Zinc-catalyzed C–H alkenylation of quinoline *N*-oxides with ynones: A new strategy toward quinoline-enol scaffolds

Yan Hu,^a Jiang Nan,^a* Xue Gong,^b Jiawen Zhang,^a Jiacheng Yin,^a Yangmin Ma^a*

^a Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry

and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China

^b College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China

Email: nanjiang@sust.edu.cn

Supporting Information

Table of Contents:

A.	General information	2
B.	Complementary reaction optimization	2
C.	Preparation of substrates	3
D.	Reaction results	4
E.	Synthetic transformation of products	13
F.	Fluorescence quantum yields	17
G.	Stability study of products	20
H.	Detection experiment of boron compounds	22
I.	Mechanistic study	22
J.	References	23
K.	NMR spectra	24

A. General information

All reagents were used as received unless otherwise noted. Analytical thin-layer chromatography was performed with 0.25 mm coated commercial silica gel plates (TLC Silica Gel 60 F254); visualization of the developed chromatogram was performed by fluorescence. Flash Chromatography was performed with silica gel (300-400 mesh). Proton-1 nuclear magnetic resonance (¹H NMR) data were acquired at 400 MHz on a Bruker Ascend 400 (400 MHz) spectrometer, and chemical shifts are reported in delta (δ) units, in parts per million (ppm) downfield from tetramethylsilane. Splitting patterns are designated as s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet, coupling constants J are quoted in Hz. Carbon-13 nuclear magnetic resonance (13C NMR) data were acquired at 100 MHz on a Bruker Ascend 400 spectrometer, chemical shifts are reported in ppm relative to the center line of a triplet at 77.0 ppm for CDCl₃. Fluorine-19 nuclear magnetic resonance (¹⁹F NMR) data were acquired at 376 MHz on a Bruker Ascend 400 spectrometer. Infrared spectra (IR) data were recorded on a TENSOR 27 FT-IR spectrometer and recorded in wave numbers (cm⁻¹). High resolution mass spectra were acquired on a Bruker Daltonics MicroTof-Q II mass spectrometer. 1a¹, 1b², 1c³, 1d⁴, 1e-1g⁵, 1h-1i⁶, 1j⁷, 1k⁶, $11^8, \ 1m - 1n^6, \ 1p^6, \ 1q^9, \ 2a^{11}, \ 2b^{10}, \ 2c - 2g^{11}, \ 2i^{11}, \ 2j^{12}, \ 2k - 2m^{13}, \ 2n^{14}, \ \text{and} \ 2o^{15} \ \text{were prepared}$ according to literature methods.

B. Complementary reaction optimization

Ĺ	$\sum_{N=0^{-}}^{+} + \prod_{Ar=4-Me-C_6H_4}^{+}$	[M] (20 mol%) toluene, 100 °C		N Ar
	14 Za		Ja	
entry	catalyst	solvent	temp. (°C)	yield $(\%)^a$
1	Co(OAc) ₂	toluene	100	8
2	FeCl ₃	toluene	100	10
3	Mn(OAc) ₂	toluene	100	12
4	$(C_{6}F_{5})_{3}B$	toluene	100	35
5	AgOTf	toluene	100	26
6	NaOAc	toluene	100	16
7	Sc(OTf) ₃	toluene	100	40
8	In(OTf) ₂	toluene	100	38
9	$Zn(NO_3)_2$	toluene	100	7
10	$ZnSO_4$	toluene	100	43
11	Zn(OAc) ₂	toluene	100	49

Reaction conditions: **1a** (0.2 mmol), **2a** (0.24 mmol) and catalyst (0.04 mmol) in toluene (2.0 mL) at 100 $^{\circ}$ C for 12 h. ^{*a*}Isolated yields.

C. Preparation of substrates

6-Bromo-7-fluoroquinoline (0.68 g, 3.0 mmol) was dissolved in DCM (15.0 mL). *m*-CPBA (1.22 g, 85%) was gradually added at 0 °C. After reacting for five minutes, the reaction mixture was allowed to stir at room temperature overnight. When the starting material was completely converted, the reaction mixture was diluted with 60.0 mL aqueous saturated NaHCO₃ and extracted with DCM (20.0 mL × 3). The combined organic phase was dried over Na₂SO₄, filtered and concentrated under reduced pressure. Then the residue was separated and purified on a silica gel column using DCM/MeOH eluent to obtain the product **10**. White solid (0.47 g, 65% yield). DCM/MeOH = 30:1, R_f = 0.31. ¹H NMR (400 MHz, CDCl₃): δ 8.56 (d, *J* = 6.1 Hz, 1H), 8.52 (d, *J* = 9.3 Hz, 1H), 8.18 (d, *J* = 6.7 Hz, 1H), 7.68 (d, *J* = 8.5 Hz, 1H), 7.34 (dd, *J* = 8.5, 6.1 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 159.7 (d, *J* = 252.9 Hz), 141.6 (d, *J* = 9.4 Hz), 136.2, 133.0, 128.2, 124.2, 121.5 (d, *J* = 2.4 Hz), 113.4 (d, *J* = 24.5 Hz), 106.4 (d, *J* = 27.9 Hz). ¹⁹F NMR (376 MHz, CDCl₃): δ -100.7. IR (KBr): 2985, 2377, 1639, 1496, 1397, 1261, 739 cm⁻¹. HRMS (ESI) m/z Calcd for C₉H₆BrFNO [M+H]⁺ 241.9617, found 241.9619.

A round bottom flask equipped with stir bar was charged with $Pd(PPh_3)_2Cl_2$ (70.2 mg, 0.1 mmol), CuI (38.1 mg, 0.2 mmol), terminal alkyne (5.0 mmol) and anhydrous THF (15.0 mL). After stirring for 1 min under Ar atmosphere, Et₃N (1.0 mL, 7.5 mmol) and acid chloride (6.0 mmol) were added. The mixture was stirred at room temperature and monitored by TLC. When the reaction was complete, the reaction mixture was diluted with 90.0 mL H₂O and extracted with EtOAc (30.0 mL × 3). The combined organic layer was washed with brine and dried with MgSO₄. Then concentration in vacuo, the crude product was purified by silica gel column chromatography to obtain the corresponding ynones **2**.

1,3-Bis(3-bromophenyl)prop-2-yn-1-one (2h)

White solid (1.46 g, 80% yield). PE/EA = 40:1, $R_f = 0.32$. ¹H NMR (400 MHz, CDCl₃): δ 8.35 (s, 1H), 8.17 (d, J = 7.8 Hz, 1H), 7.87 (s, 1H), 7.84–7.79 (m, 1H), 7.71–7.64 (m, 2H), 7.46 (t, J = 7.8 Hz, 1H), 7.36 (t, J = 7.9 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 176.1, 138.4, 137.1, 135.6, 134.2, 132.3, 131.6, 130.3, 130.2, 128.2, 123.0, 122.6, 121.8, 91.6, 87.0. IR (KBr): 3218, 2985, 2208, 1636, 1398, 1264, 736 cm⁻¹. HRMS (ESI) m/z Calcd for C₁₅H₈Br₂OK [M+K]⁺ 400.8579, found 400.8562.

3-(4-Ethylphenyl)-1-(4-methoxyphenyl)prop-2-yn-1-one (2p)

Pale yellow solid (0.99 g, 75% yield). PE/EA = 30:1, $R_f = 0.35$. ¹H NMR (400 MHz, CDCl₃): δ 8.26–8.20 (m, 2H), 7.69–7.59 (m, 2H), 7.29 (d, J = 8.0 Hz, 2H), 7.05–7.01 (m, 2H), 3.94 (s, 3H), 2.74 (q, J = 7.6 Hz, 2H), 1.31 (t, J = 7.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 176.7, 164.4, 147.5, 133.1, 131.9, 130.5, 128.2, 117.5, 113.9, 93.0, 86.8, 55.6, 29.0, 15.1. IR (KBr): 2966, 2931, 2204, 1632, 1259, 1160, 837 cm⁻¹. HRMS (ESI) m/z Calcd for C₁₈H₁₆O₂K [M+K]⁺ 303.0787, found 303.0781.

D. Reaction results

A pressure tube was charged with (iso)quinoline *N*-oxide **1** (0.2 mmol), ynone **2** (0.24 mmol) $Zn(OAc)_2 2H_2O$ (8.8 mg, 0.04 mmol), and acetone (2.0 mL). The reaction mixture was stirred at 100 °C for 12 h under air in an oil bath. After cooling to room temperature, the mixture was filtered through a short Celite pad and all volatiles were removed under reduced pressure. The residue was purified by silica gel chromatography using PE/EA eluent to afford the product **3**.

(Z)-2-(Isoquinolin-1-yl)-1-(p-tolyl)ethen-1-ol (3a)

Yellow solid (33.9 mg, 65% yield). PE/EA = 5:1, $R_f = 0.25$. ¹H NMR (400 MHz, DMSO): δ 15.92 (s, 1H), δ 8.60–8.53 (m, 1H), 8.03 (d, J = 7.8 Hz, 2H), 7.76 (d, J = 7.9 Hz, 3H), 7.63 (s, 1H), 7.31 (d, J = 7.7 Hz, 2H), 7.02–6.93 (m, 2H), 2.40 (s, 3H). ¹³C NMR (100 MHz, DMSO): δ 182.9, 154.0, 140.6, 137.7, 135.7, 132.6, 129.7, 129.3, 128.0, 127.5, 127.3, 125.5, 124.4, 111.0, 84.3, 21.5. IR (KBr): 3025, 2980, 1586, 1544, 1345, 1257, 1206, 794, 752 cm⁻¹. HRMS (ESI) m/z Calcd for C₁₈H₁₅NOK [M+K]⁺ 300.0791, found 300.0785.

(Z)-2-(Isoquinolin-1-yl)-1-phenylethen-1-ol (3b)

Yellow solid (36.1 mg, 73% yield). PE/EA = 10:1, $R_f = 0.31$. ¹H NMR (400 MHz, CDCl₃): δ 16.27 (s, 1H), 8.26 (d, J = 8.3 Hz, 1H), 8.12–8.03 (m, 2H), 7.75–7.67 (m, 1H), 7.66–7.55 (m, 2H), 7.54–7.48 (m, 3H), 7.44 (d, J = 6.7 Hz, 1H), 6.86 (d, J = 6.7 Hz, 1H), 6.82 (s, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 184.2, 154.5, 140.6, 135.6, 131.8, 130.3, 128.3, 128.2, 127.4, 127.1, 126.8, 124.6, 124.5, 111.2, 84.9. IR (KBr): 3062, 1634, 1544, 1259, 1208, 737 cm⁻¹. HRMS (ESI) m/z Calcd for C₁₇H₁₃NONa [M+Na]⁺ 270.0895, found 270.0896.

(Z)-2-(Isoquinolin-1-yl)-1-(4-methoxyphenyl)ethen-1-ol (3c)

Yellow solid (37.1 mg, 67% yield). PE/EA = 5:1, R_f = 0.24. ¹H NMR (400 MHz, CDCl₃): δ 8.25 (d, *J* = 8.3 Hz, 1H), 8.05 (d, *J* = 8.7 Hz, 2H), 7.73–7.67 (m, 1H), 7.64–7.55 (m, 2H), 7.41 (d, *J* = 6.8 Hz, 1H), 7.03 (d, *J* = 8.8 Hz, 2H), 6.85–6.74 (m, 2H), 3.93 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 184.0, 161.6, 154.2, 135.6, 133.3, 131.7, 128.5, 128.1, 127.3, 127.1, 124.7, 124.4, 113.6, 110.6, 84.2, 55.4. IR (KBr): 2974, 2893, 1628, 1588, 1345, 1248, 1073, 755 cm⁻¹. HRMS (ESI) m/z Calcd for C₁₈H₁₅NO₂Na [M+Na]⁺ 300.1000, found 300.1016.

(Z)-1-(4-Chlorophenyl)-2-(isoquinolin-1-yl)ethen-1-ol (3d)

Yellow solid (35.5 mg, 63% yield). PE/EA = 10:1, $R_f = 0.28$. ¹H NMR (400 MHz, CDCl₃): δ 16.25 (s, 1H), 8.23 (d, J = 8.3 Hz, 1H), 7.98 (d, J = 8.5 Hz, 2H), 7.75–7.68 (m, 1H), 7.65–7.54 (m, 2H), 7.49–7.40 (m, 3H), 6.87 (d, J = 6.7 Hz, 1H), 6.74 (s, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 182.7, 154.6, 139.0, 136.3, 135.6, 132.0, 128.5, 128.2, 128.1, 127.5, 127.2, 124.5, 124.5, 111.5, 84.7. IR (KBr): 3060, 1608, 1543, 1345, 1213, 785, 743 cm⁻¹. HRMS (ESI) m/z Calcd for C₁₇H₁₂CINOK [M+K]⁺ 320.0244, found 320.0245.

(Z)-1-(4-Fluorophenyl)-2-(isoquinolin-1-yl)ethen-1-ol (3e)

Yellow solid (32.9 mg, 62% yield). PE/EA = 5:1, $R_f = 0.31$. ¹H NMR (400 MHz, DMSO): δ 15.86 (s, 1H), 8.60 (d, J = 8.3 Hz, 1H), 8.22–8.16 (m, 2H), 7.81–7.74 (m, 3H), 7.66–7.60 (m, 1H), 7.31 (t, J = 8.8 Hz, 2H), 7.03 (d, J = 6.7 Hz, 1H), 6.98 (s, 1H). ¹³C NMR (100 MHz, DMSO): δ 181.9, 164.0 (d, J = 246.2 Hz), 154.1, 137.0 (d, J = 2.6 Hz), 135.7, 132.7, 129.8, 129.7, 129.6, 128.0, 127.5, 125.7, 124.3, 115.5 (d, J = 21.3 Hz), 111.3, 84.3. ¹⁹F NMR (376 MHz, CDCl₃): δ -110.9. IR (KBr): 3057, 1637, 1491, 1264, 1070, 740 cm⁻¹. HRMS (ESI) m/z Calcd for C₁₇H₁₂FNONa [M+Na]⁺ 288.0801, found 288.0809.

(Z)-4-(1-Hydroxy-2-(isoquinolin-1-yl)vinyl)benzonitrile (3f)

Yellow solid (31.0 mg, 57% yield). PE/EA = 5:1, R_f = 0.24. ¹H NMR (400 MHz, DMSO): δ 16.05 (s, 1H), 8.66 (d, J = 8.4 Hz, 1H), 8.30 (d, J = 8.4 Hz, 2H), 7.97 (d, J = 8.4 Hz, 2H), 7.89–7.80 (m, 3H), 7.71–7.64 (m, 1H), 7.16 (d, J = 7.0 Hz, 1H), 7.09 (s, 1H). ¹³C NMR (100 MHz, DMSO): δ 180.2, 154.5, 144.4, 135.9, 133.0, 132.8, 129.8, 128.3, 127.9, 127.6, 125.9, 124.3, 119.3, 112.9, 112.5, 85.5. IR (KBr): 3060, 2223, 1596, 1519, 1211, 792, 754 cm⁻¹. HRMS (ESI) m/z Calcd for C₁₈H₁₂N₂ONa [M+Na]⁺ 295.0847, found 295.0851.

(Z)-2-(Isoquinolin-1-yl)-1-(4-(trifluoromethyl)phenyl)ethen-1-ol (3g)

Yellow solid (47.3 mg, 75% yield). PE/EA = 10:1, $R_f = 0.25$. ¹H NMR (400 MHz, CDCl₃): δ 16.37 (s, 1H), 8.25 (d, J = 8.3 Hz, 1H), 8.13 (d, J = 8.0 Hz, 2H), 7.75–7.71 (m, 3H), 7.68–7.63 (m, 1H), 7.60 (t, J = 7.7 Hz, 1H), 7.48 (d, J = 6.7 Hz, 1H), 6.93 (d, J = 6.7 Hz, 1H), 6.78 (s, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 182.1, 154.8, 143.8, 135.7, 131.7 (q, J = 32 Hz), 132.1, 128.1, 127.6, 127.3, 127.0, 125.2 (q, J = 3.5 Hz), 124.5, 124.4, 124.1 (q, J = 270.4 Hz), 112.1, 85.2. ¹⁹F NMR (376 MHz, CDCl₃): δ -62.6. IR (KBr): 3059, 1637, 1516, 1327, 1068, 742 cm⁻¹. HRMS (ESI) m/z Calcd for C₁₈H₁₂F₃NONa [M+Na]⁺ 338.0769, found 338.0780.

(Z)-1-(3-Bromophenyl)-2-(isoquinolin-1-yl)ethen-1-ol (3h)

Yellow solid (38.5 mg, 59% yield). PE/EA = 5:1, $R_f = 0.29$. ¹H NMR (400 MHz, CDCl₃): δ 16.23 (s, 1H), 8.25 (d, J = 8.3 Hz, 1H), 8.17 (s, 1H), 7.96 (d, J = 7.8 Hz, 1H), 7.76–7.69 (m, 1H), 7.66–7.57 (m, 3H), 7.46 (d, J = 6.8 Hz, 1H), 7.36 (t, J = 7.8 Hz, 1H), 6.90 (d, J = 6.7 Hz, 1H), 6.72 (s, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 182.2, 154.6, 142.7, 135.6, 133.0, 132.0, 129.9, 129.8, 128.0, 127.6, 127.2, 125.3, 124.5, 124.5, 122.6, 111.8, 84.8. IR (KBr): 3058, 1591, 1543, 1342, 1210, 690, 603 cm⁻¹. HRMS (ESI) m/z Calcd for C₁₇H₁₃BrNO [M+H]⁺ 326.0181, found 326.0185.

(Z)-2-(Isoquinolin-1-yl)-1-(thiophen-2-yl)ethen-1-ol (3i)

Yellow solid (32.9 mg, 65% yield). PE/EA = 5:1, $R_f = 0.23$. ¹H NMR (400 MHz, CDCl₃): δ 15.72 (s, 1H), 8.21 (d, *J* = 8.3 Hz, 1H), 7.76–7.67 (m, 2H), 7.63–7.54 (m, 2H), 7.51 (d, *J* = 5.0 Hz, 1H), 7.39–7.31 (m, 1H), 7.16 (t, *J* = 4.7 Hz, 1H), 6.79 (d, *J* = 6.8 Hz, 1H), 6.66 (s, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 178.5, 154.0, 147.4, 135.5, 132.0, 129.2, 127.7, 127.4, 127.1, 126.8, 124.5, 124.4, 110.7, 84.3. IR (KBr): 3062, 1592, 1544, 1348, 1209, 1073, 709 cm⁻¹. HRMS (ESI) m/z Calcd for C₁₅H₁₁NOSNa [M+Na]⁺ 276.0459, found 276.0460.

(Z)-1-(Isoquinolin-1-yl)prop-1-en-2-ol (3j)

Yellow solid (21.5 mg, 58% yield). PE/EA = 5:1, $R_f = 0.28$. ¹H NMR (400 MHz, DMSO): δ 15.09 (s, 1H), 8.20 (d, J = 8.3 Hz, 1H), 7.72–7.65 (m, 2H), 7.62 (t, J = 6.8 Hz, 1H), 7.54 (t, J = 8.3 Hz, 1H), 6.84 (d, J = 6.8 Hz, 1H), 6.18 (s, 1H), 2.13 (s, 3H). ¹³C NMR (100 MHz, DMSO): δ 190.6, 152.6, 135.6, 132.4, 129.6, 127.8, 127.4, 124.9, 123.7, 109.9, 87.5, 29.0. IR (KBr): 3059, 2983, 2892, 1599, 1358, 1255, 1063, 737 cm⁻¹. HRMS (ESI) m/z Calcd for C₁₂H₁₁NONa [M+Na]⁺ 208.0738, found 208.0743.

(Z)-1-Cyclohexyl-2-(quinolin-2-yl)ethen-1-ol (3k)

Yellow solid (33.9 mg, 67% yield). PE/EA = 10:1, $R_f = 0.25$. ¹H NMR (400 MHz, DMSO): δ 15.24 (s, 1H), 8.25 (d, J = 8.3 Hz, 1H), 7.74–7.65 (m, 2H), 7.60 (t, J = 5.9 Hz, 1H), 7.54 (t, J = 7.6 Hz, 1H), 6.84 (d, J = 6.8 Hz, 1H), 6.18 (s, 1H), 2.33 (t, J = 9.8 Hz, 1H), 1.88–1.73 (m, 4H), 1.53–1.40 (m, 2H), 1.39–1.17 (m, 4H). ¹³C NMR (100 MHz, DMSO): δ 196.9, 153.2, 135.6, 132.3, 129.6, 127.7, 127.3, 125.0, 124.0, 109.8, 85.6, 49.5, 30.4, 26.2, 26.1. IR (KBr): 3061, 2989,

2890, 1596, 1350, 1245, 1053, 742 cm⁻¹. HRMS (ESI) m/z Calcd for $C_{17}H_{20}NO$ [M+H]⁺ 254.1545, found 254.1542.

(Z)-1-(Isoquinolin-1-yl)hex-1-en-2-ol (3l)

Yellow solid (27.7 mg, 61% yield). PE/EA = 10:1, $R_f = 0.24$. ¹H NMR (400 MHz, DMSO): δ 15.18 (s, 1H), 8.25 (d, J = 8.3 Hz, 1H), 7.75–7.68 (m, 2H), 7.63 (t, J = 6.8 Hz, 1H), 7.61–7.53 (m, 1H), 6.87 (d, J = 6.8 Hz, 1H), 6.20 (s, 1H), 2.40 (t, J = 7.5 Hz, 2H), 1.69–1.59 (m, 2H), 1.43–1.35 (m, 2H), 0.95 (t, J = 7.4 Hz, 3H). ¹³C NMR (100 MHz, DMSO): δ 193.7, 152.7, 135.6, 132.4, 129.6, 127.8, 127.4, 125.0, 123.8, 109.8, 87.1, 41.4, 28.8, 22.5, 14.4. IR (KBr): 3058, 2976, 2868, 1548, 1352, 1243, 1060, 713 cm⁻¹. HRMS (ESI) m/z Calcd for C₁₅H₁₈NO [M+H]⁺ 228.1388, found 228.1385.

(Z)-1-(Furan-2-yl)-2-(isoquinolin-1-yl)ethen-1-ol (3m)

Yellow solid (18.5 mg, 39% yield). PE/EA = 5:1, R_f = 0.18. ¹H NMR (400 MHz, DMSO): δ 15.28 (s, 1H), 8.39 (d, *J* = 8.3 Hz, 1H), 7.88–7.83 (m, 1H), 7.82–7.69 (m, 3H), 7.66–7.59 (m, 1H), 7.24 (d, *J* = 3.4 Hz, 1H), 6.97 (d, *J* = 6.8 Hz, 1H), 6.73 (s, 1H), 6.69–6.65 (m, 1H). ¹³C NMR (100 MHz, DMSO): δ 174.4, 154.7, 153.6, 145.1, 135.7, 132.8, 129.4, 128.1, 127.5, 125.2, 124.1, 112.5, 112.5, 110.7, 83.9. IR (KBr): 3052, 1637, 1491, 1210, 1071, 747 cm⁻¹. HRMS (ESI) m/z Calcd for C₁₅H₁₂NO₂ [M+H]⁺ 238.0868, found 238.0867.

(Z)-1-(4-Bromophenyl)-2-(isoquinolin-1-yl)ethen-1-ol (3n)

Yellow solid (11.7 mg, 18% yield). PE/EA = 5:1, $R_f = 0.26$. ¹H NMR (400 MHz, DMSO): δ 15.92 (s, 1H), 8.60 (d, J = 8.3 Hz, 1H), 8.08 (d, J = 8.5 Hz, 2H), 7.84–7.77 (m, 3H), 7.72–7.62 (m, 3H), 7.07 (d, J = 6.8 Hz, 1H), 6.99 (s, 1H). ¹³C NMR (100 MHz, DMSO): δ 181.5, 154.2, 139.6, 135.8, 132.8, 131.6, 129.7, 129.3, 128.1, 127.5, 125.7, 124.5, 124.3, 111.7, 84.5. IR (KBr): 3059, 1637, 1591, 1209, 747 cm⁻¹. HRMS (ESI) m/z Calcd for C₁₇H₁₃BrNO [M+H]⁺ 326.0181, found 326.0170.

(Z)-1-(4-Ethylphenyl)-2-(isoquinolin-1-yl)ethen-1-ol (30)

Yellow solid (18.7 mg, 34% yield). PE/EA = 10:1, $R_f = 0.29$. ¹H NMR (400 MHz, DMSO): δ 15.97 (s, 1H), 8.61 (d, J = 8.3 Hz, 1H), 8.09 (d, J = 8.2 Hz, 2H), 7.86–7.78 (m, 3H), 7.67 (t, J = 6.2 Hz, 1H), 7.38 (d, J = 8.0 Hz, 2H), 7.04 (d, J = 6.7 Hz, 1H), 7.01 (s, 1H), 2.74 (q, J = 7.6 Hz, 2H), 1.28 (t, J = 7.6 Hz, 3H). ¹³C NMR (100 MHz, DMSO): δ 183.0, 154.0, 146.9, 138.0, 135.7, 132.6, 129.7, 128.1, 128.0, 127.5, 127.3, 125.5, 124.4, 111.0, 84.4, 28.5, 15.9. IR (KBr): 3060, 2967, 2872, 1628, 1591, 1209, 1068, 746 cm⁻¹. HRMS (ESI) m/z Calcd for C₁₉H₁₇NOK [M+K]⁺ 314.0947, found 314.0947.

(Z)-2-(4-Bromoisoquinolin-1-yl)-1-phenylethen-1-ol (3a')

Yellow solid (42.4 mg, 65% yield). PE/EA = 10:1, $R_f = 0.38$. ¹H NMR (400 MHz, CDCl₃): δ 16.34 (s, 1H), 8.13 (s, 1H), 8.07–8.01 (m, 2H), 7.65–7.59 (m, 2H), 7.55 (d, J = 7.9 Hz, 1H), 7.53–7.48 (m, 3H), 7.34 (t, J = 6.9 Hz, 1H), 6.66 (s, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 181.4, 153.2, 139.0, 138.9, 138.4, 131.2, 130.7, 128.4, 126.8, 126.7, 124.3, 123.8, 119.7, 115.7, 90.4. IR (KBr): 3065, 1617, 1541, 1217, 1068, 748, 707 cm⁻¹. HRMS (ESI) m/z Calcd for C₁₇H₁₃BrNO [M+H]⁺ 326.0181, found 326.0184.

(Z)-2-(5-Bromoisoquinolin-1-yl)-1-phenylethen-1-ol (3b')

Yellow solid (37.2 mg, 57% yield). PE/EA = 5:1, $R_f = 0.32$. ¹H NMR (400 MHz, CDCl₃): δ 16.32 (s, 1H), 8.21 (d, *J* = 8.3 Hz, 1H), 8.07–7.99 (m, 2H), 7.96 (d, *J* = 7.7 Hz, 1H), 7.56–7.48 (m, 4H), 7.40 (t, *J* = 8.0 Hz, 1H), 7.24 (d, *J* = 7.0 Hz, 1H), 6.79 (s, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 184.2, 154.2, 140.1, 135.6, 134.9, 130.5, 130.2, 128.4, 127.7, 126.8, 126.2, 123.9, 122.2, 109.8, 85.6. IR (KBr): 3059, 1591, 1535, 1344, 1206, 751, 616 cm⁻¹. HRMS (ESI) m/z Calcd for C₁₇H₁₃BrNO [M+H]⁺ 326.0181, found 326.0184.

(Z)-1-Phenyl-2-(5-phenylisoquinolin-1-yl)ethen-1-ol (3c')

Yellow solid (38.8 mg, 60% yield). PE/EA = 5:1, $R_f = 0.28$. ¹H NMR (400 MHz, CDCl₃): δ 16.43 (s, 1H), 8.31 (d, J = 8.0 Hz, 1H), 8.10–8.04 (m, 2H), 7.69–7.61 (m, 2H), 7.57–7.45 (m, 8H), 7.41 (d, J = 7.0 Hz, 1H), 6.92 (d, J = 7.0 Hz, 1H), 6.88 (s, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 183.9, 154.8, 140.6, 139.9, 139.4, 133.8, 132.7, 130.3, 129.9, 128.5, 128.4, 128.3, 127.8, 126.9, 126.8, 125.0, 123.8, 109.4, 85.2. IR (KBr): 3058, 1635, 1549, 1350, 1205, 755, 697 cm⁻¹. HRMS (ESI) m/z Calcd for C₂₃H₁₇NONa [M+Na]⁺ 346.1208, found 346.1208.

(Z)-2-(6-Chloroisoquinolin-1-yl)-1-phenylethen-1-ol (3d')

Yellow solid (38.3 mg, 68% yield). PE/EA = 5:1, R_f = 0.26. ¹H NMR (400 MHz, DMSO): δ 15.81 (s, 1H), 8.62 (d, *J* = 8.9 Hz, 1H), 8.18–8.08 (m, 2H), 7.89 (d, *J* = 2.2 Hz, 1H), 7.80 (t, *J* = 6.8 Hz, 1H), 7.62 (dd, *J* = 8.9, 2.3 Hz, 1H), 7.56–7.46 (m, 3H), 7.00 (s, 1H), 6.98 (d, *J* = 6.8 Hz, 1H). ¹³C NMR (100 MHz, DMSO): δ 183.3, 153.6, 140.2, 137.5, 137.3, 131.2, 131.0, 128.7, 128.0, 127.9, 127.3, 126.3, 123.1, 110.1, 85.0. IR (KBr): 3061, 1585, 1482, 1257, 1193, 781, 727 cm⁻¹. HRMS (ESI) m/z Calcd for C₁₇H₁₂ClNONa [M+Na]⁺ 304.0505, found 304.0501.

(Z)-2-(6-Methylisoquinolin-1-yl)-1-phenylethen-1-ol (3e')

Yellow solid (35.0 mg, 67% yield). PE/EA = 5:1, R_f = 0.25. ¹H NMR (400 MHz, DMSO): δ 15.95 (s, 1H), 8.47 (d, *J* = 8.5 Hz, 1H), 8.17–8.06 (m, 2H), 7.75 (t, *J* = 5.4 Hz, 1H), 7.57 (s, 1H), 7.53–7.44 (m, 4H), 7.02–6.90 (m, 2H), 2.51 (s, 3H). ¹³C NMR (100 MHz, DMSO): δ 182.6, 154.1, 142.9, 140.5, 135.9, 130.7, 129.8, 129.7, 128.7, 127.2, 126.9, 125.5, 122.2, 111.1, 84.3, 21.7. IR (KBr): 2953, 1590, 1546, 1337, 1208, 719 cm⁻¹. HRMS (ESI) m/z Calcd for C₁₈H₁₅NONa [M+Na]⁺ 284.1051, found 284.1052.

(Z)-2-(6-Methoxyisoquinolin-1-yl)-1-phenylethen-1-ol (3f')

Yellow solid (32.7 mg, 59% yield). PE/EA = 5:1, $R_f = 0.33$. ¹H NMR (400 MHz, CDCl₃): δ 16.34 (s, 1H), 8.17 (d, J = 9.1 Hz, 1H), 8.08–8.00 (m, 2H), 7.55–7.40 (m, 4H), 7.18 (dd, J = 9.1, 2.6 Hz, 1H), 6.98 (d, J = 2.6 Hz, 1H), 6.81 (d, J = 6.7 Hz, 1H), 6.70 (s, 1H), 3.98 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 183.6, 162.4, 154.4, 140.8, 137.8, 130.1, 128.8, 128.2, 126.7, 126.5,

118.6, 118.0, 111.0, 107.0, 84.3, 55.5. IR (KBr): 3063, 2977, 2892, 1623, 1588, 1223, 1067, 732 cm⁻¹. HRMS (ESI) m/z Calcd for C₁₈H₁₅NONa [M+Na]⁺ 300.1000, found 300.1000.

(Z)-1-Phenyl-2-(quinolin-2-yl)ethen-1-ol (3g')

Yellow solid (36.6 mg, 74% yield). PE/EA = 10:1, $R_f = 0.29$. ¹H NMR (400 MHz, CDCl₃): δ 15.75 (s, 1H), 8.03–7.97 (m, 2H), 7.70 (d, J = 9.2 Hz, 1H), 7.61–7.46 (m, 6H), 7.33–7.27 (m, 1H), 6.92 (d, J = 9.1 Hz, 1H), 6.13 (s, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 183.9, 154.3, 139.8, 138.0, 136.1, 131.0, 130.4, 128.3, 127.6, 126.7, 123.7, 123.4, 122.3, 118.3, 90.0. IR (KBr): 3059, 1634, 1550, 1144, 1070 cm⁻¹. HRMS (ESI) m/z Calcd for C₁₇H₁₃NONa [M+Na]⁺ 270.0895, found 270.0896.

(Z)-2-(4-Methylquinolin-2-yl)-1-phenylethen-1-ol (3h')

Yellow solid (35.5 mg, 68% yield). PE/EA = 5:1, $R_f = 0.30$. ¹H NMR (400 MHz, CDCl₃): δ 15.70 (s, 1H), 8.05–7.96 (m, 2H), 7.74 (d, J = 8.1 Hz, 1H), 7.62–7.45 (m, 5H), 7.34 (t, J = 8.1 Hz, 1H), 6.79 (s, 1H), 6.07 (s, 1H), 2.58 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 184.2, 153.9, 144.4, 140.1, 137.6, 130.7, 130.2, 128.2, 126.6, 124.0, 123.8, 123.5, 121.6, 118.5, 89.1, 19.0. IR (KBr): 3059, 2978, 2890, 1632, 1344, 1182, 1069, 696 cm⁻¹. HRMS (ESI) m/z Calcd for C₁₈H₁₅NONa [M+Na]⁺ 284.1051, found 284.1050.

(Z)-2-(4-Chloroquinolin-2-yl)-1-phenylethen-1-ol (3i')

Yellow solid (34.3 mg, 61% yield). PE/EA = 10:1, $R_f = 0.31$. ¹H NMR (400 MHz, CDCl₃): δ 15.69 (s, 1H), 8.04–7.94 (m, 3H), 7.65 (t, J = 7.2 Hz, 1H), 7.60–7.55 (m, 1H), 7.53–7.47 (m, 3H), 7.39 (t, J = 7.5 Hz, 1H), 7.07 (s, 1H), 6.09 (s, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 182.2, 154.1, 141.6, 139.6, 138.9, 131.9, 130.6, 128.3, 126.5, 124.6, 124.3, 121.9, 121.5, 119.4, 90.3. IR (KBr): 3062, 1591, 1479, 1254, 1191, 779, 731 cm⁻¹. HRMS (ESI) m/z Calcd for C₁₇H₁₃ClNO [M+H]⁺ 282.0686, found 282.0680.

(Z)-2-(5-Bromoquinolin-2-yl)-1-phenylethen-1-ol (3j')

Yellow solid (42.4 mg, 65% yield). PE/EA = 10:1, $R_f = 0.32$. ¹H NMR (400 MHz, CDCl₃): δ 15.68 (s, 1H), 8.03 (d, J = 9.4 Hz, 1H), 7.99–7.91 (m, 2H), 7.51–7.43 (m, 5H), 7.36 (t, J = 8.0 Hz, 1H), 6.96 (d, J = 9.4 Hz, 1H), 6.13 (s, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 182.6, 154.5, 140.0, 139.0, 134.8, 131.1, 130.6, 128.4, 127.5, 126.6, 123.6, 122.8, 122.4, 118.7, 90.9. IR (KBr): 3058,

1588, 1533, 1342, 1204, 749, 613 cm⁻¹. HRMS (ESI) m/z Calcd for $C_{17}H_{13}BrNO$ [M+H]⁺ 326.0181, found 326.0174.

Methyl (Z)-2-(2-hydroxy-2-phenylvinyl)quinoline-5-carboxylate (3k')

Orange solid (40.9 mg, 67% yield). PE/EA = 5:1, $R_f = 0.22$. ¹H NMR (400 MHz, CDCl₃): δ 15.78 (s, 1H), 8.87 (d, J = 9.6 Hz, 1H), 8.03–7.93 (m, 3H), 7.72 (d, J = 8.2 Hz, 1H), 7.60 (t, J = 7.9 Hz, 1H), 7.54–7.45 (m, 3H), 7.04 (d, J = 9.6 Hz, 1H), 6.16 (s, 1H), 4.03 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 183.0, 166.8, 154.0, 139.2, 139.1, 133.9, 130.5, 129.6, 128.3, 127.0, 126.6, 124.0, 123.5, 122.6, 90.4, 52.4. IR (KBr): 3061, 2954, 2828, 1715, 1632, 1547, 1266, 1138, 741 cm⁻¹. HRMS (ESI) m/z Calcd for C₁₉H₁₆NO₃ [M+H]⁺ 306.1130, found 306.1143.

(Z)-2-(5-(Dimethylamino)quinolin-2-yl)-1-phenylethen-1-ol (3l')

Yellow oil (33.6 mg, 58% yield). PE/EA = 5:1, $R_f = 0.28$. ¹H NMR (400 MHz, CDCl₃): δ 15.75 (s, 1H), 8.10 (d, J = 9.4 Hz, 1H), 8.05–7.97 (m, 2H), 7.53–7.44 (m, 5H), 7.20 (d, J = 8.3 Hz, 1H), 6.94–6.87 (m, 2H), 6.12 (s, 1H), 2.89 (s, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 184.0, 154.0, 151.5, 140.1, 139.0, 133.1, 131.1, 130.3, 128.3, 126.7, 120.7, 118.0, 112.8, 112.6, 89.3, 45.2. IR (KBr): 3060, 2968, 2895, 1639, 1356, 1153, 1089, 687 cm⁻¹. HRMS (ESI) m/z Calcd for C₁₉H₁₉N₂O [M+H]⁺ 291.1497, found 291.1489.

(Z)-2-(6-Methoxyquinolin-2-yl)-1-phenylethen-1-ol (3m')

Yellow solid (24.9 mg, 45% yield). PE/EA = 5:1, $R_f = 0.24$. ¹H NMR (400 MHz, CDCl₃): δ 16.10 (s, 1H), 8.02–7.94 (m, 2H), 7.73 (d, *J* = 9.0 Hz, 1H), 7.58 (d, *J* = 9.0 Hz, 1H), 7.51–7.44 (m, 3H), 7.28 (d, *J* = 2.7 Hz, 1H), 7.02–6.96 (m, 2H), 6.13 (s, 1H), 3.92 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 178.3, 156.4, 154.4, 139.0, 135.7, 134.6, 129.9, 128.3, 126.3, 124.9, 122.4, 121.6, 121.2, 107.8, 90.8, 55.6. IR (KBr): 3057, 2979, 2891, 1638, 1263, 1070, 739 cm⁻¹. HRMS (ESI) m/z Calcd for C₁₈H₁₅NO₂Na [M+Na]⁺ 300.1000, found 300.0992.

(Z)-2-(6-Bromo-7-fluoroquinolin-2-yl)-1-phenylethen-1-ol (3n')

Yellow solid (37.2 mg, 54% yield). PE/EA = 10:1, $R_f = 0.36$. ¹H NMR (400 MHz, CDCl₃): δ 15.74 (s, 1H), 8.02–7.93 (m, 2H), 7.79 (d, J = 7.1 Hz, 1H), 7.63 (d, J = 9.2 Hz, 1H), 7.53–7.45 (m, 3H), 7.36–7.29 (m, 1H), 6.93 (d, J = 9.0 Hz, 1H), 6.16 (s, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 181.1, 159.9 (d, J = 250.1 Hz), 155.2, 138.5, 134.4, 131.9, 130.7, 128.7 (d, J = 3.9 Hz), 128.4,

126.6, 122.4 (d, J = 2.4 Hz), 121.5, 106.4 (d, J = 25.3 Hz), 105.3 (d, J = 23.1 Hz), 91.7. ¹⁹F NMR (376 MHz, CDCl₃): δ -102.0. IR (KBr): 3058, 1638, 1552, 1254, 1202, 1070, 884, 740 cm⁻¹. HRMS (ESI) m/z Calcd for C₁₇H₁₂BrFNO [M+H]⁺ 344.0086, found 344.0094.

(Z)-2-(7-Methylquinolin-2-yl)-1-phenylethen-1-ol (30')

Yellow solid (37.1 mg, 71% yield). PE/EA = 10:1, $R_f = 0.34$. ¹H NMR (400 MHz, CDCl₃): δ 15.74 (s, 1H), 8.01–7.94 (m, 3H), 7.67 (d, J = 8.0 Hz, 1H), 7.54–7.48 (m, 4H), 7.23 (d, J = 8.0 Hz, 1H), 7.10 (d, J = 9.1 Hz, 1H), 6.34 (s, 1H), 2.49 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 180.8, 154.9, 142.1, 139.4, 138.4, 137.0, 130.8, 128.8, 128.1, 126.8, 126.2, 121.8, 121.7, 118.9, 90.2, 21.8. IR (KBr): 2956, 1593, 1548, 1347, 1216, 723 cm⁻¹. HRMS (ESI) m/z Calcd for C₁₈H₁₆NO [M+H]⁺ 262.1232, found 262.1222.

(Z)-2-(Phenanthridin-6-yl)-1-phenylethen-1-ol (3p')

Yellow solid (41.6 mg, 70% yield). PE/EA = 5:1, $R_f = 0.38$. ¹H NMR (400 MHz, DMSO): δ 16.00 (s, 1H), 8.71 (d, J = 8.4 Hz, 1H), 8.65 (d, J = 8.3 Hz, 1H), 8.51 (d, J = 8.1 Hz, 1H), 8.21–8.16 (m, 2H), 7.92 (t, J = 7.1 Hz, 1H), 7.74 (t, J = 7.1 Hz, 1H), 7.62 (d, J = 3.9 Hz, 2H), 7.59–7.51 (m, 3H), 7.45–7.38 (m, 1H), 7.12 (s, 1H). ¹³C NMR (100 MHz, DMSO): δ 185.9, 153.0, 140.2, 134.6, 133.0, 132.0, 131.3, 130.6, 129.0, 128.8, 127.5, 126.4, 124.3, 124.3, 123.6, 123.5, 120.4, 118.4, 85.5. IR (KBr): 3063, 1599, 1547, 1348, 1213, 1070, 736 cm⁻¹. HRMS (ESI) m/z Calcd for C₂₁H₁₆NO [M+H]⁺ 298.1232, found 298.1231.

E. Synthetic transformation of products

Enol **3** (0.2 mmol) was dissolved in dry dichloromethane (2.5 mL). Triethylamine (0.29 mL, 2.1 mmol) and boron trifluoride diethyl ether complex (0.26 mL, 2.0 mmol) were added to the solution and stirred at room temperature for 24 h. After completed, water was added into the solution, and the solution was extracted with DCM. The organic layer was washed with water and dried over MgSO₄. After concentration of solvent, the residue was purified by silica gel chromatography using PE/DCM to afford **4** as a light yellow solid.

4,4-Difluoro-2-phenyl-4H-4 λ^4 ,5 λ^4 -[1,3,2]oxazaborinino[4,3-*a*]isoquinoline (4a)

Light yellow solid (46.6 mg, 79% yield). PE/DCM = 1:4, $R_f = 0.35$. ¹H NMR (400 MHz, DMSO): δ 9.04 (d, J = 8.5 Hz, 1H), 8.30–8.24 (m, 3H), 8.14 (d, J = 8.1 Hz, 1H), 8.08 (t, J = 7.6 Hz, 1H), 7.96–7.89 (m, 2H), 7.75 (s, 1H), 7.65–7.56 (m, 3H). ¹³C NMR (100 MHz, DMSO): δ 164.3, 152.6, 136.8, 134.7, 134.2, 132.1, 131.6, 129.9, 129.2, 128.0, 127.4, 127.3, 123.9, 120.0, 90.7. ¹⁹F NMR (376 MHz, DMSO): δ -136.0. IR (KBr): 3061, 1637, 1543, 1052, 745, 690 cm⁻¹. HRMS (ESI) m/z Calcd for C₁₇H₁₂BF₂NONa [M+Na]⁺ 318.0878, found 318.0877.

7-Bromo-4,4-difluoro-2-phenyl-4H- $4\lambda^4$, $5\lambda^4$ -[1,3,2]oxazaborinino[4,3-*a*]isoquinoline (4b)

Light yellow solid (64.3 mg, 86% yield). PE/DCM = 1:4, $R_f = 0.33$. ¹H NMR (400 MHz, DMSO): δ 9.13 (d, J = 8.4 Hz, 1H), 8.43 (s, 1H), 8.30–8.19 (m, 4H), 8.07–7.99 (m, 1H), 7.77 (s, 1H), 7.68–7.54 (m, 3H). ¹³C NMR (100 MHz, DMSO): δ 165.5, 152.6, 136.2, 135.2, 134.1, 132.6, 132.4, 130.8, 129.3, 128.3, 127.5, 126.7, 124.8, 114.9, 90.8. ¹⁹F NMR (376 MHz, DMSO): δ -135.8. IR (KBr): 3062, 1636, 1543, 1261, 1070, 747, 688 cm⁻¹. HRMS (ESI) m/z Calcd for C₁₇H₁₁BBrF₂NOK [M+K]⁺ 411.9722, found 411.9704.

4,4-Difluoro-2-(4-(trifluoromethyl)phenyl)-4*H*-4 λ^4 ,5 λ^4 -[1,3,2]oxazaborinino[4,3-*a*]isoquinolin e (4c)

Light yellow solid (65.3 mg, 90% yield). PE/DCM = 1:4, $R_f = 0.37$. ¹H NMR (400 MHz, DMSO): δ 9.10 (d, J = 8.5 Hz, 1H), 8.47 (d, J = 8.2 Hz, 2H), 8.34 (d, J = 6.7 Hz, 1H), 8.20 (d, J = 7.4 Hz, 1H), 8.12 (t, J = 7.0 Hz, 1H), 8.04 (d, J = 6.7 Hz, 1H), 8.00–7.94 (m, 3H), 7.91 (s, 1H). ¹³C NMR (100 MHz, DMSO): δ 162.1, 152.2, 138.1, 136.9, 134.9, 131.7, 131.5 (q, J = 32 Hz), 130.0, 128.0, 128.0, 127.4, 126.1 (q, J = 3.8 Hz), 124.0, 124.4 (q, J = 270.8 Hz), 120.8, 92.4. ¹⁹F NMR (376 MHz, DMSO): δ -61.20, -135.90. IR (KBr): 3058, 1638, 1551, 1326, 1116, 1070, 747 cm⁻¹. HRMS (ESI) m/z Calcd for C₁₈H₁₁BF₅NONa [M+Na]⁺ 386.0752, found 386.0749.

4,4-Difluoro-2-(p-tolyl)-4H-4 λ^4 ,5 λ^4 -[1,3,2]oxazaborinino[4,3-*a*]isoquinoline (4d)

Light yellow solid (46.4 mg, 75% yield). PE/DCM = 1:4, $R_f = 0.32$. ¹H NMR (400 MHz, DMSO): δ 9.01 (d, J = 8.6 Hz, 1H), 8.23 (d, J = 6.7 Hz, 1H), 8.17–8.10 (m, 3H), 8.05 (t, J = 7.5 Hz, 1H), 7.93–7.86 (m, 2H), 7.68 (s, 1H), 7.39 (d, J = 8.0 Hz, 2H), 2.43 (s, 3H). ¹³C NMR (100 MHz, DMSO): δ 164.6, 152.7, 142.3, 136.7, 134.6, 131.6, 131.5, 129.8, 129.8, 128.0, 127.4, 127.3, 123.9, 119.7, 90.0, 21.5. ¹⁹F NMR (376 MHz, DMSO): δ -136.0. IR (KBr): 3056, 2981, 2891, 1637, 1546, 1263, 1071, 739 cm⁻¹. HRMS (ESI) m/z Calcd for C₁₈H₁₄BF₂NONa [M+Na]⁺ 332.1034, found 332.1033.

1,1-Difluoro-3-phenyl-1H-1 λ^4 ,11 λ^4 -[1,3,2]oxazaborinino[3,4-*a*]quinoline (4e)

Light yellow solid (47.2 mg, 80% yield). PE/DCM = 1:4, $R_f = 0.36$. ¹H NMR (400 MHz, DMSO): δ 8.67 (d, J = 8.7 Hz, 1H), 8.55 (d, J = 8.2 Hz, 1H), 8.13–8.04 (m, 3H), 7.95 (t, J = 7.1 Hz, 1H), 7.75-7.67 (m, 2H), 7.64–7.56 (m, 3H), 7.07 (s, 1H). ¹³C NMR (100 MHz, DMSO): δ 163.5, 154.3, 142.9, 138.9, 133.5, 132.9, 132.2, 129.7, 129.4, 127.2, 126.9, 122.2, 122.2, 122.1, 95.1. ¹⁹F NMR (376 MHz, DMSO): δ -125.7. IR (KBr): 3061, 1639, 1553, 1263, 1069, 741 cm⁻¹. HRMS (ESI) m/z Calcd for C₁₇H₁₂BF₂NONa [M+Na]⁺ 318.0878, found 318.0872.

Methyl 1,1-difluoro-3-phenyl-1H-1 λ^4 ,11 λ^4 -[1,3,2]oxazaborinino[3,4-*a*]quinoline-7-carboxylat e (4f)

Light yellow solid (58.6 mg, 83% yield). PE/DCM = 1:4, $R_f = 0.30$. ¹H NMR (400 MHz, CDCl₃): δ 9.46 (d, J = 9.3 Hz, 1H), 9.03 (d, J = 9.0 Hz, 1H), 8.25 (d, J = 7.4 Hz, 1H), 8.06 (d, J = 7.4 Hz, 2H), 7.85 (t, J = 8.3 Hz, 1H), 7.59–7.47 (m, 3H), 7.38 (d, J = 9.3 Hz, 1H), 6.47 (s, 1H), 4.06 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 166.4, 165.9, 153.9, 140.0, 138.9, 133.5, 131.7, 130.8, 129.7, 128.6, 127.6, 127.4, 127.0, 125.6, 122.7, 93.8, 52.5. ¹⁹F NMR (376 MHz, DMSO): δ -127.2. IR (KBr): 3056, 2982, 2891, 1639, 1554, 1263, 1072, 739 cm⁻¹. HRMS (ESI) m/z Calcd for C₁₉H₁₄BF₂NO₃Na [M+Na]⁺ 376.0932, found 376.0928.

1,1-Difluoro-6-methyl-3-phenyl-1H-1 λ^4 ,11 λ^4 -[1,3,2]oxazaborinino[3,4-*a*]quinoline (4g)

Light yellow solid (55.0 mg, 89% yield). PE/DCM = 1:4, $R_f = 0.33$. ¹H NMR (400 MHz, CDCl₃): δ 8.81 (d, J = 8.6 Hz, 1H), 8.02 (d, J = 6.3 Hz, 2H), 7.93 (d, J = 8.3 Hz, 1H), 7.81 (t, J = 7.0 Hz, 1H), 7.58 (t, J = 7.4 Hz, 1H), 7.53–7.45 (m, 3H), 7.12 (s, 1H), 6.36 (s, 1H), 2.73 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 164.7, 153.3, 150.1, 139.3, 133.8, 131.8, 131.3, 128.5, 126.7, 126.2, 124.2, 123.4, 121.4, 93.7, 19.3. ¹⁹F NMR (376 MHz, DMSO): δ -128.4. IR (KBr): 3056, 2981, 2891, 1620, 1551, 1264, 1078, 740 cm⁻¹. HRMS (ESI) m/z Calcd for C₁₈H₁₄BF₂NONa [M+Na]⁺ 332.1034, found 332.1027.

1,1-Difluoro-8-methoxy-3-phenyl-1H-1 λ^4 ,11 λ^4 -[1,3,2]oxazaborinino[3,4-*a*]quinoline (4h)

Light yellow solid (49.4 mg, 76% yield). PE/DCM = 1:4, $R_f = 0.32$. ¹H NMR (400 MHz, DMSO): δ 8.58 (d, J = 8.7 Hz, 1H), 8.48 (d, J = 9.6 Hz, 1H), 8.07–7.99 (m, 2H), 7.66 (d, J = 8.8 Hz, 1H), 7.63–7.54 (m, 5H), 6.99 (s, 1H), 3.96 (s, 3H). ¹³C NMR (100 MHz, DMSO): δ 162.2, 157.8, 152.2, 141.9, 134.1, 133.8, 131.8, 129.3, 128.9, 126.7, 123.9, 123.8, 122.5, 108.9, 94.9,

56.3. ¹⁹F NMR (376 MHz, DMSO): δ -133.2. IR (KBr): 3060, 2978, 2891, 1624, 1552, 1252, 1057 cm⁻¹. HRMS (ESI) m/z Calcd for C₁₈H₁₅BF₂NO₂ [M+H]⁺ 326.1164, found 326.1177.

A pressure tube was charged with isoquinoline *N*-oxide **1a** (580.6 mg, 4.0 mmol), 1,3-diphenylprop-2-yn-1-one **2b** (990.0 mg, 4.8 mmol), $Zn(OAc)_2 2H_2O$ (175.6 mg, 0.8 mmol) and acetone (20.0 mL). The reaction mixture was stirred at 100 °C for 12 h under air in an oil bath. After cooling to room temperature, the mixture was filtered through a short Celite pad and all volatiles were removed under reduced pressure. The residue was purified by silica gel chromatography using PE/EA eluent to afford the product **3b** (603.4 mg, 61% yield).

To a dried Schlenk tube was added the mixture of (*Z*)-2-(isoquinolin-1-yl)-1-phenylethen-1-ol **3b** (0.20 mmol), *o*-fluorophenylacetylene (0.22 mmol), potassium tert-butoxide (0.20 mmol) and DMSO (1.0 mL). The mixture was stirred at 120 °C for 12 h under Ar atmosphere. After the reaction was completed, a saturated aqueous solution (30.0 mL) of NH₄Cl was added, followed by extraction with EtOAc (10.0 mL × 3). The organic layer was dried over anhydrous MgSO₄, filtered and concentrated under reduced pressure to yield the crude product, which was further purified by silica gel chromatography using PE/EA to afford the product **5**: White solid (47.9 mg, 69% yield). PE/EA = 10:1, $R_f = 0.32$. ¹H NMR (400 MHz, CDCl₃): δ 8.59 (d, *J* = 5.7 Hz, 1H), 8.03 (d, *J* = 8.5 Hz, 1H), 7.79 (d, *J* = 8.2 Hz, 1H), 7.64–7.56 (m, 2H), 7.45–7.32 (m, 3H), 7.30–7.28 (m, 2H), 7.23 (t, *J* = 7.9 Hz, 1H), 7.11–6.99 (m, 5H), 6.49 (d, *J* = 11.1 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 158.9, 155.5, 152.3, 142.5, 136.6, 135.4, 131.6, 131.3, 130.8, 130.4, 130.1, 128.9, 128.7, 128.5, 127.6, 127.3, 127.0, 126.8, 124.9, 124.8, 121.2, 120.5. IR (KBr): 3067, 1633, 1487, 1175, 1070, 755, 690 cm⁻¹. HRMS (ESI) m/z Calcd for C₂₅H₁₈NO [M+H]⁺ 348.1388, found 348.1384.

A dried Schlenk tube was charged with (*Z*)-2-(isoquinolin-1-yl)- 1-phenylethen-1-ol **3b** (49.5 mg, 0.20 mmol) and Cs₂CO₃ (130.3 mg, 0.40 mmol). The tube was then charged and recharged with Ar three times. Methyl 3-phenylpropiolate (38.4 mg, 0.22 mmol) and DMF (2.0 mL) were added into the tube and then heated at 120 °C overnight in an oil bath. After the reaction was completed, the resulting mixture was extracted with EtOAc (10.0 mL \times 3) and dried with MgSO₄. Then the solvent was removed under reduced pressure and purified by silica gel column chromatography using PE/EA eluent to afford the product **6** and **7**.

(Z)-1-Benzoyl-2-benzylidenepyrrolo[2,1-*a*]isoquinolin-3(2H)-one (6)

Yellow solid (24.8 mg, 33% yield). PE/EA = 4:1, R_f = 0.18. ¹H NMR (400 MHz, DMSO): δ 8.86 (d, *J* = 8.3 Hz, 1H), 8.76 (d, *J* = 7.8 Hz, 1H), 7.96 (d, *J* = 7.8 Hz, 1H), 7.89–7.80 (m, 4H), 7.76 (t, *J* = 7.7 Hz, 1H), 7.61 (t, *J* = 7.3 Hz, 1H), 7.56–7.42 (m, 5H), 7.42–7.34 (m, 3H). ¹³C NMR (100 MHz, DMSO): δ 195.5, 157.0, 150.0, 141.1, 138.4, 137.8, 133.8, 132.1, 131.3, 129.6, 129.5, 129.3, 129.2, 128.9, 128.9, 127.9, 126.3, 125.6, 122.7, 120.7, 116.1, 101.7. IR (KBr): 3060, 1753, 1640, 1375, 1242, 1050 cm⁻¹. HRMS (ESI) m/z Calcd for C₂₆H₁₈NO₂ [M+H]⁺ 376.1338, found 376.1327.

1-Benzoyl-2-phenyl-4H-pyrido[2,1-*a*]isoquinolin-4-one (7)

Yellow solid (36.8 mg, 49% yield). PE/EA = 4:1, R_f = 0.20. ¹H NMR (400 MHz, CDCl₃): δ 9.08 (d, *J* = 7.7 Hz, 1H), 8.06 (d, *J* = 8.6 Hz, 1H), 7.73 (d, *J* = 6.9 Hz, 2H), 7.68 (d, *J* = 7.4 Hz, 1H), 7.58 (t, *J* = 7.8 Hz, 1H), 7.45 (t, *J* = 7.4 Hz, 1H), 7.30–7.15 (m, 9H), 6.78 (s, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 197.6, 158.5, 151.6, 139.4, 138.3, 138.1, 133.4, 132.6, 131.0, 129.5, 128.6, 128.6, 128.1, 127.9, 127.7, 127.1, 125.5, 123.3, 115.9, 115.4, 113.9. IR (KBr): 3057, 1663, 1462, 1263, 739 cm⁻¹. HRMS (ESI) m/z Calcd for C₂₆H₁₇NO₂Na [M+Na]⁺ 376.1338, found 376.1331.

Beeld Be

F. Fluorescence quantum yields

Figure S2. Quantum yield of compound 4b in solid state

Figure S3. Quantum yield of compound 4c in solid state

Figure S4. Quantum yield of compound 4d in solid state

Figure S5. Quantum yield of compound 4e in solid state

Figure S6. Quantum yields of compound 4f in solid state

Figure S7. Quantum yields of compound 4g in solid state

Figure S8. Quantum yields of compound 4h in solid state

G. Stability study of products

Figure S11. ¹H NMR spectra of product 3b under different temperatures

H. Detection experiment of boron compounds

We prepared solution of product **3b** and boron compounds, all the concentrations of the boron compounds and product **3b** were 10 mM. Among them, product **3b** was dissolved in EtOH, $C_6H_{13}BO_2(BHpin)$, PhB(OH)₂ and B(OCH₃)₃ were dissolved in DCM, PhBF₃K was dissolved in H₂O, and HBF₄ was dissolved in EtOH. Firstly, $C_6H_{13}BO_2(BHpin)$, PhB(OH)₂, B(OCH₃)₃, PhBF₃K and HBF₄ were spotted on the top of the TLC plate from left to right, and then boron compounds were spotted on the bottom of the TLC plate from left to right. Product **3b** was spotted on the right side of the TLC plate. Finally, the product **3b** was spotted on the top of the TLC plate from left to right, covering the previous boron compounds. The TLC plate was heated at 60 °C for ten minutes and placed under 365 nm UV lamp to observe the results.

I. Mechanistic study

A pressure tube was charged with quinoline *N*-oxide **1h** (0.05 mmol), ynone **2b** (0.06 mmol) and acetone (0.5 mL). The reaction mixture was stirred at 100 °C for 12 h under air atmosphere. After cooling to room temperature, the mixture was filtered through a short Celite pad and all volatiles were removed under reduced pressure. The residue was purified by silica gel chromatography using PE/EA eluent to afford the product **8**. Yellow solid (13.2 mg, 75% yield). PE/EA = 20:1, $R_f = 0.32$. ¹H NMR (400 MHz, CDCl₃): δ 17.12 (s, 1H), 7.96 (s, 2H), 7.73–7.69 (m, 3H), 7.65 (d, *J* = 7.5 Hz, 2H), 7.47–7.42 (m, 3H), 7.27–7.21 (m, 1H), 7.18–7.12 (m, 5H). ¹³C NMR (100 MHz, CDCl₃): δ 197.6, 192.6, 154.5, 142.6, 142.2, 138.3, 136.5, 131.6, 131.4, 129.8, 129.3, 128.2, 127.8, 127.7, 125.1, 123.7, 119.8, 118.7, 106.2. IR (KBr): 3215, 2988, 1633, 1588, 1400, 1372, 1267, 738 cm⁻¹. HRMS (ESI) m/z Calcd for C₂₄H₁₇NO₂Na [M+Na]⁺ 374.1157, found 374.1150.

A pressure tube was charged with $Zn(OAc)_2 2H_2O$ (2.2 mg, 0.01 mmol), (*E*)-3-hydroxy-1,3-diphenyl-2-(quinolin-2-yl)prop-2-en-1-one **8** (17.6 mg, 0.05 mmol) and acetone (0.5 mL). The reaction mixture was stirred at 100 °C for 12 h under air atmosphere. After cooling to room temperature, the mixture was filtered through a short Celite pad and all volatiles were removed under reduced pressure. The residue was purified by silica gel chromatography using PE/EA eluent to afford the product **3g'**.

J. References

- (1) Sen, C.; Ghosh, S. C. Adv. Synth. Catal. 2018, 360, 905-910.
- (2) Bertuzzi, G.; Pecorari, D.; Bernardi, L.; Fochi, M. Chem. Commun. 2018, 54, 3977-3980.
- (3) Biswas, A.; Karmakar, U.; Nandi, S.; Samanta, R. J. Org. Chem. 2017, 82, 8933-8942.
- (4) Biswas, A.; Karmakar, U.; Pal, A.; Samanta, R. Eur. J. Org. Chem. 2016, 22, 13826-13830.
- (5) Liu, J.; Wang, S. M.; Qin, H. L. Org. Biomol. Chem. 2020, 18, 4019-4023.
- (6) Bering, L.; Antonchick, A. P. Org. Lett. 2015, 17, 3134-3137.
- (7) Dhiman, A. K., Thakur, A., Kumar, I., Kumar, R., Sharma, U. J. Org. Chem. 2020, 85, 9244-9254.
- (8) Sharma, R.; Kumar, R.; Sharma, U. J. Org. Chem. 2019, 84, 2786-2797.
- (9) Muta, R.; Torigoe, T.; Kuninobu, Y. Org. Lett. 2019, 21, 4289-4292.
- (10) da Silva, V. F.; da Silva, G. P.; Matsuo, B. T.; Ali, A.; Davis, R. L.; Zukerman-Schpector, J.; Corr êa, A. G.; Paix ão, M. W. Org. Biomol. Chem. 2019, 17, 519-526.
- (11) Kim, W.; Park, K.; Park, A.; Choe, J.; Lee, S. Org. Lett. 2013, 15, 1654-1657.
- (12) Knezz, S. N.; Waltz, T. A.; Haenni, B. C.; Burrmann, N. J.; McMahon, R. J. J. Am. Chem. Soc. 2016, 138, 12596-12604.
- (13) Feng, L. L.; Hu, T. J.; Zhang, S. S.; Xiong, H. Y.; Zhang, G. W. Org. Lett. 2019, 21, 9487-9492.
- (14) Zhang, L. C; Chu, Y. L.; Ma, P. Z.; Zhao, S. J.; Li, Q. Y.; Chen, B. Y.; Hong, X. J.; Sun, J. Org. Biomol. Chem. 2020, 18, 1073-1077.
- (15) Vyas, V. K.; Knighton, R. C.; Bhanage, B. M.; Wills, M. Org. Lett. 2018, 20, 975-978.

K. NMR spectra

¹³C NMR of **10** (100 MHz, CDCl₃)

¹H NMR of **2h** (400 MHz, CDCl₃)

¹H NMR of **3a** (400 MHz, DMSO)

¹H NMR of **3b** (400 MHz, CDCl₃) -16.273h 0.63-1.00 1.98 1.03 2.96 0.95 0.93 9 8 f1 (ppm)

¹H NMR of **3c** (400 MHz, CDCl₃)

¹H NMR of **3d** (400 MHz, CDCl₃)

¹H NMR of **3e** (400 MHz, DMSO)

¹⁹F NMR of **3e** (376 MHz, DMSO)

^{0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190} fl (ppm)

¹H NMR of **3f** (400 MHz, DMSO)

33

¹H NMR of **3g** (400 MHz, CDCl₃)

34

¹H NMR of **3i** (400 MHz, CDCl₃)

¹H NMR of **3j** (400 MHz, DMSO) $\begin{array}{c} 8.21 \\ 8.19 \\ 7.77 \\ 7.77 \\ 7.69 \\ 7.69 \\ 7.66 \\ 7.66 \\ 7.66 \\ 7.66 \\ 7.66 \\ 7.66 \\ 7.66 \\ 7.66 \\ 7.66 \\ 7.75 \\ 7$ -15.092.13 Me 3j 6.2 : 1 keto 1 He8.0 1.02 1.95 1.03 1.02= 0.32H 1.00≖ 3.09= 16 15 0 14 8 f1 (ppm) 7 5 4 3 2 13 12 11 10 9 6 1

¹H NMR of 3k (400 MHz, DMSO)

¹H NMR of **3l** (400 MHz, DMSO)

¹H NMR of **3m** (400 MHz, DMSO)

¹H NMR of **3n** (400 MHz, DMSO)

¹H NMR of **30** (400 MHz, DMSO)

¹H NMR of **3b'** (400 MHz, CDCl₃)

¹H NMR of **3c'** (400 MHz, CDCl₃)

¹H NMR of **3d'** (400 MHz, DMSO)

¹H NMR of **3e'** (400 MHz, DMSO)

¹H NMR of **3f'** (400 MHz, CDCl₃)

¹H NMR of **3g'** (400 MHz, CDCl₃)

¹H NMR of **3h'** (400 MHz, CDCl₃)

¹H NMR of **3k'** (400 MHz, CDCl₃) - 15.78 - 4.03 ÇO₂M€ HO 3k' keto 0.69-3.55H 3.17₄ 1.06 1.28 3.36 1.01² 1.00₽ 1.00₌ 16 7 4 9 15 14 6 5 2 13 12 11 10 1 8 f1 (ppm) 3

0

¹H NMR of **3l'** (400 MHz, CDCl₃) -15.75 $\left\langle \begin{smallmatrix} 2.90\\ 2.89\\ 2.89 \end{smallmatrix} \right\rangle$ NMe₂ но 31' keto 0.98₹ 2.27 4.531 1.04₁ 2.12₁ 0.69 1.00-6.36≖ 16 7 3 2 0 15 14 13 i1 5 12 10 . 9 8 f1 (ppm) 6 4 1

¹H NMR of **3m'** (400 MHz, CDCl₃)

¹H NMR of **3n'** (400 MHz, CDCl₃)

¹⁹F NMR of **3n'** (376 MHz, CDCl₃)

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 fl (ppm)

¹H NMR of **3p'** (400 MHz, DMSO)

- 16.00

59

¹H NMR of **4a** (400 MHz, DMSO)

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 fl (ppm)

¹³C NMR of **4b** (100 MHz, DMSO)

¹⁹F NMR of **4b** (376 MHz, DMSO)

190 180 140 130 120 110 100 f1 (ppm)

¹⁹F NMR of **4c** (376 MHz, DMSO)

$^{19}\mathrm{F}\,\mathrm{NMR}$ of 4d (376 MHz, DMSO)

¹H NMR of **4e** (400 MHz, DMSO)

¹³C NMR of **4e** (100 MHz, DMSO)

¹⁹F NMR of **4f** (376 MHz, CDCl₃)

¹H NMR of **4g** (400 MHz, CDCl₃)

$^{13}\mathrm{C}$ NMR of 4g (100 MHz, CDCl₃)

140 130 120 f1 (ppm)

¹⁹F NMR of 4g (376 MHz, CDCl₃)

¹⁹F NMR of **4h** (376 MHz, DMSO)

^{0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190} fl (ppm)

¹H NMR of **5** (400 MHz, CDCl₃)

12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 fl (ppm)

^{200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0} fl (ppm)
¹H NMR of **6** (400 MHz, DMSO)

¹H NMR of **7** (400 MHz, CDCl₃)

¹³C NMR of **7** (100 MHz, CDCl₃)

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 fl (ppm)

