Supplementary Information

Functional ligands directed assembly and electronic structure of Sn₁₈-oxo wheel nanocluster

Yu Zhu,^{+ a, b} Qiaohong Li,^{+ a} Dongsheng Li,^b Jian Zhang^a and Lei Zhang^a*

^aState Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P.R. China.

^bKey Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, College of Materials and Chemical Engineering, China Three Gorges University, Yichang 443002, P. R. China.

⁺These authors contributed equally to this work and should be considered co-first authors.

E-mails:LZhang@fjirsm.ac.cn

Experimental Section

Materials and Instrumentation.

All the chemical reagents were commercially purchased and used without further purification. IR spectrum was obtained on a Vertex 7.0 spectrometer equipped with attenuated total reflectance (ATR) measurements. Powder XRD pattern was obtained by using a Miniflex600 diffractometer with CuK α radiation ($\lambda = 1.54056$ Å). Elemental analyses (C, H, and N) were performed on a vario MICRO elemental analyzer. ESI-MS was carried out on Impact II UHR-TOF (Bruker). The 1H NMR spectrum was measured on the Bruker AVANCE III spectrometer (400MHz).

Synthesis of TOC-9: Butyltin hydroxide oxide (208.8 mg, 1.0 mmol), 3, 5dihydroxybenzoic acid (154.1 mg, 1.0 mmol), acetonitrile (5 mL) were mixed and sealed in a 20 mL vial, then transferred to a preheated oven at 80 °C for 5 days, and cooling crystallized at room temperature to obtain the colorless crystals (yield: 5 % based on Sn). In addition, the yield of the **TOC-9** can be improved to some extent by adding NaOH (10 mg) to this reaction, but the obtained crystals become smaller. Anal. calcd for Sn₁₈O₉₁C₁₇₀H₂₆₂ (%): C, 34.61; H, 4.44. Found: C, 34.31; H, 4.42.

Computational Methods

DFT calculations. The initial geometric structures of the **Sn**₁₈ wheel cluster were taken from the X-ray diffraction data. The butyl groups of **Sn**₁₈ are replaced by the methyl groups to simplify the theoretical calculation. The molecular geometries were fully optimized to the local energy minima, which have been confirmed by no imaginary harmonic vibration frequency. All the calculations were using Gaussian 16.^[1] The ground-state equilibrium geometries of **Sn**₁₈ cluster were fully optimized

using B3LYP functional and 6-31g(d, p) basis sets for C, H, and Lanl2DZ basis set for metal atoms, with D3 dispersion correction of Grimme,^[2-9] The frequencydependent NLO response is calculated by the complete summation sum-over-states (SOS) method. TDDFT and the static third-order nonlinear polarizability calculations of the **Sn**₁₈ cluster were used cam-B3LYP^[10] and 6-31+g(d, p) basis sets for C, H. In order to get a deeper understanding of the wave function, Multiwfn^[11] and VMD^[12] software was used to analyse the electronic structures, excitation characteristics and (hyper)polarizability. The SOS method^[13] is a common method of NLO calculation. Static hyperpolarizabilities can be calculated from the energy of each excited state and the transition dipole moment between each excited state. As shown in the following formula:

$$\begin{split} \beta_{ABC}(-\omega_{\sigma}; \omega_{1}, \omega_{2}) &= \hat{P}\left[A(-\omega_{\sigma}), B(\omega_{1}), C(\omega_{2})\right] \sum_{i \neq 0} \sum_{j \neq 0} \frac{\mu_{0i}^{A} \overline{\mu_{ij}^{B}} \mu_{j0}^{C}}{(\Delta_{i} - \omega_{\sigma})(\Delta_{j} - \omega_{2})} \\ \gamma_{ABCD}(-\omega_{\sigma}; \omega_{1}, \omega_{2}, \omega_{3}) &= \hat{P}\left[A(-\omega_{\sigma}), B(\omega_{1}), C(\omega_{2}), D(\omega_{3})\right](\gamma^{I} - \gamma^{II}) \\ \gamma^{I} &= \sum_{i \neq 0} \sum_{j \neq 0} \sum_{k \neq 0} \frac{\mu_{0i}^{A} \overline{\mu_{ij}^{B}} \overline{\mu_{jk}^{C}} \mu_{k0}^{D}}{(\Delta_{i} - \omega_{\sigma})(\Delta_{j} - \omega_{2} - \omega_{3})(\Delta_{k} - \omega_{3})} \\ \gamma^{II} &= \sum_{i \neq 0} \sum_{j \neq 0} \frac{\mu_{0i}^{A} \mu_{i0}^{B} \mu_{0j}^{C} \mu_{j0}^{D}}{(\Delta_{i} - \omega_{\sigma})(\Delta_{i} - \omega_{1})(\Delta_{j} - \omega_{3})} \end{split}$$

A,B,C..., and so on denote one of directions; ω is energy of external fields; Δ_i stands for excitation energy of state *i* with respect to ground state 0; μ_{ij}^A is a component of transition dipole moment between state *i* and *j*.

We used the magnitude of hyperpolarizability to quantitatively study the nonlinear polarizability of the system.

$$\beta_i = (1/3) \sum_j (\beta_{ijj} + \beta_{jji} + \beta_{jij}) \mathbf{i}, \mathbf{j} = \{x, y, z\}$$
$$\beta_{tot} = \sqrt{\beta_x^2 + \beta_y^2 + \beta_z^2}$$

The *i* components of γ are defined as

$$\gamma_i = (1/15) \sum_j (\gamma_{ijji} + \gamma_{ijjj} + \gamma_{iijj}) \mathbf{i}, \mathbf{j} = \{x, y, z\}$$

The total magnitude of γ is measured as

$$\gamma_{tot} = \sqrt{\gamma_x^2 + \gamma_y^2 + \gamma_z^2}$$

The second and third nonlinear optical polarizability density along the backbone was calculated. The contrast between the dipole moment after Taylor expansion and electron density gives the hyperpolarizability of oligomer unit as follow:

$$\begin{split} \mu(F) &= -\frac{\partial E}{\partial F} = \mu_0 + \alpha F + (1/2) \beta F^2 + (1/6) \gamma F^3 + \dots \\ \rho(r,F) &= \rho^{(0)}(r) + \rho^{(1)}(r) F + (1/2) \rho^{(2)}(r) F^2 + (1/6) \rho^{(3)}(r) F^3 + \dots \\ \gamma_{xxxx} &= \int -\rho_{xxx}^{(3)}(r) x dr \\ \rho_{xxx}^{(3)} &= \frac{\rho(2F^x) - 2\rho(F^x) + 2\rho(-F^x) - \rho(-2F^x)}{2(F^x)^3} \end{split}$$

X-ray Crystallography:

X-ray diffraction data of compound **TOC-9** was collected on a MM007-Saturn724+ diffractometer with graphite-monochromated MoK α ($\lambda = 0.71073$ Å) radiation. The program SADABS was used for absorption correction. The structure was solved by direct methods and refined on F^2 by full-matrix least-squares methods with the SHELX 2016 program package.^[14] The intensity of diffraction for **TOC-9** is weak at high angles. Some disordered solvent molecules of **TOC-9** are not identified in the structure, and are removed by using the SQUEEZE routine of PLATON.^[15] The details of the SQUEEZE corrections, including the volume of void space and electron counts, are provided in the cif file. The numbers of disordered solvent molecules of **TOC-9** are determined by the elemental analysis. CCDC 2055071 contains the supplementary crystallographic data for this paper.

Compound	TOC-9
Formula	Sn18O91C170H262
Fw	5898.20
Crystal system	Orthorhombic
space group	Pmna
<i>a</i> / Å	27.106(6)
b/ Å	15.460(3)
c/ Å	46.953(10)
α/deg.	90
β/deg	90
γ/deg	90
V/Å ³	19676(7)
Z	2
Dc /mg·m ⁻³	0.996
<i>F</i> (000)	5820
T/K	293(2)
μ /mm ⁻¹	1.169
θ range /°	2.045-27.486
Reflections collected	122013
Independent reflections	22601
$\operatorname{GOF}(F^2)$	1.096
$R_1/wR_2 [I > 2\sigma(I)]$	0.0687/0.1977
$R_1/wR_2^{[a]}$ (all data)	0.0871/0.2155

Table S1. Crystal data collection and refinement details for TOC-9.

 ${}^{a}R_{1} = \Sigma ||F_{o}| - |F_{c}|| / \Sigma |F_{o}|, \ wR_{2} = [\Sigma w (F_{o}^{2} - F_{c}^{2})^{2} / \Sigma w (F_{o}^{2})]^{1/2}.$

Table S2. Bond valence sum calculations^[a] of μ_3 -O atoms in asymmetric unit of **TOC-9**.

O21.836	O3 1.869	O4 1.754
Sn1-O2 0.665 d=2.056(5)	Sn1-O3 0.628 d=2.077(3)	Sn3-O4 0.602 d=2.093(7)
Sn2-O2 0.582 d=2.105(3)	Sn2-O3 0.625 d=2.079(5)	Sn4-O4 0.576 d=2.109(2)
Sn1-O2#1 0.589 d=2.101(3)	Sn5-O3 0.616 d=2.084(4)	Sn4-O4 0.576 d=2.109(2)
O5 1.977 Sn4-O5 0.647 d=2.066(4) Sn5-O5 0.628 d=2.077(5) Sn2-O5 0.702 d=2.036(4)	O6 1.929 Sn3-O6 0.640 d=2.070(3) Sn4-O6 0.620 d=2.082(5) Sn5-O6 0.669 d=2.054(4)	

Symmetry transformations used to generate equivalent atoms: #1 x, -y, -z.

^[a] $V_i = \sum_j v_{ij} = \sum_j \exp[(r_0 - r_{ij})/B]$, where r_0 is the bond-valence parameter (here $r_0 = 1.905$ for Sn^{IV}-O), r_{ij} is the bond length between atoms *i* and *j*; B is a constant, the "universal parameter" ~0.37 Å; v_{ij} is the valence of a bond between atoms *i* and *j*; V_i is the sum of all bond valences of the bonds formed by a given atom *i*.^[10]

Transition	λ _{max}	f	Electronic transition	
S0-S4	292	0.1588	H-2 -> L+11 51.3%, H-8 -> L+2 33.8%	
S0-S22	258	0.1680	H-5 -> L+13 39.0%, H-5 -> L+1 21.8%, H-5 -> L+5 16.6%	
S0-S23	257	0.1303	H-6 -> L+12 39.7%, H-6 -> L 27.8%, H-6 -> L+4 11.8%	
S0-S26	248	0.3498	H-12 -> L+9 64.9%, H-12 -> L+4 7.5%, H-12 -> L+6 5.6%, H-16 -> L+9 5.0%	
S0-S27	246	0.1650	H-10 -> L+10 64.1%, H-10 -> L+3 8.5%	
S0-S30	244	0.1914	H-18 -> L+2 54.4%, H-22 -> L 14.4%	
S0-S38	237	0.1367	H-21 -> L+5 33.6%, H-21 -> L+3 11.5%, H-5 -> L+1 11.5%, H-5 -> L+13 6.9%, H-2	
S0-S40	236	0.1308	H-5 -> L+13 27.5%, H-5 -> L+1 25.5%, H-24 -> L+3 13.9%	
S0-S41	235	0.2347	H-24 -> L+3 13.8%, H-11 -> L+11 10.2%, H -> L+7 6.5%, H-26 -> L+1 5.8%	
S0-S42	235	0.5086	H-23 -> L+4 18.4%, H-6 -> L+12 9.4%, H -> L+7 8.0%, H-22 -> L+4 6.6%, H-26 -> L+1 6.4%, H-6 -> L 5.9%	
S0-S43	234	0.1898	H -> L+7 7.5%, H-24 -> L+3 6.6%, H-21 -> L+5 6.6%, H-23 -> L+4 6.3%	
S0-S47	232	0.1652	H-25 -> L+6 31.1%, H-2 -> L+3 10.4%	
S0-S48	232	0.1685	H-25 -> L+6 5.5%, H-81 -> L 5.1%	
S0-S57	228	0.5894	H-26 -> L+1 12.3%, H-17 -> L+7 11.1%, H-20 -> L+7 10.7%, H-9 -> L+7 7.1%, H-22 -> L+8 6.9%, H-9 -> L+1 5.0%	

Table S3. Crucial vertical excitation properties of Sn₁₈

 λ_{\max} and f are the maximum absorption wavelength and oscillation strength. H and L denote

HOMO and LUMO, respectively.

main excited	MLCT(metal to	LLCT(ligand to ligand	LE (localized
states	ligand charge	charge transfer)	excitation)
	transfer)		
S0-S4	5.0 %	0.5 %	94.5 %
S0-S22	2.0 %	0.5 %	97.5 %
S0-S23	2.0 %	0.4 %	97.6 %
S0-S26	1.4 %	0.3 %	98.3 %
S0-S27	1.5 %	0.1 %	98.4 %
S0-S30	6.0 %	7.0 %	87.0 %

Table S4. Interfragment charge transfer (IFCT) of main excited states for the Sn_{18} wheel cluster.

Figure S1. The asymmetric unit of TOC-9. Atom color code: green Sn; red O; black C.

Figure S2. Ball-and-stick view of TOC-9. Atom color code: green Sn; red O; black C.

Figure S3. Illustration of the π - π interactions of the decorating H₂DBA ligands of **TOC-9**. Atom color code: green Sn. In order to clarify, the butyl groups are omitted.

Figure S4. (a) Frontier molecular orbitals of Sn_{18} wheel cluster. (b) Density of states (DOSs) and partial density of states (PDOSs) of Sn_{18} wheel cluster. The black line represents the total DOSs, the blue, green and purple lines were PDOSs for Ligands (L) and red line was the PDOSs for $Sn_{18}O_{18}$ cluster.

Figure S5. Third-order nonlinear static susceptibility density (isovalue = 200) of the Sn_{18} .

Figure S6. Third-order nonlinear static susceptibility density (isovalue = 200), xy plane of adding the electric field with 0.003, 0.006, -0.006, -0.003 a.u. in the y direction for the **Sn**₁₈.

Figure S7. The natural transition orbitals (NTO) of Sn₁₈ wheel cluster.

Figure S8. Simulated and experimental PXRD pattern of compound TOC-9.

Figure S9. IR spectrum of compound TOC-9.

Figure S10. Negative-mode ESI-MS spectrum of TOC-9 dissolved in acetonitrile.

Figure S11. Experimental ESI-MS (-, blue spectrum) and calculated peak positions (red) for TOC-9.

Figure S12. Experimental ESI-MS (-, blue spectrum) and calculated peak positions (red) for TOC-9.

Figure S13. ¹H NMR of TOC-9 in CD₃OD (D, 99.8%) + 0.03% V/V TMS. The peak with an * is due to solvent residual peak. Integration values for TOC-9: 1) 4.00 2) 2.00 3) 4.00 4) 8.01 5) 1.00 6) 3.99 7) 4.00 8) 4.01 9) 2.00. The peak of 1 was normalized to 4.00.

References

- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. J. A. Montgomery, J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, *Gaussian 16, revision C. 01*, Gaussian, Inc.: Wallingford CT, 2016.
- [2] P. J. Stephens, F. J. Devlin, C. F. Chabalowski, M. J. Frisch, J. Phys. Chem., 1994, 98, 11623.
- [3] S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys., 2010, 132, 154104.
- [4] A. D. Becke, J. Chem. Phys., 1993, 98, 1372.
- [5] C. T. Lee, W. T. Yang, R. G. Parr, Phys. Rev. B, 1988, 37, 785.
- [6] A. D. Becke, Phys. Rev. A, 1988, 38, 3098.
- [7] W. R. Wadt, P. J. Hay, J. Chem. Phys., 1985, 82, 284.
- [8] P. J. Hay, W. R. Wadt, J. Chem. Phys., 1985, 82, 299.
- [9] P. J. Hay, W. R. Wadt, J. Chem. Phys., 1985, 82, 270.
- [10] T. Yanai, D. P. Tew, N. C. Handy, Chem. Phys. Lett., 2004, 393, 51.
- [11] T. Lu, F. Chen, J. Comput. Chem., 2012, 33, 580.
- [12] W. Humphrey, A. Dalke, K. Schulten, J. Molec. Graphics, 1996, 14, 33.
- [13] F. Meyers, S. R. Marder, B. M. Pierce, J. L. Bredas, J. Am. Chem. Soc., 1994, 116, 10703.
- [14] G. M. Sheldrick, Acta Crystallogr. C, 2015, C71, 3.
- [15] A. L. Spek, Acta Crystallogr. C, 2015, C71, 9.
- [16] N. E. Brese, M. O'Keeffe, Acta Crystallogr. B, 1991, B47, 192.