Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2021

Supporting Information

Adaptive Chirality of Achiral Tetraphenylethene-Based Tetracationic Cyclophanes with Dual Responses of Fluorescence and Circular Dichroism in Water

Haiyang Zhang, Lin Cheng, Hao Nian, Jiang Du, Tao Chen, and Liping Cao*

College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, P.

R. China.

E-mail: chcaoliping@nwu.edu.cn

Table of Contents	Pages	
General experimental details	S2	
Synthetic procedures and characterization data	S2	
X-ray structure determination	S16	
UV/vis and fluorescence titration experiments	S20	
CD titration and CPL experiment	S39	

Experimental Procedures

General Experimental Details. Starting materials were purchased from commercial suppliers were used without further purification. Melting points were recorded by using a WRS-1A apparatus in open capillary tubes. IR spectra were measured on a TENSOR27 spectrometer. NMR spectra were recorded on a spectrometer operating at 400 MHz and 600 MHz for ¹H and 100 MHz and 150 MHz for ¹³C NMR spectra on a Bruker ascend 400 spectrometer and JEOL 600 spectrometer. Mass spectrometry was performed using an Electron Spray Ionization (ESI) on a Ultimate3000 and a Micromass Quattro II triplequadrupole mass spectrometer using electrospray ionization with a MassLynx operating system. UV/vis spectra were done on Agilent Cary-100 spectrometer. Fluorescence spectra were performed by using a Horiba Fluorolog-3 spectrometer. SEM images were obtained on Hitachi SU8010 microscope. Isothermal titration calorimetry (ITC) was carried out using a VP-ITC (Malvern) at 25 °C, and computer fitting of the data were performed using the VP-ITC analyze software. The Circular dichroism (CD) spectra were recorded on a J-1500 spectropolarimeter, using a 1 cm quartz cuvette. DLS and Zeta-Potential was measured on a Brookhaven 90Plus PALS. Confocal laser scanning microscope images were obtained on Nikon C2⁺ confocal microscope.

Synthetic Procedures and Characterization Data

Compound $1 \cdot 4PF_6$. A 250 mL two-necked flask was charged with 4 (100 mg, 0.21 mmol), 5 (54 mg, 0.20 mmol), dry MeCN (100 mL) and the suspension was heated at

85 °C for 3 days. The reaction mixture was then cooled to ambient temperature and collected precipitate. The precipitate was washed with MeCN (3 × 20 mL) to give rise to a yellow solid. To exchange Br⁻ counterions to PF₆⁻ the solid was dissolved in H₂O (10 mL), adding excess amount of NH₄PF₆ (300 mg) and the mixture was stirred for 12 h. The precipitate was collected and washed with H₂O (3 × 20 mL) to give rise to a yellow solid (70 mg). The final powder product was purified by column chromatography, with CHCl₃: MeCN (saturated NH₄PF₆) = 4:1 (v:v) mobile phase (yield: 13.8%). M.p. > 300 °C. IR (KBr, cm⁻¹): 3441s, 1638s, 1601m, 1497m, 1163m, 1015m, 841s, 557m. ¹H NMR (600 MHz, CD₃CN): 8.61 (d, *J* = 7.0, 8H), 8.14 (d, *J* = 7.0, 8H), 7.69 (d, *J* = 8.4, 8H), 7.53 (s, 8H), 7.27 (d, *J* = 8.4, 8H), 7.25-7.15 (m, 12H), 7.15-7.05 (m, 8H), 5.68 (s, 8H). ¹³C NMR (150 MHz, CD₃CN): 156.9, 148.6, 145.7, 145.2, 143.7, 139.2, 135.5, 133.3, 132.6, 131.8, 131.1, 129.0, 128.6, 128.3, 125.8, 63.8. ESI-TOF-MS: m/z 735.2295 ([**1**·4PF₆⁻ - 2PF₆⁻]²⁺, calcd. for [C₈₈H₆₈N₄PF₆]³⁺, 441.8356); 295.1326 ([**1**·4PF₆⁻ - 3PF₆⁻]³⁺, calcd. for [C₈₈H₆₈N₄PF₆]³⁺, 441.8356).

Compound 1•4*Cl*⁻. 1•4PF₆⁻ (50 mg, 0.03 mmol) was dissolved in MeCN (5 mL), adding excess amount of tetrabutylammoium choride hydrate (TBACl, 10 mg) and the mixture was stirred for 12 h. The precipitate was collected and washed with MeCN (3×10 mL) to give rise to a yellow solid (yield: 83.3%). M.p. > 300 °C. IR (KBr, cm⁻¹): 3431s, 1638s, 1601s, 1497m, 1408m, 1165m, 800m, 704m. ¹H NMR (600 MHz, CD₃OD): 8.96 (d, *J* = 7.0, 8H), 8.32 (d, *J* = 7.0, 8H), 7.80 (d, *J* = 8.5, 8H), 7.68 (s, 8H), 7.28 (d, *J* = 8.5, 8H), 7.20-7.10 (m, 12H), 7.10-7.05 (m, 8H), 5.85 (s, 8H). ¹³C NMR (150 MHz, CD₃OD): 157.4, 149.1, 146.6, 145.7, 144.0, 139.5, 136.4, 133.9, 133.2, 132.3, 131.6, 129.1, 128.9, 128.6, 125.9, 64.0. ESI-TOF-MS: m/z 626.2511 ([1•4Cl⁻-2Cl⁻]²⁺, calcd. for [C₈₈H₆₈N₄Cl₂]²⁺, 626.2410); 405.1733 ([1•4Cl⁻ – 3Cl⁻]³⁺, calcd. for [C₈₈H₆₈N₄Cl]³⁺, 405.1705); 295.1392 ([1•4Cl⁻ – 4Cl⁻]⁴⁺, calcd. for [C₈₈H₆₈N₄]⁴⁺, 295.1356).

Compound 2•4*PF* $_6$. A 250 mL two-necked flask was charged with 4 (100 mg, 0.21) mmol), 6 (82 mg, 0.23mmol), dry MeCN (100 mL) and the suspension was heated at 85 °C for 3 days. The reaction mixture was then cooled to ambient temperature and collected precipitate. The precipitate was washed with MeCN (3×20 mL) to give rise to a yellow solid. To exchange Br⁻ counterions to PF₆⁻ the solid was dissolved in H₂O (10 mL), adding excess amount of NH₄PF₆ (300 mg) and the mixture was stirred for 12 h. The precipitate was collected and washed with H_2O (3 × 20 mL) to give rise to a yellow solid (24 mg). The final powder product was purified by column chromatography, with CHCl₃: MeCN (saturated NH_4PF_6) = 4:1 (v:v) mobile phase (yield: 11.9%). M.p. > 300 °C. IR (KBr, cm⁻¹): 3441s, 1638s, 1601m, 1497m, 1151m, 841s, 702m, 557s. ¹H NMR (400 MHz, CD₃CN): 8.56 (d, *J* = 6.9, 8H), 8.36 (dd, *J* = 6.9 and 3.1, 8H), 8.03 (d, J = 6.9, 8H), 7.75 (dd, J = 6.9 and 3.1, 8H), 7.60 (d, J = 8.4, 8H), 7.30-7.15 (m, 20H), 7.15-7.05 (m, 8H), 6.77 (s, 8H). ¹³C NMR (100 MHz, CD₃CN): 157.2, 148.3, 145.8, 144.5, 143.8, 139.1, 133.4, 132.9, 132.6, 131.9, 129.5, 129.0, 128.6, 128.4, 126.6, 126.1, 125.1, 56.7. ESI-TOF-MS: m/z 835.7529 ([**2**•4PF₆⁻ $-2PF_6^{-}]^{2+}$, calcd. for $[C_{104}H_{76}N_4P_2F_{12}]^{2+}$, 835.7688); 508.8463 ($[2 \cdot 4PF_6^{-} - 3PF_6^{-}]^{3+}$, calcd. for $[C_{104}H_{76}N_4PF_6]^{3+}$, 508.8576); 345.4019 ($[2 \cdot 4PF_6^{-} - 4PF_6^{-}]^{4+}$, calcd. for $[C_{104}H_{76}N_4]^{4+}$, 345.4020).

Compound 2•4*Cl*⁻. 2•4PF₆⁻ (100 mg, 0.05 mmol) was dissolved in MeCN (5 mL), adding excess amount of tetrabutylammoium choride hydrate (TBACl, 15 mg) and the mixture was stirred for 12 h. The precipitate was collected and washed with MeCN (3×10 mL) to give rise to a yellow solid (yield: 85.2%). M.p. > 300 °C. IR (KBr, cm⁻¹): 3433s, 1636s, 1601m, 1495m, 1410m, 1151m, 772w, 704m. ¹H NMR (600 MHz,

CD₃OD): 8.84 (d, J = 6.9, 8H), 8.53 (dd, J = 6.9 and 3.0, 8H), 8.21 (d, J = 6.9, 8H), 7.77 (dd, J = 6.9 and 3.0, 8H), 7.71 (d, J = 8.5, 8H), 7.23 (d, J = 8.5, 8H), 7.20-7.15 (m, 12H), 7.10-7.05 (m, 8H), 7.01 (s, 8H). ¹³C NMR (150 MHz, CD₃OD): 157.7, 148.8, 146.6, 145.2, 144.1, 139.5, 133.9, 133.5, 133.0, 132.3, 129.8, 129.1, 128.9, 128.6, 127.3, 126.1, 125.3, 56.6. ESI-TOF-MS: m/z 726.2840 ([**2**•4Cl⁻ – 2Cl⁻]²⁺, calcd. for [C₁₀₄H₇₆N₄Cl₂]²⁺, 726.2727); 472.1941 ([**2**•4Cl⁻ – 3Cl⁻]³⁺, calcd. for [C₁₀₄H₇₆N₄Cl]³⁺, 472.1925).

Compound **3**•2*PF*₆⁻. A 250 mL two-necked flask was charged with **4** (100 mg, 0.21 mmol), **7** (703 mg, 4.11mmol), dry MeCN (100 mL) and the suspension was heated at 85 °C for 3 days. The reaction mixture was then cooled to ambient temperature and collected precipitate. The precipitate was washed with MeCN (3×20 mL) to give rise to a yellow solid. To exchange Br⁻ counterions to PF₆⁻ the solid was dissolved in H₂O (10 mL), adding excess amount of NH₄PF₆ (300 mg) and the mixture was stirred for 12 h. The precipitate was collected and washed with H₂O (3×20 mL) to give rise to a yellow solid (153 mg) (yield: 77.7%). M.p. > 300 °C. IR (KBr, cm⁻¹): 1638s, 1601m, 1497m, 1161m, 837s, 700m, 557s. ¹H NMR (600 MHz, CD₃CN): 8.67 (d, *J* = 6.6, 4H), 8.17 (d, *J* = 6.6, 4H), 7.72 (d, *J* = 8.2, 4H), 7.55-7.40 (m, 10H), 7.30 (d, *J* = 8.2, 4H), 7.25-7.15 (m, 6H), 7.15-7.05 (m, 4H), 5.66 (s, 4H). ¹³C NMR (150 MHz, CD₃CN): 156.7, 148.5, 145.6, 145.2, 143.6, 139.2, 134.1, 133.3, 132.6, 131.7, 130.7, 130.4, 129.9, 128.9, 128.6, 128.3, 125.8, 64.5. ESI-TOF-MS: m/z 813.3077 ([**3**•2PF₆⁻ – PF₆⁻]⁺, calcd. for [C₅₀H₄₀N₂PF₆]⁺, 813.2828); 334.1663 ([**3**•2PF₆⁻ – 2PF₆⁻]²⁺, calcd. for [C₅₀H₄₀N₂]²⁺, 334.1590).

Compound 3•2Cl⁻. **3•**2PF₆⁻ (100 mg, 0.10 mmol) was dissolved in MeCN (5 mL), adding excess amount of tetrabutylammoium choride hydrate (TBACl, 15 mg) and the mixture was stirred for 12 h. The precipitate was collected and washed with MeCN (3×10 mL) to give rise to a yellow solid (yield: 86.4%). M.p. > 300 °C. IR (KBr, cm⁻¹): 1636s, 1599m, 1495m, 1161m, 814s, 700m, 617s. ¹H NMR (600MHz, CD₃OD): 8.98 (d, J = 6.3, 4H), 8.35 (d, J = 6.3, 4H), 7.83 (d, J = 8.0, 4H), 7.60-7.40 (m, 10H), 7.30 (d, J = 8.0, 4H), 7.20-7.05 (m, 10H), 5.82 (s, 4H). ¹³C NMR (150 MHz, CD₃OD): 157.3, 149.0, 146.4, 145.7, 144.0, 139.6, 134.8, 133.9, 133.2, 132.2, 130.9, 130.7, 130.1, 129.1, 128.9, 128.5, 125.9, 64.7. ESI-TOF-MS: m/z 813.3077 ([**3**•2Cl⁻ – Cl⁻]⁺, calcd. for [C₅₀H₄₀N₂Cl]⁺, 813.2828); 334.1663 ([**3**•2Cl⁻ – 2Cl⁻]²⁺, calcd. for [C₅₀H₄₀N₂]²⁺, 334.1590).

Figure S1. ¹H NMR spectrum recorded (600 MHz, CD_3CN , RT) for 1•4PF₆⁻.

Figure S2. ¹³C NMR spectrum recorded (150 MHz, CD₃CN, RT) for $1 \cdot 4PF_6^{-1}$.

Figure S3. ¹H NMR spectrum recorded (400 MHz, CD₃CN, RT) for $2 \cdot 4PF_6^{-1}$.

Figure S4. ¹³C NMR spectrum recorded (100 MHz, CD₃CN, RT) for $2 \cdot 4PF_6^{-1}$.

Figure S5. ¹H NMR spectrum recorded (600 MHz, CD₃OD, RT) for 1•4Cl⁻.

Figure S6. ¹³C NMR spectrum recorded (150 MHz, CD₃OD, RT) for 1•4Cl⁻.

Figure S7. ¹H NMR spectrum recorded (600 MHz, CD₃OD, RT) for 2•4Cl⁻.

Figure S8. ¹³C NMR spectrum recorded (150 MHz, CD₃OD, RT) for 2•4Cl⁻.

Figure S9. ¹H NMR spectrum recorded (600 MHz, CD_3CN , RT) for $3 \cdot 2PF_6^{-1}$.

Figure S10. ¹³C NMR spectrum recorded (150 MHz, CD₃OD, RT) for $3 \cdot 2PF_6^{-1}$.

Figure S11. ¹H NMR spectrum recorded (600 MHz, CD₃CN, RT) for 3•2Cl⁻.

Figure S12. ¹³C NMR spectrum recorded (150 MHz, CD₃OD, RT) for 3•2Cl⁻.

Figure S13. Experimental and calculated electrospray ionization mass spectra of $1 \cdot 4PF_6^{-1}$.

Figure S14. Experimental and calculated electrospray ionization mass spectra of 1•4Cl⁻.

Figure S15. Experimental and calculated electrospray ionization mass spectra of $2 \cdot 4PF_6^{-1}$.

Figure S16. Experimental and calculated electrospray ionization mass spectra of **2**•4Cl⁻.

Figure S17. Experimental and calculated electrospray ionization mass spectra of $3 \cdot 2PF_6^{-1}$.

Figure S18. Experimental and calculated electrospray ionization mass spectra of 3•2Cl⁻.

X-ray Structure determination.

The crystal of $1 \cdot 4PF_6^-$: Data collections was performed on Bruker VENTURE system with PHOTON 100 CMOS detector equipped and a Ga-target Liquid METALJET D2 PLUS X-ray Source ($\lambda = 1.34139$ Å). The data was collected at 180 K crystal temperature (Oxford Cryosystems CRYOSTREAM 700), 50 kV and 30 mA with an appropriate 0.5° ω and φ scan strategy. Data reduction and integration were performed with SAINT (version 8.38A).¹ Data was corrected for absorption effects using the empirical methods as implemented in SADABS (version 2016/2).² The structure was solved by SHELXT (version 2018/2)³ and refined by full-matrix least-squares procedures using the SHELXL program (version 2018/3)⁴ through the OLEX2⁵ graphical interface. All non-hydrogen atoms, including those in disordered parts, were refined anisotropically. All H-atoms were included at calculated positions and refined as riders, with Uiso(H) = 1.2 Ueq(C). In each unit cell, there are 20 acetonitrile molecules that were found to be severely disordered and removed by the SQUEEZE routine in PLATON (version 220719).⁶ Further crystal and data collection details are listed in Table S1.

 $1 \cdot 4PF_6^-$ was dissolved in MeCN and the solution was passed through a 0.10 µm filter into a 10 mL tube, which was placed inside a 500 mL wild-mouth bottle containing isopropyl ether (50 mL). The bottle was capped, after slow evaporation of diethyl ether at 4°C into the MeCN solution for 14 days, and light-yellow single crystals of $1 \cdot 4PF_6^$ were obtained.

Chemical formula	$C_{98}H_{83}N_9P_4F_{24}$		
M _r	1966.61		
Crystal system, space group	Monoclinic, P 2 ₁ /c		
Temperature (K)	150		
<i>a</i> , <i>b</i> , <i>c</i> (Å)	22.092(3), 20.054(3), 42.684(6)		
α, β, γ (°)	90, 97.443(5), 90		

Table S1. Crystal data and structure refinement for $1 \cdot 4PF_6^{-1}$.

$V(Å^3)$	18751(4)		
Ζ	8		
F(000)	8080.0		
$D_x (\mathrm{Mg \ m}^{-3})$	1.393		
Radiation type	Ga Kα, λ= 1.34138 Å		
$\mu (\mathrm{mm}^{-1})$	1.042		
Crystal size (mm)	0.3 imes 0.3 imes 0.2		
Diffractometer	Bruker D8 Venture PHOTON 100		
	CMOS		
Radiation source	Liquid METALJET D2 PLUS X-ray		
	Source		
Scan method	ϕ and ω scans		
Absorption correction	Multi-scan		
	SADABS2016/2 (Bruker,2016/2) was		
	used for absorption correction.		
T_{\min}, T_{\max}	0.586, 0.751		
No. of measured, independent and	396547 , 33096, 25994		
observed $[I > 2^{\sigma}(I)]$ reflections			
R _{int}	0.059		
θ values (°)	$\theta_{\rm max} = 53.0, \ \theta_{\rm min} = 2.1$		
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.998		
Range of <i>h</i> , <i>k</i> , <i>l</i>	$h = -26 \rightarrow 26, k = -23 \rightarrow 23, l = -50 \rightarrow 50$		
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.083 , 0.245, 1.03		
No. of reflections	33096		
No. of parameters	2404		
No. of restraints	366		
$\Delta >_{\text{max}}, \Delta >_{\text{min}} (e \text{ Å}^{-3})$	1.50, -0.71		

Figure S19. Solid-state (super)structures of cyclophane $1 \cdot 4PF_6^-$ obtained from single crystal X-ray crystallography. a) a axis, b) b axis and c) c axis of cyclophane $1 \cdot 4PF_6^-$. d) a axis, e) b axis and f) c axis of molecular packing of cyclophane $1 \cdot 4PF_6^-$. Color code: N, blue; C, gray; H, white. The solvent molecules and PF_6^- pairsare omitted.

Figure S20. The torsion angles four benzene rings of TPE in $1 \cdot 4PF_6^-$.

Figure S21. ¹H NMR spectrum recorded (400 MHz, D₂O, RT) for **1**•4Cl⁻ of a) 5.0mM, b) 1.0mM, c) 0.4mM, d) 0.2mM.

Figure S22. 2D DOSY spectra (400 MHz, D_2O , RT) for 1•4Cl⁻ of a) 0.2mM, b) 1.0mM.

UV/vis and fluorescence titration experiments

Figure S23. Fluorescence spectra of (a) $1 \cdot 4PF_6^-$ (10 µM), (b) $2 \cdot 4PF_6^-$ (10 µM) in different solvents (1% MeCN). (a) $\lambda_{ex} = 390$ nm, (b) $\lambda_{ex} = 365$ nm, Ex/Em slit = 3 nm.

Figure S24. Fluorescence spectra and plot of maximum emission intensity of (a) $1 \cdot 4PF_6^{-1}(10 \ \mu\text{M})$, (b) $2 \cdot 4PF_6^{-1}(10 \ \mu\text{M})$ versus water fraction in MeCN-water mixture. (a) $\lambda_{ex} = 390 \ \text{nm}$, (b) $\lambda_{ex} = 365 \ \text{nm}$, Ex/Em slit = 3 nm.

Figure S25. (a) UV-vis absorption and (b) fluorescence spectra of $1 \cdot 4Cl^{-}$ (10 μ M) in water upon addition of ATP. $\lambda_{ex} = 390$ nm, Ex/Em slit = 3 nm.

Figure S26. (a) UV-vis absorption and (b) fluorescence spectra of $1 \cdot 4Cl^{-}$ (10 μ M) in water upon addition of AMP. $\lambda_{ex} = 390$ nm, Ex/Em slit = 3 nm.

Figure S27. (a) UV-vis absorption and (b) fluorescence spectra of $1 \cdot 4Cl^{-}$ (10 μ M) in water upon addition of ADP. $\lambda_{ex} = 390$ nm, Ex/Em slit = 3 nm.

Figure S28. (a) UV-vis absorption and (b) fluorescence spectra of $1 \cdot 4Cl^{-}$ (10 μ M) in water upon addition of UTP. $\lambda_{ex} = 390$ nm, Ex/Em slit = 3 nm.

Figure S29. (a) UV-vis absorption and (b) fluorescence spectra of $1 \cdot 4Cl^{-}$ (10 μ M) in water upon addition of CTP. $\lambda_{ex} = 390$ nm, Ex/Em slit = 3 nm.

Figure S30. (a) UV-vis absorption and (b) fluorescence spectra of $1 \cdot 4Cl^{-}$ (10 μ M) in water upon addition of GTP. $\lambda_{ex} = 390$ nm, Ex/Em slit = 3 nm.

Fig S31. DLS profiles of $1 \cdot 4Cl^{-}(10 \mu M)$ with nucleotides (5.0 equiv) in water.

AMP.

Figure S33. ¹H NMR spectra (400MHz, D₂O, 298K) recorded for: a) **1**•4Cl⁻; b) **1**•4Cl⁻ S24

and ATP (1.0 eq.); d) 1•4Cl⁻ and ATP (2.0 eq.); e) ATP.

Figure S35. ¹H NMR spectra (400MHz, D₂O, 298K) recorded for: a) **1**•4Cl⁻; b) **1**•4Cl⁻ S25

and UTP (0.5 eq.); c) 1•4Cl⁻ and UTP (1.0 eq.); d) 1•4Cl⁻ and UTP (2.0 eq.); e) UTP.

Figure S36. ¹H NMR spectra (400MHz, D_2O , 298K) recorded for: a) **1**•4Cl⁻; b) **1**•4Cl⁻ and CTP (0.5 eq.); c) **1**•4Cl⁻ and CTP (1.0 eq.); d) **1**•4Cl⁻ and CTP (2.0 eq.); e) CTP.

Figure S37. ¹H NMR spectra (400MHz, D₂O, 298K) recorded for: a) **1**•4Cl⁻; b) **1**•4Cl⁻ S26

and GTP (0.5 eq.); c) 1•4Cl⁻ and GTP (1.0 eq.); d) 1•4Cl⁻ and GTP (2.0 eq.); e) GTP.

Figure S38. Job's plots obtained by recording the fluorescence at 530 nm for the solution of a) $1 \cdot 4Cl^{-1}$ and ATP ($[1 \cdot 4Cl^{-1}] + [ATP] = 10 \ \mu\text{M}$), b) $1 \cdot 4Cl^{-1}$ and UTP ($[1 \cdot 4Cl^{-1}] + [UTP] = 10 \ \mu\text{M}$), c) $1 \cdot 4Cl^{-1}$ and CTP ($[1 \cdot 4Cl^{-1}] + [CTP] = 10 \ \mu\text{M}$), d) $1 \cdot 4Cl^{-1}$ and GTP ($[1 \cdot 4Cl^{-1}] + [GTP] = 10 \ \mu\text{M}$) in water at RT, confirming the 1:2 stoichiometry of both complexes. $\lambda_{ex} = 390 \ \text{nm}$, Ex/Em slit = 3 nm.

	$\Phi_{\rm F}$	s (%)	I/I ₀			$K_a^{*}(\times 10^{6} \text{ M}^{-1})$	
Host Guest	1•4Cl ⁻	2• 4Cl ⁻	1•4Cl ⁻	2• 4Cl ⁻	3• 2Cl ⁻	1•4Cl ⁻	
None	0.05	-	1	1	1	-	
AMP	-	0.23	1.13	1.24	0.99	-	
ADP	12.42	4.57	3.13	3.33	1.01	7.70 ± 0.31	
ATP	19.19	5.11	15.76	6.42	1.06	23.3 ± 1.3	
UTP	11.24	4.69	3.83	5.87	0.98	9.85 ± 0.61	
СТР	11.82	4.77	3.55	4.83	0.99	12.8 ± 0.8	
GTP	2.14	1.42	6.80	2.60	0.96	2.51 ± 0.40	
smDNA	9.03	2.88	21.48	6.01	-	-	
ctDNA	6.67	4.70	20.66	6.09	-	-	

Table S2. Absolute quantum yield (Φ_F), fluorescence intensity ratio (I/I₀), and apparent binding constants of **1**•4Cl⁻ for various guests.

^{*a*}The change of UV-vis absorption after the addition of guest to the 1•4Cl⁻ was calculated K_a by using Dynafit program.

Figure S39. Non-linear fitting curve of the UV-vis absorption changes of 1•4Cl⁻ versus the concentration of (a) ADP, (b) ATP, (c) UTP, (d) CTP, (e) GTP.

Figure 40. (a) UV-vis absorption and (b) fluorescence spectra of $2 \cdot 4Cl^{-}$ (10 µM) in water upon addition of AMP. $\lambda_{ex} = 365$ nm, Ex/Em slit = 3 nm.

Figure S41. (a) UV-vis absorption and (b) fluorescence spectra of $2 \cdot 4 \text{Cl}^-$ (10 μ M) in water upon addition of ADP. $\lambda_{ex} = 365$ nm, Ex/Em slit = 3 nm.

Figure S42. (a) UV-vis absorption and (b) fluorescence spectra of $2 \cdot 4Cl^{-}$ (10 μ M) in water upon addition of ATP. $\lambda_{ex} = 365$ nm, Ex/Em slit = 3 nm.

Figure S43. (a) UV-vis absorption and (b) fluorescence spectra of $2 \cdot 4Cl^{-}$ (10 μ M) in water upon addition of UTP. $\lambda_{ex} = 365$ nm, Ex/Em slit = 3 nm.

Figure S44. (a) UV-vis absorption and (b) fluorescence spectra of $2 \cdot 4Cl^{-}$ (10 μ M) in water upon addition of CTP. $\lambda_{ex} = 365$ nm, Ex/Em slit = 3 nm.

Figure S45. (a) UV-vis absorption and (b) fluorescence spectra of $2 \cdot 4Cl^{-}$ (10 μ M) in water upon addition of GTP. $\lambda_{ex} = 365$ nm, Ex/Em slit = 3 nm.

Figure S46. (a) UV-vis absorption and (b) fluorescence spectra of $3 \cdot 2Cl^{-}$ (10 μ M) in water upon addition of AMP. $\lambda_{ex} = 395$ nm, Ex/Em slit = 3 nm.

Figure S47. (a) UV-vis absorption and (b) fluorescence spectra of $3 \cdot 2Cl^{-}$ (10 μ M) in water upon addition of ADP. $\lambda_{ex} = 395$ nm, Ex/Em slit = 3 nm.

Figure S48. (a) UV-vis absorption and (b) fluorescence spectra of $3 \cdot 2Cl^{-}$ (10 μ M) in water upon addition of ATP. $\lambda_{ex} = 395$ nm, Ex/Em slit = 3 nm.

Figure S49. (a) UV-vis absorption and (b) fluorescence spectra of $3 \cdot 2Cl^{-}$ (10 μ M) in water upon addition of UTP. $\lambda_{ex} = 395$ nm, Ex/Em slit = 3 nm.

Figure S50. (a) UV-vis absorption and (b) fluorescence spectra of $3 \cdot 2Cl^{-}$ (10 μ M) in water upon addition of CTP. $\lambda_{ex} = 395$ nm, Ex/Em slit = 3 nm.

Figure S51. (a) UV-vis absorption and (b) fluorescence spectra of $3 \cdot 2Cl^{-}$ (10 μ M) in water upon addition of GTP. $\lambda_{ex} = 395$ nm, Ex/Em slit = 3 nm.

Figure S52. (a) UV-vis absorption and (b) fluorescence spectra of $1 \cdot 4Cl^{-}$ (10 μ M) in water upon addition of smDNA. $\lambda_{ex} = 390$ nm, Ex/Em slit = 3 nm.

Figure S53. (a) UV-vis absorption and (b) fluorescence spectra of $1 \cdot 4Cl^{-}$ (10 μ M) in water upon addition of ctDNA. $\lambda_{ex} = 390$ nm, Ex/Em slit = 3 nm.

Figure S54. (a) UV-vis absorption and (b) fluorescence spectra of $2 \cdot 4Cl^{-}$ (10 μ M) in water upon addition of smDNA. $\lambda_{ex} = 365$ nm, Ex/Em slit = 3 nm.

Figure S55. (a) UV-vis absorption and (b) fluorescence spectra of $2 \cdot 4 \text{Cl}^-$ (10 μ M) in water upon addition of ctDNA. $\lambda_{ex} = 365$ nm, Ex/Em slit = 3 nm.

Figure S56. Change in fluorescence intensity of $1 \cdot 4 \text{Cl}^-$ (10 µM) with smDNA concentration. y = 0, x = 0.0152 µgmL⁻¹.

Figure S57. Change in fluorescence intensity of $1 \cdot 4Cl^{-1}$ (10 µM) with ctDNA concentration. y = 0, x = 0.0759 µgmL⁻¹.

Figure S58. Change in fluorescence intensity of $2 \cdot 4 \text{Cl}^-$ (10 µM) with smDNA concentration. y = 0, x = 0.1634 µgmL⁻¹. λ_{ex} = 365 nm, Ex/Em slit = 3 nm.

Figure S59. Change in fluorescence intensity of $2 \cdot 4 \text{Cl}^-$ (10 µM) with ctDNA concentration. y = 0, x = 0.0708 µgmL⁻¹. λ_{ex} = 365 nm, Ex/Em slit = 3 nm.

Figure S60. CD titration of $1 \cdot 4Cl^{-}(50 \ \mu\text{M})$ with (a) AMP, (b) ADP, (c) ATP, (d) UTP, (e) CTP, (f) GTP in water.

Figure S61. CD titration of $2 \cdot 4 \text{Cl}^-(50 \,\mu\text{M})$ with (a) AMP, (b) ADP, (c) ATP, (d) UTP, (e) CTP, (f) GTP in water.

Figure S62. The molecular docking calculation of DNA 1.

Figure S63. CD titration of $2 \cdot 4 \text{Cl}^-(50 \,\mu\text{M})$ with smDNA in water. Insert: Plots of g_{abs} vs the equiv of guests.

Figure S64. CD titration of $2 \cdot 4 \text{Cl}^-(50 \ \mu\text{M})$ with ctDNA in water. Insert: Plots of g_{abs} vs the equiv of guests.

Figure S65. CPL of $1 \cdot 4$ Cl⁻ (100 μ M) with smDNA and ctDNA in water.

Figure S66. SEM images of (a)-(b) smDNA and (c)-(d) ctDNA in H₂O.

Figure S67. SEM images of (a)-(b) smDNA and (c)-(d) ctDNA with $1 \cdot 4Cl^{-1}$ in H₂O.

Figure S68. Confocal laser scanning microscope images of smDNA (a) bright-field images and (b) fluorescence images; ctDNA (c) bright-field images and (d) fluorescence images in H₂O. $\lambda_{ex} = 405$ nm.

Reference:

SAINT; part of Bruker APEX3 software package (version 2017.3.0): Bruker AXS, 2017.

2. SADABS; part of Bruker APEX3 software package (version 2017.3.0): Bruker AXS, 2017.

3. G. M. Sheldrick, Acta Cryst. 2015, A71, 3-8.

4. G. M. Sheldrick, Acta Cryst. 2015, C71, 3-8.

5. O.V. Dolomanov, L.J. Bourhis, R.J, Gildea, J.A.K. Howard, H. Puschmann, *J. Appl. Cryst.* 2009, *42*, 339-341.

6. A. L. Spek, Acta Cryst. 2015, C71, 9-19.