Electronic Supplementary Information

A Cylinder-Shaped Macrocycle Formed via Friedel-Crafts Reaction

Dingsheng Zhu, Shuai Fang, Lu Tong, Ye Lei, Guangcheng Wu, Tayba Chudhary and Hao Li*Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China.E-mail: lihao2015@zju.edu.cn
Table of content

1. Materials and general methods. S2
2. Synthetic procedures S3
3. Characterization S4
4. ${ }^{1} \mathrm{H}$ NMR titration S10
5. Reaction monitoring S15
6. Diels-Ader reactivity of 1 S16
7. X-ray crystallography S17
8. References. S24

1. Materials and general methods

All reagents and solvents were purchased from commercial sources and used without further purification. Manipulations were performed under a normal atmosphere unless otherwise indicated. The cage precursor 1,3,5-tri(furan-2-yl) benzene (TFB) was prepared according to reported procedure ${ }^{[s 1]}$. Nuclear magnetic resonance (NMR) spectra were recorded at ambient temperature using Bruker AVANCE III 400/500 and Agilent DD2 600 spectrometers, with working frequencies of $400 / 500 / 600$ and $100 / 125 / 150 \mathrm{MHz}$ for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$, respectively. Chemical shifts are reported in ppm relative to the residual internal non-deuterated solvent signals $\left(\mathrm{CDCl}_{3}: \delta=7.26 \mathrm{ppm}\right)$. High-resolution mass spectra (HRMS) were recorded on a Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). X-ray crystallographic data were collected on a Bruker D8 Venture diffractometer.

2. Synthetic procedures

TFB
$6 \times$

Figure S1. Synthesis of 1

Synthesis of 1

1,3,5-tri(furan-2-yl) benzene (TFB) ($200 \mathrm{mg}, 0.72 \mathrm{mmol}$) and acetone ($0.239 \mathrm{~mL}, 3.26 \mathrm{mmol}$) were dissolved in anhydrous dichloromethane (48 mL). $\mathrm{SnCl}_{4}(0.256 \mathrm{~mL}, 2.17 \mathrm{mmol})$ was added slowly. The reaction mixture was stirred under the protection of a N_{2} atmosphere at 298 K . The progress of the reaction was monitored by TLC. After the reaction reached its equilibrium after 72 h , the reaction mixture was poured into cold water $(100 \mathrm{~mL})$, which was extracted with DCM ($40 \mathrm{~mL} \times 2$). The organic layer was washed with saturated aqueous solution of $\mathrm{NaHCO}_{3}(100 \mathrm{~mL})$ and brine water $(100 \mathrm{~mL})$. After drying with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, the solvent was removed under vacuum. The crude product was purified by column chromatography (silica gel: ethyl acetate/petroleum ether $=1: 5$) to obtain $\mathbf{1}$ as an off-white powder ($87 \mathrm{mg}, 36 \%$). $\mathrm{Rf}=0.76$, ethyl acetate/petroleum ether $=1: 3$. Elem. anal. : observed: C 73.83% H 5.78%, calculated: C $80.34 \% \mathrm{H} 5.19 \%$. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.13$ (8.12 (t, $J=1.6 \mathrm{~Hz}, 4 \mathrm{H})$), $7.48(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 8 \mathrm{H}), 6.57(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 4 \mathrm{H}), 6.50(\mathrm{~d}, J=3.3$ $\mathrm{Hz}, 8 \mathrm{H}), 6.23(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 4 \mathrm{H}), 6.09(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 8 \mathrm{H}), 1.89(\mathrm{~s}, 12 \mathrm{H}), 1.77(\mathrm{~s}, 12 \mathrm{H}), 1.73$ $(\mathrm{s}, 12 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right): \delta 160.1(\mathrm{C}), \delta 159.9(\mathrm{C}), \delta 158.8(\mathrm{C}), \delta 152.3(\mathrm{C}), \delta$ $132.0(\mathrm{C}), \delta 131.5(\mathrm{C}), \delta 117.0(\mathrm{CH}), 116.5(\mathrm{CH}), 106.2(\mathrm{CH}), 106.1(\mathrm{CH}), 106.0(\mathrm{CH}), 105.2$ $(\mathrm{CH}), 37.7(\mathrm{C}), 37.1(\mathrm{C}), 26.8\left(\mathrm{CH}_{3}\right), 26.2\left(\mathrm{CH}_{3}\right), 24.9\left(\mathrm{CH}_{3}\right)$. ESI-HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$, obeserved: m / z 1345.5044, calculated: $m / z 1345.5097 ;[\mathrm{M}+\mathrm{Na}]^{+}$, oberved: $m / z 1367.4838$, calculated: m / z 1367.4916; $[\mathrm{M}+\mathrm{K}]^{+}$, oberved: m / z 1383.4545, calculated: m / z 1383.4655. IR: 3455.54 $\mathrm{cm}^{-1}, 2975.44 \mathrm{~cm}^{-1}, 2933.22 \mathrm{~cm}^{-1}, 1611.31 \mathrm{~cm}^{-1}, 1586.36 \mathrm{scm}^{-1}, 1542.14 \mathrm{~cm}^{-1}, 1210.39 \mathrm{~cm}^{-1}$, $1586.36 \mathrm{~cm}^{-1}, 1542.14 \mathrm{~cm}^{-1}, 1255.63 \mathrm{~cm}^{-1}, 1210.39 \mathrm{~cm}^{-1}, 1025.44 \mathrm{~cm}^{-1}, 781.67 \mathrm{~cm}^{-1}, 757.27$ cm^{-1}.

3. Characterization

Figure S2. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}, 298 \mathrm{~K}\right)$.

Figure S3. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1}\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}, 298 \mathrm{~K}\right)$.

Figure S4. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY NMR spectrum of $\mathbf{1}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}, 298 \mathrm{~K}\right)$. Key correlation peaks are labeled in the spectrum.

Figure S5. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY NMR spectrum of $\mathbf{1}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}, 298 \mathrm{~K}\right)$. Key correlation peaks are labeled in the spectrum. Mixing time: 0.5 s .

Figure S6. ${ }^{1} \mathrm{H}$ DOSY NMR spectrum of $\mathbf{1}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}, 298 \mathrm{~K}\right)$.

Figure S7. ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HSQC NMR spectrum of $\mathbf{1}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}, 298 \mathrm{~K}\right)$.

Figure S8. ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMBC NMR spectrum of $\mathbf{1}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}, 298 \mathrm{~K}\right)$.

Figure S9. ESI-HRMS of 1, full range (top), and expanded (bottom). Molecular ions bearing one positive charge by taking proton, sodium and potassium cations are observed.

Figure S10. Experimental (bottom) and simulated(top) isotopic patterns of the peaks in ESIHRMS, corresponding to a) $[\mathbf{M}+\mathrm{H}]^{+}$; b) $[\mathbf{M}+\mathrm{TEA}]^{+}$; c) $[\mathbf{M}+\mathrm{TPA}]^{+}$; d) $[\mathbf{M}+\mathrm{TBA}]^{+}$; e) $[\mathbf{M}$ + viologen $]^{+}$; f) $\left[\mathbf{M}+\text { viologen }+\mathrm{PF}_{6}{ }^{-}\right]^{+} . \mathbf{M}$ is referred to as the macrocycle $\mathbf{1}$.

Figure S11. UV-Vis absorption spectrum of the macrocycle 1 in the absence and presence of guest. No charge-transfer bands in the visible light region were observed.

Figure S12. IR spectrum of 1.

4. ${ }^{1} \mathrm{H}$ NMR titration

Fast Host-guest exchange on the NMR time scale was observed, as inferred from the results that before and after adding guests, only one set of peaks corresponding to the host and guests were observed. Binding affinities of the host-guest complexes were calculated by using ${ }^{1} \mathrm{H}$ NMR spectroscopic titration experiments. Solvent is either CDCl_{3} for tetraalkylammonium chloride or $1: 1$ mixture of CDCl_{3} and $\mathrm{CD}_{3} \mathrm{CN}$ in the case of viologen whose counterion is $\mathrm{PF}_{6}{ }^{-}$. In all samples during titration, the concentration of the cage $\mathbf{1}$ was kept constant. The association constants (K_{a}) could be deprived from a plot of the resonance changes of a proton on the host cage $\mathbf{1}$ versus the concentration of the guest added into the solution of the cage $\mathbf{1}$. K_{a} was calculated by using the plot to fit in the following equation ${ }^{[82]}$:

$$
A=\left(\left(1+1 / K_{\mathrm{a}} /[\mathrm{H}]_{0}+[\mathrm{G}] /[\mathrm{H}]_{0}\right)-A_{\infty}\left(\left(1+1 / K_{\mathrm{a}} /[\mathrm{H}]_{0}+[\mathrm{G}] /[\mathrm{H}]_{0}\right)^{2}-4[\mathrm{G}] /[\mathrm{H}]_{0}\right)^{0.5}\right) / 2
$$

Where A is the resonance changes of the aromatic proton on $\mathbf{1}$ host in the presence of the guest whose concentration is [G], A_{∞} is the chemical shift change of H_{e} when the cavity of the host is completely occupied by the guest, and $[\mathrm{H}]_{0}$ is the concentration of the host which was kept constant.

a)
[TEA $\left.{ }^{+} \cdot \mathrm{Cl}^{-]}\right][1]$

Figure S13. a) Partial ${ }^{1} \mathrm{H}$ NMR spectra $\left(\mathrm{CDCl}_{3}, 298 \mathrm{~K}, 500 \mathrm{MHz}\right)$ of $\mathbf{1}(1 \mathrm{mM})$ upon adding tetraethylammonium chloride ($\mathrm{TEA}^{+} \cdot \mathrm{Cl}^{-}$) with different concentrations. b) A Job plot of $\Delta \delta \cdot X$ (host) versus X (host). In all the ${ }^{1} \mathrm{H}$ NMR spectroscopic experiments for making Job plot, $[1]+\left[\mathrm{TEA}^{+} \cdot \mathrm{Cl}^{-}\right]=1 \mathrm{mM}$, and the $\Delta \delta$ of the proton H_{c} was used to make the Job plot.

Figure S14. Plots of the upfield shifts of the resonance corresponding to protons H_{a}, H_{c} and H_{e} versus $\left[\mathrm{TEA}^{+} \cdot \mathrm{Cl}^{-}\right][\mathbf{1}]$, respectively, based on ${ }^{1} \mathrm{H}$ NMR spectroscopic results in Figure S13a. K_{a} of $\mathbf{1}$ to recognize TPA ${ }^{+}$was calculated to be (1.1 in Fi $\times 10^{3} \mathrm{M}^{-1}$, by averaging the three numbers.

a)

b)

Figure S15. a) Partial ${ }^{1} \mathrm{H}$ NMR spectra $\left(\mathrm{CDCl}_{3}, 298 \mathrm{~K}, 500 \mathrm{MHz}\right)$ of $\mathbf{1}(1 \mathrm{mM})$ upon adding tetraethylammonium chloride ($\mathrm{TPA}^{+} \cdot \mathrm{Cl}^{-}$) with different concentrations. b) A Job plot of $\Delta \delta \cdot X$ (host) versus X (host). In all the ${ }^{1} \mathrm{H}$ NMR spectroscopic experiments for making Job plot, $[1]+\left[\mathrm{TPA}^{+} \cdot \mathrm{Cl}^{-}\right]=1 \mathrm{mM}$, and the $\Delta \delta$ of the proton H_{d} was used to make the Job plot.
a) Proton a
b) Proton c
c) Proton e

igure S16. Plot of the upfield shifts of the resonance corresponding to protons $\mathrm{H}_{\mathrm{a}}, \mathrm{H}_{\mathrm{c}}$ and H_{e} versus $\left[\mathrm{TPA}^{+} \cdot \mathrm{Cl}^{-}\right] /[1]$, respectively, based on ${ }^{1} \mathrm{H}$ NMR spectroscopic results in Figure S15a. K_{a} of $\mathbf{1}$ to recognize TPA^{+}was calculated to be (4.1 in $\mathrm{Fi} \times 10^{3} \mathrm{M}^{-1}$, by averaging the three numbers.
a)

b)

Figure S17. a) Partial ${ }^{1} \mathrm{H}$ NMR spectra $\left(\mathrm{CDCl}_{3}, 298 \mathrm{~K}, 500 \mathrm{MHz}\right)$ of $\mathbf{1}(1 \mathrm{mM})$ upon adding tetraethylammonium chloride ($\mathrm{TBA}^{+} \cdot \mathrm{Cl}^{-}$) with different concentrations. b) A Job plot of $\Delta \delta \cdot X$ (host) versus X (host). In all the ${ }^{1} \mathrm{H}$ NMR spectroscopic experiments for making Job plot, $[\mathbf{1}]+\left[\mathrm{TBA}^{+} \cdot \mathrm{Cl}^{-}\right]=1 \mathrm{mM}$, and the $\Delta \delta$ of the proton H_{c} was used to make the Job plot.
a) Proton a
b) Proton c
c) Protone

Figure S18. Plot of the upfield shifts of the resonance corresponding to protons $\mathrm{H}_{\mathrm{a}}, \mathrm{H}_{\mathrm{c}}$ and H_{e} versus [$\left.\mathrm{TBA}^{+} \cdot \mathrm{Cl}^{-}\right] /[1]$, respectively, based on ${ }^{1} \mathrm{H}$ NMR spectroscopic results in Figure S17. K_{a} of $\mathbf{1}$ to recognize TBA^{+}was calculated to be $(1.2 \pm 0.2) \times 10^{2} \mathrm{M}^{-1}$, by averaging the three numbers.

Figure S19. a) Partial ${ }^{1} \mathrm{H}$ NMR spectra $\left(\mathrm{CDCl}_{3}: \mathrm{CD}_{3} \mathrm{CN}=1: 1,298 \mathrm{~K}, 500 \mathrm{MHz}\right)$ of $\mathbf{1}(1 \mathrm{mM})$ upon adding viologen whose counterion is $\mathrm{PF}_{6}{ }^{-}$with different concentrations. b) A Job plot of $\Delta \delta \bullet X$ (host) versus X (host). In all the ${ }^{1} \mathrm{H}$ NMR spectroscopic experiments for making Job plot, $[\mathbf{1}]+\left[\mathrm{V}^{2+} \cdot \mathrm{PF}_{6}^{-}\right]=1 \mathrm{mM}$, and the $\Delta \delta$ of the proton H_{c} was used to make the Job plot.
a) Proton a
b) Proton c
c) Proton e

Figure S20. Plot of the upfield shifts of the resonance corresponding to protons $\mathrm{H}_{\mathrm{a}}, \mathrm{H}_{\mathrm{c}}$ and H_{e} versus [viologen]/ [1], respectively, based on ${ }^{1} \mathrm{H}$ NMR spectroscopic results in Figure S19. K_{a} of $\mathbf{1}$ to recognize V^{2+} was calculated to be (3.9 in $\mathrm{Fi} \times 10^{2} \mathrm{M}^{-1}$, by averaging the three numbers.

5. Reaction monitoring

Method: 1,3,5-tri(furan-2-yl) benzene (TFB) ($200 \mathrm{mg}, 0.72 \mathrm{mmol}$) and acetone (0.239 mL , $3.26 \mathrm{mmol})$ were dissolved in anhydrous dichloromethane (48 mL). $\mathrm{SnCl}_{4}(0.256 \mathrm{~mL}, 2.17$ mmol) was added slowly. For a specific reaction time, we took 1 mL solution out from the reaction flask, and used water to quench the reaction. The mixture was then extracted with DCM. The organic layers were combined and then the organic solvent was removed under vacuum. The residue was dissolved in $0.5 \mathrm{~mL} \mathrm{CDCl}_{3}$ and the ${ }^{1} \mathrm{H}$ NMR spectrum was recored.

Figure S21. ${ }^{1} \mathrm{H}$ NMR spectra of the reaction mixture during the reaction course. The bule stars (top) correspond to the peaks of macrocycle $\mathbf{1}$. The yellow triangles correspond to the peak of the reactant TFB (bottom).

The ${ }^{1} \mathrm{H}$ NMR spectra indicated that the reactant TFB was consumed after 40 h . After that, a set of sharp resonances were observed in the ${ }^{1} \mathrm{H}$ NMR spectra corresponding to the macrocycle 1. The byproducts with substantial amount were not observable, because their resonances broaden out into the baseline. Between 32 h and 40 h , a set of tiny peaks were observed, which might correspond to half-macrocyle containing two or three TFB units.

6. Diels-Ader reactivity of 1

Figure S22. a) ${ }^{1} \mathrm{H}$ NMR spectrum of the mixture of $\mathbf{1}$ and dimethyl acetylenedicarboxylate after heating at $50^{\circ} \mathrm{C}$ for $40 \mathrm{~h}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$. b) ${ }^{1} \mathrm{H}$ NMR spectrum of TFB (toluene- d_{8}, $500 \mathrm{MHz})$. c) ${ }^{1} \mathrm{H}$ NMR spectrum of the mixture of $\mathbf{1}$ and dimethyl acetylenedicarboxylate after heating at $50^{\circ} \mathrm{C}$ for 24 h (toluene- $d_{8}, 500 \mathrm{MHz}$).

Diels-Alder reaction was observed (Figure S22 b, c) to occur by heating dimethyl acetylenedicarboxylate and 1,3,5-tri(furan-2-yl) benzene (TFB). As a comparison, such reaction did not occur (Figure S22 a) by heating $\mathbf{1}$ and dimethyl acetylenedicarboxylate after heating at $50^{\circ} \mathrm{C}$ for 40 h . We thus reasonably propose that the failure of the ring $\mathbf{1}$ in DielsAlder reaction resulted from steric hindrance caused by the dimethyl bridges (the acetone residues).

7. X-ray crystallography

Methods

Single crystals of 1, suitable for X-ray crystallography, were grown by slow vapor diffusion of diethyl ether into a solution of $\mathbf{1}$ in CHCl_{3} after two weeks. Data were collected at 173 K on a Bruker D8 Venture Diffractometer equipped with a $\mathrm{GaK} \alpha \mathrm{I} \mu \mathrm{S}$ source and MX optic.

Crystal parameters

[$\mathrm{C}_{90} \mathrm{H}_{72} \mathrm{O}_{12}$], colorless block ($0.05 \times 0.03 \times 0.02 \mathrm{~mm}$), triclinic, space group $\mathrm{P}-1, a=$ $11.934(8) \AA, b=12.680(8) \AA, c=15.587(11) \AA, \alpha=83.19(2)^{\circ}, \beta=70.854(15)^{\circ}, \gamma=$ $69.918(19)^{\circ}, V=2093(2) \AA^{3}, Z=1, \mathrm{~T}=173 \mathrm{~K}, \rho_{\text {calc }}=1.068 \mathrm{~g} / \mathrm{cm}^{3}, \mu(\mathrm{GaK} \alpha)=1.34139 \mathrm{~mm}^{-1}$. A total of 8284 reflections were collected, of which 2701 were unique. Final $\mathrm{R}_{1}(\mathrm{I}>2 \sigma(\mathrm{I}))=$ 0.1412 and $w \mathrm{R}_{2}=0.4399$ (all data). The structure was solved by direct method and different Fourier syntheses. Using Olex2, the structure was solved with the ShelXT structure solution program using Intrinsic Phasing and refined with the ShelXL refinement package using Least Squares minimization. The SQUEEZE procedure was done(see details in the cif file). The quality of the crystal is limited due to its easy collapse. CCDC number: 2058306.

Solid-state structure

a)

b)

c)

Figure S23. Different views of the solid-state structure of 1. Color code: Carbon, grey; oxygen red; Disordered solvent molecules, and hydrogen atoms are omitted for clarity.

Cartesian Coordinates for 1

1	O1	7.8768	5.4973	2.4899
2	O2	5.2463	4.1311	2.2867
3	O3	2.6126	-1.8653	5.451
4	O4	7.465	-0.1609	1.577
5	O5	10.14021 .2239	1.8936	

6	O6	13.69673 .8944	6.5774	
7	C1	7.1108	6.5798	2.1351
8	C2	5.8668	6.2954	1.2825
9	C3	4.899	5.4364	2.1071
10	C4	4.2635	3.5466	3.0259
11	C5	3.302	4.4462	3.2777
12	H5	2.4923	4.2998	3.752
13	C6	3.7406	5.6594	2.6887
14	H6	3.2782	6.489	2.7119
15	C7	4.3728	2.098	3.3042
16	C8	3.5142	1.4858	4.1803
17	H8	2.877	2.0096	4.6512
32	C20	10.89541 .416	3.0082	
33	C21	11.566	0.2856	3.341
27	C15	5.4029	-0.0286	2.8389
18	C9	3.5629	0.1105	4.3953
27	C16	6.3457	-0.8068	2.0511
19	C10	2.629	-0.4847	5.3155
26	H14	4.597	-1.553	-1.0792

 H21 12.18110.1714 4.0562
 C22 11.1595-0.6841 2.4045
 H22 11.419-1.5979 2.3989
C23 10.89392.774 3.5957
C24 9.92363 .69153 .1452
$\begin{array}{lll}\mathrm{H} 24 & 9.3132 & 3.4581 \\ 2.4547\end{array}$
C25 9.88194 .95553 .74
C26 8.93595 .95173 .2939
C27 8.80937 .30663 .4249
$\begin{array}{lll}\mathrm{H} 27 & 9.382 \quad 7.8854 & 3.9136\end{array}$
C28 7.65097 .68152 .6857
$\begin{array}{llll}\mathrm{H} 28 & 7.3147 & 8.5658 & 2.596\end{array}$
C29 10.79565.2969 4.7442
H29 10.76576.1665 5.1254
C30 11.73774.3924 5.1889
C31 12.63754.7379 6.2697
C32 $14.4 \quad 4.4232 \quad 7.645$
C33 15.65683.7212 8.0955
C34 16.71063.8304 6.9794
H34A 16.41153.3229 6.1966
H34B 17.56343.4662 7.2982
H34C 16.82974.7714 6.7332
C35 16.18974.3836 9.3751
H35A 16.95663.8751 9.711
H35B 15.48284.3957 10.0543
H35C $16.467 \quad 5.3017 \quad 9.1759$
C36 13.77195.5522 8.0042
H36 14.02956.1206 8.7198
C37 12.64685.7655 7.1384
H37 12.03236.4891 7.1718
C38 11.79213.1164 4.5778
H38 12.45542.4928 4.8488
C39 10.2453-1.7493-0.3328
H39A 11.0706-1.4296-0.7529
H39B 9.6638-2.1465-1.0137
H39C 10.4637-2.424 0.3443
C40 $9.2885 \quad 0.6088-0.6655$
H40A $8.83361 .3465-0.2077$
$\begin{array}{llll}\mathrm{H} 40 \mathrm{~B} & 8.7349 & 0.297 & -1.4118\end{array}$H40C 10.15250.9196-1.0073
C41 $7.5061 \quad-2.23810 .8319$
H41 $\quad 7.7697 \quad-3.031 \quad 0.3806$
C42 $6.3327 \quad-2.08291 .5976$
H42 $5.6676-2.74011 .7615$
C43 $5.34621 .3815 \quad 2.6607$
$\begin{array}{lllll}\mathrm{H} 43 & 5.9774 & 1.821 & 2.1032\end{array}$
C44 $5.2005 \quad 7.6162 \quad 0.9365$
H44A $4.85 \quad 8.02951 .7525$
H44B 4.46437 .45520 .3094
H44C 5.85678 .21480 .5224
C45 $6.2459 \quad 5.5545 \quad 0.0177$$\begin{array}{llll}\text { H45A } & 6.8655 & 6.1014 & -0.5083\end{array}$
H45B 5.4399 5.3742 -0.5087
$\begin{array}{llll}\mathrm{H} 45 \mathrm{C} & 6.6785 & 4.7066 & 0.2537\end{array}$
O1 $\quad 9.1694-5.398312 .2346$
O2 11.7999-4.0322 12.4378

90	O3	14.43361 .9642	9.2735
91	O4	9.58120 .2598	13.1475
92	O5	$6.906-1.1249$	12.8309
93	O6	$3.3495-3.7955$	8.1471
94	C1	$9.9354-6.4809$	12.5894
95	C2	11.1794-6.1965	13.442
96	C3	12.1472-5.3374	2.6174
97	C4	12.7827-3.4477	11.6986
98	C5	13.7442-4.3473	1.4468
99	H5	14.5539-4.2009	10.9725
100	C6	13.3056-5.5605	12.0358
101	H6	13.7679-6.3901	12.0126
102	C7	12.6734-1.999	11.4203
103	C8	13.532-1.3868	10.5442
104	H8	14.1691-1.9106	10.0733
105	C9	13.4833-0.0116	10.3292
106	C10	14.41710 .5837	9.4089
107	C11	15.39822 .2774	8.3885
108	C12	16.01071 .143	7.9306
109	H12	16.71731 .0873	7.2984
110	C13	15.37120 .0721	8.5962
111	H13	15.5753-0.8501	8.4905
112	C14	12.50890 .7147	11.0183
113	H14	12.44911 .652	10.8761
114	C15	11.64330 .1275	11.8856
115	C16	10.70040 .9057	12.6734
116	C17	8.85111 .1782	13.8778
117	C18	7.5290 .6635	14.3858

118	C19	6.7202	0.182913 .2211
119	C20	6.1507	-1.317 11.7163
120	C21	5.4802	-0.1867 11.3835
121	H21	4.865	-0.0724 10.6683
122	C22	5.8867	$0.783 \quad 12.32$
123	H22	5.6271	1.696912 .3256
124	C23	6.1523	-2.675 11.1288
125	C24	7.1226	-3.5926 11.5793
126	H24	7.733	-3.3592 12.2698
127	C25	7.1643	-4.8566 10.9845
128	C26	8.1103	-5.8527 11.4306
129	C27	8.2369	-7.2077 11.2996
130	H27	7.6641	-7.7864 10.8109
131	C28	9.3953	$-7.582612 .0387$
132	H28	9.7315	-8.4668 12.1285
133	C29	6.2505	-5.1979 9.9803
134	H29	6.2805	-6.06769.599
135	C30	5.3085	-4.2935 9.5356
136	C31	4.4086	-4.6389 8.4548
137	C32	2.6461	-4.32437.0795
138	C33	1.3894	-3.6223 6.629
139	C34	0.3355	-3.73157.7451
140	H34A	0.6347	-3.2239 8.5279
141	H34B	-0.5173	-3.3672 7.4263
142	H34C	0.2164	-4.6724 7.9913
143	C35	0.8565	-4.2847 5.3494
144	H35A	0.0895	-3.7762 5.0135
145	H35B	1.5634	-4.2967 4.6702

$146 \quad$ H35C $\quad 0.5791 \quad-5.20275 .5486$
$147 \quad$ C36 $3.2743-5.45336 .7203$
$148 \quad \mathrm{H} 36 \quad 3.0167-6.02176 .0047$
$149 \quad$ C37 $4.3994-5.66667 .5861$
150 H37 5.0138 -6.3901 7.5527
$151 \quad$ C38 $5.2541 \quad-3.017510 .1466$
152 H38 4.5908 -2.3939 9.8757
$153 \quad \mathrm{C} 39 \quad 6.8008 \quad 1.8482 \quad 15.0573$
154 H39A $5.9756 \quad 1.5285 \quad 15.4774$

155 H39B $7.3823 \quad 2.2455 \quad 15.7382$
$156 \quad$ H39C $6.5825 \quad 2.522914 .3802$
$157 \quad \mathrm{C} 40 \quad 7.7576-0.509915 .39$
$158 \quad \mathrm{H} 40 \mathrm{~A} \quad 8.2125-1.247514 .9322$

159 H40B $8.3113-0.198 \quad 16.1363$
$160 \quad \mathrm{H} 40 \mathrm{C} \quad 6.8936-0.820715 .7318$
$161 \quad \mathrm{C} 41 \quad 9.5401 \quad 2.337 \quad 13.8926$
$162 \quad \mathrm{H} 41 \quad 9.2765 \quad 3.13 \quad 14.3439$
$163 \quad \mathrm{C} 42 \quad 10.71352 .1818 \quad 13.1269$
$164 \quad \mathrm{H} 42 \quad 11.37862 .8391 \quad 12.963$
$165 \quad \mathrm{C} 43 \quad 11.7 \quad-1.282512 .0638$

166 H43 11.0688-1.7221 12.6212
$167 \quad$ C44 11.8457-7.5173 13.788
168 H44A 12.1961-7.9305 12.972

169 H44B 12.5818-7.3563 14.4151
$170 \quad \mathrm{H} 44 \mathrm{C}$ 11.1894-8.1159 14.2021
171 C45 10.8003-5.4556 14.7068
172 H45A 10.1807-6.0025 15.2328
173
H45B 11.6063-5.2753 15.2332

8. References.

[s1] Hazra, C., Gandhamsetty, N., Park, S. et al. Borane catalysed ring opening and closing cascades of furans leading to silicon functionalized synthetic intermediates. Nat Commun, 2016, 7, 13431.
[s2] a) Hirose, K., Determination of Binding Constants. In Analytical Methods in Supramolecular Chemistry, 2006; pp 17-54; b) R. P. Ashton,R. Ballardini, V. Balzani, M. Belohradsky, M. T. Gandolfi, D. Philp, L. Prodi, F. M. Raymo,M. V. Reddington, N. Spencer, J. F. Stoddart, M. Venturi, D. J. Williams, J. Am. Chem. Soc.,1996, 118, 4931-4951; c) Y. Inoue, K. Yamamoto, T. Wada, S. Everitt, X.-M. Gao, Z.-J. Hou,L.-H. Tong, S.-K. Jiang, H.M. Wu, J. Chem. Soc., Perkin Trans. 2, 1998, 1807-1816.

