, 1276, 1210, 1151, 1072, 1032, 978, 870, 795, 694; δ_{H} (400 MHz, CDCl₃) 6.65 (1H, dd, *J* = 16.7, 10.2 Hz, NCOCHCHH'), 6.46 (1H, dd, *J* =

16.7, 1.8 Hz, NCOCHCHH'), 5.83 (1H, dd, J = 10.2, 1.8 Hz, NCOCHCHH'), 3.77 (2H, br s, CH₂), 3.60 – 2.90 (4H, m, 2 × CH₂), 2.54 – 2.44 (2H, m, CH₂), 1.82 (2H, br s, CH₂), 1.65 – 1.52 (2H, m, CH₂), 1.50 – 1.28 (4H, m, 2 × CH₂); $\delta_{\rm C}$ (100 MHz, CDCl₃) 200.1 (COS), 175.7 (CO), 169.4 (CO), 130.5 (CHCH₂), 130.3 (CHCH₂), 44.3 (CH₂), 43.7 (CH₂), 38.8 (CH₂), 28.3 (CH₂), 27.4 (CH₂), 25.0 (CH₂), 24.8 (CH₂), 23.5 (CH₂); HRMS (ESI): calcd. for C₁₃H₁₉NNaO₃S, 292.0978. Found: [MNa]⁺, 292.0981 (-1.1 ppm error).

5-(4-Fluorobenzyl)-1-thia-5,9-diazacyclohexadecane-4,8,16-trione (30)

To a solution of 29 (24.5 mg, 0.091 mmol) in dry methanol (0.18 mL), was added 4-fluorobenzylamine (11 µL, 0.100 mmol) in a single portion. The reaction mixture was allowed to stir for 2 h at RT, then the solvent was removed in vacuo. Purification by flash column chromatography (SiO₂, 2:1 hexane: ethyl acetate \rightarrow 1:2 hexane: ethyl acetate \rightarrow ethyl acetate) afforded the *title compound* **30** (15.0 mg, 42%) a colourless oil, along with 1-thia-5-azacyclododecane-4,12-dione (2.2 mg, 11%).⁸ In solution in CDCl₃, compound **30** exists as a roughly 3:1 mixture of rotamers; Data for **30**: R_f 0.22 (ethyl acetate); v_{max}/cm⁻¹ (thin film) 3314, 2931, 2858, 1640, 1548, 1509, 1414, 1364, 1222, 1156, 1098, 982, 823, 731, 597; ¹H NMR for the major rotamer: δ_{H} (400 MHz, CDCl₃) 7.31 – 6.95 (4H, m, Ar**H**), 5.89 (1H, t, J = 5.6 Hz, NH), 4.58 – 4.45 (2H, m, CH₂), 3.69 – 3.53 (2H, m, CH₂), 3.32 – 3.21 (2H, m, CH₂), 3.21 – 3.08 (2H, m, CH₂), 2.74 – 2.34 (6H, m, CH₂), 1.97 – 1.66 (2H, m, CH₂), 1.58 – 1.42 (2H, m, CH₂), 1.40 – 1.21 (4H, m, CH₂). Diagnostic ¹H NMR shifts for the minor rotamers can be seen at: 7.31 – 7.19 (1H, m, ArH, minor rotamer), 4.55 (2H, s, ArCH₂, minor rotamer), 7.10 – 7.04 (1H, m, ArH, major rotamer), 4.49 (2H, s, ArCH₂, major rotamer); δ_c (100 MHz, CDCl₃) ¹³C peaks for the major rotamer: 200.6 (**C**OS), 171.51 (CO), 171.45 (CO), 162.3 (ArCF, ${}^{1}J_{CF}$ = 246.1 Hz), 132.7 (ArCF, ${}^{4}J_{CF}$ = 3.2 Hz), 128.1 (2 × ArCH, ${}^{3}J_{CF}$ = 8.1 Hz), 116.0 (2 × ArCH, ${}^{2}J_{CF}$ = 21.5 Hz), 52.9 (CH₂), 45.1 (CH₂), 42.5 (CH₂), 39.1 (CH₂), 35.3 (CH₂), 33.1 (CH₂), 29.5 (CH₂), 27.8 (CH₂), 25.9 (CH₂), 25.2 (CH₂), 25.0 (CH₂). ¹³C peaks for the minor rotamer: 133.53 (ArCF, ${}^{4}J_{CF}$ = 3.2 Hz), 129.9 (2 × Ar**C**H, ${}^{3}J_{CF}$ = 8.1 Hz), 115.7 (2 × Ar**C**H, ${}^{2}J_{CF}$ = 21.5 Hz), 48.7 (**C**H₂), 44.7 (**C**H₂), 43.7 (CH_2) , 39.6 (CH_2) , 36.7 (CH_2) , 33.8 (CH_2) , 29.8 (CH_2) , 28.0 (CH_2) , 27.2 (CH_2) , 26.2 (CH_2) , 23.7 (CH_2) ; δ_F (376 MHz, CDCl₃), -114.77 (1F, m, ArF, both rotamers, overlapping); HRMS (ESI): calcd. for C₂₀H₂₇FN₂NaO₃S, 417.1619. Found: [MNa]⁺, 417.1620 (-0.3 ppm error).

1-Acryloyl-5-(4-fluorobenzyl)-1,5-diazecane-2,6-dione (S1)

A stirring solution of 14a (1.20 g, 4.30 mmol) and DIPEA (1.87 mL, 10.8 mmol) in THF (20 mL) was cooled to 0°C. To this was added a 0 °C cooled solution of acryloyl chloride (0.524 mL, 6.45 mmol) in THF (5.0 mL) dropwise. Under an argon atmosphere this mixture was stirred at 0 °C for 2 hours. Afterwards it was allowed to warm to RT and stirred for a further 18 hours. The reaction mixture was then quenched with sat. aq. NH₄Cl (15 mL), extracted with Et₂O (25 mL), then the organic layer washed with washed with sat. aq. NaHCO₃ (2 \times 15 mL). The organic extracts were dried over MgSO₄ and concentrated in vacuo. Purification by flash column chromatography (SiO₂, 1:2 ethyl acetate: hexane \rightarrow ethyl acetate) afforded the *title compound* as a pale-yellow oil (997 mg, 70%). In solution in CDCl₃, this compound exists largely as a single rotamer, along with a minor rotamer (most clearly seen in the ¹⁹F NMR data). The ¹H NMR spectrum is significantly affected by rotameric broadening; R_f 0.49 (1:9 methanol: ethyl acetate); v_{max}/cm⁻¹ (thin film) 2943, 1681, 1631, 1509, 1457, 1406, 1342, 1245, 1220, 1158, 1141, 1092, 1063, 981, 905, 816, 767, 730, 582, 498, 474; δ_H (400 MHz, CDCl₃) 7.19 – 7.13 (2H, m, ArH), 6.96 – 6.89 (2H, m, ArH), 6.62 (1H, dd, J = 16.6, 10.3 Hz, NCOCHCHH'), 6.42 (1H, dd, J = 16.6, 1.5 Hz, NCOCHCHH'), 5.85 (1H, dd, J = 10.3, 1.5 Hz, NCOCHCHH'), 4.91 – 4.15 (2H, m, CH₂), 3.84 (2H, br s, CH₂), 3.56 (2H, br s, CH₂), 3.24 (2H, br s, CH₂), 2.39 (2H, br s, CH₂), 1.90 (2H, br s, CH₂), 1.66 (2H, br p, J = 5.4Hz, CH₂); δ_{c} (100 MHz, CDCl₃) 175.4 (CO), 172.9 (CO), 168.8 (CO), 162.1 (ArCF, ¹ $J_{CF} = 245.6$ Hz), 133.0 (Ar**C**, ⁴J_{CF} = 3.1 Hz), 132.1 (NCOCH=**C**HH'), 129.9 (2 × Ar**C**H, ³J_{CF} = 8.1 Hz), 129.4 (NCOCH=CHH'), 115.4 (2 × ArCH, ²J_{CF} = 21.5 Hz), 46.8 (CH₂), 45.6 (CH₂), 43.8 (CH₂), 38.0 (CH₂), 29.1 (CH₂), 24.1 (CH₂), 24.0 (CH₂); δ_F (376 MHz, CDCl₃), -114.32 (1F, m, ArF, minor rotamer), -115.01 (1F, m, ArF, major rotamer); HRMS (ESI): calcd. for C₁₈H₂₁FN₂NaO₃, 355.1428. Found: [MNa]⁺, 355.1423 (1.5 ppm error).

To a solution of **S1** (179 mg, 0.537 mmol) in dry methanol (1.07 mL), was added benzylamine (65 μ L, 0.591 mmol) in a single portion. After 30 min of stirring a white precipitate formed which turned the solution into a slurry. The reaction mixture was allowed to stir for 3 h in total at RT and then the solvent was removed in vacuo. Purification by flash column chromatography (SiO₂, ethyl acetate \rightarrow 1:49 methanol: ethyl acetate \rightarrow 1:16 methanol: ethyl acetate \rightarrow 1:9 methanol: ethyl acetate \rightarrow 1:6 methanol: ethyl acetate \rightarrow 1:4 methanol: ethyl acetate) afforded the *title compound* as a white solid (180 mg, 76%). This compounds exists as a complex mixture of rotamers at RT in CDCl₃, with 4 main rotamers visible in a ratio of roughly 7:5:4:1, based on the ¹⁹F NMR data and the NH signals in the ¹H NMR spectrum; m.p. 188–190 °C; Rf 0.34 (1:4 methanol: ethyl acetate); v_{max}/cm⁻¹ (thin film) 3301, 2933, 1626, 1552, 1509, 1450, 1363, 1221, 1157, 1096, 915, 823, 729, 699, 646; δ_{H} (400 MHz, CDCl₃) 7.39 – 6.91 (9H, m, ArH), 6.88 (1H, br t, J = 5.7 Hz, NH), 6.76 (1H, br t, J = 6.0 Hz, NH), 6.46 (1H, br t, J = 5.5 Hz, NH), 6.05 (1H, br t, J = 6.1 Hz, NH), 4.69 (2H, s, ArCH₂), 4.62 (2H, s, ArCH₂), 4.56 (2H, s, ArCH₂), 4.55 (2H, s, ArCH₂), 4.48 (2H, s, ArCH₂), 4.38 (2H, s, ArCH₂), 3.74 – 3.47 (4H, m, 2 × CH₂), 3.36 – 3.26 (2H, m, CH₂), 2.66 – 2.23 (6H, m, 6 × CH₂), 1.80 – 1.50 (4H, m, 2 × CH₂); δ_C (100 MHz, CDCl₃) 173.9 (**C**O), 173.6 (CO), 173.4 (CO), 172.9 (CO), 172.8 (CO), 171.2 (CO), 171.1 (CO), 170.6 (CO), 170.2 (CO), 162.3 $(ArCF, {}^{1}J_{CF} = 246.0 Hz), 162.1 (ArCF, {}^{1}J_{CF} = 246.0 Hz), 138.0 (ArC), 137.4 (ArC), 136.9 (ArC), 137.8 (Ar$ 133.5 (Ar**C**, ${}^{4}J_{CF}$ = 3.0 Hz), 133.4 (Ar**C**, ${}^{4}J_{CF}$ = 3.0 Hz), 132.8 (Ar**C**, ${}^{4}J_{CF}$ = 3.0 Hz), 129.8 (Ar**C**H, ${}^{3}J_{CF}$ = 8.0 Hz), 129.3 (2 × Ar**C**H), 129.0 (2 × Ar**C**H), 128.8 (Ar**C**H), 129.31 (Ar**C**H, ³*J*_{CF} = 8.0 Hz), 128.32 (Ar**C**H), 128.0 (ArCH), 127.7 (ArCH), 127.6 (ArCH), 126.2 (2 × ArCH), 126.0 (2 × ArCH), 116.0 (ArCH, ²J_{CF} = 21.5 Hz), 115.6 (Ar**C**H, ²*J*_{CF} = 21.5 Hz), 115.5 (Ar**C**H, ²*J*_{CF} = 21.1 Hz), 53.4 (Ar**C**H₂), 53.0 (Ar**C**H₂), 51.5 (Ar**C**H₂), 48.3 (ArCH₂), 48.0 (ArCH₂), 47.9 (ArCH₂), 44.5 (CH₂), 43.9 (CH₂), 43.7 (CH₂), 42.9 (CH₂), 42.4 (CH₂), 39.6 (CH₂), 38.5 (CH₂), 38.3 (CH₂), 35.4 (CH₂), 35.2 (CH₂), 35.0 (CH₂), 33.6 (CH₂), 33.2 (CH₂), 32.5 (CH₂), 31.7 (CH₂), 29.1 (CH₂), 28.1 (CH₂), 27.8 (CH₂), 24.0 (CH₂), 23.3 (CH₂), 23.0 (CH₂); δ_F (376 MHz, CDCl₃), four rotamers in a 7:5:1:4 ratio: -114.49 (1F, m, ArF, major rotamer), -114.69 (1F, m, ArF), -114.87 (1F, m, ArF), -115.15 (1F, m, ArF); HRMS (ESI): calcd. for C₂₅H₃₀FN₃NaO₃, 462.2163. Found: [MNa]⁺, 462.2160 (0.7 ppm error).

To a solution of S1 (320 mg, 0.963 mmol) in dry methanol (2.0 mL), was added cyclopropyl amine (73 µL, 1.06 mmol) in a single portion. The reaction mixture was allowed to stir for 4 h at RT and then the solvent was removed *in vacuo*. Purification by flash column chromatography (SiO₂, 1:1 ethyl acetate: hexane \rightarrow ethyl acetate \rightarrow 1:19 methanol: ethyl acetate \rightarrow 1:9 methanol: ethyl acetate \rightarrow 3:17 methanol: ethyl acetate) afforded the title compound as a colourless oil (279 mg, 74%). This compound exists as a complex mixture of rotamers at RT in CDCl₃, with 4 main rotamers based on the carbonyl region of the ¹³C NMR spectrum. Due to overlapping signals in the ¹H and ¹⁹F NMR, it is difficult to confidently quote a rotamer ratio; Rf 0.26 (1:4 methanol: ethyl acetate); v_{max}/cm⁻¹ (thin film) 3303, 2937, 1736, 1638, 1549, 1509, 1413, 1366, 1221, 1158, 827; δ_H (400 MHz, CDCl₃) 7.38 (1H, t, J = 5.6 Hz, NH, rotamer), 7.33 (1H, t, J = 5.7 Hz, NH, rotamer), 7.14 – 6.98 (2H, m, ArH), 6.96 – 6.83 (2H, m, ArH), 6.80 (1H, t, J = 5.4 Hz, NH, rotamer), 4.70 – 4.37 (2H, m, CH₂), 3.63 – 3.54 (2H, m, CH₂), 3.52 (1H, d, J = 6.6 Hz, CH, rotamer), 3.49 – 3.40 (1H, m, CH₂), 3.20 – 2.99 (2H, m, CH₂), 2.84 – 2.67 (1H, m, CH₂), 2.61 – 2.16 (6H, m, CH (rotamer) and CH₂), 1.64 – 1.25 (4H, m, CH₂), 0.80 – 0.66 (1H, m, cyclopropyl CH₂, major rotamer), 0.60 – 0.48 (1H, m, cyclopropyl CH₂, major rotamer), 0.44 – 0.36 (1H, m, cyclopropyl CH₂, minor rotamer), 0.32 – 0.23 (1H, m, cyclopropyl CH₂, minor rotamer); δ_c (100 MHz, CDCl₃) 174.2 (**C**O), 173.9 (**C**O), 173.7 (**C**O), 173.3 (**C**O), 173.0 (**C**O), 172.8 (**C**O), 172.34 (**C**O), 172.31 (**C**O), 172.2 (**C**O), 171.2 (**C**O), 170.9 (**C**O), 170.7 (**C**O), 162.0 (Ar**C**F, ¹*J*_{CF} = 245.6 Hz), 161.92 (Ar**C**F, ¹*J*_{CF} = 245.6 Hz), 162.89 (Ar**C**F, ¹*J*_{CF} = 245.6 Hz), 133.4 (Ar**C**F, ⁴*J*_{CF} = 3.2 Hz), 133.2 (Ar**C**F, ⁴*J*_{CF} = 3.2 Hz), 133.1 (Ar**C**F, ${}^{4}J_{CF}$ = 3.2 Hz), 132.3 (Ar**C**F, ${}^{4}J_{CF}$ = 3.2 Hz), 129.6 (2 × Ar**C**H, ${}^{3}J_{CF}$ = 8.0 Hz), 129.3 (2 × Ar**C**H, ${}^{3}J_{CF}$ = 8.0 Hz), 129.1 (2 × Ar**C**H, ${}^{3}J_{CF}$ = 8.0 Hz), 127.8 (2 × Ar**C**H, ${}^{3}J_{CF}$ = 8.0 Hz), 115.7 (2 × Ar**C**H, ${}^{2}J_{CF}$ = 21.6 Hz), 115.5 (2 × ArCH, ${}^{2}J_{CF}$ = 21.6 Hz), 115.3 (2 × ArCH, ${}^{2}J_{CF}$ = 21.6 Hz), 53.4 (CH₂), 53.1 (CH₂), 51.8 (CH₂), 51.54 (CH), 51.51 (CH), 51.2 (CH₂), 48.0 (CH₂), 47.5 (CH₂), 43.5 (CH₂), 43.3 (CH₂), 43.0 (CH₂), 42.5 (CH₂), 41.8 (CH₂), 38.7 (CH₂), 38.6 (CH₂), 38.0 (CH₂), 36.5 (CH), 34.9 (CH₂), 34.8 (CH₂), 34.6 (CH₂), 33.9 (CH₂), 33.5 (CH₂), 33.4 (CH₂), 33.1 (CH₂), 32.8 (CH₂), 32.6 (CH₂), 32.5 (CH₂), 32.3 (CH₂), 32.2 (CH₂), 30.7 (CH), 29.2 (CH), 28.8 (CH₂), 28.7 (CH₂), 28.6 (CH₂), 28.0 (CH₂), 23.2 (CH₂), 22.9 (CH₂), 22.4 (CH₂), 22.2 (CH₂), 9.5 (cyclopropyl **C**H₂), 9.0 (cyclopropyl **C**H₂), 6.4 (cyclopropyl **C**H₂); δ_F (376 MHz, CDCl₃), 114.98 (1F, m, ArF), -114.62 (1F, m, ArF); HRMS (ESI): calcd. for C₂₁H₂₈FN₃NaO₃, 412.2007. Found: [MNa]⁺, 412.2008 (-0.2 ppm error).

5-(Benzo[*d*][1,3]dioxol-5-ylmethyl)-9-(4-fluorobenzyl)-1,5,9-triazacyclotetradecane-2,6,10-trione (31c)

To a solution of **S1** (332 mg, 0.998 mmol) in dry methanol (2.0 mL), was added piperonylamine (166 mg, 1.10 mmol) in a single portion. The reaction mixture was allowed to stir for 10 min at RT at which point a white precipitate formed which impeded stirring. To the crude reaction mixture was added DCM (2 mL) and then the solvent was removed in vacuo. Purification by flash column chromatography (SiO₂, 1:1 ethyl acetate: hexane \rightarrow 2:1 ethyl acetate: hexane \rightarrow ethyl acetate \rightarrow 1:49 methanol: ethyl acetate \rightarrow 1:19 methanol: ethyl acetate \rightarrow 1:9 methanol: ethyl acetate \rightarrow 1:4 methanol: ethyl acetate) afforded the title compound as a white solid (256 mg, 53%). This compounds exists as a complex mixture of rotamers at RT in CDCl₃, with 3 main rotamers visible in a ratio of roughly 12:8:6 based on the ¹⁹F NMR data and the OCH₂O signals in the ¹H NMR spectrum. A more minor fourth rotamer can also be seen in the ¹⁹F NMR spectrum; m.p. 216–220°C; R_f 0.23 (1:4 methanol: ethyl acetate); v_{max}/cm⁻ ¹ (thin film) 2933, 1633, 1508, 1490, 1443, 1244, 1157, 1038, 928, 705, 503; δ_{H} (600 MHz, CDCl₃) 7.26 - 7.11 (2H, m, ArH), 7.07 - 6.93 (2H, m, ArH), 6.79 - 6.67 (2H, m, ArH), 6.61 (1H, br t, J = 5.9 Hz, NH, rotamer), 6.59 – 6.46 (1H, m, ArH), 6.01 – 5.87 (2H, s, OCH₂O), 5.67 (1H, br t, J = 6.2 Hz, NH, rotamer), 4.85 - 4.23 (4H, m, ArCH₂), 3.74 - 3.46 (4H, m, CH₂), 3.37 - 3.21 (2H, m, CH₂), 2.69 - 2.40 (5H, m, CH₂), 1.91 - 1.49 (5H, m, CH₂), Diagnostic ¹H NMR signals for the 3 major rotamers: 5.97 (2H, s, OCH₂O, rotamer B), 5.94 (2H, s, OCH₂O, major rotamer A), 5.93 (2H, s, OCH₂O, rotamer C); δ_C (151 MHz, CDCl₃) 173.9 (CO, major rotamer), 173.6 (CO), 173.4 (CO), 172.8 (CO, major rotamer), 172.7 (CO), 171.2 (CO, major rotamer), 171.0 (**C**O), 170.6 (**C**O), 170.2 (**C**O), 162.4 (Ar**C**F, ${}^{1}J_{CF}$ = 246.0 Hz, major rotamer), 162.3 $(2 \times \text{Ar}\mathbf{C}F, {}^{1}J_{CF} = 246.0 \text{ Hz}, \text{ two minor rotamers overlapping}), 148.6 (Ar \mathbf{C}\text{OCH}_{2}), 148.4 (Ar \mathbf{C}\text{OCH}_{2}, \text{major})$ rotamer), 148.2 (ArCOCH₂), 147.5 (ArCOCH₂), 147.3 (ArCOCH₂), 147.2 (ArCOCH₂, major rotamer), 133.6 (Ar**C**), 133.5 (Ar**C**), 132.9 (Ar**C**, ⁴*J*_{CF} = 2.8 Hz, major rotamer), 131.3 (Ar**C**), 130.8 (Ar**C**, major rotamer), 129.9 (ArCH, ${}^{3}J_{CF}$ = 8.0 Hz), 129.6 (ArC), 128.4 (ArCH, ${}^{3}J_{CF}$ = 8.0 Hz), 128.2 (ArCH, ${}^{3}J_{CF}$ = 8.0 Hz), 121.7 (ArCH), 119.6 (ArCH), 119.5 (ArCH), 116.0 (ArCH, ²J_{CF} = 21.5 Hz), 115.7 (ArCH, ²J_{CF} = 21.5 Hz), 115.6

(ArCH, ${}^{2}J_{CF}$ = 21.5 Hz), 108.9 (ArCH), 108.8 (ArCH), 108.7 (ArCH, major rotamer), 108.4 (ArCH), 106.8 (ArCH, major rotamer), 106.6 (ArCH), 101.5 (OCH₂O), 101.32 (OCH₂O, major rotamer), 101.26 (OCH₂O), 53.2 (CH₂), 53.1 (CH₂), 51.4 (CH₂), 48.4 (CH₂), 48.1 (CH₂), 47.8 (CH₂), 44.5 (CH₂), 44.3 (CH₂), 43.8 (CH₂), 43.7 (CH₂), 43.0 (CH₂), 42.2 (CH₂), 39.6 (CH₂), 38.54 (CH₂), 38.51 (CH₂), 35.5 (CH₂), 35.3 (CH₂), 35.2 (CH₂), 33.6 (CH₂), 33.3 (CH₂), 33.2 (CH₂), 32.7 (CH₂), 31.8 (CH₂), 29.1 (CH₂), 28.2 (CH₂), 27.8 (CH₂), 24.0 (CH₂), 23.3 (CH₂), 23.0 (CH₂); δ_F (376 MHz, CDCl₃), four rotamers in a 12:8:3:6 ratio: -114.48 (1F, m, ArF, major rotamer), -114.73 (1F, m, ArF), -114.84 (1F, m, ArF, minor rotamer), -115.19 (1F, m, ArF); HRMS (ESI): calcd. for C₂₆H₃₀FN₃NaO₅, 506.2062. Found: [MNa]⁺, 506.2061 (0.2 ppm error).

1-Acryloyl-5-benzyl-9-(4-fluorobenzyl)-1,5,9-triazacyclotetradecane-2,6,10-trione (S2)

To a stirring solution of **31a** (277 mg, 0.630 mmol) and DIPEA (0.27 mL, 1.58 mmol) in DCM (10 mL) was cooled to 0 °C. To this was added a 0 °C cooled solution of acryloyl chloride (0.077 mL, 0.945 mmol) in DCM (3.0 mL) dropwise. Under an argon atmosphere this mixture was stirred at 0 °C for 2 hours. Afterwards it was allowed to warm to RT and stirred for a further 18 hours. The reaction mixture was then quenched with sat. aq. NH₄Cl (40 mL), extracted with Et₂O (40 mL), then the organic layer washed with washed with sat. aq. NaHCO₃ (2×40 mL). The organic extracts were dried over MgSO₄ and concentrated *in vacuo*. Purification by flash column chromatography (SiO₂, 1:2 ethyl acetate: hexane \rightarrow 1:1 ethyl acetate: hexane \rightarrow 2:1 ethyl acetate: hexane \rightarrow ethyl acetate \rightarrow 1:9 methanol: ethyl acetate) afforded the title compound as a colorless oil (265 mg, 85%). This compound exists as a complex mixture of rotamers at RT in CDCl₃, with at least 3 significant rotameric forms based on the carbonyl region of the ¹³C NMR spectrum. Due to overlapping signals in the ¹H and ¹⁹F NMR, it is difficult to confidently quote a rotamer ratio; $R_f 0.12$ (1:9 methanol: ethyl acetate); v_{max}/cm^{-1} (thin film) 1681, 1634, 1509, 1408, 1365, 1221, 1141, 1064, 974, 910, 822, 726, 646, 499; δ_{H} (400 MHz, CDCl₃) 7.41 – 7.01 (9H, m, ArH), 6.84 (1H, dd, J = 16.6, 10.3 Hz, NCOCHCHH') [overlapping]), 6.80 (1H, dd, J = 16.6, 10.3 Hz, NCOCHCHH'), major rotamer, [overlapping]), 6.40 (1H, dd, J = 16.6, 1.5 Hz, NCOCHCHH' H-26, major rotamer, [overlapping]), 6.36 (1H, dd, J = 16.6, 1.5 Hz, NCOCHCHH' H-26, [overlapping]), 5.77 (1H, dd, J = 10.3, 1.5 Hz, NCOCHCHH' H-25, major rotamer, [overlapping]), 5.74 (1H, dd, J = 10.3, 1.5 Hz, NCOCHCHH' H-25, [overlapping]), 4.82 (2H, s, ArCH₂, major rotamer), 4.71 (2H, s, ArCH₂), 4.69 (2H, s, ArCH₂, major rotamer), 4.56 (2H, s, ArCH₂), 4.43 (2H, s, ArCH₂), 3.97 - 3.60 (5H, m, 2.5 × CH₂), 3.52 – 3.40 (1H, m, 0.5 × CH₂), 3.14 – 3.03 (1H, m, 0.5 × CH₂), 2.92 – 2.74 (2H, m, CH₂), 2.56 – 2.39 (2H, m, CH₂), 1.86 – 1.55 (5H, m, 2.5 × CH₂); δ_C (100 MHz, CDCl₃) 175.24 (**C**O), 174.66 (CO), 173.70 (CO), 173.55 (CO), 173.23 (CO), 173.10 (CO), 172.69 (CO), 172.22 (CO), 171.73 (CO), 170.06 (**C**O), 169.44 (**C**O), 168.91 (**C**O), 168.64 (**C**O), 168.49 (**C**O), 161.98 (Ar**C**F, ¹*J*_{CF} = 246.0 Hz), 137.53 (ArC), 137.07 (ArC), 136.88 (ArC), 133.34 $(ArCF, {}^{4}J_{CF} = 3.1 \text{ Hz})$, 133.03 $(ArCF, {}^{4}J_{CF} = 3.1 \text{ Hz})$, 132.89 $(ArCF, {}^{4}J_{CF} = 3.1 \text{ Hz})$ ⁴J_{CF} = 3.1 Hz), 132.08 (Ar**C**H), 131.31 (Ar**C**H), 131.09 (Ar**C**H), 130.47 (Ar**C**H), 129.71 (Ar**C**H), 129.63 (ArCH), 129.10 (ArCH), 128.90 (ArCH), 129.67 (ArCH, ³J_{CF} = 8.1 Hz), 128.53 (ArCH), 128.51 (ArCH), 128.19 (ArCH, ³*J*_{CF} = 8.1 Hz), 128.07 (ArCH, ³*J*_{CF} = 8.1 Hz), 128.01 (ArCH), 127.45 (ArCH), 127.41 (ArCH), 127.35 (ArCH), 126.18 (ArCH), 125.99 (ArCH), 115.62 (ArCH, ²J_{CF} = 21.6 Hz), 115.58 (ArCH, ²J_{CF} = 21.6 Hz), 115.24 (ArCH, ²J_{CF} = 21.6 Hz), 53.45 (CH₂), 53.18 (CH₂), 53.09 (CH₂), 51.91 (CH₂), 49.88 (CH₂), 48.13 (CH₂), 47.72 (CH₂), 47.57 (CH₂), 44.21 (CH₂), 44.13 (CH₂), 43.45 (CH₂), 43.37 (CH₂), 43.15 (CH₂), 43.04 (CH₂), 42.38 (CH₂), 36.41 (CH₂), 35.55 (CH₂), 34.98 (CH₂), 33.83 (CH₂), 32.76 (CH₂), 32.54 (CH₂), 31.72 (CH₂), 31.24 (CH₂), 30.80 (CH₂), 30.77 (CH₂), 28.65 (CH₂), 28.29 (CH₂), 28.16 (CH₂), 27.22 (CH₂), 22.77 (CH₂), 22.60 (CH₂), 21.32 (CH₂), Characteristic peaks for major rotamer: 175.24 (CO), 168.91 (CO), 137.07 (ArC), 133.03 (ArCF, ⁴J_{CF} = 3.1 Hz), 131.09 (ArCH), 53.45 (CH₂), 53.18 (CH₂), 44.21 (CH₂), 43.37 (CH₂), 43.15 (CH₂), 34.98 (CH₂), 33.83 (CH₂), 30.77 (CH₂), 28.65 (CH₂), 22.77 (CH₂); δ_F (376 MHz, CDCl₃), three signals are visible in a 11:23:3 ratio: -114.72 (1F, m, ArF), -114.80 (1F, m, ArF, major rotamer), -115.07 (1F, m, ArF); HRMS (ESI): calcd. for C₂₈H₃₂FN₃NaO₄, 516.2269. Found: [MNa]⁺, 516.2273 (-0.8 ppm error).

1-Acryloyl-5-cyclopropyl-9-(4-fluorobenzyl)-1,5,9-triazacyclotetradecane-2,6,10-trione (S3)

A stirring solution of **31b** (278 mg, 0.713 mmol) and DIPEA (0.31 mL, 1.78 mmol) in THF (4.0 mL) was cooled to 0 °C. To this was added a 0 °C cooled solution of acryloyl chloride (0.087 mL, 1.07 mmol) in THF (1.0 mL) dropwise. Under an argon atmosphere this mixture was stirred at 0 °C for 2 hours. Afterwards it was allowed to warm to RT and stirred for a further 2 hours. At this stage additional THF (4 mL) was added to aid solubility and the mixture was allowed to stir for an additional 2 hours. The reaction mixture was then quenched with sat. aq. NH₄Cl (25 mL), extracted with Et₂O (15 mL), then

the organic layer washed with washed with sat. aq. NaHCO₃ (2 × 25 mL). The organic extracts were dried over MgSO₄ and concentrated *in vacuo*. Purification by flash column chromatography (SiO₂, 1:2 ethyl acetate: hexane \rightarrow 2:1 ethyl acetate: hexane \rightarrow ethyl acetate \rightarrow 1:19 methanol: ethyl acetate) afforded the title compound a colourless oil (105 mg, 33%). This compound exists as a complex mixture of rotamers at RT in CDCl₃, with 4 main rotamers visible in a ratio of roughly 10:8:5:1, based on the ¹⁹F NMR data; Rf 0.30 and 0.46 (1:4 methanol: ethyl acetate) - the 2 Rf values shows that rotamer interconversion is sufficiently slow that some rotamer separation is possible using chromatography, although for the purpose of this synthetic reaction, the product was isolated and used as a rotameric mixture; v_{max}/cm⁻¹ (thin film) 2937, 1682, 1639, 1509, 1405, 1367, 1221, 1148, 1064, 1036, 977, 917, 823, 798, 729, 646, 533, 499; δ_H (400 MHz, CDCl₃) 7.20 – 7.07 (2H, m, Ar**H**), 7.06 – 6.92 (2H, m, Ar**H**), 6.75 - 6.57 (1H, m, NCOCHCHH'), 6.43 - 6.32 (1H, m, NCOCHCHH'), 5.82 - 5.72 (1H, m, NCOCHCHH'), 4.86 – 4.47 (2H, m, ArCH₂), 3.74 – 3.47 (6H, m, CH (rotamer) and CH₂), 3.03 – 2.87 (3H, m, CH (rotamer) and CH₂), 2.58 (1H, t, J = 6.8 Hz, CH₂), 2.54 – 2.28 (3H, m, CH₂), 1.72 – 1.45 (4H, m, CH₂), 0.39 – 0.27 (4H, m, cyclopropyl CH₂). For a diagnostic ¹H NMR signal for one of the individual rotamers: 2.53 (1H, tt, J = 6.8, 3.9 Hz, cyclopropyl CH); δ_c (100 MHz, CDCl₃) 175.5 (CO), 174.7 (CO), 174.2 (CO), 173.4 (CO), 172.9 (**C**O), 172.60 (**C**O), 172.54 (**C**O), 171.4 (**C**O), 168.9 (**C**O), 168.8 (**C**O), 162.28 (Ar**C**F, ¹*J*_{CF} = 245.5 Hz), 162.22 (Ar**C**F, ¹*J*_{CF} = 245.5 Hz), 162.15 (Ar**C**F, ¹*J*_{CF} = 245.5 Hz), 133.6 (Ar**C**, ⁴*J*_{CF} = 3.2 Hz), 133.4 (Ar**C**, ⁴*J*_{CF} = 3.2 Hz), 132.6 (Ar**C**, ⁴*J*_{CF} = 3.2 Hz), 130.62 (NCO**C**HCHH', one rotamer), 130.57 (NCO**C**HCHH', two rotamers), 130.1 (NCOCHCHH', two rotamers), 129.0 (NCOCHCHH', one rotamer), 129.7 (2 × ArCH, ³J_{CF} = 8.1 Hz), 128.3 (2 × Ar**C**H, ³*J*_{CF} = 8.1 Hz), 128.0 (2 × Ar**C**H, ³*J*_{CF} = 8.1 Hz), 116.0 (2 × Ar**C**H, ²*J*_{CF} = 21.5 Hz), 115.8 (2 × ArCH, ²J_{CF} = 21.5 Hz), 115.6 (2 × ArCH, ²J_{CF} = 21.5 Hz), 53.6 (CH₂), 52.0 (CH), 51.8 (CH), 51.5 (CH₂), 50.8 (CH₂), 47.7 (CH₂), 44.30 (CH₂), 44.25 (CH₂), 43.8 (CH₂), 43.6 (CH₂), 42.9 (CH₂), 42.7 (CH₂), 41.8 (CH₂), 36.0 (CH₂), 35.6 (CH₂), 35.5 (CH), 33.4 (CH₂), 32.8 (CH₂), 32.7 (CH₂), 32.4 (CH₂), 32.3 (CH₂), 29.9 (CH), 29.0 (CH₂), 28.9 (CH₂), 28.4 (CH₂), 22.5 (CH₂), 22.35 (CH₂), 22.3 (CH₂), 9.7 (cyclopropyl CH₂), 7.1 (cyclopropyl CH₂, two rotamers); δ_F (376 MHz, CDCl₃), four major rotamers in a 10:1:8:5 ratio: – 114.61 (1F, m, ArF, major rotamer), -114.78 (1F, m, ArF), -115.00 (1F, m, ArF), -115.17 (1F, m, ArF); HRMS (ESI): calcd. for C₂₄H₃₀FN₃NaO₄, 466.2113. Found: [MNa]⁺, 466.2114 (-0.4 ppm error).

1-Acryloyl-5-(benzo[*d*][1,3]dioxol-5-ylmethyl)-9-(4-fluorobenzyl)-1,5,9-triazacyclotetradecane-2,6,10-trione (S4)

A stirring solution of 31c (73.1 mg, 0.151 mmol) and DIPEA (0.065 mL, 0.37 mmol) in DCM (2.5 mL) was cooled to 0 °C. To this was added a 0 °C cooled solution of acryloyl chloride (0.018 mL, 0.22 mmol) in DCM (0.5 mL) dropwise. Under an argon atmosphere this mixture was stirred at 0 °C for 2 hours. Afterwards it was allowed to warm to RT and stirred for a further 15 hours. The reaction mixture was then quenched with sat. aq. NH₄Cl (8 mL), extracted with Et₂O (10 mL), then the organic layer was washed with sat. aq. NaHCO₃ (2 × 5 mL). The organic extracts were dried over MgSO₄ and concentrated in vacuo. Purification by flash column chromatography (SiO₂, 1:2 ethyl acetate: hexane \rightarrow 2:1 ethyl acetate: hexane \rightarrow ethyl acetate) afforded the *title compound* a colorless oil (22.0 mg, 27%). This compound exists as a complex mixture of rotamers at RT in $CDCl_3$, with 2 major rotameric forms ($\approx 3:2$) based on the carbonyl region of the ¹³C NMR spectrum, and a third more minor rotamer based on the ¹⁹F NMR data. Due to overlapping signals in the ¹H and ¹⁹F NMR, it is difficult to confidently quote a rotamer ratio; R_f 0.68 (1:9 methanol: ethyl acetate); v_{max}/cm⁻¹ (thin film) 2932, 1682, 1637, 1508, 1490, 1443, 1410, 1374, 1223, 1143, 1038, 923, 812, 732; δ_H (400 MHz, CDCl₃) 7.24 – 7.10 (2H, m, Ar**H**), 7.07 - 6.94 (2H, m, ArH), 6.84 - 6.65 (3H, m, ArH and CHCH₂), 6.63 - 6.57 (1H, m, ArH), 6.37 (1H, dd, J = 16.8, 1.7 Hz, CHCHH', major rotamer), 5.95 – 5.91 (2H, m, OCH₂O), 5.74 (1H, dd, J = 10.3, 1.7 Hz, CHCHH', major rotamer), 4.83 – 4.46 (4H, m, ArCH₂), 3.92 – 3.57 (4H, m, CH₂), 3.42 (1H, br s, CH₂), 3.03 (1H, br s, CH₂), 2.91 – 2.67 (2H, m, CH₂), 2.53 – 2.33 (2H, m, CH₂), 1.89 – 1.48 (4H, m, CH₂). Diagnostic ¹H NMR signals for the minor rotamer: 6.34 (1H, dd, J = 16.8, 1.7 Hz, CHCHH', minor rotamer), 5.73 (1H, dd, J = 10.4, 1.6 Hz, CHCHH', minor rotamer [overlapping]); δ_c (100 MHz, CDCl₃) 175.5 (**C**O), 173.9 (**C**O), 173.7 (**C**O), 173.6 (**C**O), 172.4 (**C**O), 172.1 (**C**O), 169.2 (**C**O), 168.8 (**C**O), 162.3 (Ar**C**F, ¹*J*_{CF} = 246.0 Hz), 148.3 (ArCOCH₂), 148.0 (ArCOCH₂), 147.18 (ArCOCH₂), 147.15 (ArCOCH₂) 134.8 (CH₂), 133.1 (ArC, ⁴*J*_{CF} = 3.1 Hz), 133.0 (Ar**C**, ⁴*J*_{CF} = 3.1 Hz), 132.12 (Ar**C**), 132.02 (**C**H₂), 131.6 (**C**H), 131.5 (**C**H), 131.3 (**C**H), 131.0 (ArC), 129.9 (ArCH, ${}^{3}J_{CF}$ = 8.2 Hz), 129.0 (CH₂), 128.9 (CH₂), 128.4 (ArCH, ${}^{3}J_{CF}$ = 8.2 Hz), 128.3 (Ar**C**H, ³J_{CF} = 8.2 Hz), 127.6 (Ar**C**H), 121.8 (Ar**C**H), 119.8 (Ar**C**H), 115.92 (Ar**C**H, ²J_{CF} = 21.5 Hz), 115.89 (Ar**C**H, ²J_{CF} = 21.5 Hz), 108.8 (Ar**C**H), 108.6 (Ar**C**H), 108.3 (Ar**C**H), 107.0 (Ar**C**H), 106.6 (Ar**C**H), 101.3 (OCH₂O), 101.2 (OCH₂O), 53.8 (CH₂), 53.6 (CH₂), 53.2 (CH₂), 50.0 (CH₂), 44.6 (CH₂), 44.5 (CH₂), 43.9 (CH₂), 43.7 (CH₂), 43.2 (CH₂), 36.7 (CH₂), 35.2 (CH₂), 34.1 (CH₂), 31.6 (CH₂), 31.2 (CH₂), 31.1 (CH₂), 29.8 (CH₂), 28.9 (CH₂), 27.5 (CH₂), 23.0 (CH₂), 21.6 (CH₂); δ_F (376 MHz, CDCl₃), three signals in a 20:14:1 ratio: -114.74 (1F, m, ArF), -114.77 (1F, m, ArF, major rotamer),-115.05 (1F, m, ArF), -115.19 (1F, m, ArF); HRMS (ESI): calcd. for C₂₉H₃₂FN₃NaO₆, 560.2167. Found: [MNa]⁺, 560.2185 (-3.1 ppm error).

9-Benzyl-13-(4-fluorobenzyl)-5-(2-(methylthio)ethyl)-1,5,9,13-tetraazacyclooctadecane-2,6,10,14-tetraone (32a)

To a solution of S2 (258 mg, 0.523 mmol) in dry methanol (1.04 mL), was added 2-(methylthio)ethylamine (53 µL, 0.575 mmol) in a single portion. The reaction mixture was allowed to stir for 4 h at RT and then the solvent was removed in vacuo. Purification by flash column chromatography (SiO₂, 1:1 ethyl acetate: hexane \rightarrow ethyl acetate \rightarrow 1:19 methanol: ethyl acetate \rightarrow 1:9 methanol: ethyl acetate) afforded the *title compound* as a white solid (196 mg, 64%). This compound exists as a complex mixture of rotamers at RT in CDCl₃, with 8 rotameric forms observable in the ¹⁹F NMR data, and 32 (*i.e.* 4×8) signals consistent with CO groups in the ¹³C NMR. Due to overlapping signals in the NMR data, it is not possible to confidently quote a rotamer ratio; m.p. 43-57 °C; R_f 0.11 (1:9 methanol: ethyl acetate); v_{max}/cm⁻¹ (thin film) 3310, 2928, 1626, 1551, 1509, 1424, 1364, 1220, 1157, 921, 823, 730, 700, 499; δ_H (400 MHz, CDCl₃) 8.08 (1H, br t, J = 4.6 Hz, NH), 7.61 (1H, br t, J = 5.0 Hz, NH, rotamer), 7.52 (1H, br t, J = 5.6 Hz, NH), 7.47 (1H, br t, J = 6.0 Hz, NH), 7.42 – 6.89 (9H, m, ArH), 4.86 - 4.35 (4H, m, 2 × ArCH₂), 3.81 - 3.13 (10H, m, 5 × CH₂), 2.95 - 2.26 (10H, m, 5 × CH₂), 2.16 – 2.02 (3H, m, CH₃), 1.91 – 1.44 (4H, m, 2 × CH₂); δ_C (100 MHz, CDCl₃) 174.21 (**C**O), 174.10 (CO), 174.02 (CO), 173.94 (CO), 173.78 (CO), 173.70 (CO), 173.41 (CO), 173.11 (CO), 172.69 (CO), 172.61 (CO), 172.16 (CO), 172.08 (CO), 172.05 (CO), 171.88 (CO), 171.52 (CO), 171.44 (CO), 171.41 (CO), 171.29 (CO), 171.24 (CO), 171.19 (CO), 171.16 (CO), 171.11 (CO), 170.97 (CO), 170.72 (CO), 170.68 (CO), 170.62 (CO), 170.49 (CO), 170.47 (CO), 170.44 (CO), 170.32 (CO), 170.12 (CO), 169.96 (**C**O), 161.97 (Ar**C**F, ${}^{1}J_{CF}$ = 246.0 Hz), 161.92 (Ar**C**F, ${}^{1}J_{CF}$ = 246.0 Hz), 161.88 (Ar**C**F, ${}^{1}J_{CF}$ = 246.0 Hz), 161.83 $(ArCF, {}^{1}J_{CF} = 246.0 \text{ Hz}), 161.80 (ArCF, {}^{1}J_{CF} = 246.0 \text{ Hz}), 161.73 (ArCF, {}^{1}J_{CF} = 246.0 \text{ Hz}), 137.51 (ArC), 137.38$ (ArC), 137.34 (ArC), 137.13 (ArC), 136.96 (ArC), 136.86 (ArC), 136.78 (ArC), 136.38 (ArC), 136.31 (ArC), 135.84 (Ar**C**), 135.71 (Ar**C**), 133.64 (Ar**C**F, ${}^{4}J_{CF}$ = 3.0 Hz), 133.43 (Ar**C**F, ${}^{4}J_{CF}$ = 3.0 Hz), 133.18 (Ar**C**F, ${}^{4}J_{CF}$ = 3.0 Hz), 133.07 (Ar**C**F, ⁴J_{CF} = 3.0 Hz), 132.70 (Ar**C**F, ⁴J_{CF} = 3.0 Hz), 132.32 (Ar**C**F, ⁴J_{CF} = 3.0 Hz), 132.19 $(ArCF, {}^{4}J_{CF} = 3.0 Hz), 132.10 (ArCF, {}^{4}J_{CF} = 3.0 Hz), 129.63 (ArCH, {}^{3}J_{CF} = 8.1 Hz), 129.48 (ArCH), 129.43$ (ArCH), 129.39 (ArCH), 129.13 (ArCH, ³*J*_{CF} = 8.1 Hz), 128.98 (ArCH), 128.90 (ArCH), 128.86 (ArCH), 128.68 (ArCH), 128.63 (ArCH), 128.52 (ArCH), 128.43 (ArCH), 128.33 (ArCH), 128.06 (ArCH, ³J_{CF} = 8.1 Hz), 127.94 (ArCH), 127.88 (ArCH), 127.82 (ArCH), 127.80 (ArCH), 127.71 (ArCH), 127.50 (ArCH), 127.30 (ArCH), 127.14 (ArCH), 126.27 (ArCH), 126.08 (ArCH), 125.91 (ArCH), 125.75 (ArCH), 125.73 (ArCH), 126.27 (ArCH), 126.08 (ArCH), 125.91 (ArCH), 125.75 (ArCH), 115.65 (ArCH, ²J_{CF} = 21.1 Hz), 115.58 $(ArCH, {}^{2}J_{CF} = 21.1 Hz), 115.54 (ArCH, {}^{2}J_{CF} = 21.1 Hz), 115.23 (ArCH, {}^{2}J_{CF} = 21.1 Hz), 115.54 (ArCH, {}^{2}J_{CF} = 21.1 Hz)$ 21.1 Hz), 115.23 (Ar**C**H, ${}^{2}J_{CF}$ = 21.1 Hz), 115.12 (Ar**C**H, ${}^{2}J_{CF}$ = 21.1 Hz), 114.99 (Ar**C**H, ${}^{2}J_{CF}$ = 21.1 Hz), 55.86 (CH₂), 53.22 (CH₂), 52.93 (CH₂), 52.67 (CH₂), 52.33 (CH₂), 51.92 (CH₂), 51.83 (CH₂), 51.23 (CH₂), 49.96 (CH₂), 49.11 (CH₂), 49.01 (CH₂), 48.81 (CH₂), 48.59 (CH₂), 48.28 (CH₂), 48.25 (CH₂), 48.10 (CH₂), 47.80 (CH₂), 47.49 (CH₂), 47.18 (CH₂), 46.91 (CH₂), 46.79 (CH₂), 46.42 (CH₂), 45.89 (CH₂), 45.60 (CH₂), 45.45 (CH₂), 45.33 (CH₂), 45.02 (CH₂), 44.89 (CH₂), 44.62 (CH₂), 44.26 (CH₂), 44.17 (CH₂), 44.03 (CH₂), 43.75 (CH₂), 43.65 (CH₂), 43.58 (CH₂), 43.54 (CH₂), 43.48 (CH₂), 43.36 (CH₂), 43.23 (CH₂), 43.11 (CH₂), 42.87 (CH₂), 42.68 (CH₂), 42.47 (CH₂), 42.33 (CH₂), 42.25 (CH₂), 41.20 (CH₂), 40.24 (CH₂), 39.41 (CH₂), 39.22 (CH₂), 39.13 (CH₂), 38.66 (CH₂), 38.58 (CH₂), 38.20 (CH₂), 38.06 (CH₂), 37.56 (CH₂), 37.51 (CH₂), 37.33 (CH₂), 36.91 (CH₂), 36.20 (CH₂), 35.33 (CH₂), 35.27 (CH₂), 34.93 (CH₂), 34.79 (CH₂), 34.15 (CH₂), 33.99 (CH₂), 33.52 (CH₂), 33.44 (CH₂), 33.23 (CH₂), 33.05 (CH₂), 32.78 (CH₂), 32.74 (CH₂), 32.64 (CH₂), 32.53 (CH₂), 32.49 (CH₂), 32.41 (CH₂), 32.32 (CH₂), 32.24 (CH₂), 32.14 (CH₂), 32.05 (CH₂), 31.98 (CH₂), 31.81 (CH₂), 31.75 (CH₂), 31.65 (CH₂), 31.56 (CH₂), 31.52 (CH₂), 31.44 (CH₂), 31.34 (CH₂), 31.24 (CH₂), 31.20 (CH₂), 31.05 (CH₂), 30.93 (CH₂), 30.76 (CH₂), 30.67 (CH₂), 30.58 (CH₂), 29.34 (CH₂), 28.76 (CH₂), 28.56 (CH₂), 27.96 (CH₂), 27.87 (CH₂), 27.73 (CH₂), 27.61 (CH₂), 27.41 (CH₂), 27.20 (CH₂), 27.03 (CH₂), 23.60 (CH₂), 23.12 (CH₂), 22.99 (CH₂), 22.68 (CH₂), 22.18 (CH₂), 22.08 (CH₂), 22.03 (CH₂), 20.65 (CH₂), 20.49 (CH₂), 15.58 (CH₃), 15.22 (CH₃); δ_F (376 MHz, CDCl₃), eight signals in a 14:24:19:7:16:7:7:6 ratio: – 114.33 (1F, m, ArF), –114.47 (1F, m, ArF, major rotamer), –114.59 (1F, m, ArF), –114.72 (1F, m, ArF), – 114.79 (1F, m, ArF), –115.04 (1F, m, ArF), –115.15 (1F, m, ArF), –115.47 (1F, m, ArF); HRMS (ESI): calcd. for C₃₁H₄₁FN₄NaO₄S, 607.2725. Found: [MNa]⁺, 607.2708 (2.8 ppm error).

9-Cyclopropyl-13-(4-fluorobenzyl)-5-(prop-2-yn-1-yl)-1,5,9,13-tetraazacyclooctadecane-2,6,10,14tetraone (32b)

To a solution of S3 (98.1 mg, 0.221 mmol) in dry methanol (0.44 mL), was added propargyl amine (16 µL, 0.243mmol) in a single portion. The reaction mixture was allowed to stir for 4 h at RT and then the solvent was removed *in vacuo*. Purification by flash column chromatography (SiO₂, 1:1 ethyl acetate: hexane \rightarrow ethyl acetate \rightarrow 1:19 methanol: ethyl acetate \rightarrow 1:9 methanol: ethyl acetate \rightarrow 1:6 methanol: ethyl acetate \rightarrow 1:4 methanol: ethyl acetate) afforded the *title compound* as a colourless oil (27.6 mg, 25%). This compound exists as a complex mixture of rotamers at RT in CDCl₃, with 6 rotameric forms observable in the ¹⁹F NMR data. Due to overlapping signals in the NMR data, it is not possible to confidently quote a rotamer ratio; $R_f 0.33$ (1:4 methanol: ethyl acetate); v_{max}/cm^{-1} (thin film) 3295, 2941, 1733, 1634, 1552, 1510, 1438, 1369, 1219, 1017, 826, 731; δ_{H} (700 MHz, CDCl₃), 7.23 - 7.13 (2H, m, ArH), 7.10 (1H, t, J = 6.6 Hz, NH, rotamer), 7.06 - 6.95 (2H, m, ArH), 6.92 (1H, t, J = 6.0 Hz, NH, rotamer), 6.66 (1H, t, J = 5.5 Hz, NH, rotamer), 4.63 – 4.48 (2H, m, CH₂), 4.22 – 4.11 (2H, m, CH₂), 3.81 – 3.50 (4H, m, CH₂), 3.45 – 3.13 (2H, m, CH₂), 2.96 – 2.16 (12H, m, CH₂ and CH), 1.87 – 1.43 (4H, m, CH₂), 0.96 – 0.55 (4H, m, cyclopropyl CH₂); δ_{c} (176 MHz, CDCl₃), 174.36 (CO), 174.10 (CO), 173.94 (CO), 173.81 (CO), 173.78 (CO), 173.71 (CO), 172.58 (CO), 172.49 (CO), 171.64 (CO), 171.54 (CO), 171.50 (**C**O), 171.48 (**C**O), 171.06 (**C**O), 170.37 (**C**O), 170.26 (**C**O), 169.89 (**C**O), 162.35 (Ar**C**F, ¹*J*_{CF} = 246.0 Hz), 162.31 (Ar**C**F, ${}^{1}J_{CF}$ = 246.0 Hz), 162.24 (Ar**C**F, ${}^{1}J_{CF}$ = 246.0 Hz), 162.20 (Ar**C**F, ${}^{1}J_{CF}$ = 246.0 Hz), 162.18 $(ArCF, {}^{1}J_{CF} = 246.0 \text{ Hz}), 133.99 (ArCF, {}^{4}J_{CF} = 3.2 \text{ Hz}), 133.91 (ArCF, {}^{4}J_{CF} = 3.2 \text{ Hz}), 133.39 (ArCF), 132.70$ $(ArCF, {}^{4}J_{CF} = 3.2 Hz), 132.54 (ArCF), 129.96 (ArCH, {}^{3}J_{CF} = 8.0 Hz), 129.50 (ArCH, {}^{3}J_{CF} = 8.0 Hz), 129.22$ $(ArCH, {}^{3}J_{CF} = 8.0 Hz), 128.32 (ArCH, {}^{3}J_{CF} = 8.0 Hz), 128.23 (ArCH, {}^{3}J_{CF} = 8.0 Hz), 128.09 (ArCH, {}^{3}J_{CF} = 8.0 Hz)$ Hz), 116.05 (Ar**C**H, ²*J*_{CF} = 21.5 Hz), 116.02 (Ar**C**H, ²*J*_{CF} = 21.5 Hz), 115.95 (Ar**C**H, ²*J*_{CF} = 21.5 Hz), 115.60 (Ar**C**H, ²*J*_{CF} = 21.5 Hz), 115.55 (Ar**C**H, ²*J*_{CF} = 21.5 Hz), 79.22 (**C**CH), 78.98 (**C**CH), 78.80 (**C**CH), 78.63 (**C**CH), 72.85 (CCH), 72.45 (CCH), 72.06 (CCH), 71.89 (CCH), 51.50 (CH₂), 51.44 (CH₂), 50.05 (CH₂), 47.94 (CH₂), 47.82 (CH₂), 45.92 (CH₂), 45.52 (CH₂), 45.48 (CH₂), 43.99 (CH₂), 43.93 (CH₂), 43.82 (CH₂), 43.64 (CH₂), 43.15 (CH₂), 42.97 (CH₂), 42.47 (CH₂), 40.58 (CH₂), 39.65 (CH₂), 39.55 (CH₂), 39.43 (CH₂), 39.32 (CH₂),

39.09 (CH₂), 37.53 (CH₂), 37.22 (CH₂), 35.75 (CH₂), 35.11 (CH₂), 34.81 (CH₂), 33.42 (CH₂), 33.27 (CH₂), 33.25 (CH₂), 32.84 (CH₂), 32.73 (CH₂), 32.69 (CH₂), 32.64 (CH₂), 32.40 (CH₂), 32.11 (CH₂), 31.94 (CH₂), 31.87 (CH₂), 31.51 (CH₂), 30.90 (CH₂), 30.53 (CH), 30.37 (CH), 30.31 (CH), 29.79 (CH₂), 29.71 (CH), 28.67 (CH₂), 28.46 (CH₂), 28.30 (CH₂), 27.96 (CH₂), 27.24 (CH₂), 23.40 (CH₂), 22.67 (CH₂), 22.58 (CH₂), 22.31 (CH₂), 9.87 (cyclopropyl CH₂), 9.67 (cyclopropyl CH₂), 9.31 (cyclopropyl CH₂), 9.25 (cyclopropyl CH₂); $\delta_{\rm F}$ (376 MHz, CDCl₃), six rotamers in a 7:5:9:1:12:4 ratio: -114.42 (1F, m, ArF), -114.57 (1F, m, ArF), -114.65 (1F, m, ArF), -114.80 (1F, m, ArF), -114.92 (1F, m, ArF, major rotamer), -115.08 (1F, m, ArF); HRMS (ESI): calcd. for C₂₇H₃₅FN₄NaO₄, 521.2535. Found: [MNa]⁺, 521.2536 (-0.3 ppm error).

9-(Benzo[d][1,3]dioxol-5-ylmethyl)-13-(4-fluorobenzyl)-5-isopentyl-1,5,9,13-

tetraazacyclooctadecane-2,6,10,14-tetraone (32c)

To a solution of **S4** (53.3 mg, 0.099 mmol) in dry methanol (0.24 mL), was added isopentylamine (15 μ L, 0.130 mmol) in a single portion. The reaction mixture was allowed to stir for 4 h at RT and then the solvent was removed *in vacuo*. Purification by flash column chromatography (SiO₂, 1:1 ethyl acetate: hexane \rightarrow ethyl acetate \rightarrow 1:19 methanol: ethyl acetate \rightarrow 1:9 methanol: ethyl acetate) afforded the *title compound* as a colourless oil (37.1 mg, 60%); R_f 0.45 (1:4 methanol: ethyl acetate); v_{max}/cm^{-1} (thin film) 3308, 2942, 1628, 1557, 1508, 1489, 1442, 1368, 1243, 1221, 1097, 1038, 924, 813, 731; δ_{H} (600 MHz, CDCl₃) 8.01 (1H, br t, *J* = 5.1 Hz NH, rotamer), 7.40 – 7.36 (1H, m, NH, rotamer), 7.34 (1H, br t, *J* = 5.6 Hz NH, rotamer), 7.25 – 7.07 (2H, m, ArH), 7.07 – 6.90 (2H, m, ArH), 6.81 – 6.44 (3H, m, ArH), 5.96 – 5.87 (2H, m, OCH₂O), 4.77 – 4.19 (4H, m, 2 × ArCH₂), 3.76 – 3.46 (6H, m, 3 × CH₂), 3.40 – 2.98 (4H, m, 2 × CH₂), 2.87 – 2.24 (8H, m, 4 × CH₂), 1.86 – 1.12 (7H, m, 3 × CH₂and CH, [overlapping]), 0.92 – 0.83 (6H, m, 2 × CH₃); δ_{C} (151 MHz, CDCl₃) 174.49 (CO), 173.12 (CO), 172.71 (CO), 172.64 (CO), 172.32 (CO), 172.14 (CO), 172.02 (CO), 171.98 (CO), 171.63 (CO), 171.46 (CO), 171.39 (CO), 171.22 (CO), 170.19 (CO), 170.04 (CO), 170.03 (CO), 169.77 (CO), 162.36 (ArCF, ¹/_J_{CF}

= 246.5 Hz), 162.34 (Ar**C**F, ${}^{1}J_{CF}$ = 246.5 Hz), 162.30 (Ar**C**F, ${}^{1}J_{CF}$ = 246.5 Hz), 162.23 (Ar**C**F, ${}^{1}J_{CF}$ = 246.5 Hz), 148.55 (ArCOCH₂), 148.33 (ArCOCH₂), 148.27 (ArCOCH₂), 148.20 (ArCOCH₂), 148.05 (ArCOCH₂), 147.94 (ArCOCH₂), 147.51 (ArCOCH₂), 147.29 (ArCOCH₂), 147.19 (ArCOCH₂), 147.10 (ArCOCH₂), 147.06 (Ar**C**OCH₂), 147.00 (Ar**C**OCH₂), 133.90 (Ar**C**), 133.74 (Ar**C**F, ⁴J_{CF} = 3.0 Hz), 133.50 (Ar**C**F, ⁴J_{CF} = 3.0 Hz), 133.41 (Ar**C**), 132.83 (Ar**C**), 132.59 (Ar**C**F, ${}^{4}J_{CF}$ = 3.0 Hz), 132.38 (Ar**C**F, ${}^{4}J_{CF}$ = 3.0 Hz), 132.34 (Ar**C**F, ${}^{4}J_{CF}$ = 3.0 Hz),131.83 (ArC), 131.72 (ArC), 131.52 (ArC), 131.18 (ArC), 130.71 (ArC), 130.35 (ArC), 130.03 $(ArCH, {}^{3}J_{CF} = 8.1 Hz), 129.86 (ArCH, {}^{3}J_{CF} = 8.1 Hz), 129.83 (ArCH, {}^{3}J_{CF} = 8.1 Hz), 129.70 (ArC), 129.53$ (Ar**C**), 129.48 (Ar**C**H, ${}^{3}J_{CF} = 8.1 \text{ Hz}$), 129.31 (Ar**C**H, ${}^{3}J_{CF} = 8.1 \text{ Hz}$), 128.31 (Ar**C**H, ${}^{3}J_{CF} = 8.1 \text{ Hz}$), 128.20 (ArCH), 128.15 (ArCH), 128.10 (ArCH), 128.05 (ArCH), 121.68 (ArCH), 121.61 (ArCH), 121.43 (ArCH), 121.01 (ArCH), 119.84 (ArCH), 119.54 (ArCH), 119.49 (ArCH), 119.42 (ArCH), 116.05 (ArCH, ²J_{CF} = 21.6 Hz), 116.02 (Ar**C**H, ${}^{2}J_{CF}$ = 21.6 Hz), 115.95 (Ar**C**H, ${}^{2}J_{CF}$ = 21.6 Hz), 115.62 (Ar**C**H, ${}^{2}J_{CF}$ = 21.6 Hz), 115.57 $(ArCH, {}^{2}J_{CF} = 21.6 Hz), 115.46 (ArCH, {}^{2}J_{CF} = 21.6 Hz), 108.80 (ArCH), 108.76 (ArCH), 108.66 (ArCH), 108.66 (ArCH), 108.66 (ArCH), 108.66 (ArCH), 108.80 ($ 108.64 (ArCH), 108.59 (ArCH), 108.55 (ArCH), 108.34 (ArCH), 108.26 (ArCH), 108.21 (ArCH), 107.12 (ArCH), 106.94 (ArCH), 106.79 (ArCH), 106.60 (ArCH), 106.55 (ArCH), 115.53 (OCH₂O), 115.38 (OCH₂O), 101.46 (OCH₂O), 101.43 (OCH₂O), 101.29 (OCH₂O), 101.26 (OCH₂O), 101.22 (OCH₂O), 101.13 (OCH₂O), 101.06 (OCH₂O), 53.52 (CH₂), 53.12 (CH₂), 53.03 (CH₂), 52.62 (CH₂), 52.50 (CH₂), 52.27 (CH₂), 52.16 (CH₂), 52.06 (CH₂), 51.81 (CH₂), 51.53 (CH₂), 50.56 (CH₂), 49.80 (CH₂), 49.42 (CH₂), 49.26 (CH₂), 49.11 (CH₂), 48.63 (CH₂), 48.27 (CH₂), 47.99 (CH₂), 47.85 (CH₂), 47.68 (CH₂), 47.23 (CH₂), 46.94 (CH₂), 46.74 (CH₂), 46.33 (CH₂), 46.15 (CH₂), 45.82 (CH₂), 45.34 (CH₂), 45.25 (CH₂), 44.96 (CH₂), 44.89 (CH₂), 44.85 (CH₂), 44.74 (CH₂), 44.52 (CH₂), 44.25 (CH₂), 44.09 (CH₂), 44.04 (CH₂), 43.85 (CH₂), 43.74 (CH₂), 43.68 (CH₂), 43.52 (CH₂), 43.23 (CH₂), 43.07 (CH₂), 42.98 (CH₂), 42.77 (CH₂), 42.39 (CH₂), 41.88 (CH₂), 39.65 (CH₂), 39.51 (CH₂), 39.18 (CH₂), 38.94 (CH₂), 38.49 (CH₂), 38.34 (CH₂), 38.07 (CH₂), 37.83 (CH₂), 37.68 (CH₂), 37.64 (CH₂), 37.52 (CH₂), 37.28 (CH₂), 36.96 (CH₂), 36.75 (CH₂), 36.68 (CH₂), 36.57 (CH₂), 36.22 (CH₂), 35.88 (CH₂), 35.86 (CH₂), 35.79 (CH₂), 35.37 (CH₂), 35.12 (CH₂), 33.60 (CH₂), 33.52 (CH₂), 33.46 (CH₂), 33.21 (CH₂), 33.11 (CH₂), 32.96 (CH₂), 32.83 (CH₂), 32.65 (CH₂), 32.53 (CH₂), 32.31 (CH₂), 32.19 (CH₂), 32.12 (CH₂), 32.02 (CH₂), 31.98 (CH₂), 31.94 (CH₂), 31.91 (CH₂), 31.84 (CH₂), 31.69 (CH₂), 31.34 (CH₂), 31.10 (CH₂), 30.95 (CH₂), 29.69 (CH₂), 29.07 (CH₂), 28.78 (CH₂), 28.12 (CH₂), 27.95 (CH₂), 27.74 (CH₂), 27.23 (CH₂), 27.05 (CH₂), 26.38 (CH), 26.32 (CH), 26.23 (CH), 26.14 (CH), 26.10 (CH), 26.04 (CH), 26.00 (CH), 25.97 (CH), 23.87 (CH₂), 23.48 (CH₂), 23.25 (CH₂), 22.97 (CH₂), 22.61 (CH₃), 22.59 (CH₃), 22.48 (CH₃), 22.42 (CH₃), 22.39 (CH₂), 20.77 (CH₂); δ_F (376 MHz, CDCl₃), eight rotamers in a 42:8:14:13:6:8:5:3 ratio: -114.34 (1F, m, ArF, major rotamer), -114.50 (1F, m, ArF), -114.57 (1F, m, ArF), -114.71 (1F, m, ArF), -114.83 (1F, m, ArF), -115.12 (1F, m, ArF), -115.19 (1F, m, ArF), -115.50 (1F, m, ArF). HRMS (ESI): calcd. for C₃₄H₄₅FN₄NaO₆, 647.3215. Found: [MNa]⁺, 647.3223 (-1.2 ppm error).

NMR data for were also collected in d₆-DMSO at 120 °C to reduce the number of rotameric forms, leading greatly simplified NMR spectra:

 $\delta_{\rm H}$ (500 MHz, d₆-DMSO, 120 °C) 2 major rotamers were observed under these conditions, with most signals broadened; 7.60 (1H, br s, NH, minor rotamer), 7.52 (1H, br s, NH, major rotamer), 7.31 – 7.23 (2H, m, ArH), 7.15 – 7.06 (2H, m, ArH), 6.65 – 6.68 (3H, m, ArH), 5.96 (2H, s, OCH₂O), 4.60 – 4.52 (2H, m, ArCH₂), 4.47 – 4.41 (2H, m, ArCH₂), 3.65 – 3.43 (6H, m, 3 × CH₂), 3.30 – 3.20 (2H, m, CH₂), 3.19 – 3.05 (3H, m, 1.5 × CH₂), 2.72 – 2.53 (3H, m, 1.5 × CH₂), 2.45 – 2.30 (4H, m, 2 × CH₂), 1.68 – 1.44 (4H, m, 2 × CH₂), [overlapping]), 1.54 (1H, dt, *J* = 13.4, 6.7 Hz, CH, [overlapping]), 1.40 – 1.32 (2H, m, CH₂), 0.91 (6H, d, *J* = 6.7 Hz, 2 × CH₃); Diagnostic ¹³C resonances are provided; there is clear evidence for rotemric broadening in the ¹³C NMR spectrum, which explains why all carbons are not accounted for: δ_c (126 MHz, d₆-DMSO, 120 °C); 173.1 (CO), 171.1 (CO), 170.6 (CO), 162.0 (ArCF, ¹*J*_{CF} = 243.2 Hz), 148.1 (ArCOCH₂), 147.0 (ArCOCH₂), 135.0 (ArC), 129.7 (ArCH), 115.53 (ArCH, ²*J*_{CF} = 21.3 Hz), 115.46 (ArCH, ²*J*_{CF} = 21.3 Hz), 108.5 (ArCH), 101.3 (OCH₂O), 43.8 (CH₂), 32.2 (CH₂), 26.1 (CH), 22.7 (CH₃); δ_F (471 MHz, d₆-DMSO, 120 °C) two rotamers (broadened, and overlapping) in a 8:5 ratio: –115.99 (1F, m, ArF, major rotamer), –116.07 (1F, m, ArF).

1-Acryloyl-piperidin-2-one (11a)

5-(4-Fluorobenzyl)-1,5-diazecane-2,6-dione (14a) 2:15 mixture of rotamers.

1-acryloyl-azetidin-2-one (11b)

1-(4-Fluorobenzyl)-1,5-diazocane-2,6-dione (14b)

Methyl 3-(3-((4-fluorobenzyl)amino)propanamido)propanoate. The isolated material contained minor unidentified impurities, but the NMR data obtained were sufficient to identify this unwanted side product.

N-(4-fluorobenzyl)-3-(3-((4-fluorobenzyl)amino)propanamido)propanamide.

1-Acryloyl-pyrrolidin-2-one (11c)

5-(4-Fluorobenzyl)-1,5-diazonane-2,6-dione (14c). In solution in $CDCl_3$, this compound exists as a mixture of rotameric forms (1 major rotamer and 3 minor rotamers, best seen in the ¹⁹F NMR). The ¹H NMR data is complicated by rotameric broadening, with product identity and purity best determined using the ¹³C NMR data collected at 55 °C.

1-Acryloyl-azepan-2-one (11d)

5-(4-Fluorobenzyl)-1,5-diazacycloundecane-2,6-dione (14d) Note, in solution in CDCl₃, this compound exists as a mixture of rotameric forms (1 major rotamer and 1 minor based on the ¹⁹F NMR data). The ¹H NMR spectrum is severely complicated by rotameric broadening, with product identity and purity best determined using ¹³C NMR data.

1-Acryloyl-azocan-2-one (11e)

5-(4-Fluorobenzyl)-1,5-diazacyclododecane-2,6-dione (14e)

4-(Acryloyl)thiomorpholin-3-one (16a)

tert-Butyl 4-acryloyl-5-oxo-1,4-diazepane-1-carboxylate (16b)

tert-Butyl 4-acryloyl-3-oxopiperazine-1-carboxylate (16c)

1-Acryloyl-6-allylpiperidin-2-one (16d)

(1SR,4RS)-2-Acryloyl-2-azabicyclo[2.2.1]hept-5-en-3-one (16e)

4aR,4bS,6aS,7S,9aS,9bS,11aR)-1-Acryloyl-*N*-(*tert*-butyl)-4a,6a-dimethyl-2-oxo-2,4a,4b,5, 6,6a,7,8,9,9a,9b,10,11,11a-tetradecahydro-1*H*-indeno[5,4-*f*]quinoline-7-carboxamide (16f)

4-(4-Fluorobenzyl)-1,4,8-thiadiazecane-3,7-dione (17a) In solution in CDCl₃, this compound exists as a mixture of 2 rotameric forms (4:1 ratio, best seen in the ¹⁹F NMR). The ¹H NMR spectrum is difficult to interpret due rotameric broadening, even when recorded at 80 °C in DMSO-d6, with product identity and purity best determined using ¹³C NMR data in CDCl₃ at RT.

tert-Butyl 8-(4-fluorobenzyl)-5,9-dioxo-1,4,8-triazacycloundecane-1-carboxylate (17b) The ¹H NMR and 13C NMR spectra are both affected by rotameric broadening, even when recorded at elevated temperatures.

tert-Butyl 1-(4-fluorobenzyl)-2,8-dioxo-1,4,7-triazecane-4-carboxylate (17c) In solution in CDCl₃, this compound exists as a mixture of 3 rotameric forms (4:5:20 ratio, best seen in the ¹⁹F NMR)

10-Allyl-5-(4-fluorobenzyl)-1,5-diazecane-2,6-dione (17d) In solution in $CDCl_3$, this compound exists as a mixture of 2 rotameric forms (12:1 ratio, best seen in the ¹⁹F NMR).

(1SR,8SR)-6-(4-fluorobenzyl)-2,6-diazabicyclo[6.2.1]undec-9-ene-3,7-dione (17e)

(8aR,8bS,10aS,11S,13aS,13bS,15aR,Z)-N-(*tert*-butyl)-5-(4-fluorobenzyl)-8a,10a-dimethyl-2,6-dioxo-2,3,4,5,6,8a,8b,9,10,10a,11,12,13,13a,13b,14,15,15a-octadecahydro-1*H*cyclopenta[5,6]naphtho[2,1-*f*][1,5]diazecine-11-carboxamide trione (17f)

1-Methacryloylpiperidin-2-one (18a)

(E)-1-(But-2-enoyl)piperidin-2-one (18b) Contains trace impurities; used in this form in the subsequent CARE step.

90 80

70 60

40 30 20

120 110 f1 (ppm)

160 150

1-(2-Phenylacryloyl)piperidin-2-one (18c)

1-Cinnamoylpiperidin-2-one (18d)

5-(4-Fluorobenzyl)-3-methyl-1,5-diazecane-2,6-dione (19a) In solution in CDCl₃, this compound exists largely as a single rotamer, along with 2 minor rotamers (most clearly seen in the ¹⁹F NMR data).

5-(4-Fluorobenzyl)-4-methyl-1,5-diazecane-2,6-dione (19b)

5-(4-Fluorobenzyl)-3-phenyl-1,5-diazecane-2,6-dione (19c) 10:1 mixture of rotamers.

5-Benzyl-1,5-diazecane-2,6-dione (20a) 10:1 mixture of rotamers.

5-Methyl-1,5-diazecane-2,6-dione (20b) 7:1 mixture of rotamers.

5-Cyclopropyl-1,5-diazecane-2,6-dione (20c) 20:1 mixture of rotamers.

5-Isopropyl-1,5-diazecane-2,6-dione (20d) 1:11 mixture of rotamers.

5-(4-Methoxyphenyl)-1,5-diazecane-2,6-dione (20f) In solution in CDCl₃, this compound largely a single rotamer, with a trace amount of a minor rotamer visible in the ¹H and ¹³C NMR spectra.

5-Phenyl-1,5-diazecane-2,6-dione (20g)

5-(4-Nitrophenyl)-1,5-diazecane-2,6-dione (20h)

Ethyl 2-(4,10-dioxo-1,5-diazecan-1-yl)acetate (20i)

Methyl (S)-2-(4,10-dioxo-1,5-diazecan-1-yl)propanoate (20j) 2:1 mixture of rotamers.

5-(4-Bromobenzyl)-1,5-diazecane-2,6-dione (20k)

5-(2-(1*H***-Indol-3-yl)ethyl)-1,5-diazecane-2,6-dione (20l).** The non-aromatic region of ¹H NMR spectrum is significantly affected by rotameric broadening.

tert-Butyl (3-(4,10-dioxo-1,5-diazecan-1-yl)propyl)carbamate (20m)

5-(Prop-2-yn-1-yl)-1,5-diazecane-2,6-dione (20n)

5-(2-(Methylthio)ethyl)-1,5-diazecane-2,6-dione (200)

5-(3-(2-Oxopyrrolidin-1-yl)propyl)-1,5-diazecane-2,6-dione (20p)

tert-Butyl 2-((4R,6R)-6-(2-(4,10-dioxo-1,5-diazecan-1-yl)ethyl)-2,2-dimethyl-1,3-dioxan-4-yl)acetate

(20q)

5-(2,2-Difluoroethyl)-1,5-diazecane-2,6-dione (20r)

5-(2-(1,3-Dioxolan-2-yl)ethyl)-1,5-diazecane-2,6-dione (20s) 10:1 mixture of rotamers.

2-(4,10-Dioxo-1,5-diazecan-1-yl)acetamide (20t)

3-(4,10-Dioxo-1,5-diazecan-1-yl)propanamide (20u)

tert-Butyl 2-((4,10-dioxo-1,5-diazecan-1-yl)methyl)piperidine-1-carboxylate (20v) In methanol- d_4 at 50 °C the 1H NMR spectra is severely broadened due to rotamer interconversion, while the ¹³C NMR spectrum shows it exists as a roughly 1:1 mixture of rotamers under the same conditions.

5-(Furan-2-ylmethyl)-1,5-diazecane-2,6-dione (20w)

5-(Pyridin-4-ylmethyl)-1,5-diazecane-2,6-dione (20x) 10:1 mixture of rotamers.

5-(2-Morpholinoethyl)-1,5-diazecane-2,6-dione (20y)

5-(2-(1H-imidazol-4-yl)ethyl)-1,5-diazecane-2,6-dione (20z) In solution in methanol-d4, this compound experiences rotameric broadening.

5-Methoxy-1,5-diazecane-2,6-dione (20za) In solution in CDCl₃, this compound exists predominantly as a single rotamer, but with rotameric broadening seen in the ¹H NMR spectrum and traces of a minor rotamer evident in the ¹³C NMR spectrum.

5-(((1S,4aR,10aS)-7-Isopropyl-1,4a-dimethyl-1,2,3,4,4a,9,10,10aoctahydrophenanthren-1-yl)methyl)-1,5-diazecane-2,6-dione (20zb) 3:2 mixture of rotamers.

100 90 80

120 110 f1 (ppm)

140 130

70

60

50

40

210

200

190 180 170 160 150

20

-0.10

-0.05

0.00

20 10

30

5-(4-Hydroxylbenzyl)-1,5-diazecane-2,6-dione (20zc) Rotameric broadening is evident in both the 1H and 13C NMR spectra.

90

80 70

50

40

60

30 20 10

220 210 200 190 180 170 160 150 140 130 120 110 100 f1 (ppm) --0.05

-20

-10

Ó

5-(4-Hydroxyphenethyl)-1,5-diazecane-2,6-dione (20zd) Rotameric broadening is evident in both the ¹H and ¹³C NMR spectra.

5-(2-Hydroxyethyl)-1,5-diazecane-2,6-dione (20ze) Rotameric broadening is evident in both the ¹H and ¹³C NMR spectra.

5-(4-Aminobenzyl)-1,5-diazecane-2,6-dione (20zf) Rotameric broadening is evident in the ¹H NMR spectrum. Product identity and purity is best seen in the ¹³C NMR data.

5,5'-(1,4-Phenylenebis(methylene))bis(1,5-diazecane-2,6-dione) (20zg) Severe rotameric broadening is evident in the ¹H NMR spectrum. Product identity and purity is best seen in the ¹³C NMR data.

4-Acryloylmorpholin-3-one (21)

Methyl 2-(2-acrylamidoethoxy)acetate (23)

N-(2-(2-((4-fluorobenzyl)amino)-2-oxoethoxy)ethyl)acrylamide (24)

Methyl 5-acrylamidopentanoate (26)

5-Acryloyl-1-oxa-5-azacycloheptadecane-4,17-dione (27)

5-(4-Fluorobenzyl)-1-oxa-5,9-diazacyclohenicosane-4,8,21-trione (28) 2:1 mixture of rotamers.

5-Acryloyl-1-thia-5-azacyclododecane-4,12-dione (29)

5-(4-Fluorobenzyl)-1-thia-5,9-diazacyclohexadecane-4,8,16-trione (30) 3:1 mixture of rotamers.

1-Acryloyl-5-(4-fluorobenzyl)-1,5-diazecane-2,6-dione (S1) In solution in CDCl₃, this compound exists largely as a single rotamer, along with a minor rotamer (most clearly seen in the ¹⁹F NMR data). The ¹H NMR spectrum is significantly affected by rotameric broadening.

5-Benzyl-9-(4-fluorobenzyl)-1,5,9-triazacyclotetradecane-2,6,10-trione (31a) This compound exists as a complex mixture of rotamers at RT in CDCl₃, with 4 rotamers visible in a ratio of roughly 7:5:4:1, based on the ¹⁹F NMR data and NH signals in the ¹H NMR spectrum.

5-Cyclopropyl-9-(4-fluorobenzyl)-1,5,9-triazacyclotetradecane-2,6,10-trione (31b) This compound exists as a complex mixture of rotamers at RT in CDCl₃, with 4 main rotamers based on the carbonyl region of the ¹³C NMR spectrum. Due to overlapping signals in the ¹H and ¹⁹F NMR, it is difficult to confidently quote a rotamer ratio.

5-(Benzo[d][1,3]dioxol-5-ylmethyl)-9-(4-fluorobenzyl)-1,5,9-triazacyclotetradecane-2,6,10-trione (31c) This compounds exists as a complex mixture of rotamers at RT in CDCl₃, with 3 main rotamers visible in a ratio of roughly 12:8:6 based on the ¹⁹F NMR data and the OCH₂O signals in the ¹H NMR spectrum. A more minor fourth rotamer can also be seen in the ¹⁹F NMR spectrum.

1-Acryloyl-5-benzyl-9-(4-fluorobenzyl)-1,5,9-triazacyclotetradecane-2,6,10-trione (S2)

1-Acryloyl-5-cyclopropyl-9-(4-fluorobenzyl)-1,5,9-triazacyclotetradecane-2,6,10-trione (S3)

1-Acryloyl-5-(benzo[*d*][1,3]dioxol-5-ylmethyl)-9-(4-fluorobenzyl)-1,5,9-triazacyclotetradecane-

2,6,10-trione (S4) This compound exists as a complex mixture of rotamers at RT in CDCl₃, with 2 major rotameric forms (\approx 3:2) based on the carbonyl region of the ¹³C NMR spectrum, and a third more minor rotamer based on the ¹⁹F NMR data. Due to overlapping signals in the ¹H and ¹⁹F NMR, it is difficult to confidently quote a rotamer ratio.

9-Benzyl-13-(4-fluorobenzyl)-5-(2-(methylthio)ethyl)-1,5,9,13-tetraazacyclooctadecane-2,6,10,14-tetraone (32a) This compound exists as a complex mixture of rotamers at RT in CDCl₃, with 8 rotameric forms observable in the ¹⁹F NMR data, and 32 (i.e. 4×8) signals consistent with CO groups in the ¹³C NMR. Due to overlapping signals in the NMR data, it is not possible to confidently quote a rotamer ratio.

9-Cyclopropyl-13-(4-fluorobenzyl)-5-(prop-2-yn-1-yl)-1,5,9,13-tetraazacyclooctadecane-2,6,10,14-tetraone (32b) This compound exists as a complex mixture of rotamers at RT in CDCl₃, with 6 rotameric forms observable in the ¹⁹F NMR data. Due to overlapping signals in the NMR data, it is not possible to confidently quote a rotamer ratio.

9-(Benzo[*d*][1,3]dioxol-5-ylmethyl)-13-(4-fluorobenzyl)-5-isopentyl-1,5,9,13tetraazacyclooctadecane-2,6,10,14-tetraone (32c) (CDCl₃ at 298 K)

100 90 80 70 60

50

40 30 20

110 f1 (ppm)

20

210 200 190 180 170 160 150 140 130 120

-200 -100

-0 --100 --200

ó

10

9-(Benzo[*d*][1,3]dioxol-5-ylmethyl)-13-(4-fluorobenzyl)-5-isopentyl-1,5,9,13tetraazacyclooctadecane-2,6,10,14-tetraone (32c) – (d₆-DMSO at 393 K)

References

- 1. CrysAlisPro, Oxford Diffraction Ltd.
- 2. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm within CrysAlisPro software, Oxford Diffraction Ltd.
- 3. "Olex2" crystallography software, J. Appl. Cryst., 2009, 42, 339–341.
- 4. SHELXT Integrated space-group and crystal-structure determination

G. M. Sheldrick, Acta Cryst. 2015, A71, 3-8

- "Crystal structure refinement with SHELXL"
 G.M. Sheldrick, Acta Cryst. 2015, C71, 3-8.
- T. C. Stephens, M. Lodi, A. Steer, Y. Lin, M. Gill, W. P. Unsworth, *Chem. Eur. J.* 2017, 23, 13314–13318
- 7. T. C. Stephens, A. Lawer, T. French, W. P. Unsworth, Chem. Eur. J. 2018, 24, 13947–13953
- K. Y. Palate, R. G Epton, A. C. Whitwood, J. M. Lynam, W. P. Unsworth Org. Biomol. Chem.,
 2021, 19, 1404–1411.