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1. Experimental Section

1.1 Catalyst preparation

The synthetic method of Hollow Fe-N/C-800 material is as follows. 0.4 g of 

resorcinol was dissolved in 70 mL of ethanol with 10 mL of distilled water. Later, 3 

mL of NH3·H2O was injected to adjust pH value to 8–9. Then, 0.56 mL of methanol 

(CH2O) was added to activate polymerization. Tetraethyl orthosilicate (TEOS) was 

used as the template agent, and 2.8 mL of TEOS was added to the above solution. At 

the same time, the Fe-precursor solution was added to the above solution and 

stirred for 6 h at room temperature to form red Fe@phenolic resin@SiO2 (Fe-RF-SiO2) 

precursor. Fe-precursor solution was prepared by 0.79 g of 1,10- Phenanthroline 

(Phen) mixing with 0.36 g of FeSO4 (Fe) in 10 mL of 50% ethanol water. Afterwards, 

the Fe-RF-SiO2 material was pyrolyzed at 800 oC for 2 h under N2 atmosphere to 

obtain the Fe-N/C-800 @SiO2 materials. Finally, the Hollow Fe-N/C-800 material was 

obtained by etching SiO2 of Fe-N/C-800 @SiO2 in 6 mol L-1 KOH solution for more 

than 6 h. 

For comparison, the Solid Fe-N/C-800 and Hollow N/C-800 were also prepared. 

The Solid Fe-N/C catalyst was prepared under the same condition as the Hollow Fe-

N/C-800 only without adding TEOS as template agent. The Hollow N/C-800 was 

obtained under the same condition as the Hollow Fe-N/C-800 only without adding 

Fe-precursor solution.

1.2 Material characterization

The morphology of the prepared samples was characterized with field emission 

scanning electron microscopy (FE-SEM, JEOL JSM- 7001F), transmission electron 

microscopy (TEM, FEI TF20) and atomic force microscope (AFM, Bruker Dimension 

Fastscan). Specific surface areas of these as-prepared samples were calculated using 

Brunauer-Emmett-Teller (BET) method (ASAP 2020m, Micromeritics, USA). The pore 

size distribution was obtained by Barrett-Joyner-Halenda (BJH) method using 

adsorption branch of the nitrogen isotherm. Raman spectroscopic analysis was 
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performed with a Labram-010 Raman micro-spectroscopy (JY, FRA) system utilizing a 

514.5 nm incident radiation in the range from 400 cm-1 to 2000 cm-1. X-ray 

photoelectron spectroscopy (XPS) measurements were carried out with an 

ESCALAB250 XPS spectrometer. ICP-AES measurement results were relying on 

Agilent 720ES equipment[3]. Elemental mapping was conducted using EDAX detector 

attached on JEM-2100F. The surface oxidation states were analyzed using Fourier 

transform infrared spectrometer (FTIR, Tensor 27, 500-4000 cm-1)

1.3 Electrochemical measurements: 

1.3.1 RDE measurement

Electrochemical measurements were performed using a CHI Electrochemical 

Station (760 D) in a standard three-electrode system. A rotating disk electrode (RDE) 

equips a glassy carbon electrode with diameter of 0.5 cm sheet, a platinum electrode 

sheet, and a saturated calomel electrode (SCE) were used as working electrode, 

counter electrode, and reference electrode, respectively. The catalyst ink was 

prepared by ultrasonically dispersing 1 mg of catalyst in 1 mL of water and 20 μL of 

binding agent. Later, 15 μL of catalyst ink was coated on the surface of a glassy 

carbon electrode, yielding a catalyst loading of 0.1 mg cm-2. All electrochemical tests 

were performed at room temperature in 0.1 M KOH or 0.5 M PBS, which was 

bubbled with O2 or N2 for 30 min and maintained at the same atmosphere during the 

measurements. A potential at which the current density exceeded a threshold value 

of 0.1 mA cm-2 was the onset potential (Eonset), and the potential corresponding to 50% 

of the diffusion-limited current density was defined as the half-wave potential (E1/2). 

The electron transfer numbers (n) of ORR at various potentials on the samples were 

calculated by the Koutecky-Levich equation:

j-1 = jk-1 +( 0.62nFAD2/5 V-1/6 C)-1 ω-1/2    [1]

  where j is the measured current density, Jk is the kinetic limiting current density, F 

is Faraday constant (96500 C mol-1), C0 is the bulk concentration of oxygen, D0 is the 

diffusion co-efficient of oxygen in the bulk solution, v is the kinematic viscosity (v = 

0.01 cm2 s-1), and ω is the angular velocity of the disk (ω = 2πN, N is the linear 
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rotation speed). In 0.1 M KOH solution: C0 = 2.4×10-3 mol L-1, D0 = 2.1×10-5 cm2 s-1. In 

0.5 M PBS solution: C0 = 2.6×10-3 mol L-1, D0 = 2.1×10-5cm2 s-1.

1.3.2 RRDE measurement 

For the RRDE measurements, catalyst inks and electrodes were prepared by the 

same method as for RDE. The disk electrode was scanned at a rate of 5 mV s−1, and 

the ring potential was constant at 0.46 V versus SCE. The percentage of HO2
– 

intermediate production (% HO2
–) and electron transfer number (n) were 

determined by the followed equations. 

% HO2
-=  n=   [2]
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where Id is the disk current, Ir is the ring current, and N is the current collection 

efficiency of the Pt ring, which was determined to be 0.28.

1.4 Construction and operation of the microbial fuel cells and zinc-air cells 

1.4.1 MFCs preparation

A single-chamber air-cathode MFCs device of volume of 28 mL was used. And the 

corresponding details in assembling the MFCs was referred to the references. [1] In 

the operational stage, the output voltage of those MFCs were collected by 16 

channel data acquisition system (MPS 010602, Beijing).[2] Moreover, the polarization 

curves of different cathode were acquired by adjusting the external circuit resistance 

from 40 Ω to 5000 Ω, and anode electrode potentials were measured by inserting a 

saturated calomel electrode (SCE) electrode to compose two-electrode system. By 

means of formula P = V × I, the power density P can be easily calculated. Both I and P 

were normalized to the efficient area of cathode surface, and current density I was 

calculated using the formula of I = V (cell voltage)/(R × A) (external resistance and 

efficient area).

1.4.2 Zn-air battery test 

The air electrodes were prepared by uniformly casting the catalyst ink on 

commercial Teflon-coated carbon fiber paper (SGL carbon paper, Germany). The 

catalyst ink was prepared as same as the MFCs. The battery was assembled using a 
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zinc foil as the anode and 6 mol L-1 KOH with 1.2 g zinc acetate solution as the 

electrolyte. The battery was equipped with a pump to circulate the electrolyte 

during the test. The galvanostatic discharge test was carried out using a CHI 

Electrochemical Station (760 D) at room temperature. To assess the cathode 

performance, the step current method experiment was carried out using the 

electrochemical workstation at different current densities.

1.4.3 Chemical oxygen consumption (COD) analysis 

The chemical oxygen consumption was performed by Ammonia nitrogen detector 

(5B-3C V8). The digestion of water was also processed by the digestion instrument. 

The water sample, which was taken from the MFCs equipment, was experienced a 

pretreatment process. Firstly, the exact amount of 2.5 mL distilled water was added 

to a reaction tube as blank. Each water sample of 2.5 mL was accurately taken and 

added to other reaction tube. 0.7 mL special consumable D reagent was added to 

each reaction tube and 4.8 mL of special consumable E reagents were added in turn. 

Then the reaction solutions were fully mixed by shaking. Later, each reaction tube 

was put into the digestion tank in order to eliminate the program. After the digestion 

was completed and cooled, 2.5 mL distilled water was added to each reaction tube 

successively, and then the cuvettes were imported with digestion solution. Finally, 

the COD data was read by using the standard curve. 

1.5 References
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 2. Supplementary Figures

Figure S1. SEM images of as-prepared materials in various chelating agents: (a) pydin; (b) EDTA; 
(c) sodium citrate.

Figure S2. LSV curves of as-prepared materials in various chelating agent, (a) pydin; (b) EDTA; (c) 
sodium citrate; (d) general LSV curves among four kinds of complexant in O2-saturated alkine 

S6



solution under 1600 rpm.

Figure S3. SEM images of as-prepared materials with different ratios of Fe2+: Phen: (a) 1:1; (b) 1:2; 
(c) 1:3; (d) 1:4. 

Figure S4. LSV curves of as-prepared materials with different ratio of Fe2+: Phen.
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Figure S5. (a-c) SEM images of as-prepared materials in various heat-treatment temperatures: (a) 
700 oC; (b) 800 oC; (c) 900 oC.

Figure S6. (a) XRD pattern of Hollow Fe-N/C-800 and (b) the Raman patterns of samples under 
several temperature.
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Figure S7. XPS narrowband distributed patterns of various temperature of as-prepared (n (Reso): 
n (Phen): n (Fe3+) = 1:3:1) (a) C 1s; (b) N1s; (c) Fe 2p.

Figure S8. (a) CV patterns of Fe-N/C-800 in saturated-O2/N2; (b) CV patterns of Fe-N/C-X in 
saturated O2; (c) LSV curves of Fe-N/C-X in 0.1 M KOH with saturated O2; (d-f) LSV curves for 
various rotate speeds of Fe-N/C-700, Fe-N/C-800 and Fe-N/C-900, respectively.
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Figure S9. SEM images of as-prepared materials in various ratio of Reso to Phen: (a) 1:2; (b) 1:3; 
(c) 1:1; (d) 2:1; (e) 3:1; (f) 4:1.

Figure S10. TEM and HRTEM images of as-prepared materials in various ratio of Reso to Phen: (a) 
1:2; (b) 1:3; (c) 1:1; (d) 2:1; (e) 3:1; (f) 4:1.
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Figure S11. (a) LSV curves of Fe/N-CNFs catalysts prepared with different ratios of Reso: Phen; (b) 
the Cdl curves of materials and (c) the ECSA.

Figure S12. The CV curves of different scan rates (50/25/10/4/3/2 mV dec-1) of various catalysts 
(Reso: Phen). (a) 1:4; (b) 1:3; (c) 1:2; (d) 1:1; (e) 1:2; (f) 1:3.
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Figure S13. SEM images of different kind of catalysts (a) Hollow N/C-800; (b) Solid Fe-N/C-800.

Figure S14. (a) BET Isotherm Linear Plot of samples; (b) BJH Desorption dV/dlog(w) Pore Volume; 
(c-e) AFM images of the Hollow Fe-N/C-800, Hollow N/C-800 and Solid Fe-N/C-800, respectively. 
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Figure S15.(a-b) Effects of SCN− ions on ORR activities of the Hollow Fe-N/C-800 catalyst in 0.1 M 
KOH and PBS electrolyte, respectively.

Figure S16. XPS narrowband distributed patterns of various temperature of reduced-2nd (a) C 1s; 
(b) N 1s; (c) O 1s; (d) Fe 2p.
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Figure S17. The LSV curves for Pt/C catalyst in various concentration of KOH under the rotate 
rate of 1600 rpm. 

Figure S18. Free-energy diagram of the evolution of the FeN4 and FeN2+2O structure and under 
different oxygen reduction reaction pathway on the iron site. Inset shows the optimize structure 
of each pathway. The * denotes the adsorption on the material surface.

The ORR reaction process is accompanied by a dynamic cycling of hydrogenation and 

dehydrogenation of the intermediates, which are O2 (ads), OOH (ads), O (ads), and OH (ads) in 

Figure S18. The O2 molecule can readily be reduced to OH- via a four-electron transfer pathway 

from both FeN2+2-O and 2N-FeN2+2 active sites. However, compared to 2N-FeN2+2 (one Fe atom 

coordinated to six N atoms from three Phen), it can be observed that the FeN2+2-O in which the 

Fe atom is coordinated to four N atoms from two Phen and one O atom from phenolic resin, can 
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reduce the reaction free energy of the *OH, *OO, *O and *OOH intermediates,[12] which 

indicates the enhanced ORR performance.[13] From the DFT calculation results, it can be found 

that the FeN2+2-O sites are similar to the D3 Fe-specie. Moreover, based on the variants reflecting 

from 2N-FeN2+2 in Figure 3, this model needs to break more frustration than FeN4-O,[14] so FeN4-

O active sites can reduce much more free energy than 2N-FeN2+2 during ORR process. Therefore, 

the Fe-O bond should be also found to be significant in theory. 

Figure S19. (a) The corresponding RRDE tests for Hollow Fe-N/C-800 and Pt/C; (b) the methanol 
tolerance test.

Figure S20. Corresponding electrochemical measurements. (a) LSV curves of Hollow Fe-N/C-800 
and Pt/C; (b) LSV curves of Hollow Fe-N/C-800 at various rotation rates; (c) The corresponding K-
L plots (j-1 vs. ω-1/2) at different potentials; (d) The electron-transfer number as function of 
potential; (e) chronoamperometric responses to the electrodes for injecting methanol into an O2 
saturated 0.1 M PBS solution at 0.2 V (vs. SCE); (f) chronoamperometric responses of those 
electrodes at 0.4 V (vs. SCE) in O2-saturated 0.1 M PBS solutions at a rotation rate of 1600 rpm, 
normalized to the initial current response.
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Figure S21. (a) Microbial fuel cell lighting diagram; (b) the V-t curves of samples for a MFCs 

device; (c) the power density of as-prepared and (d) their polarization curves of cathodes and 

anode; (e) the COD and removing rate curves of Hollow Fe-N/C and Pt/C; (f) the cyclic variation 

of CODs and v-t between Pt/C and Hollow Fe-N/C samples.

  For Hollow Fe-N/C-800, only three 28 mL cells can light the red LED lamp for a long time 

(Figure S20a). From the v-t curves in Figure S20b, the voltage can be improved rapidly after 

replacing the culture solution. The average output voltage of MFC with Hollow Fe-N/C-800 (5.5 ± 

0.3 V) is even higher than those with Pt/C (5.0 ± 0.2 V), solid Fe-N/C-800 (4.5 ± 0.3 V) and Hollow 

N/C-800 (4.0 ± 0.3 V). Analogously, the MFC equipped with Hollow Fe-N/C-800 catalyst exhibits 

the highest maximum power density (972.64 ± 0.4 mW cm-2, Figure S20c), which is also even 

higher than that with Pt/C (915.66 ± 0.3 mW cm-2). Afterwards, the polarization curves of MFCs 

for anode and cathode are measured for maintain MFCs (Figure S20d). As we all known, MFCs 

has the double effects of simultaneously producing electricity and removing organic pollutant 

from wastewater. Hence the chemical oxygen consumption (COD) test of the MFCs is taken in 

this work. As shown in Figure S20 (e, f), the MFC with Hollow Fe-N/C-800 consume organic 

matter faster than that with Pt/C, indicating excellent potential in practical application. 
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Figure S22. (a) Open circuit potential tests of Zn-air batteries coupling with Pt/IrO2 or Fe-N-C as 
cathode; (b) the power density curves of Zn-air battery and (c) the charge-discharge test of Zn-air 
batteries for Fe-N-C; (d) cycle charge-discharge tests of Zn-air battery.
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Figure S23. (a) LSV curves and Tafel plots (b) of Hollow Fe-N/C-800 and IrO2 samples in 0.1 M 
KOH solution; (c) polarization curve measurement.

Figure S24. XRD pattern of 1st-Hollow Fe-N/C-800 and 2nd-Hollow Fe-N/C.
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Figure S25. ORR polarization curves of Hollow Fe-N/C-800 obtained using a graphite or Pt 

counter electrode in O2-saturated 0.1 M KOH (red and yellow line were obtained with a graphite 

counter electrode, and blue and green line were obtained with a Pt counter electrode).
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2. Supplementary Tables

Table S1 Elements contents of the catalysts in different temperatures from XPS survey spectrum.

 Catalyst  C (at.%)  N (at.%)  O (at.%)  Fe (at.%)

 Fe-N/C-700  83.23  3.13  13.36  0.28

 Fe-N/C-800  86.39  2.69  10.65  0.28

 Fe-N/C-900  90.06  1.61  8.09  0.26

 Table S2 Elemental Compositions (O, N) Obtained by XPS Spectroscopy and Fe Contents Measured by ICP-AES
 Catalyst  N (at.%)  O (at.%)

 Fe (at.%)

 Hollow Fe-N/C-800  2.69  10.65  6.38

 Hollow N/C-800  3.87  8.03  S/A

 Solid Fe-N/C-800  1.03  10.67  7.02

Table S3 Elemental Compositions (O, N) Obtained by XPS Spectroscopy and Fe Contents Measured by ICP-AES
Catalyst N (at.%) O (at.%) Fe (at.%)

1st-Hollow Fe-N/C-800 1.56 11.14 6.38

2nd-Hollow Fe-N/C-800 1.47 9.14 6.02

Reduced-2nd-Hollow Fe-N/C-800 1.53 14.29 5.40

Table S4 the deconvoluted C/N 1s peak positions under below sections from XPS data.

Element Types 1st-Hollow Fe-N/C-800 2nd-Hollow Fe-N/C-800 Reduced-2nd

C=C 29.28 30.45 28.31

C-O- 34.91 28.78 37.51

C=O 18.21 23.43 16.41
C (at.%)

C-N 17.60 17.33 17.77

Pyridinic-N 30.51 25.96 29.12

Pyrrolic-N 22.41 21.82 20.35

graphite-N 28.01 30.12 29.21
N (at.%)

N-oxide 19.06 22.10 21.32
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