# **Electronic supplementary information**

# Ag coated 3D-Cu foam as a lithiophilic current collector for enabling Li<sub>2</sub>S-based anode-free batteries

Hao Cheng, <sup>a</sup> Cheng Gao, <sup>a</sup> Ning Cai, <sup>a</sup> Miao Wang <sup>\*</sup> <sup>a</sup>

 a. Zhejiang Province key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou 310027, P. R. China.

<sup>\*</sup> Correspondence should be addressed to miaowang@zju.edu.cn

# Experiments

### preparations of current collectors.

2D-Cu foil (10  $\mu$ m in thickness) and 3D-Cu foam (375  $\mu$ m in thickness) were purchased from Guangdong Canrd New Energy Technology Co., Ltd. Before used, they were washed with nitric acid (10 wt%) to remove the oxide layer. Ag powder was purchased from Aladdin (>99.99%). The Ag@2D-Cu foil and Ag@3D-Cu foam were prepared by depositing 100 nm thickness Ag layer on 2D-Cu foil (single side) and 3D-Cu foam (both sides) using the thermal evaporation method with a deposition rate of 0.05 nm s<sup>-1</sup>, respectively. Finally, these current collectors were cut into discs with a diameter of 18 mm.

#### Fabrication of CC/Li<sub>2</sub>S cathode.

Cotton cloth (CC) was carbonized at 1000 °C for 3 h with a heating rate of 5 °C min<sup>-1</sup> in an argon-filled tube furnace. Then it was cut into discs with a diameter of 12 mm. 350 mg Li<sub>2</sub>S powder (Sigma Aldrich, 99.9%) and 150 mg acetylene black (Hefei Kejing material technology Co., Ltd., 99.9%) were mixed and then dispersed into 5 mL N-methyl-2-pyrrolidone (NMP) solvent. 150-600  $\mu$ L slurry was dropped onto both sides of CC. Next, the electrode was dried at 60 °C for 12 h to remove the solvent. The obtained CC/Li<sub>2</sub>S discs with a Li<sub>2</sub>S mass loading of 3.8-14.6 mg cm<sup>-2</sup> were used as cathodes. Graphene oxide and acetylene black modified polypropylene separator (GO/AB@PP) was prepared according to previous reports.<sup>1</sup>

### Characterizations.

An X-ray diffractometer (XRD, SHIMADZU-7000) with a Cu Ka radiation was applied to identify the crystal structure. Raman signals were detected by a Raman spectrometer (LabRAM HR evolution) with excitation wavelength of 532 nm. A field-emission scanning electron microscope (SEM, SIRION-100) was used to investigate micromorphology. The element information was recorded by an energy dispersive spectrometer (EDS, Oxford) in SEM.

#### Electrochemical measurement.

Lithium metal was used as an anode and current collectors were used as cathodes to assemble 2025-type button batteries to study the deposition behavior of lithium on the current collectors. Battery assembly was performed in an Ar-filled glove box, in which the concentration of  $O_2$  and  $H_2O$  were both less than 0.5 ppm. 1 M LiTFSI and 1 wt% LiNO<sub>3</sub> in DOL/DME (v/v = 1: 1) solution was applied as the electrolyte, and polypropylene membrane (Celgard 2400) was used as a separator. For the full battery assembly, CC/Li<sub>2</sub>S electrode was used as a cathode and current collector was used as an anode. Constant current charge-discharge tests were conducted on a Neware battery test station (5V/20mA). The batteries were initially charged to 3.8 V and then discharged/charged within the voltage range of 1.7-2.8 V for the cycle and rate performances test. Cyclic voltammetry (CV) measurement was performed at a scanning speed of 0.05 mV s<sup>-1</sup> on an electrochemical workstation (CHI660D, Chenhua). Electrochemical impedance spectroscopy (EIS) measurement was conducted on the above electrochemical workstation in the frequency range between 0.1 Hz and 100 K Hz.

# Reference

 H. Cheng, H. Liu, H. Jin, N. Cai, C. Gao, S. Zhao and M. Wang, J. Mater. Chem. A, 2020, 8, 16429-16436.



Fig. S1 Optical photos of 2D-Cu, Ag@2D-Cu, 3D-Cu and Ag@3D-Cu samples.



Fig. S2 SEM images of (a-c) 2D-Cu and (d-f) Ag@2D-Cu.



Fig. S3 Cross-sectional SEM image of Ag@3D-Cu sample.



Fig. S4 XRD patterns of CC and CC/Li<sub>2</sub>S samples.



Fig. S5 (a, b) SEM images and (c-f) EDS elemental mapping images of  $CC/Li_2S$ 

cathode.



Fig. S6 (a, b) Top-view SEM images of GO/AB@PP separator.



Fig. S7 Voltage-time profile of the assembled Ag@3D-Cu||Li<sub>2</sub>S battery.



Fig. S8 EIS profile of the assembled Ag@3D-Cu||Li<sub>2</sub>S battery, the inset is the equivalent circuit model.



Fig. S9 SEM images of CC/Li<sub>2</sub>S cathode (a) at initial state, (b) after 1<sup>st</sup> charging and (c) after 1<sup>st</sup> discharging.