Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2021

Supporting Information

Asymmetric Copper–Catalyzed Propargylic Amination with Amine

Hydrochloride Salts

Jian Huang,^{a‡} Han-Han Kong,^{a‡} Si-Jia Li,^a Rui-Jin Zhang,^a Hao-Dong

Qian,^a Dan-Ran Li,^a Jin-Yu He,^a Yi-Nuo Zheng,^a and Hao Xu*^a

[‡] Denotes authors contributed equally to this work.

Contents

1.	General Information	S2
2.	Optimization Studies	S3
3.	Proposed mechanism and model for enantioinduction	. S15
4.	Control experiments	. S17
5.	Experimental Procedures	. S18
6.	Product Characterization	. S19
7.	Crystal Data and Structure Refinement for 3h	. S35
8.	Transformations of Products	. S37
9.	NMR Spectra and HPLC Data	. S39

 ^{a.} CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, Interna-tional Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079 (China)

1. General Information

All reactions were carried out under a nitrogen atmosphere. Solvents were purified by standard procedure before use. Commercial reagents were used without further purification. Flash column chromatography was performed using 300-400 mesh silica gel. Thin layer chromatography (TLC) was performed on glass plates coated with silica gel 60 with F254 indicator. Proton nuclear magnetic resonance (¹H NMR) spectra were recorded on a Bruker 400 MHz or Varian 600 MHz spectrometer. Chemical shifts (δ) are reported in ppm from the resonance of tetramethyl silane as the internal standard (CDCl₃: δ = 7.26 ppm for ¹H, TMS: δ = 0 ppm for ¹H, δ = 77.16 ppm for ¹³C). ¹³C NMR spectra were recorded on 100 MHz or 150 MHz with complete proton decoupling spectrophotometers. Data are represented as follows: chemical shift, multiplicity (br = broad, s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constants (*J*) are given in Hertz (Hz). Enantiomeric ratios were determined by chiral HPLC with chiral AD-H, OD-H, OJ-H, IA, IBN-5, IC columns with hexane and 'PrOH as solvents.

2. Optimization Studies

 Table S1. The Effect of the Ligands on the Reaction.

Entry ^[a]	L	t / h	yield /%[b]	ee /%[c]
1	L1	14	54	5
2	L2	3	91	23
3	L3	4	77	73
4	L4	48	9	3
5	L5	6	32	10
6	L6	8	50	75
7	L7	7	74	80
8	L8	7	72	63
9	L9	8	24	0
10	L10	10	73	15
11	L11	10	81	12
12 ^[d]	L7	3	75	87

13 ^[e]	L7	3	71	80
14 ^[e]	L6	4	44	75
15 ^[e]	L8	3	71	63

[a] Reaction conditions: **1a** (0.2 mmol), **2a** (0.2 mmol), Cu(CH₃CN)₄BF₄ (10 mol %), L (12 mol %), MeOH (2 mL), DIPEA (2 equiv.), 25 $^{\circ}$ C. [b] Yield of the isolated product after column chromatography. [c] The ee value was determined by HPLC analysis on a chiral stationary phase. [d] 15 mol % of ligand was used. [e] Cu(CH₃CN)₄BF₄ (5 mol %), L (7.5 mol %), MeOH (2 mL), DIPEA (2 equiv.), 25 $^{\circ}$ C.

OAc MeO、 + 1a	OMe [Cu] (5 mo L7 (7.5 mc HCI DIPEA (2 equiv.) 2a	I %) M I %) → , MeOH, 25 °C	leO ₂ C N CO ₂ Me	PPh PPh2 L7
Entry ^[a]	[Cu]	t / h	yield /%[b]	ee /%[c]
1	Cu(CH ₃ CN) ₄ BF ₄	3	71	80
2	Cu(CH ₃ CN) ₄ PF ₆	5	58	85
3	Cu(OTf) ₂	4	58	78
4	CuCl	4	76	84
5	CuI	7	64	82
6	CuOAc	5	58	68
7	$Cu(OAc)_2 \bullet H_2O$	5	64	83
8	$Cu(ClO_4)_2 \bullet 6H_2O$	7	75	79

Table S2. The Effect of the Copper Salts on the Reaction.

[a] Reaction conditions: **1a** (0.2 mmol), **2a** (0.2 mmol), [Cu] (5 mol %), **L7** (7.5 mol %), MeOH (2 mL), DIPEA (2 equiv.), 25 °C. [b] Yield of the isolated product after column chromatography. [c] The ee value was determined by HPLC analysis on a chiral stationary phase.

OAc 1a	MeO H O HCI 2a	DMe CuCl (5 L7 (7.5 base (2 equi	mol %), M mol %) ★ iv.), MeOH	eO ₂ C N CO ₂ Me	PPh ₂ PPh ₂ L7
Entry ^[a]	base	T/ºC	t / h	yield /% ^[b]	ee /%[c]
1	Et ₃ N	25	4	49	83
2	^t BuOK	25	4	12	22
3	Cs ₂ CO ₃	25	4	48	73
4	DIPEA	0	12	58	91
5	DIPEA	-20	24	71	95
6	DIPEA	-40	76	62	97

Table S3. The Effect of the Base and Temperature on the Reaction.

[a] Reaction conditions: **1a** (0.2 mmol), **2a** (0.2 mmol), CuCl (5 mol %), **L7** (7.5 mol %), MeOH (2 mL), DIPEA (2 equiv.) [b] Yield of the isolated product after column chromatography. [c] The ee value was determined by HPLC analysis on a chiral stationary phase.

Of Ia	Ac MeO N C + O H O HCI 2a	0Me [Cu] (L7 (7 MeOH, DIP	5 mol %), Me 5 mol %) EA (x equiv.), -20 °C		2 ^{Me}	Ph N Ph ₂ N
Entry ^[a]	[Cu]	1a:2a	base (x equiv.)	t / h	yield /%[b]	ee /%[c]
1	CuCl	1.5:1	2	24	85	96
2	CuCl	1:1	2	24	71	95
3	CuCl	1:1.5	3	24	75	95
4	Cu(CH ₃ CN) ₄ PF ₆	1.5:1	2	24	97	95

Table S4. The Effect of the Ratio of 1a and 2a on the Reaction.

[a] Reaction conditions: 0.2 mmol scale, [Cu] (5 mol %), L7 (7.5 mol %), MeOH (2.0 mL). -20 °C. [b] Yield of the isolated product after column chromatography. [c] The ee value was determined by HPLC analysis on a chiral stationary phase.

OAc h t 1a	NeO O HCI HCI 2a	OMe -	CuPF ₆ (CH ₃ CN) ₄ (x m L7 (1.5x mol %) MeOH, DIPEA (2 equiv.)	ol %), MeO ₂ C	N CO ₂ Me	Ph PPh ₂ L7
	Entry ^[a]	X	t / h	yield /% ^[b]	ee /%[c]	
	1	5	24	97	95	
	2 ^[d]	2.5	70	82	96	

Table S5. The Effect of the Catalyst Loading on the Reaction.

[a] Reaction conditions: **1a** (0.3 mmol), **2a** (0.2 mmol), MeOH (2.0 mL), -20 °C. [b] Yield of the isolated product after column chromatography. [c] The ee value was determined by HPLC analysis on a chiral stationary phase. [d] **1a** (0.6 mmol), **2a** (0.4 mmol), MeOH (4.0 mL).

OAc 1a	MeO + HC 2	OMe Cu O Sol, I 2a	PF ₆ (CH ₃ CN) ₄ (5 mol %) L7 (7.5 mol %) DIPEA (2 equiv.), -20 ⁰	$\xrightarrow{MeO_2C} N \xrightarrow{N} $	CO ₂ Me Ph PPh ₂ L7
•	Entry ^[a]	Sol.	t / h	yield /%[b]	ee /%[c]
	1	MeOH	24	97	95
	2	EtOH	48	21	90
	3	THF	48	NR	-
	4	Toluene	48	NR	-
	5	DCM	48	NR	-
	6	CH ₃ CN	48	NR	-
	7	Et ₂ O	48	NR	-
	8	ⁱ PrOH	48	NR	-
	9	DCE	48	NR	-

Table S6. The Effect of Solvents on the Reaction.

[a] Reaction conditions: **1a** (0.3 mmol), **2a** (0.2 mmol), Solvents (2.0 mL), -20 °C. [b] Yield of the isolated product after column chromatography. [c] The ee value was determined by HPLC analysis on a chiral stationary phase.

LG LG 10-100	Me + ∭	eO O HCI 2a	CuPF ₆ (CH ₃ CN) ₄ (5 mol %), L7 (7.5 mol %) OH, DIPEA (2 equiv.), -20 °C	MeO ₂ C ^N 30	CO ₂ Me	Ph N PPh ₂ L7
			OAc 10a	CF 10b	CF ₃	
			NO ₂ NO ₂ 1od	5 ⁰		
	Entry	^[a] 1	t / h	yield /%[b]	ee /%[c]	
	1	10	48	89	88	
	2	1 0a	48	trace	-	
	3	1ob	48	41	88	
	4	1oc	48	11	87	
	5	1od	48	47	2	

Table S7. The Effect of Leaving Groups of Aliphatic Propargylic Esters on the Reaction.

[a] Reaction conditions: **10-10d** (0.3 mmol), **2a** (0.2 mmol), MeOH(2.0 mL), -20 °C. [b] Yield of the isolated product after column chromatography. [c] The ee value was determined by HPLC analysis on a chiral stationary phase.

MeO + O + HC 2	OMe CuPF ₆ (CH ₃ CN L7 (7.5 r MeOH, DIPEA (2	i)₄ (5 mol %), nol %) equiv.), -20 °C	MeO ₂ C ^N C	O ₂ Me	Ph N N N N N N N N N N N N
Entry ^[a]	LG	t / h	yield /%[b]	ee /%[c]	
1	OAc	24	97	95	
2	OBoc	48	98	89	
3	OBz	48	60	95	
4	OPiv	48	44	97	

Table S8. The Effect of Leaving Groups of Aryl Propargylic Esters on the Reaction.

[a] Reaction conditions: **1** (0.3 mmol), **2a** (0.2 mmol), MeOH(2.0 mL), -20 °C. [b] Yield of the isolated product after column chromatography. [c] The ee value was determined by HPLC analysis on a chiral stationary phase.

OAc 1a	MeO + O + HC	OMe CuPF ₆ (CH ₃ L7 (7. MeOH, DIPEA	CN) ₄ (5 mol %), 5 mol %) (x equiv.), -20 °C	MeO ₂ C N - - - - - - - - - - - - -	CO ₂ Me	Ph N PPh ₂ L7
	Entry ^[a]	Х	t / h	yield /%[b]	ee /%[c]	
	1	0.5	48	NR	-	
	2	1	48	trace	-	
	3	1.2	48	27	97	
	4	1.5	48	46	96	
	5	2	48	96	95	
	6	4	48	97	93	

Table S9. The Effect of Equivalence of Base on the Reaction.

[a] Reaction conditions: **1a** (0.3 mmol), **2a** (0.2 mmol), MeOH(2.0 mL), -20 °C. [b] Yield of the isolated product after column chromatography. [c] The ee value was determined by HPLC analysis on a chiral stationary phase.

Table S10. The Efforts to Constructed Chiral Quaternary Center.

[a] Reaction conditions: **1** (0.3 mmol), **2a** (0.2 mmol), MeOH (2.0 mL), -20 °C. [b] Yield of the isolated product after column chromatography. [c] The ee value was determined by HPLC analysis on a chiral stationary phase.

^{*a*} Reaction conditions: **1a** (0.3 mmol), **2** (0.2 mmol), MeOH (0.1 M), DIPEA (2 equiv.), CuPF₆(CH₃CN)₄ (5 mol %), **L7** (7.5 mol %), -20 °C.

3. Proposed mechanism and model for enantioinduction

According to previous mechanistic studies on related propargylic substitution reactions and our experimental observations, a plausible mechanism is proposed as shown in Scheme S1. In the first step, the copper complex forms π -complex **A** with substrate **1**. Deprotonation with DIPEA gives the copper acetylide **B**. This intermediate loses the acetate group forms Cu–allenylidene complex **D**, where the intermediate **E** bearing a cationic γ -carbon exists as a resonance structure of **D**. Subsequently, amines are released from the AHS in the presence of DIPEA, the amine attacks the copper–allenylidene complex **D**, followed by a hydrogen atom shift, giving rise to a Cu- π -alkyne complex **G**. After the ligand exchange, the product is released, completing the catalytic cycle.

Scheme S1 Proposed mechanism

Based on the observed absolute stereochemistry of the major enantiomer, we proposed a preliminary model for the enantioinduction (Firgure S1). An edge-to-face aromatic interaction makes a phenyl group of the substrate close to a phenyl group of the ligand in the copper complex. Therefore, nucleophiles favorably attack γ -carbon

atoms from S_i surface to form (*R*)-products, while R_e surface is hindered by steric hindrance of ligands.

Firgure S1. Proposed model for enantioinduction

4. Control experiments

(OAc	EtO		CuPF ₆ (CH ₃ 0 L (7.5	CN) ₄ (5 mol %), mol %)	EtO ₂ C N CO ₂ Et	
Ph +		∥ Ĥ ∥ O 2m		DIPEA (2 equiv.), Additive (1 equiv.), -20 °C, MeOH, 48 h		, 4m	
	Entry ^[a]	L	Additiv	ve	yield/%	b ^[b] ee/% ^[c]	
	1	L7	none		86	96	
	2	L7	Me ₃ N•	HCl	78	96	
	3	L7	NaCl		79	95	
	4	L3	none		46	71	
	5 ^[d]	L3	Me ₃ N•	HCl	23	36	
	6	L3	NaCl		20	60	
	7 ^[e]	L7	none		81	93	

[a] Reaction conditions: **1a** (0.3 mmol), **2m** (0.2 mmol), Cu(CH₃CN)₄PF₆ (5 mol %), L (7.5 mol %), and additive (1 equiv.), MeOH (2 mL), DIPEA (2 equiv.), - 20 °C. [b] Yield of the isolated product after column chromatography. [c] The ee value was determined by HPLC analysis on a chiral stationary phase. [d] t = 72 h. [e] Reaction conditions: **1a** (0.3 mmol), **2a** (0.2 mmol), Cu(CH₃CN)₄PF₆ (5 mol %), L7 (5 mol %), MeOH (2 mL), DIPEA (2 equiv.), - 20 °C.

5. Experimental Procedures

Procedure A: General procedure for the preparation of racemic products.

A solution of Cu(CH₃CN)₄BF₄ (5 mol %) and **L0** (6 mol %) in 1 mL of anhydrous methanol was placed in an over-dried schlenk flask then stirred at room temperature for 1 h under nitrogen atmosphere. Then a solution of propargylic ester **1** (0.2 mmol, 1 equiv.) and amine hydrochloride salts **2** (0.2 mmol, 1 equiv.) in 1 mL of anhydrous methanol was added, then ^{*i*}Pr₂NEt (2 equiv.) was added at room temperature. After the reaction was finished according to TLC, the solvent was removed under reduced pressure and the obtained residue was purified by silica gel chromatography using petroleum ether (40 - 60 °C)/ethyl acetate as eluent, affording the substitution products *rac*-**3** or *rac*-**4**.

Procedure B: General procedure for the preparation of enantioenriched products.

In a schlenk tube, Cu(CH₃CN)₄PF₆ (5 mol %) and L7 (7.5 mol %) were stirred at room temperature in anhydrous methanol (1 mL) under nitrogen atmosphere for 1 h. The solution of propargylic ester 1 (0.3 mmol, 1.5 equiv.) and amine hydrochloride salts 2 (0.2 mmol, 1 equiv.) in anhydrous methanol (1 mL) was added. ^{*i*}Pr₂NEt (2 equiv.) was added at -20 °C. After the reaction was finished according to TLC, the solvent was removed under reduced pressure and the obtained residue was then purified by silica gel chromatography using petroleum ether (40 - 60 °C)/ethyl acetate as eluent, affording the chiral substitution products **3** or **4**.

6. Product Characterization

(R)-dimethyl 2,2'-((1-phenylprop-2-yn-1-yl)azanediyl)diacetate

3a: 97% yield; white solid; According to procedure B; ¹H NMR (600 MHz, CDCl₃): δ 7.68 (d, *J* = 7.6 Hz, 2H), 7.37 – 7.30 (m, 3H), 5.07 (s, 1H), 3.68 (s, 6H), 3.52 (d, *J* = 17.2 Hz, 2H), 3.47 (d, *J* = 17.2 Hz, 2H), 2.57 (s, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 171.35, 137.37, 128.49, 128.23, 79.29, 76.32, 57.90, 52.22, 51.77; HRMS: calcd. for [M+H]⁺ C₁₅H₁₈NO₄ = 276.12303, found: 276.12302; $[\alpha]_{D}^{per}$ = -21.10 (c = 1.0 in CHCl₃); HPLC conditions: CHIRALPAK IA column, hexane/^{*i*}PrOH = 99/1, flow rate = 1 mL min⁻¹, λ = 224 nm, major enantiomer: t_R = 9.7 min, minor enantiomer: t_R = 11.5 min; 95% ee.

(R)-dimethyl 2,2'-((1-(o-tolyl)prop-2-yn-1-yl)azanediyl)diacetate

3b: 96% yield; white solid; According to procedure B; ¹H NMR (400 MHz, CDCl₃): δ 7.58 – 7.56 (m, 1H), 7.16 – 7.08 (m, 3H), 5.15 (d, J = 2.4 Hz, 1H), 3.57 (s, 6H), 3.45 (s, 4H), 2.47 (d, J = 2.4 Hz, 1H), 2.45 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 171.35, 138.37, 135.05, 131.05, 129.19, 128.44, 125.77, 79.85, 76.17, 56.23, 52.46, 51.63, 19.33; HRMS: calcd. for [M+Na]⁺ C₁₆H₁₉NO₄Na = 312.12063, found: 312.12175; $[\alpha]_{\mu\nu}^{\mu\nu} = -26.30$ (c = 1.0 in CHCl₃); HPLC conditions: CHIRALPAK AD-H column, hexane/^{*i*}PrOH = 99/1, flow rate = 1 mL min⁻¹, $\lambda = 214$ nm, major enantiomer: t_R = 15.1 min, minor enantiomer: t_R = 19.0 min; 94% ee.

(R)-dimethyl 2,2'-((1-(m-tolyl)prop-2-yn-1-yl)azanediyl)diacetate

3c: 94% yield; white solid; According to procedure B; ¹H NMR (400 MHz, CDCl₃): δ 7.40 – 7.38 (m, 2H), 7.19 – 7.14 (m, 1H), 7.03 (d, *J* = 7.4 Hz, 1H), 4.96 (s, 1H), 3.61

(s, 6H), 3.47 - 3.38 (m, 4H), 2.48 (d, J = 2.4 Hz, 1H), 2.29 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 171.38, 138.16, 137.27, 129.15, 129.02, 128.35, 125.64, 79.51, 76.20, 57.88, 52.21, 51.75, 21.53; HRMS: calcd. for [M+Na]⁺ C₁₆H₁₉NO₄Na = 312.12063, found: 312.12214; $[\alpha]_{D}^{RT} = -15.17$ (c = 1.0 in CHCl₃); HPLC conditions: CHIRALPAK IA column, hexane/^{*i*}PrOH = 99/1, flow rate = 1 mL min⁻¹, λ = 214 nm, major enantiomer: t_R = 10.9 min, minor enantiomer: t_R = 12.4 min; 94% ee.

(R)-dimethyl 2,2'-((1-(3-formylphenyl)prop-2-yn-1-yl)azanediyl)diacetate

3d: 86% yield; yellow oil; According to procedure B; ¹H NMR (400 MHz, CDCl₃): δ 9.97 (s, 1H), 8.13 (s, 1H), 7.96 (d, *J* = 7.6 Hz, 1H), 7.78 (d, *J* = 7.6 Hz, 1H), 7.47 (t, *J* = 7.6 Hz, 1H), 5.07 (s, 1H), 3.62 (s, 6H), 3.45 (d, *J* = 17.4 Hz, 2H), 3.37 (d, *J* = 17.4 Hz, 2H), 2.57 (d, *J* = 2.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 192.30, 171.16, 138.89, 136.65, 134.74, 130.08, 129.30, 129.25, 78.36, 77.18, 57.48, 52.28, 51.87; HRMS: calcd. for [M+Na]⁺ C₁₆H₁₇NO₅Na = 326.09989, found: 326.10061; [α]^{*pr*}_{*p*} = -0.50 (c = 1.0 in CHCl₃); HPLC conditions: CHIRALPAK AD-H column, hexane/^{*i*}PrOH = 90/10, flow rate = 1 mL min⁻¹, λ = 224 nm, major enantiomer: t_R = 12.2 min, minor enantiomer: t_R = 13.9 min; 97% ee.

(R)-dimethyl 2,2'-((1-(p-tolyl)prop-2-yn-1-yl)azanediyl)diacetate

3e: 90% yield; white solid; According to procedure B; ¹H NMR (400 MHz, CDCl₃): δ 7.47 (d, J = 8.0 Hz, 2H), 7.08 (d, J = 8.0 Hz, 2H), 4.95 (d, J = 1.9 Hz, 1H), 3.60 (s, 6H), 3.44 (d, J = 17.2 Hz, 2H), 3.39 (d, J = 17.2 Hz, 2H), 2.47 (d, J = 2.4 Hz, 1H), 2.27 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 171.42, 137.97, 134.38, 129.17, 128.43, 79.55, 76.10, 57.65, 52.18, 51.77, 21.24; HRMS: calcd. for [M+Na]⁺ C₁₆H₁₉NO₄Na = 312.12063, found: 312.12184; [α]^{*pr*}_{*p*} = -15.20 (c = 1.0 in CHCl₃); HPLC conditions: CHIRALPAK IA column, hexane/^{*i*}PrOH = 99/1, flow rate = 1 mL min⁻¹, λ = 214 nm, major enantiomer: t_R =12.2 min, minor enantiomer: t_R = 17.7 min; 93% ee.

3f: 89% yield; white solid; According to procedure B; ¹H NMR (400 MHz, CDCl₃): δ 7.60 (dd, J = 8.6, 5.6 Hz, 2H), 6.97 (t, J = 8.6 Hz, 2H), 4.95 (s, 1H), 3.61 (s, 6H), 3.42 (d, J = 17.2 Hz, 2H), 3.36 (d, J = 17.2 Hz, 2H), 2.51 (d, J = 2.4 Hz, 1H); ¹³C NMR $(100 \text{ MHz}, \text{CDCl}_3)$: δ 171.30, 162.68 (d, J = 246.6 Hz), 133.22 (d, J = 3.1 Hz), 130.25 (d, J = 8.1 Hz), 115.31 (d, J = 21.5 Hz), 79.03, 76.53, 57.23, 52.18, 51.81; ¹⁹F NMR $(376 \text{ MHz}, \text{ CDCl}_3)$: δ -114.28; HRMS: calcd. for $[M+Na]^+$ C₁₅H₁₆FNO₄Na = 316.09556, found: 316.09820; $[\alpha]_{D}^{RT} = -19.67$ (c = 1.0 in CHCl₃); HPLC conditions: CHIRALPAK IA column, hexane/ⁱPrOH = 99/1, flow rate = 1 mL min⁻¹, λ = 214 nm, major enantiomer: $t_R = 11.6$ min, minor enantiomer: $t_R = 14.9$ min; 95% ee.

(R)-dimethyl 2,2'-((1-(4-chlorophenyl)prop-2-yn-1-yl)azanediyl)diacetate

3g: 88% yield; white solid; According to procedure B; ¹H NMR (400 MHz, CDCl₃): δ 7.57 (d, J = 8.4 Hz, 2H), 7.25 (d, J = 8.4 Hz, 2H), 4.96 (d, J = 2.4 Hz, 1H), 3.61 (s, 6H), 3.41 (d, J = 17.2 Hz, 2H), 3.35 (d, J = 17.2 Hz, 2H), 2.51 (d, J = 2.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) & 171.22, 136.08, 134.07, 129.89, 128.62, 78.75, 76.69, 57.29, 52.19, 51.82; HRMS: calcd. for $[M+Na]^+$ C₁₅H₁₆ClNO₄Na = 332.06601, found: 332.06742; $[\alpha]_{D}^{RT} = -10.13$ (c = 1.0 in CHCl₃); HPLC conditions: CHIRALPAK IA column, hexane/ⁱPrOH = 99/1, flow rate = 1 mL min⁻¹, λ = 234 nm, major enantiomer: $t_R = 12.7$ min, minor enantiomer: $t_R = 17.1$ min; 95% ee.

(R)-dimethyl 2,2'-((1-(4-bromophenyl)prop-2-yn-1-yl)azanediyl)diacetate

3h: 87% yield; white solid; According to procedure B; ¹H NMR (400 MHz, CDCl₃): δ 7.51 (d, J = 8.4 Hz, 2H), 7.41 (d, J = 8.4 Hz, 2H), 4.94 (d, J = 2.4 Hz, 1H), 3.62 (s,

6H), 3.42 (d, *J* = 17.2 Hz, 2H), 3.35 (d, *J* = 17.2 Hz, 2H), 2.51 (d, *J* = 2.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 171.24, 136.63, 131.61, 130.25, 122.32, 78.68, 76.74, 57.36, 52.21, 51.86; HRMS: calcd. for $[M+Na]^+$ C₁₅H₁₆⁷⁹BrNO₄Na = 376.01549, found: 376.01601; $[\alpha]_{D}^{er}$ = -6.4 (c = 1.0 in CHCl₃); HPLC conditions: CHIRALPAK IA column, hexane/^{*i*}PrOH = 99/1, flow rate = 1 mL min⁻¹, λ = 214 nm, major enantiomer: t_R = 13.3 min, minor enantiomer: t_R = 17.8 min; 95% ee.

(R)-dimethyl 2,2'-((1-(4-cyanophenyl)prop-2-yn-1-yl)azanediyl)diacetate

3i: 80% yield; yellow oil; According to procedure B; ¹H NMR (400 MHz, CDCl₃) δ 7.80 (d, J = 8.2 Hz, 2H), 7.59 (d, J = 8.2 Hz, 2H), 5.04 (d, J = 2.4 Hz, 1H), 3.62 (s, 6H), 3.42 (d, J = 17.2 Hz, 2H), 3.33 (d, J = 17.2 Hz, 2H), 2.57 (d, J = 2.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 171.01, 143.01, 132.31, 129.20, 118.77, 112.15, 77.86, 77.39, 57.53, 52.30, 51.90; HRMS: calcd. for [M+Na]⁺ C₁₆H₁₆N₂O₄Na = 323.10023, found: 323.09897; $[\alpha]_{D}^{pr} = -1.17$ (c = 1.0 in CHCl₃); HPLC conditions: CHIRALPAK IA column, hexane/^{*i*}PrOH = 99/1, flow rate = 1 mL min⁻¹, λ = 214 nm, major enantiomer: t_R = 13.9 min, minor enantiomer: t_R = 17.9 min; 93% ee.

(*R*)-dimethyl 2,2'-((1-(4-(methoxycarbonyl)phenyl)prop-2-yn-1-yl)azanediyl) diacetate

3j: 88% yield; yellow oil; According to procedure B; ¹H NMR (400 MHz, CDCl₃) δ 7.95 (d, J = 8.2 Hz, 2H), 7.72 (d, J = 8.2 Hz, 2H), 5.04 (s, 1H), 3.84 (s, 3H), 3.61 (s, 6H), 3.43 (d, J = 17.2 Hz, 2H), 3.35 (d, J = 17.2 Hz, 2H), 2.55 (d, J = 2.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 171.16, 166.91, 142.57, 130.06, 129.76, 128.50, 78.50, 76.92, 57.63, 52.25, 52.23, 51.83; HRMS: calcd. for [M+Na]⁺ C₁₇H₁₉NO₆Na = 356.11046, found: 356.11028; $[\alpha]_{\nu}^{\mu r} = -0.27$ (c = 1.0 in CHCl₃); HPLC conditions: CHIRALPAK IA column, hexane/^{*i*}PrOH = 95/5, flow rate = 1 mL min⁻¹, $\lambda = 214$ nm, major enantiomer: $t_R = 14.4$ min, minor enantiomer: $t_R = 19.6$ min; 95% ee. (*R*)-dimethyl 2,2'-((1-(4-methoxyphenyl)prop-2-yn-1-yl)azanediyl)diacetate

3k: 94% yield; white solid; According to procedure B; ¹H NMR (400 MHz, CDCl₃): δ 7.60 – 7.56 (m, 2H), 6.90 – 6.86 (m, 2H), 5.00 (d, J = 2.4 Hz, 1H), 3.80 (s, 3H), 3.68 (s, 6H), 3.53 – 3.43 (m, 4H), 2.55 (d, J = 2.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 171.42, 159.56, 129.73, 129.47, 113.80, 79.65, 76.03, 57.35, 55.35, 52.14, 51.73; $[\alpha]_{D}^{Per} = -8.57$ (c = 1.0 in CHCl₃); HRMS: calcd. for [M+K]⁺ C₁₆H₁₉NO₅K = 344.08948, found: 344.08834; HPLC conditions: CHIRALPAK OD-H column, hexane/^{*i*}PrOH = 99/1, flow rate = 1 mL min⁻¹, $\lambda = 224$ nm, minor enantiomer: t_R = 14.0 min, major enantiomer: t_R = 23.1 min; 90% ee.

(R)-dimethyl 2,2'-((1-(3,4-dichlorophenyl)prop-2-yn-1-yl)azanediyl)diacetate

31: 89% yield; white solid; According to procedure B; ¹H NMR (400 MHz, CDCl₃): δ 7.73 (d, J = 2.0 Hz, 1H), 7.51 (dd, J = 8.4, 2.0 Hz, 1H), 7.35 (d, J = 8.4 Hz, 1H), 4.95 (d, J = 2.4 Hz, 1H), 3.62 (s, 6H), 3.41 (d, J = 17.2 Hz, 2H), 3.34 (d, J = 17.2 Hz, 2H), 2.55 (d, J = 2.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 171.08, 137.94, 132.56, 132.31, 130.46, 130.38, 127.92, 78.09, 77.19, 56.92, 52.21, 51.90; HRMS: calcd. for [M+H]⁺ C₁₅H₁₆³⁵Cl₂NO₄ = 344.04509, found: 344.04591; $[\alpha]_{D}^{Pr} = -2.43$ (c = 1.0 in CHCl₃); HPLC conditions: CHIRALPAK IA column, hexane/^{*i*}PrOH = 99/1, flow rate = 1 mL min⁻¹, $\lambda = 234$ nm, major enantiomer: t_R = 12.8 min, minor enantiomer: t_R = 15.5 min; 96% ee.

(R)-dimethyl 2,2'-((1-(furan-2-yl)prop-2-yn-1-yl)azanediyl)diacetate

3m: 91% yield; yellow oil; According to procedure B; ¹H NMR (400 MHz, CDCl₃): δ

7.35 (s, 1H), 6.39 (d, J = 3.2 Hz, 1H), 6.26 (dd, J = 3.2, 2.0 Hz, 1H), 5.03 (d, J = 2.4 Hz, 1H), 3.61 (s, 6H), 3.50 (s, 4H), 2.43 (d, J = 2.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 171.00, 150.06, 143.32, 110.24, 110.07, 77.64, 74.87, 52.40, 52.24, 51.87; HRMS: calcd. for [M+Na]⁺ C₁₃H₁₅NO₅Na = 288.08424, found: 288.08426; $[\alpha]_{D}^{per}$ = -11.6 (c = 1.0 in CHCl₃); HPLC conditions: CHIRALPAK IBN-5 column, hexane/ⁱPrOH = 90/10, flow rate = 1 mL min⁻¹, λ = 234 nm, minor enantiomer: t_R = 10.6 min, major enantiomer: t_R = 13.4 min; 90% ee.

(R)-dimethyl 2,2'-((1-(thiophen-2-yl)prop-2-yn-1-yl)azanediyl)diacetate

3n: 98% yield; yellow oil; According to procedure B; ¹H NMR (400 MHz, CDCl₃): δ 7.22 (d, *J* = 5.2 Hz, 1H), 7.14 (d, *J* = 3.4 Hz, 1H), 6.87 (dd, *J* = 5.2, 3.4 Hz, 1H), 5.16 (s, 1H), 3.63 (s, 6H), 3.46 (s, 4H), 2.48 (d, *J* = 2.3 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 171.12, 142.01, 127.00, 126.59, 126.43, 78.86, 75.36, 53.97, 52.07, 51.85; HRMS: calcd. for [M+H]⁺ C₁₃H₁₆NO₄S = 282.07946, found: 282.08280; $[\alpha]_{\mu}^{\mu}$ = -30.60 (c = 1.0 in CHCl₃); HPLC conditions: CHIRALPAK IA column, hexane/^{*i*}PrOH = 99/1, flow rate = 1 mL min⁻¹, λ = 214 nm, major enantiomer: t_R = 17.4 min, minor enantiomer: t_R = 19.9 min; 91% ee.

(S)-dimethyl 2,2'-((5-phenylpent-1-yn-3-yl)azanediyl)diacetate

3o: 89% yield; yellow oil; According to procedure B; ¹H NMR (400 MHz, CDCl₃): δ 7.22 – 7.18 (m, 2H), 7.14 – 7.09 (m, 3H), 3.62 (s, 6H), 3.55 – 3.51 (m, 1H), 3.48 (d, *J* = 17.0 Hz, 2H), 3.36 (d, *J* = 17.0 Hz, 2H), 2.80 – 2.66 (m, 2H), 2.28 (d, *J* = 2.2 Hz, 1H), 2.03 – 1.94 (m, 1H), 1.87 – 1.78 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 171.41, 141.27, 128.58, 128.44, 126.03, 81.05, 74.05, 54.70, 53.32, 51.84, 35.70, 32.34; $[\alpha]_{D}^{Rr}$ = -15.23 (c = 1.0 in CHCl₃); HRMS: calcd. for [M+H]⁺ C₁₇H₂₂NO₄ = 304.15433, found: 304.15534; HPLC conditions: CHIRALPAK AD-H column, hexane/^{*i*}PrOH = 99/1, flow rate = 1 mL min⁻¹, λ = 214 nm, major enantiomer: t_R = 25.5 min, minor enantiomer: $t_R = 30.8$ min; 88% ee.

(S)-dimethyl 2,2'-((5-methylhex-1-yn-3-yl)azanediyl)diacetate

3p: 78% yield; yellow oil; According to procedure B; ¹H NMR (400 MHz, CDCl₃): δ 3.72 – 3.68 (m, 7H), 3.54 (d, *J* = 17.0 Hz, 2H), 3.41 (d, *J* = 17.0 Hz, 2H), 2.29 (d, *J* = 2.2 Hz, 1H), 1.89 – 1.81 (m, 1H), 1.61 – 1.47 (m, 2H), 0.96 (d, *J* = 6.6 Hz, 3H), 0.91 (d, *J* = 6.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 171.47, 81.38, 73.52, 53.42, 53.27, 51.83, 42.86, 25.01, 22.96, 22.05; HRMS: calcd. for [M+H]⁺ C₁₃H₂₂NO₄ = 256.15433, found: 256.15564; $[\alpha]_{p}^{pr}$ = -46.53 (c = 1.0 in CHCl₃); HPLC conditions: CHIRALPAK IBN-5 column, hexane/^{*i*}PrOH = 99/1, flow rate = 1 mL min⁻¹, λ = 214 nm, minor enantiomer: t_R = 9.8 min, major enantiomer: t_R = 11.3 min; 85% ee.

(S)-dimethyl 2,2'-(hex-1-yn-3-ylazanediyl)diacetate

3q: 77% yield; yellow oil; According to procedure B; ¹H NMR (400 MHz, CDCl₃): δ 3.72 (s, 6H), 3.65 – 3.61 (m,1H), 3.54 (d, *J* = 17.0 Hz, 2H), 3.43 (d, *J* = 17.0 Hz, 2H), 2.28 (d, *J* = 2.2 Hz, 1H), 1.75 – 1.67 (m, 1H), 1.62 – 1.42 (m, 3H), 0.94 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 171.60, 81.43, 73.59, 55.01, 53.32, 51.95, 36.11, 19.66, 13.84; HRMS: calcd. for [M+H]⁺ C₁₂H₂₀NO₄ = 242.13870, found: 242.13990; [α]^{*Arr*} = -41.87 (c = 1.0 in CHCl₃); HPLC conditions: CHIRALPAK OD-H column, hexane/^{*i*}PrOH = 99/1, flow rate = 1 mL min⁻¹, λ = 234 nm, minor enantiomer: t_R = 14.0 min, major enantiomer: t_R = 19.9 min; 92% ee.

(S)-dimethyl 2,2'-(hept-6-en-1-yn-3-ylazanediyl)diacetate

3r: 91% yield; yellow oil; According to procedure B; ¹H NMR (400 MHz, CDCl₃): δ 5.87 – 5.76 (m, 1H), 5.06 (d, *J* = 17.2 Hz, 1H), 4.99 (d, *J* = 10.2 Hz, 1H), 3.72 (s, 6H), 3.66 – 3.62 (m, 1H), 3.55 (d, *J* = 17.2 Hz, 2H), 3.43 (d, *J* = 17.2 Hz, 2H), 2.32 (d, *J* = 2.2 Hz, 1H), 2.29 – 2.15 (m, 2H), 1.87 – 1.79 (m, 1H), 1.73 – 1.64 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 171.51, 137.56, 115.44, 81.10, 73.86, 54.63, 53.31, 51.87, 33.16, 30.32; HRMS: calcd. for [M+K]⁺ C₁₃H₁₉NO₄K = 292.09457, found: 292.09485; $[\alpha]_{D}^{Rr}$ = -38.10 (c = 1.0 in CHCl₃); HPLC conditions: CHIRALPAK OD-H column, hexane/^{*i*}PrOH = 99/1, flow rate = 1 mL min⁻¹, λ = 214 nm, minor enantiomer: t_R = 14.3 min, major enantiomer: t_R = 18.0 min; 92% ee.

(R)-dimethyl 2,2'-((1-(benzyloxy)but-3-yn-2-yl)azanediyl)diacetate

3s: 97% yield; yellow oil; According to procedure B; ¹H NMR (400 MHz, CDCl₃): δ 7.34 – 7.25 (m, 5H), 4.56 (s, 2H), 3.98 (td, J = 5.8, 2.4 Hz, 1H), 3.73 – 3.64 (m, 10H), 3.55 (d, J = 17.4 Hz, 2H), 2.37 (d, J = 2.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 171.51, 137.89, 128.38, 127.67, 127.66, 79.45, 74.48, 73.21, 71.83, 54.74, 53.80, 51.74; HRMS: calcd. for [M+Na]⁺ C₁₇H₂₁NO₅Na = 342.13119, found: 342.13099; [α]^{pr}_D = -19.43 (c = 1.0 in CHCl₃); HPLC conditions: CHIRALPAK AD-H column, hexane/^{*i*}PrOH = 99/1, flow rate = 1 mL min⁻¹, λ = 214 nm, major enantiomer: t_R = 56.8 min, minor enantiomer: t_R = 62.5 min; 91% ee.

(S)-dimethyl 2,2'-((5-(methylthio)pent-1-yn-3-yl)azanediyl)diacetate

3t: 84% yield; yellow oil; According to procedure B; ¹H NMR (400 MHz, CDCl₃): δ 3.84 (td, J = 7.4, 2.2 Hz, 1H), 3.72 (s, 6H), 3.55 (d, J = 17.2 Hz, 2H), 3.44 (d, J = 17.2Hz, 2H), 2.76 – 2.60 (m, 2H), 2.34 (d, J = 2.2 Hz, 1H), 2.10 (s, 3H), 2.05 – 1.96 (m, 1H), 1.90 – 1.81 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 171.41, 80.78, 74.12, 53.95, 53.35, 51.87, 33.48, 30.60, 15.46; HRMS: calcd. for [M+H]⁺ C₁₂H₂₀NO₄S = 274.11076, found: 274.11093; [α]^{*pr*}_{*p*} = -34.07 (c = 1.0 in CHCl₃); HPLC conditions: CHIRALPAK IBN-5 column, hexane/^{*i*}PrOH = 99/1, flow rate = 1 mL min⁻¹, λ = 214 nm, minor enantiomer: t_R = 23.4 min, major enantiomer: t_R = 29.5 min; 87% ee. (*S*)-dimethyl 2,2'-((5-methylhex-4-en-1-yn-3-yl)azanediyl)diacetate

3u: 93% yield; yellow oil; According to procedure B; ¹H NMR (400 MHz, CDCl₃): δ 5.22 (d, *J* = 8.8 Hz, 1H), 4.61 (dd, *J* = 8.8, 2.2 Hz, 1H), 3.71 (s, 6H), 3.63 (s, 4H), 2.35 (d, *J* = 2.2 Hz, 1H), 1.75 (s, 3H), 1.73 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 171.61, 138.48, 121.54, 81.77, 73.31, 52.17, 51.73, 51.59, 25.90, 18.34; HRMS: calcd. for [M+Na]⁺ C₁₃H₁₉NO₄Na = 276.12063, found: 276.12180; $[\alpha]_{D}^{RT} = 40.5$ (c = 1.0 in CHCl₃); HPLC conditions: CHIRALPAK IC column, hexane/^{*i*}PrOH = 99/1, flow rate = 1 mL min⁻¹, λ = 214 nm, minor enantiomer: t_R = 43.1 min, major enantiomer: t_R = 44.6 min; 81% ee.

(S)-dimethyl 2,2'-((4-methylpent-1-yn-3-yl)azanediyl)diacetate

3v: 95% yield; yellow oil; According to procedure B; ¹H NMR (400 MHz, CDCl₃): δ 3.71 (s, 6H), 3.51 (d, *J* = 17.2 Hz, 2H), 3.44 (d, *J* = 17.2 Hz, 2H), 3.26 (dd, *J* = 9.0, 2.2 Hz, 1H), 2.31 (d, *J* = 2.2 Hz, 1H), 1.83 – 1.74 (m, 1H), 1.05 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 171.61, 80.74, 74.05, 61.68, 53.24, 51.69, 31.44, 19.64, 19.59; HRMS: calcd. for [M+Na]⁺ C₁₂H₁₉NO₄Na = 264.12063, found: 264.12251; $[\alpha]_{D}^{ger}$ = -69.60 (c = 1.0 in CHCl₃); HPLC conditions: CHIRALPAK IBN-5 column, hexane/^{*i*}PrOH = 99/1, flow rate = 1 mL min⁻¹, λ = 214 nm, minor enantiomer: t_R = 11.3 min, major enantiomer: t_R = 14.2 min, 97% ee.

(R)-dimethyl 2,2'-((2-phenylbut-3-yn-2-yl)azanediyl)diacetate

3w: 71% yield; yellow oil; According to procedure B; ¹H NMR (400 MHz, CDCl₃): δ 7.79 (d, J = 7.6 Hz, 2H), 7.34 (t, J = 7.6 Hz, 2H), 7.28 (d, J = 7.4 Hz, 1H), 3 .68 (s, 6H), 3.61 (d, J = 17.2 Hz, 2H), 3.36 (d, J = 17.2 Hz, 2H), 2.63 (s, 1H), 1.64 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 172.06, 144.12, 128.53, 127.81, 126.55, 83.09, 75.04, 63.44, 52.86, 51.74, 31.20; HRMS: calcd. for [M+H]⁺ C₁₆H₂₀NO₄ = 290.1387,

found:290.1382.

(R)-methyl-(1-phenylprop-2-yn-1-yl)glycinate

4a: 86% yield; yellow oil; According to procedure B; ¹H NMR (400 MHz, CDCl₃): δ 7.56 – 7.54 (m, 2H), 7.39 – 7.29 (m, 3H), 4.72 (d, J = 2.2 Hz, 1H), 3.73 (s, 3H), 3.62 – 3.46 (m, 2H), 2.51 (d, J = 2.2 Hz, 1H); $[\alpha]_{D}^{Pr} = -24.97$ (c = 1.0 in CHCl₃); HPLC conditions: CHIRALPAK AD-H column, hexane/ⁱPrOH = 90/10, flow rate = 1 mL min⁻¹, $\lambda = 224$ nm, major enantiomer: t_R = 7.6 min, minor enantiomer: t_R = 8.7 min; 86% ee.

(R)-N-methyl-N-(naphthalen-2-ylmethyl)-1-phenylprop-2-yn-1-amine

4b: 93% yield; yellow solid; According to procedure B; ¹H NMR (400 MHz, CDCl₃): δ 8.17 (d, J = 7.8 Hz 1H), 7.77 – 7.74 (m, 1H), 7.69 (d, J = 8.2 Hz 1H), 7.45 – 7.38 (m, 5H), 7.32 (t, J = 7.6 Hz 1H), 7.23 – 7.14 (m, 3H), 4.64 (s, 1H), 4.08 (d, J = 12.8Hz, 1H), 3.90 (d, J = 12.8 Hz, 1H), 2.57 (d, J = 2.2 Hz, 1H), 2.11 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 138.53, 134.51, 134.08, 132.75, 128.53, 128.43, 128.31, 128.18, 127.89, 127.64, 125.85, 125.77, 125.29, 125.09, 78.71, 76.55, 58.81, 57.57, 37.66; HRMS: calcd. for [M+H]⁺ C₂₁H₂₀N = 286.15903, found: 286.15898; $[\alpha]_{D}^{pr} = -287.80$ (c = 1.0 in CHCl₃); HPLC conditions: CHIRALPAK AD-H column, hexane/ⁱPrOH = 99/1, flow rate = 1 mL min⁻¹, $\lambda = 234$ nm, major enantiomer: t_R = 4.2 min, minor enantiomer: t_R = 5.2 min; 90% ee.

(R)-2-(benzyl(1-phenylprop-2-yn-1-yl)amino)acetonitrile

4c: 98% yield; yellow solid; According to procedure B; ¹H NMR (400 MHz, CDCl₃): δ 7.60 (d, J = 7.4 Hz, 2H), 7.40 – 7.26 (m, 8H), 4.78 (s, 1H), 3.96 (d, J = 13.2 Hz, 1H), 3.70 (d, J = 13.2 Hz, 1H), 3.47 – 3.32 (m, 2H), 2.69 (d, J = 2.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 137.00, 136.93, 129.14, 128.79, 128.77, 128.60, 128.32, 128.02, 116.12, 78.18, 77.74, 57.46, 55.46, 38.53; HRMS: calcd. for [M+H]⁺ C₁₈H₁₇N₂ = 261.13862, found: 261.13866; $[\alpha]_{D}^{Rr} = -34.50$ (c = 1.0 in CHCl₃); HPLC conditions: CHIRALPAK IBN-5 column, hexane/^{*i*}PrOH = 99/1, flow rate = 1 mL min⁻¹, $\lambda = 214$ nm, major enantiomer: t_R = 10.0 min, minor enantiomer: t_R = 11.4 min; 92% ee.

(R)-1-(1-phenylprop-2-yn-1-yl)azetidin-3-one

4d: 75% yield; yellow solid; According to procedure B; ¹H NMR (400 MHz, CDCl₃): δ 7.57 (d, J = 7.2 Hz, 2H), 7.40 – 7.31 (m, 3H), 4.91 (d, J = 2.2 Hz, 1H), 4.27 – 4.10 (m, 4H), 2.59 (d, J = 2.2 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃): δ 200.77, 137.66, 128.76, 128.40, 127.85, 78.29, 76.05, 71.39, 59.63; HRMS: calcd. for [M+H]⁺ C₁₂H₁₂NO = 186.09134, found: 186.09073; $[\alpha]_{\nu}^{RT} = -83.70$ (c = 1.0 in CHCl₃); HPLC conditions: CHIRALPAK IBN-5 column, hexane/^{*i*}PrOH = 99/1, flow rate = 1 mL min⁻¹, $\lambda = 214$ nm, minor enantiomer: t_R = 9.5 min, major enantiomer: t_R = 10.3 min; 96% ee.

(R)-methyl-1-(1-phenylprop-2-yn-1-yl)azetidine-3-carboxylate

4e: 80% yield; yellow oil; According to procedure B; ¹H NMR (400 MHz, CDCl₃): δ 7.47 (d, J = 7.0 Hz, 2H), 7.35 – 7.28 (m, 3H), 4.42 (d, J = 2.2 Hz, 1H), 3.70 (s, 3H), 3.54 (t, J = 7.4 Hz, 1H), 3.49 – 3.45 (m, 3H), 3.32 – 3.34 (m, 1H), 2.55 (d, J = 2.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 173.53, 137.38, 128.61, 128.14, 127.97, 80.09, 75.34, 60.56, 53.61, 53.02, 52.05, 33.46; HRMS: calcd. for [M+Na]⁺ C₁₄H₁₅NO₂Na = 252.09950, found: 252.09985; $[\alpha]_{\nu}^{\mu\nu} = -11.90$ (c = 1.0 in CHCl₃); HPLC conditions: CHIRALPAK IBN-5 column, hexane/^{*i*}PrOH = 99/1, flow rate = 1 mL min⁻¹, $\lambda = 254$ nm, minor enantiomer: $t_R = 10.8$ min, major enantiomer: $t_R = 14.3$ min; 99% ee.

(R)-1-(1-phenylprop-2-yn-1-yl)azetidin-3-ol

4f: 63% yield; yellow oil; According to procedure B; ¹H NMR (400 MHz, CDCl₃): δ 7.44 (d, J = 7.4 Hz, 2H), 7.35 – 7.26 (m, 3H), 4.45 (s, 1H), 4.40 – 4.35 (m, 1H), 3.55 (t, J = 7.2 Hz, 1H), 3.47 (t, J = 7.2 Hz, 1H), 3.17 - 3.12 (m, 2H), 3.01 - 2.90 (m, 1H),2.56 (s, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 137.51, 128.60, 128.16, 127.94, 80.16, 75.48, 62.37, 60.95, 60.41, 59.94; HRMS: calcd. for $[M+Na]^+ C_{12}H_{13}NONa =$ 210.08894, found: 210.08910; $[\alpha]_{D}^{RT} = -46.53$ (c = 1.0 in CHCl₃); HPLC conditions: CHIRALPAK IBN-5 column, hexane/ⁱPrOH = 90/10, flow rate = 1 mL min⁻¹, λ = 224 nm, minor enantiomer: $t_R = 7.4$ min, major enantiomer: $t_R = 8.3$ min; 80% ee.

(R)-1-(1-phenylprop-2-yn-1-yl)pyrrolidin-3-one

4g: 49% yield; yellow oil; According to procedure B; ¹H NMR (400 MHz, CDCl₃): δ 7.56 (d, J = 7.0 Hz, 2H), 7.39 – 7.30 (m, 3H), 4.85 (d, J = 2.2 Hz, 1H), 3.11 – 2.96 (m, 4H), 2.60 (d, J = 2.2 Hz, 1H), 2.49 – 2.35 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 213.82, 137.18, 128.58, 128.24, 128.10, 78.51, 76.88, 58.24, 57.47, 47.61, 37.98; HRMS: calcd. for $[M+H]^+ C_{13}H_{14}NO = 200.10699$, found: 200.10624; $[\alpha]_D^{RT} = -1.50$ (c = 1.0 in CHCl₃); HPLC conditions: CHIRALPAK IBN-5 column, hexane/iPrOH = 99/1, flow rate = 1 mL min⁻¹, λ = 214 nm, major enantiomer: t_R = 10.6 min, minor enantiomer: $t_R = 13.0$ min; 92% ee.

(R)-1-(1-phenylprop-2-yn-1-yl)piperidin-4-one

4h: 96% yield; yellow oil; According to procedure B; ¹H NMR (400 MHz, CDCl₃): δ 7.63 (d, *J* = 7.2 Hz, 2H), 7.38 (t, *J* = 7.2 Hz, 2H), 7.32 (t, *J* = 7.2 Hz, 1H), 4.81 (d, *J* = 2.2 Hz, 1H), 2.83 (t, *J* = 6.1 Hz, 4H), 2.58 (d, *J* = 2.2 Hz, 1H), 2.53 – 2.37 (m, 4H); $[\alpha]_{D}^{Rr} = -27.90$ (c = 1.0 in CHCl₃); HPLC conditions: CHIRALPAK IBN-5 column, hexane/^{*i*}PrOH = 99/1, flowrate = 1 mL min⁻¹, λ = 214 nm, major enantiomer: t_R = 11.6 min, minor enantiomer: t_R = 12.9 min; 91% ee.

(R)-4-(1-phenylprop-2-yn-1-yl)morpholine

4i: 96% yield; yellow oil; According to procedure B; ¹H NMR (400 MHz, CDCl₃): δ 7.58 (d, *J* = 7.4 Hz, 2H), 7.36 (t, *J* = 7.4 Hz, 2H), 7.30 (t, *J* = 7.4 Hz, 1H), 4.58 (d, *J* = 2.2 Hz, 1H), 3.71 (m, 4H), 2.57 – 2.53 (m, 5H); $[\alpha]_{D}^{RT}$ = -53.40 (c = 1.0 in CHCl₃); HPLC conditions: CHIRALPAK IA column, hexane/^{*i*}PrOH = 99/1, flow rate = 1 mL min⁻¹, λ = 214 nm, major enantiomer: t_R = 6.0 min, minor enantiomer: t_R = 10.1min; 96% ee.

(R)-4-(1-phenylprop-2-yn-1-yl)thiomorpholine 1,1-dioxide

4j: 78% yield; yellow solid; According to procedure B; ¹H NMR (400 MHz, CDCl₃): δ 7.58 (d, J = 7.2 Hz, 2H), 7.40 – 7.31 (m, 3H), 4.78 (s, 1H), 3.11 – 3.01 (m, 8H), 2.65 (d, J = 2.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 136.72, 128.64, 128.46, 128.13, 77.80, 77.34, 60.73, 52.09, 47.65; HRMS: calcd. for [M+Na]⁺ C₁₃H₁₅NO₂SNa = 272.07157, found: 272.07228; $[\alpha]_{D}^{RT} = -260.90$ (c = 1.0 in CHCl₃); HPLC conditions: CHIRALPAK AD-H column, hexane/^{*i*}PrOH = 90/10, flow rate = 1 mL min⁻¹, $\lambda = 214$ nm, minor enantiomer: t_R = 22.6 min, major enantiomer: t_R = 24.3 min; 96% ee.

(R)-1-(1-phenylprop-2-yn-1-yl)azepan-4-one

4k: 96% yield; yellow oil; According to procedure B; ¹H NMR (400 MHz, CDCl₃): δ 7.60 (d, J = 7.2 Hz, 2H), 7.35 (t, J = 7.2 Hz, 2H), 7.30 – 7.26 (m, 1H), 4.76 (s, 1H), 2.85 – 2.69 (m, 4H), 2.59 – 2.45 (m, 5H), 1.91 – 1.77 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 213.42, 138.07, 128.35, 128.08, 127.87, 79.32, 75.84, 62.37, 55.27, 47.70, 44.57, 42.85, 24.97; HRMS: calcd. for [M+H]⁺ C₁₅H₁₈NO = 228.13829, found: 228.13819; $[\alpha]_{D}^{PT} = -10.30$ (c = 1.0 in CHCl₃); HPLC conditions: CHIRALPAK AD-H column, hexane/^{*i*}PrOH = 99/1, flow rate = 1 mL min⁻¹, λ = 214 nm, major enantiomer: t_R = 15.8 min, minor enantiomer: t_R = 17.5 min; 92% ee.

(R)-1-(1-phenylprop-2-yn-1-yl)azocane

41: 99% yield; yellow oil; According to procedure B; ¹H NMR (400 MHz, CDCl₃): δ 7.64 (d, *J* = 7.0 Hz, 2H), 7.38 – 7.24 (m, 3H), 4.70 (d, *J* = 2.2 Hz, 1H), 2.65 – 2.54 (m, 4H), 2.48 (d, *J* = 2.2 Hz, 1H), 1.69 – 1.62 (m, 2H), 1.59 – 1.49 (m, 6H), 1.44 – 1.35 (m, 2H); $[\alpha]_{D}^{RT}$ = -42.20 (c = 1.0 in CHCl3); HPLC conditions: CHIRALPAK OJ-H column, hexane/^{*i*}PrOH = 97/3, flow rate = 1 mL min⁻¹, λ = 250 nm, minor enantiomer: t_R = 3.9 min, major enantiomer: t_R = 4.7 min; 94% ee.

(R)-diethyl 2,2'-((1-phenylprop-2-yn-1-yl)azanediyl)-diacetate

4m: 86% yield; yellow oil; According to procedure B; ¹H NMR (400 MHz, CDCl₃): δ 7.62 (d, *J* = 7.0 Hz, 2H), 7.30 – 7.19 (m, 3H), 5.00 (d, *J* = 2.4 Hz, 1H), 4.07 (q, *J* = 7.2 Hz, 4H), 3.43 (d, *J* = 17.2 Hz, 2H), 3.38 (d, *J* = 17.2 Hz, 2H), 2.48 (d, *J* = 2.4 Hz, 1H), 1.17 (t, *J* = 7.2 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 170.97, 137.60, 128.55, 128.46, 128.18, 79.52, 76.21, 60.70, 57.92, 52.47, 14.28; HRMS: calcd. for [M+Na]⁺ C₁₇H₂₁NO₄Na = 326.13628, found: 326.13763; $[\alpha]_D^{Pr}$ = -21.03 (c = 1.0 in CHCl₃); HPLC conditions: CHIRALPAK IA column, hexane/^{*i*}PrOH = 99/1, flow rate = 0.7 mL min⁻¹, λ = 214 nm, major enantiomer: t_R = 13.9 min, minor enantiomer: t_R = 17.1 min; 96% ee.

(1*S*,4*S*)-4-(3,4-dichlorophenyl)-*N*-methyl-*N*-((*R*)-1-phenylprop-2-yn-1-yl)-1,2,3,4-t etrahydronaphthalen-1-amine

6: 96% yield; dr > 20:1; white solid; According to procedure B; ¹H NMR (400 MHz, CDCl₃): δ 7.80 (d, J = 7.6 Hz, 1H), 7.66 (d, J = 7.6 Hz, 2H), 7.41 – 7.31 (m, 4H), 7.26 – 7.19 (m, 3H), 6.97 – 6.93 (m,2H), 4.92 (s, 1H), 4.16 – 4.15 (m, 1H), 4.02 – 4.00 (m, 1H), 2.65 (s, 1H), 2.21 – 2.06 (m, 6H), 2.00 – 1.91 (m, 1H); ¹³C NMR (100 MHz, Acetone-d6): δ 149.66, 140.71, 139.55, 139.45, 132.36, 131.42, 131.29, 131.05, 130.07, 130.03, 129.66, 128.99, 128.63, 128.26, 128.18, 127.21, 82.02, 78.13, 62.54, 58.87, 44.61, 29.75, 31.54, 21.54; HRMS: calcd. for [M+H]⁺C₂₆H₂₄Cl₂N = 420.12803, found: 420.12858; $[\alpha]_{\rho}^{\mu r} = +5.74$ (c = 1.0 in CHCl₃).

(3*R*,4*S*)-3-((benzo[*d*][1,3]dioxol-5-yloxy)methyl)-4-(4-fluorophenyl)-1-((*R*)-1-phen ylprop-2-yn-1-yl)piperidine

10: 97% yield; dr > 20:1; white solid; According to procedure B; ¹H NMR (400 MHz, CDCl₃): δ 7.71 (d, *J* = 7.2 Hz, 2H), 7.46 – 7.35 (m, 3H), 7.24 – 7.21 (m, 2H), 7.03 (t, *J* = 8.6 Hz, 2H), 6.70 (d, *J* = 8.6 Hz, 1H), 6.44 (d, *J* = 2.4 Hz, 1H), 6.21 (dd, *J* = 8.6, 2.4 Hz, 1H), 5.93 (s, 2H), 4.84 (s, 1H), 3.66 (dd, *J* = 9.2, 2.8 Hz, 1H), 3.58 – 3.54 (m,

1H), 3.39 (d, J = 9.2 Hz, 1H), 2.72 – 2.61 (m, 3H), 2.54 – 2.30 (m, 3H), 1.81 – 1.76 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 162.76, 160.34, 154.45, 148.21, 141.59, 139.84 (d, J = 3.2 Hz), 137.84, 128.86 (d, J = 7.5 Hz), 128.41, 128.25, 127.77, 115.57, 115.36, 107.92, 105.56, 101.14, 98.04, 79.45, 76.13, 69.78, 61.32, 56.66, 46.96, 44.34, 42.52, 34.38; HRMS: calcd. for [M+H]⁺ C₂₈H₂₇FNO₃ = 444.1969, found: 444.1975; $[\alpha]_{27}^{grr} = -243.40$ (c = 1.0 in CHCl₃).

7. Crystal Data and Structure Refinement for 3h

Crystal data and structure refinement for **3h**

Identification code	3h
Empirical formula	C15 H16 Br N O4
Formula weight	354.20
Temperature	273.15 К
Wavelength	1.34139 Å
Crystal system	Monoclinic
Space group	P 1 21 1
Unit cell dimensions	$a = 6.6884(10) \text{ Å}$ $a = 90 \degree.$
b = 13.820(2) Å	b= 92.210(2) °.
c = 8.5300(13) Å	g = 90 °.
Volume	787.9(2) Å ³
Z	2
Density (calculated)	1.493 Mg/m ³
Absorption coefficient	2.434 mm ⁻¹
F(000)	360
Crystal size	0.2 x 0.1 x 0.1 mm ³
Theta range for data collection	7.463 to 72.333 °.
Index ranges	-9<=h<=9, -19<=k<=19, -12<=l<=12
Reflections collected	11510
Independent reflections	3566 [R(int) = 0.0621]
Completeness to theta = 53.594 $^{\circ}$	65.5 %
S35	

Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	1.0000 and 0.4284
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	3566 / 1 / 192
Goodness-of-fit on F ²	1.202
Final R indices [I>2sigma(I)]	R1 = 0.0638, wR2 = 0.1662
R indices (all data)	R1 = 0.0639, wR2 = 0.1663
Absolute structure parameter	0.008(18)
Extinction coefficient	n/a
Largest diff. peak and hole	0.840 and -0.888 e.Å ⁻³
8. Transformations of Products

(2*R*,3*R*,4*S*,5*R*,6*R*)-2-(acetoxymethyl)-6-(4-((*R*)-(((1*S*,4*S*)-4-(3,4-dichlorophenyl)-1, 2,3,4-tetrahydronaphthalen-1-yl)(methyl)amino)(phenyl)methyl)-1*H*-1,2,3-triazol -1-yl)tetrahydro-2*H*-pyran-3,4,5-triyl triacetate

The product **6** (0.10 mmol, 1 equiv.) obtained from propargylation step was dissolved in DCM and H₂O (v/v = 1:1, 3 mL), Cu(OAc)₂ (0.2 equiv.), sodium ascorbate (0.4 equiv.), 2,3,4,6-Tetra-*O*-acetyl-D-glucopyranosyl azide (1.5 equiv.) were added successively. The mixture was stirred at room temperature for 24 h. The product was then extracted with DCM (10 mL x 2). The combined organic layer was dried over Na₂SO₄. Solvent was removed under reduced pressure. The residue was purified by flash chromatography on silica gel to afford pure compound.

8: 82% yield; dr > 20:1; white solid; ¹H NMR (400 MHz, CDCl₃): δ 8.04 (d, J = 7.9 Hz, 1H), 7.74 (s, 1H), 7.56 (d, J = 7.6 Hz, 2H), 7.35 – 7.20 (m, 5H), 7.22 (t, J = 7.4 Hz, 1H), 7.14 (t, J = 7.4 Hz, 1H), 7.08 (d, J = 2.2 Hz, 1H), 6.86 (d, J = 7.6 Hz, 1H), 6.79 (dd, J = 8.3, 2.2 Hz, 1H), 5.84 (d, J = 9.4 Hz, 1H), 5.47 (t, J = 9.4 Hz, 1H), 5.39 (t, J = 9.4 Hz, 1H), 5.25 (t, J = 9.6 Hz, 1H), 5.15 (s, 1H), 4.31 (dd, J = 12.6, 5.1 Hz, 1H), 4.14 (dd, J = 12.6, 2.1 Hz, 1H), 4.05 (t, J = 4.2 Hz, 1H), 4.01 – 3.95 (m, 2H), 2.09 – 1.91 (m, 15H), 1.66 – 1.56 (m, 2H), 1.28 – 1.26 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 170.64, 170.00, 169.49, 168.96, 151.36, 147.58, 141.51, 139.73, 138.15, 132.23, 130.83, 130.37, 130.07, 129.95, 128.83, 128.30, 128.05, 127.64, 127.23, 126.84, 120.24, 85.77, 75.34, 72.78, 70.18, 67.91, 64.34, 61.70, 58.19, 43.50, 34.19, 30.07, 20.86, 20.68, 20.64, 20.06, 14.99; HRMS: calcd. for [M+H]⁺ C₄₀H₄₃Cl₂N₄O₉ = 793.2402, found: 793.2398; $\left[\alpha\right]_{\mu}^{\mu r} = +11.93$ (c = 1.0 in CHCl₃).

1-((2R,4S,5S)-4-(4-((S)-((3R,4S)-3-((benzo[d][1,3]dioxol-5-yloxy)methyl)-4-(4-fluorophenyl)piperidin-1-yl)(phenyl)methyl)-1H-1,2,3-triazol-1-yl)-5-(hydroxymethyl)(phenyl)methyl)-1H-1,2,3-triazol-1-yl)-5-(hydroxymethyl)(phenyl)methyl)-1H-1,2,3-triazol-1-yl)-5-(hydroxymethyl)(phenyl)methyl)-1H-1,2,3-triazol-1-yl)-5-(hydroxymethyl)(phenyl)methyl)-1H-1,2,3-triazol-1-yl)-5-(hydroxymethyl)(phenyl)methyl)-1H-1,2,3-triazol-1-yl)-5-(hydroxymethyl)(phenyl)methyl)-1H-1,2,3-triazol-1-yl)-5-(hydroxymethyl)(phenyl)methyl)-1H-1,2,3-triazol-1-yl)-5-(hydroxymethyl)(phenyl)methyl)-1H-1,2,3-triazol-1-yl)-5-(hydroxymethyl)(phenyl)methyl)-1H-1,2,3-triazol-1-yl)-5-(hydroxymethyl)(phenyl)methyl)(phenyl)methyl)-1H-1,2,3-triazol-1-yl)-5-(hydroxymethyl)(phenyl)methyl)(phenyl)methyl)-1H-1,2,3-triazol-1-yl)-5-(hydroxymethyl)(phenyl)methyl)(phenyl)methyl)-1H-1,2,3-triazol-1-yl)-5-(hydroxymethyl)(phenyl)methyl)(phenyl)methyl)(phenyl)methyl)-1H-1,2,3-triazol-1-yl)-5-(hydroxymethyl)(phenyl)methyl)(phenyl)methyl)(phenyl)methyl)-1H-1,2,3-triazol-1-yl)-5-(hydroxymethyl)(phenyl)methyl)(phenyl)methyl)(phenyl)methyl)-1H-1,2,3-triazol-1-yl)-5-(hydroxymethyl)(phenyl)methyl)(phenyl)methyl)(phenyl)methyl)-1H-1,2,3-triazol-1-yl)-5-(hydroxymethyl)(phenyl)methyl)(phenyl)methyl)(phenyl)methyl)-1H-1,2,3-triazol-1-yl)-5-(hydroxymethyl)(phenyl)(phenyl)methyl)(phenyl)methyl)-1H-1,2,3-triazol-1-yl)-5-(hydroxymethyl)(phenyl)(phenyl)methyl)(phenyl)methyl)-1H-1,2,3-triazol-1-yl)-5-(hydroxymethyl)(phenyl)(

The product **10** (0.10 mmol, 1.0 equiv.) and copper(I) thiophene-2-carboxylate (CuTc) (0.2 equiv) in anhydrous toluene (1 mL) was cooled in an ice-water bath. Subsequently, 3'-Azido-3'-deoxythymidine (1.1 equiv.) was added slowly, and the reaction mixture allowed to warm to roomtemperature and stirred for 48 h. The reaction was quenched by addition of H₂O, the mixture was then extracted with EtOAc (10 mL x 3). The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated under vacuum. The residue was purified by silica gel columnchromatography (petroleum ether (40 - 60 °C)/ethyl acetate = 1:1) to afford the desired triazole **12** as a white solid.

12: 76% yield; dr > 20:1; white solid; ¹H NMR (400 MHz, DMSO-d6): δ 11.36 (s, 1H), 8.26 (s, 1H), 7.83 (s, 1H), 7.46 (d, J = 7.6 Hz, 2H), 7.34 (t, J = 7.6 Hz, 2H), 7.28 – 7.24 (m, 3H), 7.08 (t, J = 8.6 Hz, 2H), 6.67 (d, J = 8.6 Hz, 1H), 6.44 (t, J = 6.4 Hz, 1H), 6.30 (d, J = 2.4 Hz, 1H), 6.04 (dd, J = 8.6, 2.4 Hz, 1H), 5.90 (s, 2H), 5.39 – 5.34 (m, 1H), 4.86 (s, 1H), 4.25 – 4.21 (m, 1H), 3.72 – 3.61 (m, 2H), 3.39 – 3.37 (m, 2H), 3.14 (d, J = 10.0 Hz, 1H), 2.86 (d, J = 10.8 Hz, 1H), 2.79 – 2.61 (m, 2H), 2.47 – 2.40 (m, 1H), 2.20 – 2.11 (m, 1H), 2.05 – 1.9 (m, 2H), 1.81 (s, 3H), 1.75 – 1.66 (m, 2H), 1.22 (s, 1H); ¹³C NMR (100 MHz, DMSO): δ 163.79, 161.99, 159.58, 153.84, 150.50, 147.81, 147.27, 141.13, 140.56, 140.27, 136.30, 129.15 (d, J = 6.5 Hz), 128.31 (d, J = 4.8 Hz), 127.15, 123.02, 115.13 (d, J = 20.5 Hz), 109.67, 107.93, 105.66, 100.96, 97.75, 84.49, 83.91, 69.43, 66.18, 60.81, 59.23, 55.17, 50.65, 43.41, 41.65, 37.17, 34.08, 12.30; HRMS: calcd. for [M+H]⁺ C₃₈H₄₀FN₆O₇ = 711.2937, found: 711.2922; [$\alpha_{D}^{[m]} = +24.97$ (c = 1.0 in CHCl₃).

9. NMR Spectra and HPLC Data

S39

Compound (-)-3a: IA, hexane/ⁱPrOH = 99/1, v = 1.0 mL/min, λ = 224 nm

HPLC trace of *rac*-3a

Compound (-)-3b: AD-H, hexane/^{*i*}PrOH = 99/1, v = 1.0 mL/min, λ = 214 nm

HPLC trace of *rac*-3b

HPLC trace of 3b

Compound (-)-3c: IA, hexane/^{*i*}PrOH = 99/1, v = 1.0 mL/min, λ = 214 nm

HPLC trace of *rac*-3c

HPLC trace of 3c

Compound (-)-3d: AD-H, hexane/ⁱPrOH = 90/10, v = 1.0 mL/min, λ = 224 nm

HPLC trace of *rac*-3d

HPLC trace of 3d

Compound (-)-3e: IA, hexane/ⁱPrOH = 99/1, v = 1.0 mL/min, λ = 214 nm

HPLC trace of rac-3e

HPLC trace of 3e

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm) **Compound** (-)-3f: IA, hexane/ⁱPrOH = 99/1, v = 1.0 mL/min, λ = 214 nm

HPLC trace of rac-3f

HPLC trace of 3f

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

Compound (-)-3g: IA, hexane/ⁱPrOH = 99/1, v = 1.0 mL/min, λ = 234 nm

HPLC trace of *rac*-3g

HPLC trace of 3g

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm) **Compound** (-)-3h: IA, hexane/ⁱPrOH = 99/1, v = 1.0 mL/min, λ = 214 nm

HPLC trace of rac-3h

HPLC trace of 3h

Compound (-)-3i: IA, hexane/^{*i*}PrOH = 99/1, v = 1.0 mL/min, λ = 214 nm

HPLC trace of *rac*-3i

HPLC trace of 3i

HPLC trace of rac-3j

Compound (-)-3k: OD-H, hexane/^{*i*}PrOH = 99/1, v = 1.0 mL/min, λ = 224 nm

HPLC trace of *rac*-3k

HPLC trace of 3k

Compound (-)-31: IA, hexane/^{*i*}PrOH = 99/1, v = 1.0 mL/min, λ = 234 nm

HPLC trace of *rac*-31

Compound (-)-3m: IBN-5, hexane/^{*i*}PrOH = 90/10, v = 1.0 mL/min, λ = 234 nm

HPLC trace of *rac*-3m

HPLC trace of 3m

Compound (-)-3n: IA, hexane/ⁱPrOH = 99/1, v = 1.0 mL/min, λ = 214 nm

HPLC trace of rac-3n

HPLC trace of 3n

Compound (-)-30: AD-H, hexane/^{*i*}PrOH = 99/1, v = 1.0 mL/min, λ = 214 nm

HPLC trace of *rac*-30

HPLC trace of 3o

Compound (-)-3p: IBN-5, hexane/ⁱPrOH = 99/1, v = 1.0 mL/min, λ = 214 nm

HPLC trace of rac-3p

HPLC trace of 3p

Compound (-)-3q: OD-H, hexane/^{*i*}PrOH = 99/1, v = 1.0 mL/min, λ = 234 nm

HPLC trace of rac-3q

HPLC trace of 3q

Compound (-)-3r: OD-H, hexane/^{*i*}PrOH = 99/1, v = 1.0 mL/min, λ = 214 nm

HPLC trace of 3r

Compound (-)-3s: AD-H, hexane/^{*i*}PrOH = 99/1, v = 1.0 mL/min, λ = 214 nm

HPLC trace of rac-3s

peak.number	retention_time	peak.area	peak.height	peak.rel_area	peak.rel_height	peak.amount
	min	mAU*min	mAU	%	%	n.a.
1	56.419	226.961	146.827	49.97	57.07	n.a.
2	60.905	227.279	110.458	50.03	42.93	n.a.

HPLC trace of 3s

Compound (-)-3t: IBN-5, hexane/^{*i*}PrOH = 99/1, v = 1.0 mL/min, λ = 214 nm

HPLC trace of rac-3t

HPLC trace of 3t

Compound (+)-3u: IC, hexane/ⁱPrOH = 99/1, v = 1.0 mL/min, λ = 214 nm

HPLC trace of *rac*-3u

HPLC trace of 3u

Compound (-)-3v: IBN-5, hexane/ⁱPrOH = 99/1, v = 1.0 mL/min, λ = 214 nm

234.832

50.27

42.82

97.93

n.a.

n.a.

n.a.

HPLC trace of rac-3v

15.445

14.219

85.996

1

2

141.059

98.54

43.111

130 120 110 100 90 f1 (ppm)

Compound (-)-4a: AD-H, hexane/ⁱPrOH = 90/10, v = 1.0 mL/min, λ = 224 nm

HPLC trace of *rac*-4a

HPLC trace of 4a

Compound (-)-4b: AD-H, hexane/ⁱPrOH = 90/10, v = 1.0 mL/min, λ = 234 nm

HPLC trace of rac-4b

HPLC trace of 4b

Compound (-)-4c: IBN-5, hexane/^{*i*}PrOH = 99/1, v = 1.0 mL/min, λ = 214 nm

HPLC trace of *rac*-4c

HPLC trace of 4c

Compound (-)-4d: IBN-5, hexane/ⁱPrOH = 99/1, v = 1.0 mL/min, λ = 214 nm

HPLC trace of *rac*-4d

HPLC trace of 4d

HPLC trace of *rac*-4e

HPLC trace of 4e

Compound (-)-4f: IBN-5, hexane/ⁱPrOH = 90/10, v = 1.0 mL/min, λ = 224 nm

HPLC trace of *rac*-4f

HPLC trace of 4f

Compound (-)-4g: IBN-5, hexane/^{*i*}PrOH = 99/1, v = 1.0 mL/min, λ = 214 nm

HPLC trace of rac-4g

HPLC trace of 4g

HPLC trace of rac-4h

Compound (-)-4i: IA, hexane/^{*i*}PrOH = 99/1, v = 1.0 mL/min, λ = 214 nm

HPLC trace of *rac*-4i

HPLC trace of 4i

Compound (-)-4j: AD-H, hexane/ⁱPrOH = 90/10, v = 1.0 mL/min, λ = 214 nm

HPLC trace of rac-4j

HPLC trace of 4j

Compound (-)-4k: AD-H, hexane/^{*i*}PrOH = 99/1, v = 1.0 mL/min, λ = 214 nm

HPLC trace of rac-4k

HPLC trace of 4k

Compound (-)-41: OJ-H, hexane/ⁱPrOH = 97/3, v = 1.0 mL/min, $\lambda = 250 \text{ nm}$

HPLC trace of rac-41

Signal 1: MWD1 A, Sig=250,100 Ref=400,100

Peak Re #	etTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
		-				
1	4.039	MM	0.2068	1902.86267	153.32487	50,4400
2	4.973	MM	0.1682	1869.66748	185.23827	49.5600
Totals	:			3772.53015	338,56314	

HPLC trace of 4I

Signal 1: MWD1 A, Sig=250,100 Ref=400,100

Peak Re	etTime	Type	Width	Area	Height	Area
Ή	[min]		[min]	[mAU*s]	[mAU]	8
		-				
1	3.944	VV	0.2101	149.45151	11.31824	3.0231
2	4.746	VV	0.1861	4794.21875	416,98465	96.9769
Totals	:			4943.67026	428.30289	

Compound (-)-4m: IA, hexane/ⁱPrOH = 99/1, v = 0.7 mL/min, λ = 214 nm

HPLC trace of *rac*-4m

HPLC trace of rac-4m

S111

