Supporting Information

Accurate Assembly of Ferrocene-Functionalized {Ti₂₂Fc₄} Cluster with Photocatalytic Amines Oxidation Activity

Er-Meng Han,^{a‡} Wei-Dong Yu,^{b‡} Jiao-Lei Li,^c Xiao-Yi Yi,^a Jun Yan^a Chao Liu^{a*}

^a Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, P. R.

China

^b Hunan Institute of Nuclear Agricultural Science and Space Breeding, Hunan Academy of Agricultural Science, Changsha 410000, P. R. China.

^c Jilin Provincial Science and Technology Innovation Canter of Optical Materials and Chemistry, School of Chemical and Environmental Engineering, Changchun University of Science and Technology, Changchun, Jilin 130022, China

*(Chao Liu) E-mail: chaoliu@csu.edu.cn

1. Experimental section

Materials and Characterization. All reagents were purchased commercially and were not further purified before use. Powder X-ray diffraction (PXRD) analysis was performed on a Rigaku Mini Flex II diffractometer at a 2 θ range of 5–50° (5° min⁻¹) with CuK α radiation (λ =1.54056 Å). The solid-state UV/Vis spectra of the cluster samples were obtained on UV-4000 spectrophotometer. Fourier transform infrared spectroscopy (FTIR) data (4000-400 cm⁻¹) was collected on a PerkinElmer Spectrum 100 FT-IR Spectrometer. Thermogravimetric analyses (TGA) were performed on a Mettler Toledo TGA/SDTA 851e analyzer in N₂ at a temperature range of 50~800°C (10°C min⁻¹). Crystallographic data for this article were obtained on a Bruker Apex II CCD diffractometer with graphite-mono-chromated Mo/Cu Ka radiation. The structures were solved by direct methods and refined on F² by full matrix least-squares using new SHELXL program. All of the non-hydrogen atoms are located from Fourier maps and are refined anisotropically.

Synthesis of cluster $[Ti_5(u_3-O)_3(O^iPr)_9(Fdc)(Dmg)(Pdc)]$ (Ti₅Fc). DmgH₂ (17 mg, 0.147 mmol), FdcH₂ (55.2 mg, 0.24 mmol), 2,3-pyrazine dicarboxylic acid (18.6 mg, 0.1 mmol) and 3 mL isopropanol were added into a 25 mL Teflon lined stainless steel autoclave, and then combined with Ti(OⁱPr)₄ (300 µL, 0.975 mmol). The solution was sonicated for 5 min, then transferred to an oven at 100°C for 3 days. After cooling to room temperature, yellow block crystals of {Ti₅Fc} were obtained and washed with acetonitrile, then dried at room temperature. Yield: about 120 mg.

Synthesis of clusters $[Ti_{11}(u_3-O)_9](O^iPr)_{12}(Fdc)_2(Dmg)_5]$ $(Ti_{11}Fc_2)$ and $[Ti_{22}(u_3-O)_{18}](O^iPr)_{30}(Fdc)_4(Dmg)_7]$ $\{Ti_{22}Fc_4\}$. DmgH₂ (17 mg, 0.147 mmol), FdcH₂ (55.2 mg, 0.24 mmol), and 5 mL isopropanol were added into a 25 mL Teflon lined stainless steel autoclave. Then Ti(OⁱPr)₄ (300 µL, 0.975 mmol) was added and transferred to an oven at 100 °C for 3 days. After cooling to room temperature, yellow needle-like crystals of $\{Ti_{22}Fc_4\}$ and yellow plate-like crystals of $\{Ti_{11}Fc_2\}$ were obtained in about 3:1 ratio. The two crystals are very different in color and shape, and can be separated manually. Total yield: about 80 mg.

Individual synthesis of the cluster { $Ti_{22}Fc_4$ }. DmgH₂ (35 mg, 0.3 mmol), FdcH₂ (55.2 mg, 0.24 mmol), benzoic acid(29.3 mg, 0.24 mmol) or isonicotinic acid (29.5 mg 0.24 mmol), and 5 mL isopropanol were added into a 25 mL Teflon lined stainless steel autoclave. Then Ti (OⁱPr)₄ (300 µL, 0.975 mmol) was added and transferred to an oven at 100 °C for 3 days. After cooling to room temperature, yellow needle-like crystals of { $Ti_{22}Fc_4$ } were obtained, and only a very small amount of plate-shaped crystals of { $Ti_{11}Fc_2$ } was found in the mother liquor. Total yield: about 75 mg.

Individual synthesis of cluster {Ti₁₁Fc₂}. DmgH₂ (35 mg, 0.3 mmol), FdcH₂ (55.2 mg, 0.24 mmol), and 6 mL isopropanol were added into a 25 mL Teflon lined stainless steel autoclave. Then Ti ($O^{i}Pr$)₄ (500 µL, 1.63 mmol) was added and transferred to an oven at 120 °C for 3 days. After cooling to room temperature, a small amount of yellow plate-like crystals of {Ti₁₁Fc₂} was obtained (Yield: about 30 mg). However, almost no plate-like crystals of {Ti₁₁Fc₂} were found in the mother liquor.

Figure S1. Crystal pictures of the clusters.

Photoelectrochemical measurements were performed on a CHI 660e electrochemical workstation in a standard three-electrode electrochemical cell with a working electrode, a platinum plate as the counter electrode, and a saturated calomel electrode as the reference electrode. These three electrodes were immersed in the 0.2M Na₂SO₄ aqueous solution (pH = 6.6). A 300 W high-pressure xenon lamp with UV cut-off filter was used as a full-wavelength light source, located 20 cm away from the working electrode. The on–off cycling irradiation intervals are 20 s. The working electrode was prepared on fluorinedoped tin oxide (FTO) glass. The colloidal dispersion was obtained by ultrasonic treatment of 5 mg ground crystal sample in 1 ml ethanol for 30 min, and then the dispersion was dropped onto FTO glass (0.75 cm² area). After evaporation under an ambient atmosphere for 2 h, the coating film was obtained and used as the working electrode.

Typical procedure for the oxidation of amines. The photocatalytic reactions were carried out under irradiation by a Xe lamp (300 W, PLS-SXE 300, Beijing Trusttech Co.) equipped with a cutoff filter to filter out light below 420 nm and a broad band filter to cutoff light above 750 nm, with magnetic stirring in a 10 mL Pyrex glass bottle. The bottle was sealed with a rubber stopper wrapped in aluminum foil. Benzylamine (1 mmol), catalyst (0.02 mmol), TBHP (300 mL) and solvent (2 mL) were added in a glass bottle. The reaction was stirred at 70°C under irradiation from the Xe lamp. After reaction, the mixtures were analyzed by GC and ¹H NMR. The catalysts were collected by filtration and washed with CH_3CN , and reused for the subsequent catalytic reactions.

2. Structure of Compounds

		*	
Compounds	{Ti ₅ Fc}	${Ti_{11}Fc_2}$	${Ti_{22}Fc_4}$
CCDC	2053563	2053564	2053565
Formula	$C_{53}H_{85}N_3O_{22}Ti_5Fe$	$C_{83}H_{137}N_{10}O_{39}Ti_{11}Fe_2$	$C_{166}H_{274}N_{12}O_{80}Ti_{22}Fe_4$
F_w	1411.58	2537.62	4994.27
Crystal system	Triclinic	monoclinic	triclinic
Space group	P-1	$P2_1/c$	P-1
a, Å	13.5246(11)	21.8611(6)	22.0941(6)
b, Å	14.1422(11)	21.3692(5)	22.6404(7)
c, Å	20.7800(15)	25.6759(9)	25.2924(8)
$\alpha/^{\circ}$	78.353(3)	90	114.7150(10)
<i>β</i> /°	76.753(2)	110.058(3)	95.4110(10)
$\gamma^{\prime o}$	63.302(2)	90	91.8360(10)
V, Å ³	3433.9(5)	11267.1(6)	11405.8(6)
Ζ	2	4	2
$\rho_{\text{calcd}}(\text{gcm}^{-3})$	1.365	1.468	1.447

Table S1. X-ray measurements and structure solution of compounds.

_

Figure S2. The molecular structures of all three ligands used in this work.

Figure S3. (A) Crystal structure of the cluster $\{Ti_5Fc\}$. (B) Pdc²⁻ ligand has three coordination groups, which are bonded to the Ti₅ layer through a pyridine N and a carboxylic O. Interestingly, another uncoordinated carboxylic group reacts with the isopropanol molecule in situ to form an ester bond.

Figure S4. Three-dimensional packing structure of the cluster $\{Ti_5Fc\}$.

Figure S6. Two {Ti₅Fc} subunits are bridged together by one {Dmg@Ti} unit, three μ_3 -O²⁻ atom and one OⁱPr group.

Figure S7. Two different perspectives of the crystal structure of $\{Ti_{22}Fc_4\}$

Figure S8. The big $\{Ti_{22}Fc_4\}$ structure can be viewed as two $\{Dmg_3@Fdc_2@Ti_{11}\}$ half-clusters linked through a trans- Dmg^{2-} ligand.

3. XPS spectra of {Ti₂₂Fc₄}

The XPS spectra of { $Ti_{22}Fc_4$ } shows that the Ti 2p spectra has two peaks with binding energies of 457.6 and 463.6 eV, representing the $2p^{2/3}$ and $2p^{1/2}$ states of Ti(IV) respectively, while the Fe 2p peaks with binding energies of 706.9 and 719.6 eV correspond to electrons in the $2p^{2/3}$ and $2p^{1/2}$ states of Fe(II), respectively.

Figure S9. The XPS spectra of $\{Ti_{22}Fc_4\}$.

4. . Powder X-ray diffraction

Figure S10. The XRD patterns of $\{Ti_{22}Fc_4\}$.

Figure S11. The XRD patterns of $\{Ti_{11}Fc_2\}$.

Figure S12. The XRD patterns of $\{Ti_5Fc\}$.

5. EDS patterns

Figure S13. The EDS patterns of {Ti₅Fc}.

Figure S14. The EDS patterns of $\{Ti_{11}Fc_2\}$.

Figure S15. The EDS patterns of $\{Ti_{22}Fc_4\}$.

6. IR spectra

Figure S20-22 shows the FTIR spectra of three clusters. The broad band between 3200-3500 cm⁻¹ attributable to OH stretching. The strong vibration band at ca. 1620-1650 cm⁻¹ can be ascribed to C=O stretching of the Fdc²⁻ ligand. The characteristic bands of Ti-O-C and Ti-O-Ti appears in the ranges of 1000–1200 and 700–800 cm⁻¹, respectively. The characteristic peak of Fe-C vibration of the f Fdc²⁻ ligand appears in the ranges of 500–600 cm⁻¹, respectively.

Figure S16. IR spectra of crystal sample of $\{Ti_5Fc\}.$

Figure S17. IR spectra of crystal sample of $\{Ti_{11}Fc_2\}.$

Figure S18. IR spectra of crystal sample of $\{Ti_{22}Fc_4\}.$

7. TG-Measurement

Figure S19. Thermal decomposition curve of $\{Ti_5Fc\}$.

Figure S20. Thermal decomposition curve of $\{Ti_{11}Fc_2\}$

Figure S21. Thermal decomposition curve of $\{Ti_{22}Fc_4\}$.

8. ESI-MS measurements.

{Ti₅Fc}

Figure S22. ESI-MS spectrum of the CH_3OH solution of $\{Ti_5Fc\}$.

Figure S23. The isotope distributions of main peaks of ESI-MS spectrum of {Ti5Fc}.

Figure S24. ESI-MS spectrum of the CH₃OH solution of {Ti₁₁Fc₂}.

JZI JZO {(Ti₁1O₀)(Fdc)₂(Dmg)(OⁱPr)₃(CH₃O)₁1H₂}²⁻

((Ti₁₁O₉)(Fdc)₂(Dmg)₂(OⁱPr)₈(CH₃O)H}²⁻

 $\begin{array}{c} 1133 & 1138 \\ ((Ti_{11}O_{\vartheta})(Fdc)_2(Dmg)_{\$}(O^iPr)_4(CH_3O)_{\$}H_2)^{2^-} \end{array}$

Figure S25. The isotope distributions of main peaks of ESI-MS spectrum of ${Ti_{11}Fc_2}$.

{(Ti₁₁O₉)(Fdc)(Dmg)₃(OⁱPr)₂(CH₃O)₉}¹

Figure S26. ESI-MS spectrum of the CH₃OH solution of {Ti₂₂Fc₄}.

Figure S27. The isotope distributions of main peaks of ESI-MS spectrum of {Ti₂₂Fc₄}.

10 Photocatalysis

Table S2. The optimization of different reaction conditions of benzylamine to N-benzylidine-1-phenylmethanamine ^a

Entry	Cat.	Sol.	Temp.(°C)	TBHP(µL)	Yield(%) b
1	{Ti5Fc}	CH ₃ CN	70	300	99
2	none	CH ₃ CN	70	300	12
3	{Ti5Fc}	CH ₃ CN	70	0	4
4	{Ti ₅ Fc}	CH ₃ CN	70	(H ₂ O ₂) 300	2
5	{Ti ₅ Fc}	CH ₃ CN	70	(O ₂) 1 atm	3
6	{Ti5Fc}	CH ₃ CN	70	100	59
7	{Ti5Fc}	CH ₃ CN	70	200	79
8^c	{Ti5Fc}	CH ₃ CN	70	350	92
9	{Ti5Fc}	CH ₃ CN	45	300	94
10	{Ti5Fc}	CH ₃ CN	20	300	88
11	{Ti5Fc}	Ethanol	70	300	80
12	{Ti5Fc}	Toluene	70	300	77
13	{Ti5Fc}	1,4-Dioxane	70	300	12
14	{Ti5Fc}	DMF	70	300	65
15	{Ti5Fc}	DMSO	70	300	40
16^{d}	{Ti5Fc}	CH ₃ CN	70	300	27
17	{Ti ₁₁ Fc ₂ }	CH ₃ CN	70	300	95

18	{Ti ₂₂ Fc ₄ }	CH ₃ CN	70	300	90
a Desetion	anditional autotrate	how grate and a	(110 T 1 1)	actolyst (0.02)	mana 1), as ly and

^a Reaction conditions: substrate, benzylamine (110 μL, 1 mmol); catalyst (0.02 mmol); solvent (2 mL); TBHP=tert-butyl hydroperoxide; 12 h. ^b Determined by GC analysis and ¹H NMR, and the selectivity of imine is over 99% unless specifically mentioned. ^c Convention of benzylidine is 99%, selectivity of *N*-benzylidine-1-phenylmethanamine is 95%. ^d Using sunlight replaces Xe lamp.

Table S3. The time conversion for benzylamine to N-benzylidine-1-phenylmethanamine under the optimization condition ^a

Entry	Cat.	Oxidant	Time	Addition	Yield ^b
1	{Ti5Fc}	TBHP	3	None	50%
2	{Ti5Fc}	TBHP	5	None	81%
3	{Ti5Fc}	TBHP	8	None	95%
4	{Ti5Fc}	TBHP	10	None	98%
5	{Ti5Fc}	TBHP	12	None	99%
6	{Ti ₁₁ Fc ₂ }	TBHP	3	None	52%
7	{Ti ₁₁ Fc ₂ }	TBHP	5	None	76%
8	{Ti ₁₁ Fc ₂ }	TBHP	8	None	88%
9	{Ti ₁₁ Fc ₂ }	TBHP	10	None	93%
10	{Ti ₁₁ Fc ₂ }	TBHP	12	None	95%
11	{Ti ₂₂ Fc ₄ }	TBHP	3	None	50%
12	${Ti_{22}Fc_4}$	TBHP	5	None	76%
13	{Ti ₂₂ Fc ₄ }	TBHP	8	None	85%
14	${Ti_{22}Fc_4}$	TBHP	10	None	89%
15	{Ti ₂₂ Fc ₄ }	TBHP	12	None	90%

^a Reaction conditions: substrate, benzylamine (110 μL, 1 mmol), catalyst (0.02 mmol), TBHP (300 μL), solvent (2 mL), Xe lamp. ^b Determined by GC analysis and ¹H NMR.

Table S4. The optimization of different reaction	conditions of benzylamine to N-benzylidine-1-
phenylmethanamine ^{<i>a</i>}	

Entry	Cat.	Oxidant	Time	Addition	Yield ^b
1	{Ti5Fc}	TBHP	12	benzoquinone	42%
2	{Ti ₅ Fc}	TBHP	12	EDTA-2Na	56%
3	{Ti ₅ Fc}	TBHP	12	Mn(CH ₃ COO) ₂	47%
4	Fc	TBHP	70	300	12
5	TiO ₂	TBHP	70	300	18
6	Fc+TiO ₂ ^c	TBHP	12	None	40%

^a Reaction conditions: substrate, benzylamine (110 μ L, 1 mmol), catalyst (0.02 mmol), TBHP (300 μ L), solvent (2 mL), Xe lamp. ^b Determined by GC analysis and ¹H NMR. ^c The mixture were obtained by griding of Fc and TiO₂ with the molar ratio of 1:1.

Figure S28. The IR spectrum of $\{Ti_xFc_y\}$ before and after reaction.

Figure S29. The solution-state UV-Vis spectra of three clusters before and after reaction.

Figure S30. Hot-filtration test of benzylamine oxidation reaction catalytic by {Ti₅Fc} at optimal condition.

Figure S31. Hot-filtration test of benzylamine oxidation reaction catalytic by ${Ti_{11}Fc_2}$ at optimal condition.

Figure S32. Hot-filtration test of benzylamine oxidation reaction catalytic by {Ti₂₂Fc₄} at optimal condition.

Figure S33. The ¹H NMR spectra of N-benzylidine-1-phenylmethanamine.

Figure S34. The ¹³C NMR spectra of *N*-benzylidine-1-phenylmethanamine.