Supporting Information

A Series of Oxysulfides $RE_2M_2S_3O_4$ (RE = Y, Tm; M = Zr, Hf) Featuring Unique MS_3O_4 Motif and $[M_2S_3O_4]^{8-}$ Wrinkle Layer

Zhen-Tao Lu, Si-Han Yang, Wenlong Liu* and Sheng-Ping Guo*

School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China

Experimental Section

Synthesis. High-temperature solid-state method was taken to synthesize the crystals of $Y_2Zr_2S_3O_4$ (1), $Y_2Hf_2S_3O_4$ (2), and $Tm_2Zr_2S_3O_4$ (3). The commercial regents Y_2O_3/Tm_2O_3 (99.99 %, Aladdin), ZrO_2/HfO_2 (99.9 %, Aladdin). B (99 %, Aladdin), and S (99.9 %, Aladdin) were used with the molar ratios of 1 : 1 : 4 : 5, and the total mixture was 500 mg. Additional 400 mg KI (99 %, Aladdin) was added as the flux. For a typical reaction, the mixture was ground into fine powder, then pressed into a pellet, which was then flame-sealed into a quartz tube under 1×10^{-4} torr. The quartz tube was put in a muffle furnace and heated to 950 °C in 25 h and kept for 7 days, and then cooled down to 300 °C in 5 days. The transparent rod-like crystals with low yields were obtained.

Structure Refinement and Crystal Data. The single crystal data of 1–3 were collected via a Bruker D8 QUEST X-ray diffractometer with graphite-monochromated Mo-K α radiation (λ = 0.71073 Å). The SHELXTL program package was used to determine the crystal structures. The crystal structures were solved based on Direct Method, and full-matrix least-squares technique on F² with anisotropic displacement parameters for all atoms was used to refine the data. A secondary extinction correction was included by the final refinement. Table S1, S2, and S3 list the refinement and crystallographic data, thermal parameters and atomic coordinates, and selected bond lengths, respectively. **Power X-ray Diffraction (PXRD) Characterization.** A Bruker D8 Advanced powder X-ray diffractometer was used to measure the PXRD patterns for **1–3** at room temperature. The scan parameters were set at 40 kV and 40 mA for Cu-K α radiation ($\lambda = 1.5406$ Å) and the scan speed was 5°/min.

UV-vis-NIR Diffuse Reflectance Spectroscopy. A Carry 5000 UV-vis-NIR Absorption Spectrometer with an integrating sphere attachment was used to record the diffuse reflectance spectra for the powder crystalline samples of 1–3.

Magnetic susceptibility measurement. Temperature-dependent magnetic susceptibility of **3** was measured by a Quantum Design PPMS from 2 to 300 K in an applied magnetic field of 1000 Oe. The polycrystalline powdery sample was secured in a gel capsule. The diamagnetic correction was made using Pascal's constants.

Theoretical calculation. The CASTEP module in Material Studio,⁴ which is based on density functional theory (DFT), was used to build the calculation model. Their band structure, density of states (DOS), and optical properties were calculated. The plane-wave cut-off energies were set at 380 eV for **1** and **2** within ultrasoft pseudopotential. Monkhorst-Pack k-points meshes were all $4 \times 2 \times 7$ for them, and the threshold was set at 5×10^{-7} eV. The electrons on Y-4d¹5s², Zr-4d²5s², S-3s²3p⁴, and O-2s²2p⁴ for **1**, and Y-4d¹5s², Hf-5d²6s², S-3s²3p⁴, and O-2s²2p⁴ for **2** were selected as valence electrons. The Fermi level at 0 eV was chosen as the reference.

The optical properties described in terms of the complex dielectric function $\varepsilon(\omega) = \varepsilon_1(\omega) + i\varepsilon_2(\omega)$ were calculated. $\varepsilon_1(\omega)$ and $i\varepsilon_2(\omega)$ represent the real and imaginary parts of dielectric function, respectively.^{5,6} $\varepsilon_2(\omega)$ can be used to generate other optical constants using the Kramers-Kroning transform.^{7,8} The first-order nonresonant susceptibility at the low-frequency region is given by $x^{(1)}(\omega) = \varepsilon_1(\omega) - 1$. Refractive index *n* was obtained using the below equation,

$$n(\omega) = \sqrt{\frac{\varepsilon_1^2(\omega) + \varepsilon_2^2(\omega) + \varepsilon_1(\omega)}{2}}$$
(1)

		-	· · ·
chemical formula	1	2	3
Fw	520.44	694.98	680.48
$T(\mathbf{K})$		298	
crystal system, space		orthorhombia Dham	
group		orthornomotic, Poam	
Ζ		2	
<i>a</i> (Å)	6.5120(8)	6.5013(8)	6.4784 (7)
<i>b</i> (Å)	14.185(2)	14.1770(15)	14.1361 (16)
<i>c</i> (Å)	3.6772(5)	3.6710(4)	3.6618 (5)
$V(Å^3)$	339.68(8)	338.35(7)	335.35 (7)
D_{calcd} (g cm ⁻³)	5.088	6.822	6.739
μ (mm ⁻¹)	20.765	48.426	30.098
<i>F</i> (000)	476	604	596
2θ range (°)	5.744 to 54.856	5.748 to 49.88	5.764 to 53
measd. reflns	2682	2093	1307
indep. reflns/R _{int}	452/0.0376	342/0.0410	402/0.0304
obs. reflns	398	336	357
R1, wR2 $(I > 2\sigma(I))^a$	0.0226, 0.0474	0.0276, 0.0737	0.0306, 0.0723
R1, wR2(all data) ^a	0.0290, 0.0491	0.0281, 0.0743	0.0353, 0.0742
GOF on F^2	1.038	1.046	1.048
$\Delta ho_{\rm max}/\Delta ho_{\rm min,}{ m e}/{ m \AA}^3$	0.89/-0.91	2.00/-1.95	2.10/-1.97

 Table S1. Crystal data and structure refinement parameters for 1, 2, and 3.

^aR1 = $||F_o| - |F_c||/|F_o|$; wR2 = $[w(F_o^2 - F_c^2)^2]/[w(F_o^2)^2]^{1/2}$.

atom	x	У	Z	$U_{ m eq}$ /Å ²	
		1			
Y(1)	7147.4(9)	6617.1(4)	0	6.9(2)	
Zr(1)	2928.7(9)	5727.6(4)	5000	4.3(2)	
S (1)	0	5000	0	8.5(4)	
S(2)	244(2)	7119.5(11)	5000	8.0(3)	
O(1)	3639(6)	4310(3)	5000	6.1(9)	
O(2)	3758(6)	6220(3)	0	9.9(9)	
		2			
Y(1)	7148.0(16)	6616.7 (8)	0	2.0(4)	
Hf(1)	2939.6(7)	5724.1(3)	5000	3.4(3)	
S (1)	0	5000	0	8.1(9)	
S(2)	276(4)	7111.6(19)	5000	5.0 (6)	
O(1)	3668(14)	4319(5)	5000	3.6(18)	
O(2)	3774(13)	6227(5)	0	6.0(17)	
3					
Tm(1)	7132.9(9)	6619.5(5)	0	6.7(2)	
Zr(1)	2915.1(19)	5728.2(9)	5000	0.8(3)	
S (1)	0	5000	0	7.3(10)	
S(2)	209(5)	7121(3)	5000	6.1(7)	
O(1)	3639(16)	4301(6)	5000	6.2(19)	
O(2)	37421(17)	6215(7)	0	11(2)	

Table S2. Atomic coordinates (× 10⁴) and equivalent isotropic displacement parameters (U_{eq}^{a} , Å² × 10³) for **1**, **2**, and **3**.

 $^{a}U_{\mathrm{eq}}$ is defined as one third of the trace of the orthogonalized $U_{ij}\mathrm{tensor.}$

Bond	Dist./Å	Bond	Dist./Å
		1	
Zr(1)–S(1)	2.843(1)	Y(1)-S(1)#6	2.952(1)
Zr(1)-S(2)	2.637(2)	Y(1)-S(2)#6	2.820(1)
Zr(1)–O(1)	2.063(4)	Y(1)-S(2)#7	2.851(1)
Zr(1)-O(1)#5	2.236(4)	Y(1)-O(1)#5	2.318(2)
Zr(1)–O(2)	2.040(2)	Y(1)–O(2)	2.278(4)
		2	
Hf(1)–S(1)	2.842(1)	Y(1)-S(1)#6	2.948(1)
Hf(1)–S(2)	2.621(3)	Y(1)-S(2)#6	2.828(2)
Hf(1)–O(1)	2.047(7)	Y(1)-S(2)#7	2.846(2)
Hf(1)–O(1)#1	2.207(9)	Y(1)-O(1)#1	2.326(4)
Hf(1)–O(2)	2.042(3)	Y(1)–O(2)	2.262(8)
		3	
Tm(1)–S(1)#6	2.948(1)	Zr(1)-S(1)	2.825(1)
Tm(1)–S(2)#6	2.798(3)	Zr(1)-S(2)	2.636(4)
Tm(1)-S(2)#7	2.842(3)	Zr(1)–O(1)	2.071(9)
Tm(1)–O(1)#2	2.301(6)	Zr(1)-O(1)#2	2.233(10)
Tm(1)–O(2)	2.271(11)	Zr(1)–O(2)	2.028(4)

Table S3.Important bond lengths (Å) for 1, 2, and 3.

Symmetry transformations used to generate equivalent atoms: #1 + x, +y, 1-z; #2 + x, +y, -z; #3 + x, +y, -1+z; #4 + x, +y, 1+z; #5 1-x, 1-y, 1-z; #6 1+x, +y, +z; #7 1/2+x, 3/2-y, +z; #8 1+x, +y, -1+z; #9 1/2+x, 3/2-y, -1+z; #10 1-x, 1-y, -z; #1 1-x, 1-y, -z; #1 2-x, 1-y, 1-z; #13 - 1+x, +y, +z; #14 1-x, 1-y, +z; #15 - 1+x, +y, 1+z; #16 - 1/2+x, 3/2-y, +z; #17 - 1/2+x, 3/2-y, 1+z; #18 1-x, 1-y, 1-z; #2 1-x, 1-y, -z; #3 + x, +y, 1+z; #16 - 1/2+x, 3/2-y, +z; #17 - 1/2+x, 3/2-y, 1+z; #18 1-x, 1-y, 1-z; #2 1-x, 1-y, -z; #3 + x, +y, 1+z; #4 + x, +y, -1+z; #5 + x, +y, 1-z; #6 1+x, +y, z; #7 1/2+x, 3/2-y, -1+z; #8 1/2+x, 3/2-y, +z; #9 1+x, y, -1+z; #10 - x, 1-y, 1-z; #11 - x, 1-y, -z; #12 - 1+x, y, z; #13 - 1/2+x, 3/2-y, +z; #14 - 1+x, +y, 1+z; #15 - 1/2+x, 3/2-y, 1+z for **2**. #1 + x, +y, 1-z; #2 1-x, 1-y, 1-z; #3 1+x, +y, -1+z; #8 1+x, +y, -1+z; #8 1+x, +y, -1+z; #9 1/2+x, 3/2-y, +z; #11 - x, 1-y, -z; #6 1+x, +y, +z; #17 1/2+x, 3/2-y, -1+z; #8 1+x, +y, -1+z; #9 1/2+x, 3/2-y, +z; #11 - x, 1-y, 1-z; #12 - x, 1-y, -z; #13 - 1/2+x, 3/2-y, -1+z; #14 - 1/2+x, +y, +z; #13 - 1/2+x, 3/2-y, +z; #14 - 1/2+x, +y, -1+z; #14 - 1/2+x, +y, -1+z; #14 - 1/2+x, +y, 1+z; #15 - 1+x, +y, 1+z; #16 - 1/2+x, 3/2-y, 1+z for **3**.

Compound	Crystal System	Space Group	Reference
Ce ₂₀ Ti ₁₁ S ₄₄ O ₆	Orthorhombic	Pmmn	9
$La_{20}Ti_{11}S_{44}O_{6}$	Orthorhombic	Pmmn	10
$La_4Ti_3S_4O_8$	Monoclinic	C2/m	11
$La_6Ti_2S_8O_5$	Monoclinic	$P2_{1}/m$	11
$La_8Ti_{10}S_{24}O_4$	Tetragonal	P4/mmm	12
Nd ₁₆ Ti ₅ S ₁₇ O ₁₇	Tetragonal	<i>I</i> 4/ <i>m</i>	13
$Nd_2Ti_2S_2O_5$	Tetragonal	I4/mmm	14
$Pr_2Ti_2S_2O_5$	Tetragonal	I4/mmm	14
$Sm_2Ti_2S_2O_5$	Tetragonal	I4/mmm	14
$Gd_2Ti_2S_2O_5$	Tetragonal	I4/mmm	14
$Tb_2Ti_2S_2O_5$	Tetragonal	I4/mmm	14
$Dy_2Ti_2S_2O_5$	Tetragonal	I4/mmm	14
$Ho_2Ti_2S_2O_5$	Tetragonal	I4/mmm	14
$Er_2Ti_2S_2O_5$	Tetragonal	I4/mmm	14
$Y_2Ti_2S_2O_5$	Tetragonal	I4/mmm	14
$Pr_6Ti_2S_7O_6$	Monoclinic	$P2_{1}/m$	15

 Table S4. Known RE-Ti/Zr/Hf-O-S oxysulfides.

Fig. S1 Photos for the crystals of **1–3**.

Fig. S2 EDS images for 1 (a), 2 (b), and 3 (c).

Fig. S3 Powder X-ray diffraction patterns for 1 (a), 2 (b), and 3 (c).

Fig. S4 UV-vis-NIR diffuse reflectance spectra for 2 (a) and 3 (b).

Fig. S5 Temperature-dependent magnetic susceptibility of 3.

Fig. S6 The calculated band structure (a), DOS (b), and birefringence (c) of **2**. Fermi level is set at 0 eV.

- 1 V. Tallapally, T. A. Nakagawara, D. O. Demchenko, Ü. Özgür, I. U. Arachchige, *Nanoscale* 2018, *10*, 20296–20305.
- 2 P. Makula, M. Pacia, W. Macyk, J. Phys. Chem. Lett. 2018, 9, 6814–6817.
- 3 P. Kubelka, F. Munk, Z. Technol. Phys. 1931, 12, 593–599.
- 4 S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. I. J. Probert, K. Refson, M. C. Payne, Z. Kristallogr. 2005, 220, 567–570.
- 5 F. Bassani and G. P. Parravicini, *Electronic States and Optical Transitions in Solids*; Pergamon Press Ltd.: Oxford, U.K., 1976.
- 6 M. Gajdoš, K. Hummer, G. Kresse, J. Furthmüller and F. Bechstedt, *Phys. Rev. B*, 2006, 73, 045112.
- S. Laksari, A. Chahed, N. Abbouni, O. Benhelal and B. Abbar, *Comp. Mater. Sci.*, 2006, *38*, 223–230.
- 8 S. D. Mo and W. Y. Ching, *Phys. Rev. B*, 1995, *51*, 13023.
- 9 J. A. Cody, C. Deudon, L. Cario, A. Meerschaut, *Mater. Res. Bull.* 1997, 32, 1181–1192.
- 10 C. Deudon, A. Meerschaut, L. Cario, J. Rouxel, J. Solid State Chem. 1995, 120, 164-169.
- 11 J. A. Cody, J. A. Ibers, J. Solid State Chem. 1995, 114, 406–412.
- 12 L. Cario, C. Deudon, A. Meerschaut, J. Rouxel, J. Solid State Chem. 1998, 136, 46-50.
- 13 C. Boyer-Candalen, C. Deudon, A. Meerschaut, J. Solid State Chem. 2000, 152, 554-559.
- C. Boyer-Candalen, J. Derouet, P. Porcher, Y. Moëlo, A. Meerschaut, J. Solid State Chem.
 2002, 165, 228–237.
- 15 A. S. Gardberg, J. A. Ibers, Z. Kristallogr. 2001, 216, 491–492.