Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2021

## **Supporting Information**

## Cascade annulative-π-extension for the rapid construction of carbazole Based polyaromatic hydrocarbons

Samrat Kundu, Ankush Banerjee, Shyam Chand Pal, Meghna Ghosh, and Modhu Sudan Maji\*

Department of Chemistry, Indian Institute of Technology Kharagpur

Kharagpur 721302, W.B., India.

E-mail: msm@chem.iitkgp.ac.in

## **Table of Contents:**

| Table of Contents                                              | Page Number |
|----------------------------------------------------------------|-------------|
| General Remarks                                                | S1-S2       |
| Experimental Section for Photo-Physical Studies                | S2          |
| Result and Discussion                                          | S2-S8       |
| General Procedures                                             | S9-S12      |
| Optimization Table                                             | <b>S13</b>  |
| Compound Characterization Data of Synthesized Compounds        | S13-S32     |
| Crystal data and structure refinements for 7d, 7c, 3v, and 6c. | \$33-\$35   |
| References                                                     | <b>S36</b>  |
| <sup>1</sup> H, <sup>13</sup> C NMR and DEPT 135 Spectra       | S37-S78     |

## **Experimental Sections**

General Remarks: All reactions involving air or moisture-sensitive reagents were carried out in flame dried glassware under nitrogen/argon atmosphere. Ethyl-acetate was obtained from SRL India. All other solvents were acquired from Merck India and were dried according to the standard literature procedure. Reactions were monitored by thin-layer chromatography (TLC) using Merck silica gel 60 F254 pre-coated plates (0.25 mm), and visualized under UV light or by dipping into KMnO<sub>4</sub> or DNP solution. Silica gel (particle size 100-200 mesh) was purchased from SRL India for performing column chromatography by using mixture of hexanes and ethyl-acetate eluent. The <sup>1</sup>H NMR spectroscopic data were recorded with a Bruker 400 or 500 or 600 MHz instruments. Proton decoupled <sup>13</sup>C NMR spectra ( ${}^{13}C{}^{1}H{}$ ) were similarly recorded at 101 or 126 or 151 MHz NMR instruments by using a broadband decoupled mode. Proton and carbon NMR chemical shifts  $(\delta)$  are reported in parts per million (ppm) relative to the residual proton or carbon signals in CDCl<sub>3</sub>  $(\delta = 7.26, 77.16)$  or DMSO- $d_6$  ( $\delta = 2.50, 39.52$ ). Coupling constants (J) are reported in Hertz (Hz) and refer to apparent multiplicities. The following abbreviations are used for the multiplicities: s: singlet, d: doublet, t: triplet, q: quartet, p: quintet, dd: doublet of doublets, dt: doublet of triplet, m: multiplet, br: broad. Infrared (IR) spectra were recorded by Perkin Elmer FTIR spectrometer, and reported in terms of wave number (cm<sup>-1</sup>). High resolution mass spectra (HRMS) were recorded in ESI (+ Ve) method using a time-of-flight (TOF) mass analyzer.

## **Single Crystal X-ray Diffraction**

The crystal and refinement data for **3v**, **6c**, **7c** and **7d** were collected and the results were summarized in Table S4. In those cases, a crystal of appropriate size was selected from the mother liquor and immersed in paratone oil, and then it was mounted on the tip of glass fibre and cemented using epoxy resin. Single crystal X-ray data were collected at 298 K on a Bruker SMART APEX II CCD diffractometer using graphite-monochromated Mo-K<sub> $\alpha$ </sub> radiation (0.71073 Å). The linear absorption coefficients, scattering factors for the atoms, and the anomalous dispersion corrections were taken from International Tables for X-ray Crystallography. The data integration and reduction were processed with SAINT<sup>1a</sup> software. Empirical absorption correction was applied to the collected reflections with SADABS using XPREP.<sup>1b</sup> The structures were solved by the direct method using SHELXTL<sup>1c</sup> and were refined on F<sup>2</sup> by a full-matrix least-squares technique using the SHELXL-2014<sup>1d</sup> program package. For all the cases, non-hydrogen atoms were refined anisotropically. All other hydrogen atoms are geometrically fixed using riding atom model. All other H atoms were placed in calculated positions using idealized geometries (riding model) and

assigned fixed isotropic displacement parameters. The solvent molecules present in the interspace of 3v were highly disordered, no satisfactory disorder model could be achieved, and therefore PLATON/SQUEEZE routine was used to remove these electron densities.<sup>1e</sup>

## **Experimental section for photo-physical studies:**

Steady state absorption and fluorescence measurements: All the steady state UV–Vis absorption spectra as well as emission spectra were recorded using the Shimadzu UV–Vis spectrophotometer (model UV 2450) and Shimadzu RF-6000 fluorimeter respectively. All samples were taken in micromolar concentrations using dichloromethane as solvent. Molar extinction coefficient ( $\epsilon$ ) for the highest absorption band was calculated by using Beer-Lambert's law (A=  $\epsilon$ cl) where path length (l) was kept as 1 cm and micro molar concentration (c) of the samples were maintained.

**Determination of fluorescence Quantum yield (Φ):** For calculating quantum yield, all the measurements were performed by maintaining the concentration of the samples and reference at a low value of 5µM to minimize error due or self-aggregation or self-quenching. The absorbance (A) values of all the solutions were kept below 0.1. Reference dye quinine sulphate ( $\lambda_{abs}$ = 350 nm) in 0.5 M H<sub>2</sub>SO<sub>4</sub> ( $\Phi_R$  = 0.546 at 298 K)<sup>2</sup> was used for measuring fluorescence quantum yields( $\Phi_s$ ). The quantum yield was calculated by using the following equation:<sup>3</sup>

$$\frac{\Phi_{\rm s}}{\Phi_{\rm R}} = \frac{({\rm Abs})_{\rm R}}{({\rm Abs})_{\rm s}} \frac{A_{\rm s}}{A_{\rm R}} \frac{\eta_{\rm s}^2}{\eta_{\rm R}^2}$$

Here  $\Phi$  denotes the quantum yield, (Abs) denotes the absorbance, As and A<sub>R</sub> denotes the area under the fluorescence emission curve and  $\eta$  is the refractive index of the medium. The subscript S and R represent the corresponding parameters for the samples and reference respectively.

## **Result and Discussion:**

Due to the wide range of substrate variety of the Brønsted acid-catalyzed annulation strategy, we were deeply concerned with the potential of the B[*a*]Cs and PAHs as optical materials. Therefore, we studied the photophysical properties of these moieties; the results are summarized in Table S2. The absorption spectra of the synthesized compounds were examined in dichloromethane solvent. All the samples were completely soluble in this solvent at the certain concentration range which has been shown in the Table S1. In dichloromethane, the compounds do not form hydrogen bond with the solvent, as a result the fine structure of the absorption band was observed. In Table S2, the values of  $\lambda$  (wavelengths corresponding to the various absorption bands), molar extinction coefficients,  $\varepsilon$  (at the  $\lambda_{max}$  of the band having highest absorbance), wavelength of emission maxima

 $(\lambda_{em})$  and fluorescence quantum yield were summarized accordingly. It was seen that fluorescence excitation spectrum matched exactly with corresponding absorption spectrum confirming the purity of the compound.<sup>3</sup>

First, when we focused on assessing the effect of electron-donating aryl substituents on B[*a*]Cs (**3k**, **3l**, **3m**, **3n**), in the UV-vis spectrum the absorption bands ranging from 260 to 300 nm were attributed to the intense  $\pi$ - $\pi$ \* transitions whereas the weak n- $\pi$ \* transitions were detected in the range 345 to 380 nm (Figure S1).<sup>4</sup> Introduction of more electron donating group in C2 and C4 position of aryl moiety caused small red-shift of the  $\lambda_{em}$  along with reduction in  $\varepsilon$  (at the  $\lambda_{max}$  of band with highest absorption) (**3k** vs **3l**). Moreover,  $\lambda_{em}$  was found to be highly dependent on the methoxy group which resulted in red shift of the emission spectra ( $\lambda_{em}$  around 377-387 nm) leading to purple emission (**3k**, **3l** and **3m**).<sup>4</sup> Due to presence of extensive  $\pi$ -conjugation, **3n** exhibits higher fluorescence efficiency ( $\Phi_F = 0.334$  QS) along with highest molar extinction coefficient ( $\varepsilon$ = 6.99x10<sup>4</sup> M<sup>-1</sup>cm<sup>-1</sup>).

Next, we were concerned about evaluating structure-property correlations of HA[*a*]Cs (Figure S2). Introduction of pentacyclic core (**3p** vs **3q**) with extended conjugation triggered substantial redshift in the absorption and emission band along with higher  $\varepsilon$  (at the  $\lambda_{max}$  of the band having highest absorbance). Benzofuro[2,3-*a*]carbazole **3o** having a furan ring was found to be the most emissive with higher fluorescence efficiency ( $\Phi_{F}= 0.320$ ). When studying the absorption and excitation spectra of compound **3r**, significant deviations were found. Hence, we deduced that the compound **3r** may have decomposed due to present of highly reactive free pyrrole moiety in dichloromethane solvent. Due to extensive  $\pi$ -delocalization, densely substituted *N*-methylated pyrrolo[2,3*a*]carbazole **6e** displayed higher bathochromic effect in emission spectra with higher molar extinction coefficient ( $\varepsilon = 5.0299 \times 10^4 \text{ M}^{-1} \text{ cm}^{-1}$ ).

Furthermore, we were motivated to appraise the physical significance of similar or different aryl/alkyl substituted  $\alpha$ -hydroxy aldehydes in B[*a*]Cs (Figure S3). Introduction of *N*-alkylated derivative along with methoxy substituted aryl moiety in aldehyde part may be wholly responsible for the bathochromic effect in emission spectra with highest fluorescence efficiency ( $\Phi_F$ = 0.429) (**3n** vs **6f**). Negligible red shift was observed in absorption band when benzyl substituted  $\alpha$ -hydroxy aldehydes were acquainted with B[*a*[Cs (**3t** vs **3k**). Incorporation of the alkyl moiety was always accompanied by a red-shift of the emission spectra regardless of the position of the alkyl group (**3w** vs **3n**).

Finally, we studied the photophysical properties of the more conjugated carbazole based PAHs (Figure S4). In contrast to the bathochromic effect in wavelength of fluorescence maxima,

introduction of furan moiety exhibited a hypsochromic effect along with sharp decrease in absorption band also (**7a** vs **7b**). **7d** was found to be most emissive in comparison with **7e**, in spite of being mostly annulated PAHs where, five, six and seven membered rings are connected simultaneously in contiguous fashion.

For further understanding about the photophysical properties of PAHs (**7d**, **7e**), we studied solvent dependence of the emission spectra by changing solvents from polar to nonpolar as well as protic to aprotic (Figure S5).<sup>5</sup>

## Solubility of Synthesized PAH (7):

Solubility of all the polyaromatic hydrocarbons **7a-7e** have been checked thoroughly in dichloromethane solvent. Products **7a-7d** were completely soluble in dichloromethane for concentration of at least 5 x  $10^{-3}$  M (approx. 2 mg/mL). The unique  $\pi$ -annulated moiety **7e** was least soluble in dichloromethane and was diluted 100 times to solubilize it completely (concentration around 5 x  $10^{-5}$  M).

**Table S1:** Concentration of substituted benzo[*a*]carbazoles and carbazole based polyaromatic hydrocarbons used for photophysical studies.

| Serial<br>No | Substrate  | Concentration used for absorption (µM) | Concentration (µM) used for Emission<br>(excitation wavelength in nm) |
|--------------|------------|----------------------------------------|-----------------------------------------------------------------------|
| 1            | 3k         | 10                                     | 5 (330)                                                               |
| 2            | 31         | 10                                     | 5 (330)                                                               |
| 3            | 3m         | 60                                     | 5 (330)                                                               |
| 4            | 3n         | 10                                     | 5 (330)                                                               |
| 5            | 30         | 15                                     | 5 (330)                                                               |
| 6            | 3p         | 10                                     | 5 (330)                                                               |
| 7            | 3q         | 20                                     | 5 (330)                                                               |
| 8            | 6e         | 20                                     | 5 (330)                                                               |
| 9            | <b>6f</b>  | 10                                     | 5 (350)                                                               |
| 10           | 3t         | 20                                     | 5 (330)                                                               |
| 11           | 3u         | 60                                     | 5 (350)                                                               |
| 12           | <b>3</b> w | 10                                     | 5 (330)                                                               |
| 13           | 7a         | 10                                     | 5 (330)                                                               |
| 14           | 7b         | 10                                     | 5 (330)                                                               |
| 15           | 7c         | 15                                     | 5 (350)                                                               |
| 16           | 7d         | 40                                     | 5 (350)                                                               |
| 17           | 7e         | 10                                     | 5 (350)                                                               |

| Sample     | Absorption<br>(nm)                      | Molar extinction<br>coefficient ( $10^4 M^{-1} cm^{-1}$ )<br>(at $\lambda_{max}$ of the band of | Emission<br>(nm) | Quantum yield <sup>a</sup><br>wrt quinine<br>sulfate |
|------------|-----------------------------------------|-------------------------------------------------------------------------------------------------|------------------|------------------------------------------------------|
|            | 261 206 240                             | nignest absorption)                                                                             | 277.204          | 0.200                                                |
| 3k         | 261, 286, 349,<br>366                   | 6.11                                                                                            | 377, 394         | 0.309                                                |
| 31         | 283, 301, 349,<br>365                   | 1.96                                                                                            | 381, 397         | 0.371                                                |
| 3m         | 292                                     | 1.28                                                                                            | 387, 373sh       | 0.074                                                |
| 3n         | 300, 361, 380                           | 6.99                                                                                            | 397, 412sh       | 0.334                                                |
| 30         | 281, 318, 347                           | 4.11                                                                                            | 362, 376         | 0.321                                                |
| <b>3</b> p | 259, 297, 322,<br>344, 361              | 4.93                                                                                            | 373, 385sh       | 0.049                                                |
| <u>3q</u>  | 263, 314, 335,<br>350                   | 4.16                                                                                            | 364, 379         | 0.036                                                |
| 6e         | 296, 333                                | 5.02                                                                                            | 400              | 0.301                                                |
| 6f         | 265, 303, 371,<br>391                   | 4.15                                                                                            | 409, 426sh       | 0.429                                                |
| 3t         | 286, 350, 367                           | 4.73                                                                                            | 378, 395         | 0.195                                                |
| <b>3</b> u | 300, 362, 381                           | 1.18                                                                                            | 404, 418sh       | 0.380                                                |
| 3w         | 259, 300, 364,<br>383                   | 4.99                                                                                            | 409              | 0.364                                                |
| 7a         | 308,321,382,4<br>01                     | 4.12                                                                                            | 415, 430         | 0.039                                                |
| 7b         | 258, 320, 342,<br>379, 399              | 7.13                                                                                            | 408, 429         | 0.195                                                |
| 7c         | 258, 302, 326,<br>375, 402, 425         | 6.13                                                                                            | 439, 462sh       | 0.061                                                |
| 7d         | 303, 326, 340,<br>381, 402, 424,<br>450 | 1.16                                                                                            | 458, 486,<br>518 | 0.374                                                |
| 7e         | 328, 343, 381,<br>402, 428, 454         | 6.36                                                                                            | 469, 493sh       | 0.187                                                |

**Table S2:** Photophysical properties of substituted benzo[*a*]carbazoles and carbazole based polyaromatic hydrocarbons.

<sup>*a*</sup> Experimental error  $\pm 5\%$ 



**Figure S1:** Absorption, excitation and emission spectra of densely substituted benzo[*a*]carbazoles **3k-3n**, synthesized from electron donating aromatic substitutions at C2 position of indole moiety.



Figure S2: Absorption, excitation and emission spectra of heteroaryl-annulated densely substituted benzo[*a*]carbazoles 30-3q and 6e.



Figure S3: Absorption, excitation and emission spectra of densely functionalized benzo[a] carbazoles 3t-3u, 3w and 6f.



**Figure S4:** Absorption, excitation and emission spectra of densely functionalized carbazole based extensive  $\pi$ -annulated polyaromatic hydrocarbons **7a-7e**.



Figure S5: Solvent dependent emission spectra of compounds 7e and 7d by changing solvents from polar to nonpolar as well as protic to aprotic.

#### General procedure for the preparation of 2-arylindoles:

2-Aryl indoles 1a-1g were synthesized according to the following reported method.<sup>6a-6e</sup>

$$R^{1} \xrightarrow{\text{II}}_{\text{II}} \xrightarrow{\text{Me}}_{\text{S1}} R^{2} \xrightarrow{\text{II}}_{\text{S2}} \frac{1. \text{ HOAc (20 mol%), EtOH, 100 °C}}{2. \text{ PPA (2-3 equiv), toluene, 120 °C}} R^{1} \xrightarrow{\text{II}}_{\text{II}} \xrightarrow{\text{NHNH}_{2}} R^{2}$$

Acetophenone **S1** (10 mmol), phenylhydrazine **S2** (1.2 equiv), HOAc (20 mol%) and EtOH (6 mL) were charged in a 25 mL round bottom flask. Then the reaction mixture was stirred at 100 °C. When the reaction was completed (detected by TLC), the mixture was cooled to room temperature and ethanol was evaporated *under vacuo* to obtain crude phenylhydrazone. Next, crude phenylhydrazone was dissolved in toluene (6 mL), 2-3 equiv of polyphosphoric acid (PPA) was added and the resulting solution was refluxed at 120-140 °C. After completion of reaction, the reaction mixture was cooled down to room temperature, quenched with H<sub>2</sub>O (10 mL) and extracted with EtOAc ( $3 \times 10$  mL). The combined organic layers were dried over anhydrous Na<sub>2</sub>SO<sub>4</sub> and then evaporated under vacuo. The residue was purified by column chromatography on silica gel using ethyl acetate/hexane as the eluent to afford the corresponding 2-arylindoles **1a-1g** and **1i**.

Aryl indole **1h** was synthesized according to the reported procedure.<sup>6f</sup>

General procedure for the preparation of di-aryl or di-alkyl substituted  $\alpha$ -hydroxyl aldehydes:<sup>7a</sup>



To a 25 mL two neck round bottom flask Mg-turnings (0.084 g, 3.5 mmol, 2.5 equiv) and a small crystal of I<sub>2</sub> were taken. After that, a condenser was fitted to the round bottom flask and the whole system was evacuated under vacuo and back-filled with nitrogen. This procedure was repeated twice. Then anhydrous THF (3.5 mL) and aryl or alkyl bromide **S3** (3.5 mmol, 2.5 equiv) were added slowly under constant stirring at 70°C (**Caution!!** Preparation of Grignard reagent is an exothermic reaction). The formation of the Grignard reagent started as soon as the colorless solution turned into grey. After complete dissolution of Mg-metal the reaction flask was cooled down to room temperature. Next, the flask was placed on a water bath and ethyl diethoxyacetate **S4** (0.25 mL in 2.0 mL THF, 1.4 mmol, 1.0 equiv.) was added dropwise via a syringe. The resulting mixture was stirred for another 30 min at room temperature and then quenched with 5 mL saturated

NH4Cl solution. The two layers were separated and the aqueous layer was extracted with ether  $(3\times5 \text{ mL})$ . The combined organic layers were concentrated and the crude residue was subjected to hydrolysis without purification.

The crude acetal intermediate was transferred to a 20 mL round bottom flask, 0.5 mL of 5% HCl and acetone (~5 mL) were added to obtain a single layer homogenous solution. Thereafter, the flask was sealed and heated on an oil bath for 1 h at 70 °C. After cooling down to room temperature, the solution was diluted with 10 mL of CH<sub>2</sub>Cl<sub>2</sub>. The aqueous layer was separated and discarded; the organic layer was successively washed by NaHCO<sub>3</sub> solution and brine, dried over MgSO<sub>4</sub>, and solvent was removed under reduced pressure. The crude residue containing **4** was purified by silica gel column chromatography using hexane and ethyl acetate as eluents.

# General procedure for the preparation of different aryl or alkyl di-substituted α-hydroxyl: aldehydes:<sup>7b, 7c</sup>



To a 50 mL three-neck round bottom flask fitted with a condenser was added 1,4-dioxane, SeO<sub>2</sub> (25 mmol) and water (0.5 mL). The mixture was heated at 50-55 °C and stirred until the solid was dissolved. Then acetophenone **S5** (25 mmol) was added and the reaction mixture was refluxed for 6 h. The solid was removed by filtration and the filtrate was concentrated. The crude residue was purified by silica gel column chromatography to give arylglyoxal monohydrate **S6**.

To a suspension of arylglyoxal monohydrate **S6** (10.0 mmol) and PTSA·H<sub>2</sub>O (*p*-toluenesulfonic acid, 0.5 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (40 mL) at room temperature was added dropwise triethyl orthoformate (HC(OEt)<sub>3</sub>, 10.0 mmol). The mixture was stirred for 30 min, triethylamine (0.20 mL) was added and the organic solvent was evaporated. The crude residue was purified by silica gel column chromatography to furnish  $\alpha, \alpha$ -diethoxymethyl aryl ketone **S7**.

The starting material **S7** was dissolved in anhydrous THF (1.0 M) and pre generated Grignard reagent was added dropwise to the solution. The reaction mixture was stirred at room temperature for 0.5 to 1.0 hours and quenched with saturated aqueous NH<sub>4</sub>Cl-solution at 0 °C. The aqueous phase was separated and extracted twice with EtOAc. The combined organic phases were dried over Na<sub>2</sub>SO<sub>4</sub>, filtered and the organic solvent was removed under reduced pressure. The crude product was treated with aqueous HCl-solution (5–10%) and acetone (~ 5 mL) to obtain a homogeneous solution. The resulting mixture was heated to 70 °C for 2 hours and then diluted

with CH<sub>2</sub>Cl<sub>2</sub> and H<sub>2</sub>O. The aqueous phase was extracted twice with CH<sub>2</sub>Cl<sub>2</sub> and the combined organic layers were washed with saturated NaCl-solution, dried over Na<sub>2</sub>SO<sub>4</sub>, filtered and the solvent was removed under reduced pressure. The crude aldehyde **4** was purified by flash column chromatography using ethyl acetate/hexane eluent.

Aldehydes 2a and 2b were synthesized according to the reported procedures.<sup>7d</sup>

General Procedure IA (GP IA): Synthesis of benzo[a]carbazoles by cascade annulation protocol:



A 10 mL sealed pressure tube equipped with a magnetic stirring bar was charged with indole **1** (0.2 mmol, 1.0 equiv), *p*-toluenesulfonic acid monohydrate (PTSA·H<sub>2</sub>O, 0.04 mmol, 20 mol %). To the mixture was added aldehyde **2** (0.4 mmol, 2 equiv) dissolved in ethyl acetate (3 mL) at room temperature. Finally, the resulting reaction mixture was heated to 120 °C under constant stirring. After complete consumption of starting material **1** (generally takes 1.5 to 60 h, check individual examples) as indicated by TLC (the products are KMnO<sub>4</sub> and DNP active), the crude reaction mixture was diluted with ethyl acetate, transferred to a round-bottomed flask, and the solvent was evaporated under vacuum. The crude residue was purified by silica gel column chromatography to obtain the pure desired products **3**.

**General Procedure IB** (**GP IB**): Synthesis of substituted benzo[*a*]carbazoles by cascade annulation through tandem pinacol-type rearrangement:



The indole **1** (0.2 mmol, 1.0 equiv) and *p*-toluenesulfonic acid monohydrate (PTSA·H<sub>2</sub>O, 0.04 mmol, 20 mol %) were charged into an oven dried culture tube containing a stirring bar. To this stirring solution aldehyde **4** (0.22 mmol, 1.1 equiv, dissolved in 3 mL of toluene) was added drop-wise at the room temperature. The resulting mixture was then heated at 120 °C (on oil bath) for 2 to 48 h. Upon completion of the reaction (as monitored by TLC), the complete reaction mixture was transferred into a 25 mL round bottom flask by dissolving in ethyl acetate solvent and the organic layer was evaporated under vacuum. The crude residue was purified by silica gel column chromatography using ethyl acetate/hexane as an eluent to afford the desired products **3**.

General Procedure II (GP II): *N*-Methylation reaction:



The benzocarbazole **3** (0.1 mmol, 1.0 equiv) was dissolved in 3 mL dimethyl sulfoxide, solid potassium hydroxide (0.12 mmol, 1.2 equiv) was added and the mixture was stirred for 30 min at room temperature. Then methyl iodide (0.15 mmol, 1.5 equiv) was added at room temperature and heated at 90 °C for 2 to 3 h. Upon completion of the reaction as indicated by TLC, water was added to the reaction mixture and extracted with ethyl acetate. The organic layers were dried over Na<sub>2</sub>SO<sub>4</sub>, evaporated under vacuum and purified by silica gel column chromatography using hexane as an eluent to afford the desired products **6**.

## General Procedure III (GP III): Scholl reaction:

The *N*-methylated benzocarbazoles **6** (0.1 mmol, 1.0 equiv) was dissolved in dry dichloromethane (DCM) (9 mL) and cooled to 0 °C. To this solution, methanesulfonic acid (CH<sub>3</sub>SO<sub>3</sub>H) (1 mL) and solid 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) (0.2 mmol, 2.0 equiv) were added, and the resulting highly colored mixture was stirred at room temperature. Upon completion of the reaction (as monitored by TLC), reaction mixture was quenched by pouring into saturated aqueous sodium bicarbonate (aq. NaHCO<sub>3</sub>) solution. The organic layer was separated and the aqueous layer was extracted with DCM (3 x 10 mL). Combined organic layers were washed with water and brine, dried over anhydrous sodium sulfate (Na<sub>2</sub>SO<sub>4</sub>) and evaporated under vacuum. The crude residue was purified by silica gel column chromatography using ethyl acetate/hexane as an eluent to afford the desired products **7**.

Table S3: Optimization of the benzannulation reaction

|       |         | N H 1a OMe       | OBn catal<br>OBn solve<br>2a | yst<br>ent<br>time 3a ON       | Ле                |
|-------|---------|------------------|------------------------------|--------------------------------|-------------------|
| Entry | Solvent | Temperature [°C] | Time [h]                     | Catalyst (mol%)                | Yield of $[3a^b]$ |
| 1     | EtOAc   | rt               | 48                           | PTSA·H2O (20)                  | NA                |
| 2     | EtOAc   | 75               | 24                           | PTSA·H <sub>2</sub> O (20)     | 59                |
| 3     | EtOAc   | 100              | 14                           | PTSA·H <sub>2</sub> O (20)     | 70                |
| 4     | dioxane | 100              | 14                           | PTSA·H2O (20)                  | 64                |
| 5     | toluene | 100              | 2                            | PTSA·H2O (20)                  | 32                |
| 6     | 1,2-DCE | 100              | 2                            | PTSA·H2O (20)                  | 17                |
| 7     | EtOAc   | 120              | 12                           | PTSA·H <sub>2</sub> O (20)     | 78                |
| 8     | EtOAc   | 120              | 24                           | (PhO) <sub>2</sub> P(O)OH (20) | 56                |
| 9     | EtOAc   | 120              | 24                           | TFA (20)                       | 58                |

<sup>*a*</sup>Reactions were carried out in a sealed pressure tube using 0.2 mmol of 1a, 0.4 mmol of 2a; <sup>*b*</sup>Isolated yield.

2-Methoxy-11H-benzo[a]carbazole  $(3a)^{8a}$ : The titled compound 3a was synthesized according to



the **GP IA** by using 2-(3-methoxyphenyl)-1*H*-indole **1a** (44.6 mg, 0.20 mmol, 1.0 equiv) and 2-(benzyloxy)acetaldehyde **2a** (60.0 mg, 0.40 mmol, 2.0 equiv). The reaction was continued for 12 h. The benzo[*a*]carbazole **3a** was isolated after column chromatography using

10% ethyl acetate/hexane as eluent (white solid, 38.6 mg, 78% yield). <sup>1</sup>**H** NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) 8.70 (br s, 1H), 8.13 (d, *J* = 7.8 Hz, 1H), 8.01 (d, *J* = 8.4 Hz, 1H), 7.92 (d, *J* = 8.9 Hz, 1H), 7.61 (d, *J* = 8.4 Hz, 1H), 7.57 (d, *J* = 8.1 Hz, 1H), 7.44 (t, *J* = 7.2 Hz, 1H), 7.40 (d, *J* = 2.1 Hz, 1H), 7.31 (t, *J* = 7.4 Hz, 1H), 7.20 (dd, *J* = 8.9, 2.3 Hz, 1H), 4.01 (s, 3H). <sup>13</sup>C{<sup>1</sup>H} NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) 157.8, 138.7, 134.6, 130.8, 127.7, 125.0, 124.5, 122.0, 120.20, 120.16, 120.0, 119.1, 117.0, 111.2, 100.3, 55.6.

2,4-dimethoxy-11H-benzo[a]carbazole (3b): The titled compound 3b was synthesized according



to the **GP IA** by using 2-(3,5-dimethoxyphenyl)-1*H*-indole **1b** (50.7 mg, 0.20 mmol, 1.0 equiv) and 2-(benzyloxy)acetaldehyde **2a** (60.0 mg, 0.40 mmol, 2.0 equiv). The reaction was continued for 12 h. The benzo[*a*]carbazole **3b** was isolated after column chromatography using

12% ethyl acetate/hexane as eluent (white solid, 40 mg, 72% yield). <sup>1</sup>H NMR (500 MHz, DMSOd<sub>6</sub>)  $\delta$ (ppm) 11.98 (s, 1H), 8.13 (d, J = 7.8 Hz, 1H), 8.00 (d, J = 8.7 Hz, 1H), 7.80 (d, J = 8.7 Hz, 1H), 7.62 (d, J = 8.1 Hz, 1H), 7.55 (d, J = 2.0 Hz, 1H), 7.40 (t, J = 7.6 Hz, 1H), 7.21 (t, J = 7.4 Hz, 1H), 6.67 (d, J = 2.1 Hz, 1H), 3.99 (s, 3H), 3.97 (s, 3H). <sup>13</sup>C{<sup>1</sup>H} NMR (126 MHz, DMSO-d<sub>6</sub>)  $\delta$  (ppm) 158.0, 156.8, 138.8, 134.9, 124.6, 123.1, 122.5, 119.8, 118.9, 118.6, 118.2, 115.9, 112.6, 111.2, 96.91, 93.8, 55.7, 55.4. **FTIR:** (neat)/ cm<sup>-1</sup> = 3427, 3062, 2924, 2851, 1598, 1531, 1449, 1402, 1326, 1201, 1144, 1043, 929, 815. **HRMS (ESI)** *m/z*: [M + H]<sup>+</sup> calcd for C<sub>18</sub>H<sub>16</sub>NO<sub>2</sub>, 278.1176; found 278.1161.

11*H*-[1,3]*dioxolo*[4',5':4,5]*benzo*[1,2-*a*]*carbazole* (**3***c*): The titled compound **3***c* was synthesized according to the **GP IA** by using 2-(benzo[*d*][1,3]dioxol-5-yl)-1*H*-indole **1***c* (47.5 mg, 0.20 mmol,



1.0 equiv) and 2-(benzyloxy)acetaldehyde **2a** (60.0 mg, 0.40 mmol, 2.0 equiv). The reaction was continued for 10 h. The benzo[a]carbazole **3c** was isolated after column chromatography using 10% ethyl

acetate/hexane as eluent (white solid, 36.6 mg, 70% yield). <sup>1</sup>H NMR (600 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  (ppm) 11.85 (br s, 1H), 8.10 (d, *J* = 7.7 Hz, 1H), 8.02 (d, *J* = 8.4 Hz, 1H), 7.90 (s, 1H), 7.58 (d, *J* = 8.0 Hz, 1H), 7.48 (d, *J* = 8.4 Hz, 1H), 7.45 (s, 1H), 7.37 (t, *J* = 7.6 Hz, 1H), 7.19 (t, *J* = 7.4 Hz, 1H), 6.16 (s, 2H). <sup>13</sup>C{<sup>1</sup>H} NMR (151 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  (ppm) 146.8, 146.7, 138.6, 135.6, 128.6, 124.3, 123.3, 119.6, 118.9, 118.6, 117.5, 117.0, 116.7, 111.1, 105.2, 101.1, 98.8. FTIR: (neat)/ cm<sup>-1</sup> = 3417, 3050, 2953, 2906, 2851, 1583, 1438, 1391, 1236, 1093, 1010, 936, 863. HRMS (ESI) *m/z*: [M + H]<sup>+</sup> calcd for C<sub>17</sub>H<sub>12</sub>NO<sub>2</sub>, 262.0863; found 262.0867.

13H-Naphtho[2,1-a]carbazole (3d): The titled compound 3d was synthesized according to the GP



**IA** by using 2-(naphthalen-2-yl)-1*H*-indole **1d** (48.6 mg, 0.20 mmol, 1.0 equiv) and 2-(benzyloxy)acetaldehyde **2a** (60.0 mg, 0.40 mmol, 2.0 equiv). The reaction was continued for 1.5 h. The benzo[*a*]carbazole **3d** 

was isolated after column chromatography using 10% ethyl acetate/hexane as eluent (white solid, 38.4 mg, 72% yield). <sup>1</sup>**H NMR** (600 MHz, DMSO-d<sub>6</sub>)  $\delta$  (ppm) 12.20 (s, 1H), 8.91 (d, *J* = 8.4 Hz, 1H), 8.60 (d, *J* = 8.7 Hz, 1H), 8.51 (d, *J* = 8.8 Hz, 1H), 8.40 (d, *J* = 8.6 Hz, 1H), 8.24 (d, *J* = 7.6 Hz, 1H), 8.05 (d, *J* = 7.8 Hz, 1H), 8.01 (d, *J* = 8.9 Hz, 1H), 7.72 (t, *J* = 7.5 Hz, 1H), 7.67–7.63 (m, 2H), 7.45 (t, *J* = 7.5 Hz, 1H), 7.26 (t, *J* = 7.4 Hz, 1H). <sup>13</sup>C{<sup>1</sup>H} NMR (151 MHz, DMSO-d<sub>6</sub>)  $\delta$  (ppm) 139.4, 136.4, 131.3, 130.5, 128.8, 127.8, 127.0, 126.3, 126.2, 125.1, 123.4, 122.9, 120.9, 120.1, 119.7, 119.2, 119.0, 118.3, 114.0, 111.4. FTIR: (neat)/ cm<sup>-1</sup> = 3401, 2920, 2853, 1608, 1456, 1309, 1250, 1177, 1124, 1071, 1014, 933, 871. HRMS (ESI) *m*/z: [M + H]<sup>+</sup> calcd for C<sub>20</sub>H<sub>14</sub>N, 268.1121; found 268.1140.

12H-Benzofuro[2,3-a]carbazole (3e): The titled compound 3e was synthesized according to the GP IA by using 2-(benzofuran-2-yl)-1H-indole 1e (46.6 mg, 0.20 mmol, 1.0 equiv) and 2-



(benzyloxy)acetaldehyde 2a (60 mg, 0.40 mmol, 2.0 equiv). The reaction was continued for 12 h. The benzo[*a*]carbazole 3e was isolated after column chromatography using 10% ethyl acetate/hexane as eluent (white

solid, 37.4 mg, 73% yield). <sup>1</sup>**H NMR** (600 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) 8.53 (br s, 1H), 8.15 (d, J = 7.8 Hz, 1H), 8.06 – 8.03 (m, 2H), 7.80 (d, J = 8.1 Hz, 1H), 7.65 (d, J = 8.2 Hz, 1H), 7.55 (d, J = 8.1 Hz, 1H), 7.47 (t, J = 7.8 Hz, 2H), 7.40 (t, J = 7.7 Hz, 1H), 7.31 (t, J = 7.7 Hz, 1H). <sup>13</sup>C{<sup>1</sup>H} NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) 156.2, 141.9, 139.7, 126.4, 126.0, 125.6, 125.0, 124.2, 124.0, 123.1, 122.0, 120.6, 120.5, 120.3, 115.4, 112.0, 111.8, 111.3. **FTIR:** (neat)/ cm<sup>-1</sup> = 3434, 2917, 2850, 1736, 1602, 1517, 1449, 1327, 1234, 1109, 1047923, 814. **HRMS (ESI)** *m/z*: [M + H]<sup>+</sup> calcd for C<sub>18</sub>H<sub>12</sub>NO, 258.0913; found 258.0920.

*12H-Benzo*[4,5]*thieno*[2,3-*a*]*carbazole* (**3***f*)<sup>8b</sup>: The titled compound **3f** was synthesized according to the **GP IA** by using 2-(benzo[*b*]thiophen-2-yl)-1*H*-indole **1f** (50.0 mg, 0.20 mmol, 1.0 equiv)



and 2-(benzyloxy)acetaldehyde 2a (60.0 mg, 0.40 mmol, 2.0 equiv). The reaction was continued for 12 h. The benzo[*a*]carbazole **3f** was isolated after column chromatography using 8% ethyl acetate/hexane as eluent

(white solid, 49.5 mg, 91% yield). <sup>1</sup>**H NMR** (400 MHz, DMSO- $d_6$ )  $\delta$  (ppm) 12.01 (br s, 1H), 8.41 (d, J = 7.8 Hz, 1H), 8.26 – 8.20 (m, 2H), 8.15 – 8.12 (m, 2H), 7.59 (d, J = 8.1 Hz, 1H), 7.55 – 7.49 (m, 2H), 7.44 (t, J = 7.6 Hz, 1H), 7.23 (t, J = 7.4 Hz, 1H). <sup>13</sup>C{<sup>1</sup>H} NMR (101 MHz, DMSO- $d_6$ )  $\delta$  (ppm) 139.7, 138.2, 136.3, 134.2, 133.4, 126.4, 125.6, 124.9, 123.4, 123.0, 122.0, 121.0, 120.7, 120.3, 119.3, 117.6, 113.0, 111.4.

10H-Thieno[2,3-a]carbazole  $(3g)^{8c}$ : The titled compound 3g was synthesized according to the GP



**IA** by using 2-(thiophen-2-yl)-1*H*-indole **1g** (40.0 mg, 0.20 mmol, 1.0 equiv) and 2-(benzyloxy)acetaldehyde **2a** (60 mg, 0.40 mmol. 2.0 equiv). The reaction was continued for 20 h. The benzo[a]carbazole **3g** was isolated after column chromatography using 8% ethyl acetate/hexane as eluent (pale yellow

liquid, 30.4 mg, 63% yield). <sup>1</sup>**H NMR** (600 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) 8.30 (br s, 1H), 8.11 (d, J = 7.8 Hz, 1H), 8.06 (d, J = 8.3 Hz, 1H), 7.71 (d, J = 8.3 Hz, 1H), 7.53 – 7.51 (m, 2H), 7.45 – 7.41 (m, 2H), 7.29 (t, J = 7.5 Hz, 1H). <sup>13</sup>C{<sup>1</sup>H} NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) 139.3, 139.2, 134.3, 125.7, 125.4, 124.4, 124.0, 122.6, 120.31, 120.26, 119.5, 117.5, 116.0, 111.1.

*10-Methyl-2,3-diphenyl-1,10-dihydropyrrolo[2,3-a]carbazole (3h):* The titled compound **3h** was synthesized according to the **GP IA** by using 2-(4,5-diphenyl-1*H*-pyrrol-2-yl)-1-methyl-1*H*-indole



1h (69.7 mg, 0.20 mmol, 1.0 equiv) and 2-(benzyloxy)acetaldehyde 2a
(60.0 mg, 0.40 mmol, 2.0 equiv). The reaction was continued for 10 h.
The benzo[a]carbazole 3h was isolated after column chromatography

using 12% ethyl acetate/hexane as eluent (yellow solid, 55.6 mg, 75% yield). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) 8.55 (s, 1H), 8.11 (d, *J* = 7.7 Hz, 1H), 7.87 (d, *J* = 8.4 Hz, 1H), 7.54 – 7.48 (m, 5H), 7.46 – 7.42 (m, 4H), 7.39 – 7.33 (m, 4H), 7.31 – 7.27 (m, 1H), 4.22 (s, 3H). <sup>13</sup>C{<sup>1</sup>H} NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) 140.2, 135.3, 133.4, 133.1, 130.5, 128.9, 128.70, 128.67, 128.3, 127.9, 127.7, 126.6, 124.4, 124.2, 122.4, 119.8, 119.3, 118.5, 117.1, 113.9, 111.8, 108.4, 31.8. FTIR: (neat)/ cm<sup>-1</sup> = 3466, 3243, 2918, 2853, 1730, 1608, 1487, 1419, 1373, 1265, 1184, 1117, 1016, 845. HRMS (ESI) *m/z*: [M + H]<sup>+</sup> calcd for C<sub>27</sub>H<sub>21</sub>N<sub>2</sub>, 373.1699; found 373.1758.





according to the **GP IA** by using 2-(3-methoxyphenyl)-1*H*-indole **1a** (44.6 mg, 0.20 mmol, 1.0 equiv) and 2-(benzyloxy)propanal **2b** (65.7 mg, 0.40 mmol, 2.0 equiv). The reaction was continued for 60 h. The benzo[*a*]carbazole **3i** was isolated after column chromatography using 10% ethyl acetate/hexane as eluent (white solid, 44 mg, 84% yield). <sup>1</sup>H

**NMR** (600 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  (ppm) 11.96 (br s, 1H), 8.09 (d, *J* = 7.8 Hz, 1H), 8.01 – 8.00 (m, 2H), 7.88 (s, 1H), 7.61 (d, *J* = 8.1 Hz, 1H), 7.38 (t, *J* = 7.6 Hz, 1H), 7.23 (dd, *J* = 9.1, 2.5 Hz, 1H), 7.19 (t, *J* = 7.4 Hz, 1H), 3.98 (s, 3H), 2.70 (s, 3H). <sup>13</sup>C{<sup>1</sup>H} NMR (151 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  (ppm) 157.0, 138.7, 134.1, 126.7, 126.1, 124.5, 124.4, 123.2, 122.6, 119.7, 118.8, 117.2, 117.1, 116.4, 111.2, 102.2, 55.4, 19.5. **FTIR:** (neat)/ cm<sup>-1</sup> = 3401, 2923, 2853, 1455, 1230, 1015, 737. **HRMS** (**ESI**) *m/z*: [M + H]<sup>+</sup> calcd for C<sub>18</sub>H<sub>16</sub>NO, 262.1226; found 262.1231.

7-*Methyl-13H-naphtho*[2,1-a]carbazole (**3***j*): The titled compound **3***j* was synthesized according to the **GP IA** by using 2-(naphthalen-2-yl)-1*H*-indole **1d** (48.6 mg, 0.20 mmol, 1.0 equiv) and 2-



(benzyloxy)acetaldehyde **2b** (65.7 mg, 0.40 mmol, 2.0 equiv). The reaction was continued for 24 h. The benzo[*a*]carbazole **3j** was isolated after column chromatography using 10% ethyl acetate/hexane as eluent (white solid, 23.4 mg, 42% yield). <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm)

9.05 (d, J = 8.6 Hz, 1H), 8.68 (br s, 1H), 8.18 (s, 1H), 8.16 (d, J = 7.8 Hz, 1H), 8.09 (d, J = 8.7 Hz, 1H), 7.99 (d, J = 7.8 Hz, 1H), 7.89 (d, J = 8.7 Hz, 1H), 7.67 (t, J = 6.5 Hz, 1H), 7.63 – 7.58 (m, 2H), 7.47 (t, J = 7.6 Hz, 1H), 7.32 (t, J = 7.4 Hz, 1H), 3.31 (s, 3H). <sup>13</sup>C{<sup>1</sup>H} NMR (151 MHz, S16

CDCl<sub>3</sub>)  $\delta$  (ppm) 139.6, 135.4, 133.2, 132.7, 129.1, 128.5, 127.7, 127.3, 127.2, 125.9, 125.59, 125.56, 123.8, 123.5, 120.4, 120.2, 120.0, 119.61, 119.55, 111.1, 28.1. **FTIR:** (neat)/ cm<sup>-1</sup> = 3420, 3050, 2921, 2852, 1614, 1575, 1531, 1439, 1334, 1288, 1241, 1011, 928, 876. **HRMS (ESI)** *m/z*: [M + H]<sup>+</sup> calcd for C<sub>21</sub>H<sub>16</sub>N, 282.1277; found 282.1259.

2-Methoxy-5,6-diphenyl-11H-benzo[a]carbazole (3k): The titled compound 3k was synthesized

according to the **GP IB** by using 2-(3-methoxyphenyl)-1*H*-indole **1a** (44.6 mg, 0.20 mmol, 1.0 equiv) and 2-hydroxy-2,2diphenylacetaldehyde **4a** (46.7 mg, 0.22 mmol, 1.10 equiv). The reaction was continued for 18 h. The substituted benzo[*a*]carbazole **3k** was

isolated after column chromatography using 2% ethyl acetate/hexane as eluent (gray solid, 50 mg, 62% yield). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) 8.81 (br s, 1H), 7.58 – 7.54 (m, 2H), 7.48 (br s, 1H), 7.34 – 7.20 (m, 11H), 7.10 (d, J = 9.1 Hz, 1H), 6.94 (t, J = 7.5 Hz, 1H), 6.76 (d, J = 7.3 Hz, 1H), 4.03 (s, 3H). <sup>13</sup>C{<sup>1</sup>H} NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) 157.6, 140.3, 139.6, 139.1, 134.0, 132.0, 130.6, 130.2, 128.32, 128.27, 128.0, 127.6, 126.8, 126.4, 124.8, 124.7, 122.3, 121.4, 119.8, 118.1, 117.0, 110.9, 100.3, 55.7. FTIR: (neat)/ cm<sup>-1</sup> = 3375, 2924, 1623, 1501, 1438, 1366, 1216, 1101, 1025, 827, 751. HRMS (ESI) *m/z*: [M + H]<sup>+</sup> calcd for C<sub>29</sub>H<sub>22</sub>NO, 400.1696; found 400.1693.

2,4-Dimethoxy-5,6-diphenyl-11H-benzo[a]carbazole (3l): The titled compound 3l was synthesized



Ph

Ph

according to the **GP IB** by using 2-(3,5-dimethoxyphenyl)-1*H*-indole **1b** (50.7 mg, 0.20 mmol, 1.0 equiv) and 2-hydroxy-2,2diphenylacetaldehyde **4a** (46.7 mg, 0.22 mmol, 1.10 equiv). The reaction was continued for 8 h. The substituted benzo[*a*]carbazole **3l** was isolated after column chromatography using 2% ethyl acetate/hexane as eluent

(gray solid, 68 mg, 79% yield). <sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) 8.76 (br s, 1H), 7.54 (d, J = 7.9 Hz, 1H), 7.33 (t, J = 7.5 Hz, 1H), 7.30 – 7.19 (m, 5H), 7.12 – 7.04 (m, 6H), 6.93 (t, J = 7.5 Hz, 1H), 6.59 (d, J = 7.9 Hz, 1H), 6.54 (s, 1H), 4.04 (s, 3H), 3.39 (s, 3H). <sup>13</sup>C{<sup>1</sup>H} NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) 159.6, 158.3, 143.5, 140.5, 139.2, 134.1, 133.4, 130.7, 130.6, 129.4, 127.8, 126.5, 126.1, 124.9, 124.8, 124.6, 122.6, 122.2, 119.7, 118.5, 118.4, 110.8, 99.1, 92.7, 55.7. **FTIR:** (neat)/ cm<sup>-1</sup> = 3451, 3408, 3354, 3055, 2939, 2828, 1619, 1519, 1441, 1329, 1266, 1207, 1155, 1037, 911, 830. **HRMS (ESI)** m/z: [M + H]<sup>+</sup> calcd for C<sub>30</sub>H<sub>24</sub>NO<sub>2</sub>, 430.1802; found 430.1814.



was synthesized according to the **GP IB** by using 2-(benzo[d][1,3]dioxol-5-yl)-1*H*-indole **1c** (47.5 mg, 0.20 mmol, 1.0 equiv) and 2-hydroxy-2,2diphenylacetaldehyde **4a** (46.7 mg, 0.22 mmol. 1.10 equiv). The reaction was continued for 20 h. The substituted benzo[a]carbazole **3m** was

isolated after column chromatography using 2% ethyl acetate/hexane as eluent (yellow solid, 60 mg, 72% yield). <sup>1</sup>H NMR (500 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  (ppm) 12.07 (br s, 1H), 8.04 (s, 1H), 7.59 (d, *J* = 8.0 Hz, 1H), 7.30 – 7.18 (m, 8H), 7.15 (d, *J* = 7.2 Hz, 2H), 6.81 (t, *J* = 7.4 Hz, 1H), 6.68 (s, 1H), 6.48 (d, *J* = 7.9 Hz, 1H), 6.13 (s, 2H), 5.74 (s, 1H). <sup>13</sup>C{<sup>1</sup>H NMR (126 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  (ppm) 146.9, 146.6, 140.0, 139.3, 139.0, 134.9, 132.6, 131.4, 129.9, 129.0, 127.8, 127.7, 127.5, 126.7, 126.3, 124.0, 123.3, 120.7, 118.5, 116.3, 115.5, 111.0, 103.7, 101.3, 98.9, 54.8. **FTIR:** (neat)/ cm<sup>-1</sup> = 3443, 2915, 1605, 1464, 1355, 1249, 1180, 1038, 940, 862. **HRMS (ESI)** *m/z*: [M + H]<sup>+</sup> calcd for C<sub>29</sub>H<sub>20</sub>NO<sub>2</sub>, 414.1489; found 414.1502.

7,8-Diphenyl-13H-naphtho[2,1-a]carbazole (3n): The titled compound 3n was synthesized



according to the **GP IB** by using 2-(naphthalen-2-yl)-1*H*-indole **1d** (48.7 mg, 0.20 mmol, 1.0 equiv) and 2-hydroxy-2,2-diphenylacetaldehyde **4a** (46.7 mg, 0.22 mmol, 1.10 equiv). The reaction was continued for 24 h. The substituted benzo[*a*]carbazole **3n** was isolated after column

chromatography using 2% ethyl acetate/hexane as eluent (white solid, 68 mg, 81% yield). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) 8.81 (br s, 1H), 8.11 (d, *J* = 8.8 Hz, 1H), 7.91 – 7.88 (m, 2H), 7.62 (d, *J* = 8.8 Hz, 1H), 7.55 (d, *J* = 8.1 Hz, 1H), 7.42 (t, *J* = 7.3 Hz, 1H), 7.37 (t, *J* = 8.0 Hz, 1H), 7.33 – 7.27 (m, 3H), 7.25 – 7.16 (m, 7H), 7.08 (t, *J* = 8.5 Hz, 1H), 6.96 (t, *J* = 7.6 Hz, 1H), 6.64 (d, *J* = 8.0 Hz, 1H). <sup>13</sup>C{<sup>1</sup>H} NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) 143.2, 140.7, 139.7, 137.0, 135.5, 133.6, 131.9, 131.7, 131.2, 130.4, 128.9, 128.6, 128.3, 127.9, 127.7, 127.4, 126.7, 126.3, 125.6, 125.4, 125.3, 124.2, 122.3, 119.9, 119.5, 119.0, 118.7, 110.8. FTIR: (neat)/ cm<sup>-1</sup> = 3426, 3053, 2920, 2850, 1601, 1442, 1331, 1255, 1183, 1072, 1026, 891. HRMS (ESI) *m/z*: [M + H]<sup>+</sup> calcd for C<sub>32</sub>H<sub>22</sub>N, 420.1747; found 420.1747.

5,6-Diphenyl-12H-benzofuro[2,3-a]carbazole (3o): The titled compound 3o was synthesized according to the **GP IB** by using 2-(benzofuran-2-yl)-1H-indole 1e (46.7 mg, 0.20 mmol, 1.0 equiv) and 2-hydroxy-2,2-diphenylacetaldehyde 4a (46.7 mg, 0.22 mmol, 1.10 equiv). The reaction was continued for 48 h. The substituted benzo[a]carbazole 3o was isolated after column chromatography using 2% ethyl acetate/hexane as eluent (white solid, 60 mg, 73% yield). <sup>1</sup>H NMR

 $(400 \text{ MHz}, \text{CDCl}_3) \delta$  (ppm) 8.65 (br s, 1H), 7.64 (d, J = 8.2 Hz, 1H), 7.53 (d, J = 8.1 Hz, 1H), 7.40



-7.27 (m, 12H), 7.08 (t, J = 7.6 Hz, 1H), 6.96 (t, J = 7.6 Hz, 1H), 6.85 -6.80 (m, 2H). <sup>13</sup>C{<sup>1</sup>H} NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) 156.6, 140.7, 140.1, 139.4, 138.9, 131.4, 131.0, 130.9, 128.2, 128.03, 127.98, 127.04, 126.95, 126.2, 125.7, 125.6, 124.3, 123.9, 122.8, 122.43, 122.38, 122.2,

120.7, 119.9, 111.5, 111.0. **FTIR:** (neat)/ cm<sup>-1</sup> = 3420, 3056, 1657, 1603, 1434, 1311, 1166, 1095, 1013, 935, 885. **HRMS (ESI)** m/z: [M + H]<sup>+</sup> calcd for C<sub>30</sub>H<sub>20</sub>NO, 410.1539; found 410.1542.

5,6-Diphenyl-12H-benzo[4,5]thieno[2,3-a]carbazole (3p): The titled compound 3p was



synthesized according to the **GP IB** by using 2-(benzo[*b*]thiophen-2-yl)-1*H*-indole **1f** (50.0 mg, 0.20 mmol, 1.0 equiv) and 2-hydroxy-2,2diphenylacetaldehyde **4a** (46.7 mg, 0.22 mmol, 1.10 equiv). The reaction was continued for 22 h. The substituted benzo[*a*]carbazole **3p** was

isolated after column chromatography using 2% ethyl acetate/hexane as eluent (yellow solid, 64 mg, 76% yield). <sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) 8.36 (br s, 1H), 7.89 (d, *J* = 8.0 Hz, 1H), 7.49 (d, *J* = 8.1 Hz, 1H), 7.38 – 7.25 (m, 12H), 7.07 (t, *J* = 7.7 Hz, 1H), 6.96 (t, *J* = 7.5 Hz, 1H), 6.74 – 6.68 (m, 2H). <sup>13</sup>C{<sup>1</sup>H} **NMR** (101 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) 140.0, 139.7, 139.4, 139.0, 137.2, 133.9, 133.2, 132.1, 131.1, 130.4, 128.2, 127.9, 126.9, 126.8, 125.6, 125.0, 124.2, 124.1, 122.8, 122.3, 120.6, 119.9, 110.8. **FTIR:** (neat)/ cm<sup>-1</sup> = 3409, 3054, 2922, 2852, 1602, 1420, 1323, 1172, 1024, 848. **HRMS (ESI)** *m/z*: [M + H]<sup>+</sup> calcd for C<sub>30</sub>H<sub>20</sub>NS, 426.1311; found 426.1312.

4,5-Diphenyl-10H-thieno[2,3-a]carbazole (3q): The titled compound 3q was synthesized



according to the **GP IB** by using 2-(thiophen-2-yl)-1*H*-indole **1g** (40.0 mg, 0.20 mmol, 1.0 equiv) and 2-hydroxy-2,2-diphenylacetaldehyde **4a** (46.7 mg, 0.22 mmol, 1.10 equiv). The reaction was continued for 18 h. The substituted benzo[*a*]carbazole **3q** was isolated after column chromatography using 2%

ethyl acetate/hexane as eluent (yellow solid, 56 mg, 74% yield). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) 8.42 (br s, 1H), 7.50 (d, J = 8.1 Hz, 1H), 7.39 (d, J = 5.3 Hz, 1H), 7.36 – 7.28 (m, 6H), 7.25 – 7.17 (m, 6H), 6.94 (t, J = 7.6 Hz, 1H), 6.81 (d, J = 8.0 Hz, 1H). <sup>13</sup>C{<sup>1</sup>H} NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) 139.9, 139.7, 139.5, 139.2, 133.3, 133.1, 131.4, 130.8, 129.4, 128.1, 127.6, 127.0, 126.4, 126.2, 125.1, 124.5, 123.9, 122.3, 121.5, 119.9, 118.4, 110.8. FTIR: (neat)/ cm<sup>-1</sup> = 3432, 3055, 2909, 1601, 1548, 1429, 1329, 1239, 1159, 1018. HRMS (ESI) *m/z*: [M + H]<sup>+</sup> calcd for C<sub>26</sub>H<sub>18</sub>NS, 376.1154; found 376.1155.

10-Methyl-2,3,4,5-tetraphenyl-1,10-dihydropyrrolo[2,3-a]carbazole (3r): The titled compound 3r

was synthesized according to the **GP IB** by using 2-(4,5-diphenyl-1*H*pyrrol-2-yl)-1-methyl-1*H*-indole **1h** (69.7 mg, 0.20 mmol, 1.0 equiv) and 2-hydroxy-2,2-diphenylacetaldehyde **4a** (46.7 mg, 0.22 mmol, 1.10 Ph equiv). The reaction was continued for 2 h. The substituted

7,8-bis(3-Methoxyphenyl)-13H-naphtho[2,1-a]carbazole (3s): The titled compound 3s was synthesized according to the GP IB by using 2-(naphthalen-2-yl)-1H-indole 1d (48.7 mg, 0.20



Ph

Ph

mmol, 1.0 equiv) and 2-hydroxy-2,2-bis(3methoxyphenyl)acetaldehyde **4b** (60 mg, 0.22 mmol, 1.10 equiv). The reaction was continued for 48 h. The substituted benzo[a]carbazole **3s** was isolated in atropisomeric mixture due to presence of the methoxy group, which restricted the rotation of the

molecule. The purification was performed by column chromatography using 2% ethyl acetate/hexane as eluent (white solid, 60 mg, 63% yield). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) 8.86 (s, 2H), 8.11 (d, J = 8.7 Hz, 2H), 7.88 (t, J = 9.0 Hz, 4H), 7.73 (d, J = 11.6 Hz, 2H), 7.53 (d, J = 8.1 Hz, 2H), 7.41 (t, J = 7.3 Hz, 2H), 7.36 (t, J = 7.5 Hz, 2H), 7.25 (t, J = 8.1 Hz, 1H), 7.21 (t, J = 7.8 Hz, 1H), 7.15 – 7.10 (m, 4H), 6.97 (q, J = 7.6 Hz, 3H), 6.85 (d, J = 8.3 Hz, 2H), 6.82 – 6.76 (m, 10H), 6.66 (s, 1H), 3.69 (s, 3H), 3.643 (s, 3H), 3.637 (s, 3H), 3.625 (s, 3H). <sup>13</sup>C{<sup>1</sup>H} NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) 159.8, 159.7, 159.5, 159.3, 144.4, 142.00, 141.98, 139.8, 136.63, 136.61, 135.6, 133.5, 131.9, 130.91, 130.89, 129.4, 129.3, 129.1, 128.9, 128.8, 128.70, 128.65, 127.8, 127.33, 127.31, 125.7, 125.50, 125.45, 125.4, 124.52, 124.49, 124.2, 123.2, 123.1, 122.50, 122.48, 119.99, 119.98, 119.4, 118.84, 118.76, 116.9, 115.7, 115.5, 113.3, 113.1, 113.0, 112.9, 110.8, 55.43, 55.41, 55.39. FTIR: (neat)/ cm<sup>-1</sup> = 3430, 2932, 2832, 1578, 1453, 1288, 1167, 1031, 870. HRMS (ESI) *m/z*: [M + H]<sup>+</sup> calcd for C<sub>34</sub>H<sub>26</sub>NO<sub>2</sub>, 480.1958; found 480.1964.

5,6-Dibenzyl-2-methoxy-11H-benzo[a]carbazole (3t): The titled compound 3t was synthesized



according to the **GP IB** by using 2-(3-methoxyphenyl)-1*H*-indole **1a** (44.7 mg, 0.20 mmol, 1.0 equiv) and 2-benzyl-2-hydroxy-3-phenylpropanal **4c** (53.0 mg, 0.22 mmol, 1.10 equiv). The reaction was continued for 7 h. The substituted benzo[*a*]carbazole **3t** was isolated after column chromatography using 2% ethyl acetate/hexane as eluent

(greenish black solid, 52 mg, 61% yield). <sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) 8.87 (br s, 1H), 8.01 – 7.98 (m, 2H), 7.60 (d, J = 8.1 Hz, 1H), 7.49 (s, 1H), 7.39 (t, J = 7.6 Hz, 1H), 7.24 – 7.20 (m, 6H), 7.19 – 7.13 (m, 4H), 7.10 (d, J = 7.1 Hz, 2H), 4.77 (s, 2H), 4.53 (s, 2H), 4.01 (s, 3H). <sup>13</sup>C{<sup>1</sup>H} **NMR** (101 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) 157.2, 141.2, 139.8, 139.0, 134.3, 130.0, 128.7, 128.5, 128.4, 128.2, 127.9, 127.1, 127.0, 126.1, 125.9, 124.6, 124.3, 122.5, 121.7, 120.2, 119.0, 117.2, 111.1, 100.8, 55.7, 36.3, 34.0. **FTIR:** (neat)/ cm<sup>-1</sup> = 3398, 3021, 2923, 1629, 1492, 1448, 1371, 1324, 1222, 1169, 1031, 934, 844. **HRMS (ESI)** *m*/*z*: [M + H]<sup>+</sup> calcd for C<sub>31</sub>H<sub>26</sub>NO, 428.2009; found 428.2009.

8-(4-Methoxyphenyl)-7-phenyl-13H-naphtho[2,1-a]carbazole (3u): The titled compound 3u was synthesized according to the GP IB by using 2-(naphthalen-2-yl)-1H-indole 1d (48.7 mg, 0.20



mmol, 1.0 equiv) and 2-hydroxy-2-(4-methoxyphenyl)-2phenylacetaldehyde **4d** (53.3 mg, 0.22 mmol, 1.10 equiv). The reaction was continued for 24 h. The substituted benzo[*a*]carbazole **3u** was isolated as mixture of two isomers. The purification was performed by column chromatography using 2% ethyl acetate/hexane as eluent (white

solid, 68 mg, 76% yield). <sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) 12.34 (br s, 2H), 8.62 (dd, J = 8.9, 1.8 Hz, 2H), 8.05 (d, J = 8.9 Hz, 2H), 7.97 (d, J = 8.0 Hz, 2H), 7.65 (dd, J = 8.1, 2.2 Hz, 2H), 7.51 (d, J = 8.8 Hz, 1H), 7.44 – 7.39 (m, 3H), 7.36 – 7.31 (m, 5H), 7.26 – 7.23 (m, 3H), 7.17 – 7.15 (m, 2H), 7.13 – 7.10 (m, 2H), 7.07 – 6.96 (m, 6H), 6.91 – 6.82 (m, 4H), 6.78 (d, J = 8.6 Hz, 2H), 6.51 (d, J = 8.0 Hz, 1H), 6.38 (d, J = 8.0 Hz, 1H), 3.75 (s, 3H), 3.72 (s, 3H). <sup>13</sup>C{<sup>1</sup>H} NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) 157.7, 157.5, 143.0, 140.7, 140.0, 136.8, 136.2, 135.8, 135.7, 134.9, 133.2, 132.5, 132.2, 131.3, 131.2, 131.03, 131.0, 130.0, 129.9, 129.2, 128.8, 128.2, 127.9, 127.5, 127.4, 127.1, 126.6, 126.3, 125.3, 125.0, 124.9, 123.0, 122.9, 121.2, 121.1, 121.0, 118.9, 118.8, 118.7, 118.3, 117.9, 113.7, 113.2, 111.2, 54.9. **FTIR:** (neat)/ cm<sup>-1</sup> = 3370, 3044, 2920, 1609, 1512, 144, 1330, 1241, 1178, 1024, 819. **HRMS (ESI)** m/z: [M + H]<sup>+</sup> calcd for C<sub>33</sub>H<sub>24</sub>NO, 450.1852; found 450.1852.



compound **3v** was synthesized according to the **GP IB** by using 2-(naphthalen-2-yl)-1*H*-indole **1d** (48.7 mg, 0.20 mmol, 1.0 equiv) and 2-(4-chlorophenyl)-2-hydroxy-2-(4-methoxyphenyl)acetaldehyde **4g** (61.0 mg, 0.22 mmol, 1.10 equiv). The reaction was continued for 26 h. The substituted benzo[*a*]carbazole **3v** was isolated after column chromatography using 10% ethyl acetate/hexane as eluent (white solid,

78 mg, 81% yield). <sup>1</sup>**H** NMR (500 MHz, DMSO-*d*<sub>6</sub>)  $\delta$ (ppm) 12.36 (s, 1H), 12.35 (s, 1H), 8.62 (d, *J* = 8.9 Hz, 2H), 8.06 (d, *J* = 8.9 Hz, 2H), 7.99 (t, *J* = 6.7 Hz, 2H), 7.67 – 7.64 (m, 2H), 7.50 (d, *J* = 8.8 Hz, 1H), 7.46 – 7.42 (m, 3H), 7.40 (d, *J* = 8.3 Hz, 2H), 7.37 – 7.33 (m, 2H), 7.30 (d, *J* = 8.4 Hz, 2H), 7.21 (d, *J* = 8.3 Hz, 2H), 7.15 (d, *J* = 8.3 Hz, 2H), 7.09 – 7.03 (m, 6H), 6.92 – 6.90 (m, 4H), 6.84 (d, *J* = 8.6 Hz, 2H), 6.49 (dd, *J* = 15.5, 8.0 Hz, 2H), 3.79 (s, 3H), 3.75 (s, 3H). <sup>13</sup>C{<sup>1</sup>H} NMR (126 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  157.8, 157.7, 142.0, 140.01, 139.95, 139.9, 139.6, 136.23, 136.22, 135.9, 135.8, 135.3, 134.6, 133.2, 133.14, 133.05, 132.2, 132.1, 131.8, 131.2, 131.1, 130.9, 130.8, 130.7, 129.3, 128.9, 128.8, 128.5, 128.2, 127.9, 127.3, 127.2, 127.1, 126.5, 126.1, 125.40, 125.36, 125.0, 124.9, 122.9, 122.7, 122.6, 121.1, 120.89, 120.85, 120.8, 119.0, 118.9, 118.84, 118.80, 118.3, 117.5, 113.8, 113.3, 111.3, 111.2, 55.0. FTIR: (neat)/ cm<sup>-1</sup> = 3382, 2923, 2853, 1609, 1512, 1456, 1394, 1331, 1178, 1090, 1014, 819. HRMS (ESI) *m*/*z*: [M + H]<sup>+</sup> calcd for C<sub>33</sub>H<sub>23</sub>ClNO, 484.1463; found 484.1477.

7-*Ethyl*-8-*phenyl*-13*H*-*naphtho*[2,1-a]*carbazole* (3w): The titled compound 3w was synthesized



according to the **GP IB** by using 2-(naphthalen-2-yl)-1*H*-indole **1d** (48.7 mg, 0.20 mmol, 1.0 equiv) and 2-hydroxy-2-phenylbutanal **4e** (36.0 mg, 0.22 mmol, 1.10 equiv). The reaction was continued for 18 h. The substituted benzo[*a*]carbazole **3w** was isolated after column chromatography using 2% ethyl acetate/hexane as eluent (pale yellow

solid, 62 mg, 82% yield). <sup>1</sup>**H NMR** (500 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) 8.98 (d, *J* = 8.5 Hz, 1H), 8.73 (br s, 1H), 8.10 (d, *J* = 8.8 Hz, 1H), 7.99 (d, *J* = 8.9 Hz, 1H), 7.89 (d, *J* = 8.7 Hz, 1H), 7.68 – 7.56 (m, 5H), 7.53 – 7.48 (m, 3H), 7.33 (t, *J* = 7.6 Hz, 1H), 6.92 (t, *J* = 7.6 Hz, 1H), 6.40 (d, *J* = 8.0 Hz, 1H), 3.43 (q, *J* = 7.2 Hz, 2H), 1.38 (t, *J* = 7.3 Hz, 3H). <sup>13</sup>C{<sup>1</sup>H} NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) 141.6, 139.7, 137.6, 134.6, 133.5, 132.1, 130.9, 130.0, 129.3, 128.9, 128.3, 127.7, 127.5, 127.2, 126.0, 125.7, 125.2, 124.2, 122.2, 120.1, 119.8, 119.6, 119.2, 110.7, 26.2, 16.0. **FTIR:** (neat)/ cm<sup>-1</sup> = 3425, 2971, 2910 1425, 1332 1253, 1101, 1019, 961,745. **HRMS (ESI)** *m*/*z*: [M + H]<sup>+</sup> calcd for C<sub>28</sub>H<sub>22</sub>N, 372.1747; found 372.1751.

2-(4-Methoxyphenyl)-2-(2-(naphthalen-2-yl)-1H-indol-3-yl)-1 phenylethan-1-one (5a): The titled



compound **5a** was synthesized according to the **GP IB** by using 2-(naphthalen-2-yl)-1*H*-indole **1d** (48.7 mg, 0.20 mmol, 1.0 equiv) and 2hydroxy-2-(4-methoxyphenyl)-2-phenylacetaldehyde **4d** (53.3 mg, 0.22 mmol, 1.10 equiv). The reaction was continued for 0.5 h. The  $\alpha$ -(3indolyl) ketone **5a** was isolated after column chromatography using 2% ethyl acetate/hexane as eluent (white solid, 65 mg, 69% yield). <sup>1</sup>**H NMR** 

(500 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) 8.36 (s, 1H), 7.95 – 7.90 (m, 3H), 7.77 (d, J = 8.6 Hz, 1H), 7.67 (d, J = 8.3 Hz, 2H), 7.63 (d, J = 8.1 Hz, 1H), 7.59 – 7.53 (m, 3H), 7.40 – 7.28 (m, 4H), 7.17 (t, J = 7.6 Hz, 1H), 7.13 (t, J = 7.8 Hz, 2H), 7.07 (t, J = 7.6 Hz, 1H), 6.90 (d, J = 8.7 Hz, 2H), 6.28 (s, 1H), 3.81 (s, 3H). <sup>13</sup>C{<sup>1</sup>H} NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) 198.7, 158.6, 137.0, 136.5, 133.6, 133.1, 132.6, 132.2, 130.5, 129.9, 129.0, 128.7, 128.4, 128.3, 128.0, 127.9, 126.94, 126.85, 126.0, 122.7, 121.5, 120.6, 114.1, 111.0, 110.4, 55.4, 50.8. FTIR: (neat)/ cm<sup>-1</sup> = 3353, 3062, 2951, 1672, 1595, 1511, 1449, 1246, 1178, 1038, 996, 899. HRMS (ESI) *m*/*z*: [M + H]<sup>+</sup> calcd for C<sub>33</sub>H<sub>26</sub>NO<sub>2</sub>, 468.1958; found 468.1970. This compound was further treated under the standard reaction conditions and the desired product **3u** was isolated in 79% yield.

*3-(2-(Naphthalen-2-yl)-1H-indol-3-yl)-1,4-diphenylbutan-2-one (5b):* The titled compound **5b** was synthesized according to the **GP IB** by using 2-(naphthalen-2-yl)-1*H*-indole **1d** (48.7 mg, 0.20



mmol, 1.0 equiv) and 2-benzyl-2-hydroxy-3-phenylpropanal **4c** (53.0 mg, 0.22 mmol, 1.10 equiv). The reaction was continued for 36 h. The  $\alpha$ -(3-indolyl) ketone **5b** was isolated after column chromatography using 2% ethyl acetate/hexane as eluent (white solid, 50 mg, 56% yield). <sup>1</sup>H

**NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) 8.26 (s, 1H), 7.88 – 7.85 (m, 1H), 7.81 (d, J = 8.4 Hz, 1H), 7.76 (d, J = 8.0 Hz, 1H), 7.66 – 7.64 (m, 1H), 7.56 – 7.50 (m, 2H), 7.45 (d, J = 8.1 Hz, 1H), 7.29 (t, J = 7.6 Hz, 1H), 7.21 (d, J = 7.3 Hz, 1H), 7.18 – 7.14 (m, 5H), 7.02 (t, J = 7.3 Hz, 1H), 6.94 (t, J = 7.4 Hz, 2H), 6.90 – 6.88 (m, 2H), 6.64 (d, J = 7.2 Hz, 2H), 4.28 (dd, J = 9.6, 4.9 Hz, 1H), 3.55 – 3.48 (m, 1H), 3.43 (d, J = 6.3 Hz, 2H), 3.39 – 3.33 (m, 1H). <sup>13</sup>C{<sup>1</sup>H} NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) 207.4, 140.7, 137.5, 136.4, 134.3, 133.4, 133.0, 129.6, 129.5, 129.4, 128.6, 128.34, 128.33, 127.9, 127.8, 127.4, 126.8, 126.7, 126.6, 126.2, 126.17, 122.8, 120.6, 111.2, 109.2, 51.4, 48.1, 36.1. FTIR: (neat)/ cm<sup>-1</sup> = 3398, 2917, 1705, 1601, 1425, 1334, 1243, 1101, 959, 821. HRMS (ESI) *m/z*: [M + H]<sup>+</sup> calcd for C<sub>34</sub>H<sub>28</sub>NO, 466.2165; found 466.2193.

8-(2-(*Naphthalen-2-yl*)-1*H-indol-3-yl*)*tetradecan-7-one* (5c): The titled compound 5c was synthesized according to the GP IB by using 2-(naphthalen-2-yl)-1*H*-indole 1d (48.7 mg, 0.20



mmol, 1.0 equiv) and 2-hexyl-2-hydroxyoctanal **4f** (50.2 mg, 0.22 mmol, 1.10 equiv). The reaction was continued for 36 h. The  $\alpha$ -(3-indolyl) ketone **5c** was isolated after column chromatography using 1% ethyl acetate/hexane as eluent (white solid, 52 mg, 60% yield). <sup>1</sup>**H NMR** (400

MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) 8.27 (s, 1H), 8.02 (s, 1H), 7.99 (d, J = 8.5 Hz, 1H), 7.92 (dd, J = 9.4, 5.4 Hz, 2H), 7.68 (dd, J = 8.4, 1.6 Hz, 1H), 7.64 (d, J = 8.0 Hz, 1H), 7.59 – 7.54 (m, 2H), 7.40 (d, J = 8.0 Hz, 1H), 7.22 (t, J = 7.6 Hz, 1H), 7.12 (t, J = 7.5 Hz, 1H), 4.05 (t, J = 7.3 Hz, 1H), 2.35 – 2.20 (m, 3H), 1.98 – 1.89 (m, 1H), 1.43 – 1.33 (m, 3H), 1.30 – 1.16 (m, 9H), 1.13 – 1.02 (m, 6H), 0.79 (t, J = 6.7 Hz, 3H), 0.74 (t, J = 7.1 Hz, 3H). <sup>13</sup>C{<sup>1</sup>H} NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) 211.2, 136.38, 136.36, 133.6, 133.1, 130.5, 128.9, 128.2, 128.02, 127.98, 127.6, 127.0, 126.8, 126.5, 122.7, 120.9, 120.3, 111.4, 111.0, 50.0, 41.5, 31.9, 31.6, 30.2, 29.5, 28.9, 28.1, 24.1, 22.7, 22.5, 14.2, 14.1. FTIR: (neat)/ cm<sup>-1</sup> = 3354, 3057, 2929, 2855, 1699, 1603, 1455, 1340, 1240, 1132, 1014, 952, 819. HRMS (ESI) *m*/*z*: [M + H]<sup>+</sup> calcd for C<sub>32</sub>H<sub>40</sub>NO, 454.3104; found 454.3128.

### 1-(4-Chlorophenyl)-2-(4-methoxyphenyl)-2-(2-(naphthalen-2-yl)-1H-indol-3-yl)ethan-1-one



(5*d*): The titled compound 5d was synthesized according to the GP IB by using 2-(naphthalen-2-yl)-1*H*-indole 1d (48.7 mg, 0.20 mmol, 1.0 equiv) and 2-(4-chlorophenyl)-2-hydroxy-2-(4-methoxyphenyl)acetaldehyde 4g (61.0 mg, 0.22 mmol, 1.10 equiv). The reaction was continued for 2 h. The  $\alpha$ -(3-indolyl) ketone 5d was isolated after column chromatography using 5% ethyl acetate/hexane

as eluent (white solid, 88.6 mg, 89% yield). <sup>1</sup>**H NMR** (500 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  (ppm) 11.69 (s, 1H), 8.06 (d, *J* = 8.5 Hz, 1H), 8.00 – 7.97 (m, 2H), 7.87 – 7.85 (m, 1H), 7.64 (d, *J* = 8.5 Hz, 1H), 7.59 – 7.57 (m, 4H), 7.39 (d, *J* = 8.1 Hz, 1H), 7.34 (d, *J* = 8.1 Hz, 1H), 7.26 (d, *J* = 7.1 Hz, 4H), 7.09 (t, *J* = 7.5 Hz, 1H), 6.97 – 6.92 (m, 3H), 6.31 (s, 1H), 3.76 (s, 3H). <sup>13</sup>C{<sup>1</sup>H} NMR (126 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  (ppm) 197.3, 158.0, 137.4, 136.4, 136.2, 135.3, 132.8, 132.4, 131.8, 130.3, 129.7, 129.5, 128.4, 128.3, 128.0, 127.7, 127.4, 127.2, 126.8, 126.6, 125.9, 121.6, 119.5, 113.6, 111.6, 108.4, 55.0, 50.4. **FTIR:** (neat)/ cm<sup>-1</sup> = 3331, 2927, 1670, 1586, 1510, 1454, 1245, 1175, 1092, 1034, 821. **HRMS (ESI)** *m*/*z*: [M + H]<sup>+</sup> calcd for C<sub>33H25</sub>NO<sub>2</sub>Cl, 502.1568; found 502.1593.

4-(3-(2-Oxo-1-phenylbutyl)-1H-indol-2-yl)benzonitrile (5e): The titled compound 5e was



synthesized according to the **GP IB** by using 4-(1*H*-indol-2yl)benzonitrile **1i** (43.6 mg, 0.20 mmol, 1.0 equiv) and 2-hydroxy-2phenylbutanal **4e** (36.0 mg, 0.22 mmol, 1.10 equiv). The reaction was continued for 48 h. The  $\alpha$ -(3-indolyl) ketone **5e** was isolated after column chromatography using 10% ethyl acetate/hexane as eluent

(white solid, 39.6 mg, 55% yield). <sup>1</sup>**H NMR** (500 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  (ppm) 11.78 (s, 1H), 7.96 (d, *J* = 8.4 Hz, 2H), 7.65 (d, *J* = 8.4 Hz, 2H), 7.47 (d, *J* = 8.2 Hz, 1H), 7.29 – 7.25 (m, 3H), 7.23 – 7.15 (m, 4H), 7.01 (t, *J* = 7.5 Hz, 1H), 5.50 (s, 1H), 2.43 – 2.36 (m, 1H), 2.30 – 2.22 (m, 1H), 0.77 (t, *J* = 7.3 Hz, 3H). <sup>13</sup>C{<sup>1</sup>H} NMR (126 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  (ppm) 208.8, 139.3, 136.63, 136.57, 134.9, 132.7, 128.83, 128.81, 128.0, 127.3, 126.4, 122.5, 119.9, 119.8, 118.6, 111.9, 110.2, 109.3, 54.7, 34.2, 7.9. FTIR: (neat)/ cm<sup>-1</sup> = 3370, 2923, 2219, 1708, 1604, 1494, 1452, 1343, 1245, 1165, 1109, 843. HRMS (ESI) *m/z*: [M + H]<sup>+</sup> calcd for C<sub>25</sub>H<sub>21</sub>N<sub>2</sub>O, 365.1654; found 365.1661.

10-Methyl-4,5-diphenyl-10H-thieno[2,3-a]carbazole (6a): The titled compound 6a was



synthesized according to the **GP II** by using 4,5-diphenyl-10*H*-thieno[2,3*a*]carbazole **3q** (37.5 mg, 0.10 mmol, 1.0 equiv) and methyl iodide (10  $\mu$ L, 0.15 mmol, 1.5 equiv). The reaction was continued for 2 h. The methylated product **6a** was isolated after column chromatography using hexane as eluent

(yellow solid, 36 mg, yield 92%). <sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) 7.47 (d, J = 8.2 Hz, 1H), 7.43 – 7.37 (m, 2H), 7.34 – 7.28 (m, 5H), 7.25 – 7.17 (m, 6H), 6.94 (t, J = 7.5 Hz, 1H), 6.78 (d, J = 8.0 Hz, 1H), 4.32 (s, 3H). <sup>13</sup>C{<sup>1</sup>H} NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) 141.0, 140.0, 139.8, 139.6, 135.4, 133.3, 131.4, 130.7, 128.8, 128.2, 127.6, 127.0, 126.4, 125.8, 124.8, 124.0, 123.7, 122.3, 121.2, 119.3, 117.6, 108.6, 31.4. **FTIR:** (neat)/ cm<sup>-1</sup> = 3052, 1575 1436 1386, 1327, 1283, 1311, 1026, 911, 843. **HRMS (ESI)** *m/z*: [M + H]<sup>+</sup> calcd for C<sub>27</sub>H<sub>20</sub>NS, 390.1311; found 390.1318.

12-Methyl-5,6-diphenyl-12H-benzofuro[2,3-a]carbazole (6b): The titled compound 6b was



synthesized according to the **GP II** by using 5,6-diphenyl-12*H*-benzofuro[2,3-*a*]carbazole **30** (41.0 mg, 0.10 mmol, 1.0 equiv) and methyl iodide (10  $\mu$ L, 0.15 mmol, 1.5 equiv). The reaction was continued for 2 h. The methylated product **6b** was isolated after column

chromatography using hexane as eluent (white solid, 38 mg, yield 90%). <sup>1</sup>**H** NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) 7.67 (d, J = 8.2 Hz, 1H), 7.47 (d, J = 8.1 Hz, 1H), 7.43 (t, J = 7.6 Hz, 1H), 7.39 (t, J = 7.3 Hz, 1H), 7.34 – 7.31 (m, 10H), 7.08 (t, J = 7.5 Hz, 1H), 6.96 (t, J = 7.2 Hz, 1H), 6.84 – 6.80 (m, 2H), 4.42 (s, 3H). <sup>13</sup>C{<sup>1</sup>H} NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) 156.5, 141.7, 141.1, 139.5, 139.1,

131.5, 131.0, 130.8, 128.2, 128.0, 127.3, 127.0, 126.9, 126.11, 126.06, 125.4, 125.3, 124.0, 122.7, 122.4, 122.2, 121.5, 121.0, 119.3, 111.5, 108.6, 31.9. **FTIR:** (neat)/ cm<sup>-1</sup> = 3055, 1648, 1601, 1439, 1312, 1199, 1149, 1089, 1024, 961, 907, 851. **HRMS (ESI)** *m/z*: [M + H]<sup>+</sup> calcd for C<sub>31</sub>H<sub>22</sub>NO, 424.1696; found 424.1701.

8-(4-Methoxyphenyl)-13-methyl-7-phenyl-13H-naphtho[2,1-a]carbazole (6c): The titled



compound **6c** was synthesized according to the **GP II** by using 8-(4methoxyphenyl)-7-phenyl-13*H*-naphtho[2,1-*a*]carbazole **3u** (45.0 mg, 0.10 mmol, 1.0 equiv) and methyl iodide (10  $\mu$ L, 0.15 mmol, 1.5 equiv). The reaction was continued for 3 h. The methylated product **6c** was isolated as a mixture of isomers. The purification was performed by column chromatography using hexane as eluent (white solid, 43 mg,

yield 92%). <sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) 8.72 (dd, J = 9.1, 1.2 Hz, 2H), 7.87 (t, J = 3.9 Hz, 3H), 7.85 (s, 3H), 7.75 (d, J = 8.8 Hz, 1H), 7.67 (d, J = 8.8 Hz, 1H), 7.53 (dd, J = 8.2, 2.0 Hz, 2H), 7.50 – 7.38 (m, 4H), 7.36 – 7.31 (m, 3H), 7.23 – 7.18 (m, 5H), 7.14 – 7.08 (m, 5H), 7.06 – 7.00 (m, 3H), 6.97 (d, J = 7.3 Hz, 1H), 6.94 (d, J = 7.6 Hz, 1H), 6.86 (d, J = 8.6 Hz, 2H), 6.74 (d, J = 8.6 Hz, 2H), 6.70 (d, J = 8.0 Hz, 1H), 6.58 (d, J = 8.0 Hz, 1H), 4.44 (s, 6H), 3.85 (s, 3H), 3.79 (s, 3H). <sup>13</sup>C{<sup>1</sup>H} NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) 158.3, 158.0, 143.5, 142.8, 141.0, 137.2, 136.8, 136.6, 135.7, 133.2, 132.9, 132.8, 131.93, 131.88, 131.80, 131.77, 131.5, 130.9, 130.5, 129.2, 129.09, 129.05, 128.8, 128.3, 128.1, 126.7, 126.2, 126.1, 125.5, 125.3, 124.7, 124.6, 123.3, 123.2, 122.5, 122.3, 121.3, 120.23, 120.21, 120.16, 119.8, 119.60, 119.56, 113.7, 113.5, 109.1, 55.32, 55.28, 35.4. FTIR: (neat)/ cm<sup>-1</sup> = 3045, 2918, 1607, 1512 1465, 1384, 1324, 1249, 1176, 1105, 1028, 901. HRMS (ESI) *m*/z: [M + H]<sup>+</sup> calcd for C<sub>34</sub>H<sub>26</sub>NO, 464.2009; found 464.2025.

13-Methyl-7,8-diphenyl-13H-naphtho[2,1-a]carbazole (6d): The titled compound 6d was



synthesized according to the **GP II** by using 7,8-diphenyl-13*H*-naphtho[2,1-*a*]carbazole **3n** (42 mg, 0.10 mmol, 1.0 equiv) and methyl iodide (10  $\mu$ L, 0.15 mmol, 1.5 equiv). The reaction was continued for 3 h. The methylated product **6d** was isolated after column chromatography

using hexane as eluent (yellow solid, 40 mg, yield 91%). <sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) 8.72 (d, J = 9.1 Hz, 1H), 7.90 – 7.86 (m, 2H), 7.72 (d, J = 8.8 Hz, 1H), 7.54 (d, J = 8.2 Hz, 1H), 7.46 – 7.40 (m, 2H), 7.35 – 7.32 (m, 3H), 7.23 – 7.15 (m, 7H), 7.06 (t, J = 7.8 Hz, 1H), 6.97 (t, J =7.5 Hz, 1H), 6.62 (d, J = 7.9 Hz, 1H), 4.43 (s, 3H). <sup>13</sup>C{<sup>1</sup>H} NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) 143.4, 142.8, 140.9, 136.9, 136.8, 132.9, 131.9, 131.8, 131.3, 130.5, 129.2, 128.7, 128.2, 128.1, 128.0, 126.7, 126.2, 126.1, 125.6, 125.3, 124.7, 123.2, 122.3, 121.3, 120.2, 119.8, 119.6, 109.1, S26 35.3. **FTIR:** (neat)/ cm<sup>-1</sup> = 3046, 1521, 1443, 1381, 1324, 1206, 1123, 1071, 1023, 917, 796. **HRMS (ESI)** m/z: [M + H]<sup>+</sup> calcd for C<sub>33</sub>H<sub>24</sub>N, 434.1903; found 434.1928.

1,10-Dimethyl-2,3,4,5-tetraphenyl-1,10-dihydropyrrolo[2,3-a]carbazole (6e): The titled



compound **6e** was synthesized according to the **GP II** by using 10-methyl-2,3,4,5-tetraphenyl-1,10-dihydropyrrolo[2,3-*a*]carbazole **3r** (52.4 mg, 0.10 mmol, 1.0 equiv) and methyl iodide (10  $\mu$ L, 0.15 mmol, 1.5 equiv). The reaction was continued for 3 h. The methylated product **6e** was

isolated after column chromatography using hexane as eluent (yellow solid, 50 mg, yield 93%). <sup>1</sup>**H NMR** (400 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  (ppm) 7.61 (d, *J* = 8.2 Hz, 1H), 7.33 – 7.25 (m, 9H), 7.09 (d, *J* = 3.8 Hz, 2H), 6.83 – 6.79 (m, 2H), 6.73 – 6.67 (m, *J* = 20.7 Hz, 5H), 6.63 – 6.56 (m, 4H), 6.32 (d, *J* = 7.9 Hz, 1H), 4.25 (s, 3H), 3.92 (s, 3H). <sup>13</sup>C{<sup>1</sup>H} **NMR** (126 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  (ppm) 143.3, 141.7, 140.3, 137.9, 135.5, 131.6, 131.1, 130.9, 130.60, 130.55, 129.4, 129.1, 128.0, 127.7, 127.5, 126.5, 126.4, 126.3, 125.9, 125.8, 125.7, 124.8, 124.6, 124.5, 124.0, 120.5, 119.0, 118.9, 117.9, 110.3, 38.3, 36.5. **FTIR:** (neat)/ cm<sup>-1</sup> = 3046, 2920, 1599, 1440, 1324, 1247, 1157, 1071, 1021, 955. **HRMS (ESI)** *m*/*z*: [M + H]<sup>+</sup> calcd for C<sub>40</sub>H<sub>31</sub>N<sub>2</sub>, 539.2482; found 539.2494.

7,8-bis(3-Methoxyphenyl)-13-methyl-13H-naphtho[2,1-a]carbazole (6f): The titled compound 6f was synthesized according to the GP II by using 7,8-bis(3-methoxyphenyl)-13H-naphtho[2,1-



*a*]carbazole **3s** (48 mg, 0.10 mmol, 1.0 equiv) and methyl iodide (10  $\mu$ L, 0.15 mmol, 1.5 equiv). The reaction was continued for 3 h. The methylated product **6f** was isolated in atropisomeric mixture due to presence of the methoxy group, which restricted the rotation of the molecule. The purification was performed by column

chromatography using 10% ethyl acetate/hexane as eluent (white solid, 47 mg, yield 95%). <sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$ (ppm) 8.72 (d, J = 9.2 Hz, 2H), 7.90 – 7.84 (m, 7H), 7.54 (d, J = 8.2 Hz, 2H), 7.46 (dd, J = 14.9, 7.4 Hz, 4H), 7.33 (t, J = 7.9 Hz, 1H), 7.27 (t, J = 7.8 Hz, 1H), 7.18 – 7.11 (m, 4H), 7.03 (t, J = 7.1 Hz, 3H), 6.93 – 6.89 (m, 3H), 6.85 – 6.78 (m, 10H), 6.69 (dd, J = 2.1, 1.5 Hz, 1H), 4.42 (s, 6H), 3.74 (s, 3H), 3.68 (s, 3H), 3.67 (s, 3H), 3.66 (s, 3H). <sup>13</sup>C{<sup>1</sup>H} NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$ (ppm) 159.6, 159.52, 159.45, 159.3, 144.5, 142.8, 142.08, 142.06, 136.8, 136.5, 136.4, 132.8, 131.7, 130.93, 130.90, 129.20, 129.15, 129.12, 129.10, 128.9, 128.59, 128.57, 128.0, 126.3, 125.6, 125.3, 124.79, 124.76, 124.6, 124.5, 123.3, 123.1, 123.0, 122.49, 122.46, 121.2, 120.2, 119.67, 119.65, 119.5, 116.97, 116.94, 115.8, 115.4, 113.2, 113.0, 112.71, 112.65, 109.1, 55.4, 55.3, 35.3. FTIR: (neat)/ cm<sup>-1</sup> = 2925, 2852, 1577, 1465, 1324, 1244, 1168, 1039, 922. HRMS (ESI) *m*/*z*: [M + H]<sup>+</sup> calcd for C<sub>35</sub>H<sub>28</sub>NO<sub>2</sub>, 494.2115; found 494.2131. 8-Methyl-8H-phenanthro[9,10-c]thieno[2,3-a]carbazole (7a): The titled compound 7a was



synthesized according to the **GP III** by using 10-methyl-4,5-diphenyl-10*H*-thieno[2,3-*a*]carbazole **6a** (39 mg, 0.10 mmol, 1.0 equiv) and 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (45.4 mg, 0.20 mmol, 2.0 equiv). The reaction was continued for 15 min. The PAH **7a** was isolated after column chromatography using hexane as eluent (yellow solid, 14 mg, yield 43%). <sup>1</sup>H

**NMR** (500 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) 9.10 (d, J = 8.1 Hz, 1H), 8.76 – 8.72 (m, 2H), 8.68 (d, J = 8.1 Hz, 1H), 8.52 (d, J = 8.1 Hz, 1H), 8.45 (d, J = 5.5 Hz, 1H), 7.71 – 7.62 (m, 4H), 7.61 – 7.56 (m, 2H), 7.50 (t, J = 7.6 Hz, 1H), 7.23 (t, J = 7.5 Hz, 1H), 4.38 (s, 3H). <sup>13</sup>C{<sup>1</sup>H} **NMR** (126 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) 140.7 (C), 136.2 (C), 136.0 (C), 131.0 (C), 129.8 (C), 129.7 (C), 129.5 (C), 128.7 (CH), 127.3 (CH), 127.1 (CH), 127.0 (2 CH), 126.8 (C), 125.9 (CH), 125.7 (CH), 124.8 (CH), 124.6 (CH), 124.22 (C), 124.19 (C), 123.6 (CH), 123.5 (CH), 123.2 (CH), 122.3 (C), 119.2 (CH), 114.1 (C), 109.3 (CH), 31.6 (CH<sub>3</sub>). **FTIR:** (neat)/ cm<sup>-1</sup> = 3054, 2922, 2851, 1577, 1431,1326, 1240, 1150, 1067, 907, 851. **HRMS (ESI)** *m/z*: [M + H]<sup>+</sup> calcd for C<sub>27</sub>H<sub>18</sub>NS, 388.1154; found 388.1158.

10-Methyl-10H-benzofuro[2,3-a]phenanthro[9,10-c]carbazole (7b): The titled compound 7b was



synthesized according to the **GP III** by using 12-methyl-5,6-diphenyl-12*H*-benzofuro[2,3-*a*]carbazole **6b** (42.3 mg, 0.10 mmol, 1.0 equiv) and 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (45.4 mg, 0.20 mmol, 2.0 equiv). The reaction was continued for 10 min. The PAH **7b** was isolated after column chromatography using hexane as eluent (white solid, 19 mg,

yield 46%). <sup>1</sup>**H** NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) 9.10 (d, *J* = 8.0 Hz, 1H), 8.94 (d, *J* = 7.7 Hz, 1H), 8.70 (d, *J* = 7.3 Hz, 2H), 8.57 (d, *J* = 8.1 Hz, 1H), 8.49 (d, *J* = 7.9 Hz, 1H), 7.77 (d, *J* = 8.1 Hz, 1H), 7.70 – 7.65 (m, 2H), 7.64 – 7.59 (m, 2H), 7.56 – 7.49 (m, 2H), 7.37 (t, *J* = 7.5 Hz, 1H), 7.24 (d, *J* = 7.3 Hz, 1H), 4.52 (s, 3H). <sup>13</sup>C{<sup>1</sup>H} NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) 156.5 (C), 143.6 (C), 141.4 (C), 130.2 (C), 130.0 (C), 129.6 (C), 129.1 (C), 128.3 (CH), 127.7 (C), 127.4 (CH), 126.8 (CH), 126.4 (CH), 126.3 (CH), 126.1 (CH), 126.0 (CH), 125.8 (C), 125.53 (C), 125.51 (CH), 124.3 (C), 123.6 (CH), 123.54 (CH), 123.47 (CH), 123.3 (CH), 122.6 (CH), 122.1 (C), 119.2 (CH), 117.90 (C), 117.89 (C), 112.0 (CH), 109.4 (CH), 32.1 (CH<sub>3</sub>). **FTIR:** (neat)/ cm<sup>-1</sup> = 2919, 1850 1736 1633, 1542, 1432, 1326, 1213, 1156, 1023, 958, 852. **HRMS (ESI)** *m*/*z*: [M + H]<sup>+</sup> calcd for C<sub>31</sub>H<sub>20</sub>NO, 422.1539; found 422.1551.



compound 7c was synthesized according to the GP III by using 8-(4-methoxyphenyl)-13-methyl-7-phenyl-13*H*-naphtho[2,1-*a*]carbazole
6c (46.3 mg, 0.10 mmol, 1.0 equiv) and 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (45.4 mg, 0.20 mmol, 2.0 equiv). The reaction was continued for 10 min. The PAH 7c was isolated after column chromatography using hexane as eluent (yellow solid, 28 mg, yield

61%). <sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>) δ (ppm) 8.96 (d, J = 9.2 Hz, 1H), 8.76 (d, J = 7.7 Hz, 1H), 8.18 - 8.15 (m, 2H), 8.12 (d, J = 9.2 Hz, 1H), 7.98 (t, J = 7.7 Hz, 1H), 7.92 (d, J = 9.4 Hz, 1H), 7.70 – 7.66 (m, 3H), 7.63 – 7.60 (m, 2H), 7.58 (d, J = 8.2 Hz, 1H), 7.48 (t, J = 7.6 Hz, 1H), 6.98 (t, J =7.6 Hz, 1H), 6.73 (dd, J = 9.4, 2.8 Hz, 1H), 6.61 (d, J = 8.0 Hz, 1H), 4.53 (s, 3H), 3.97 (s, 3H). <sup>13</sup>C{<sup>1</sup>H} **NMR** (126 MHz, CDCl<sub>3</sub>) δ (ppm) 157.6, 144.0, 143.1, 135.8, 133.4, 132.5, 131.5, 131.1, 130.6, 130.1, 128.0, 126.3, 126.2, 126.1, 125.92, 125.85, 125.7, 125.0, 123.5, 123.3, 121.8, 121.6, 120.9, 119.9, 119.3, 117.3, 113.7, 108.9, 106.7, 55.5, 35.3. **FTIR:** (neat)/ cm<sup>-1</sup> = 3051, 2928, 1849, 1612, 1553, 1485, 1400, 1328, 1237, 1173, 1110, 1039, 945, 833. **HRMS** (**ESI**) *m*/*z*: [M + H]<sup>+</sup> calcd for C<sub>34</sub>H<sub>24</sub>NO, 462.1852; found 462.1855.

17-Methyl-17H-benzo[10,11]peryleno[1,12-abc]carbazole (7d): The titled compound 7d was synthesized according to the **GP III** by using 13-methyl-7,8-diphenyl-13H-naphtho[2,1-



*a*]carbazole **6d** (43.3 mg, 0.10 mmol, 1.0 equiv) and 2,3-dichloro-5,6dicyano-1,4-benzoquinone (90.8 mg, 0.40 mmol, 4.0 equiv). The reaction was continued for 10 min. The PAH **7d** was isolated after column chromatography using hexane as eluent (yellow solid, 29 mg, yield 68%). <sup>1</sup>H NMR (600 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  (ppm) 9.21 (d, *J* = 9.1 Hz,

1H), 9.16 (dd, J = 7.7, 3.6 Hz, 2H), 9.12 (t, J = 7.2 Hz, 2H), 8.99 (d, J = 8.1 Hz, 1H), 8.63 (d, J = 8.1 Hz, 1H), 8.35 – 8.33 (m, 2H), 8.11 – 8.08 (m, 2H), 8.01 (d, J = 8.2 Hz, 1H), 7.86 (t, J = 7.3 Hz, 1H), 7.76 (t, J = 7.3 Hz, 1H), 7.64 (t, J = 7.5 Hz, 1H), 7.33 (t, J = 7.4 Hz, 1H), 4.65 (s, 3H). <sup>13</sup>C{<sup>1</sup>H} NMR (151 MHz, DMSO-d<sub>6</sub>)  $\delta$  (ppm) 141.7, 136.8, 131.4, 130.3, 129.6, 129.0, 128.8, 128.7, 128.5, 128.2, 126.8, 126.7, 126.33, 126.28, 125.9, 125.8, 125.2, 124.9, 124.3, 123.3, 122.71, 122.66, 122.5, 122.4, 122.3, 122.2, 121.2, 118.9, 118.4, 117.4, 115.4, 110.5, 35.0. FTIR: (neat)/ cm<sup>-1</sup> = 3424, 3045, 2925, 2852, 1735, 1579, 1471, 1391, 1332, 1262, 1218, 1122, 1031, 939, 899. HRMS (ESI) *m/z*: [M + H]<sup>+</sup> calcd for C<sub>33</sub>H<sub>20</sub>N, 430.1590; found 430.1583.

19,20-Dimethyl-19,20-dihydro-19,20-diazatribenzo[b,ij,l]benzo[6,7]-as-indaceno[2,3,4,5-



*nopq]pleiadene (7e):* The titled compound **7e** was synthesized according to the **GP III** by using 1,10-dimethyl-2,3,4,5-tetraphenyl-1,10-dihydropyrrolo[2,3-*a*]carbazole **6e** (53.8 mg, 0.10 mmol, 1.0 equiv) and 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (136.2 mg, 0.60 mmol, 6.0 equiv). The reaction was continued for 30 min. The PAH **7e** was isolated after column chromatography using 2%

ethylacetate/hexane as eluent (yellow solid, 41 mg, yield 78%). <sup>1</sup>**H** NMR (400 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  (ppm) 8.93 (d, J = 8.2 Hz, 1H), 8.79 (d, J = 8.3 Hz, 1H), 8.72 (d, J = 8.0 Hz, 1H), 8.64 (d, J = 7.7 Hz, 1H), 8.56 – 8.52 (m, 2H), 8.28 (d, J = 8.2 Hz, 1H), 7.84 (t, J = 7.5 Hz, 1H), 7.80 – 7.72 (m, 3H), 7.70 – 7.64 (m, 4H), 7.50 (t, J = 7.6 Hz, 1H), 7.42 (d, J = 7.5 Hz, 1H), 7.18 (t, J = 7.6 Hz, 1H), 4.46 (s, 3H), 4.32 (s, 3H). <sup>13</sup>C{<sup>1</sup>H} NMR (126 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  (ppm) 143.3 (C), 138.7 (C), 137.8 (C), 137.1 (C), 133.3 (C), 132.7 (CH), 132.6 (CH), 130.9 (C), 130.8 (C), 129.8 (C), 129.7 (C), 129.5 (C), 129.3 (C), 128.5 (CH), 127.8 (CH), 127.7 (C), 127.4 (C), 127.0 (CH), 126.8 (CH), 126.39 (CH), 123.50 (CH), 122.5 (C), 122.2 (C), 122.1 (C), 121.3 (CH), 120.9 (C), 119.4 (CH), 118.8 (C), 116.6 (C), 111.1 (CH), 42.0 (CH<sub>3</sub>), 35.3 (CH<sub>3</sub>). **FTIR:** (neat)/ cm<sup>-1</sup> = 3401, 2925, 2853, 2257, 2130, 1657, 1463, 1391, 1331, 1234, 1153, 1049, 1032, 998, 825. **HRMS (ESI**) *m/z*: [M + Na]<sup>+</sup> calcd for C<sub>40</sub>H<sub>24</sub>N<sub>2</sub>Na, 555.1832; found 555.1814.

## Isolation of the Intermediate Ketones and Successive Cyclization Reactions:

We first started the benzannulation reaction between indole derivative 1d and aldehyde 4d in presence of 20 mol% of catalyst PTSA·H<sub>2</sub>O and the desired benzo[*a*]carbazole 3u was isolated as mixture of two isomers. To establish our hypothesis, we performed the same reaction in presence of 10 mol% of catalyst and  $\alpha$ -(3-indolyl) ketone 5a was isolated as sole product, which converted to the benzo[*a*]carbazole derivative 3u in presence of 20 mol% of the catalyst under optimized reaction conditions. It confirmed that, *para*-methoxyphenyl group was migrated selectively over phenyl group due to greater migratory amplitude. After converting ketone 5a to the benzo[*a*]carbazole scaffold 3u, two isomers were isolated as a mixture as observed by NMR spectra analysis. These experiments were also repeated with ketone 4g and same observations were noted for 3v. After *N*-methylation of 3u and followed by Scholl reaction of 6c using 2 equiv of DDQ resulted in a single product 7c in 61% yield.





Scheme S1. The plausible reaction mechanism for 1,2-aryl exchange under Scholl reaction conditions

| Entry                                         | 7d                                       | 7c                                 | 3v                                       | 6с                                     |
|-----------------------------------------------|------------------------------------------|------------------------------------|------------------------------------------|----------------------------------------|
| CCDC                                          | 2074598                                  | 2075888                            | 2078336                                  | 2078337                                |
| Empirical formula                             | C33 H19 N                                | C34 H23 N O                        | C33 H22 Cl N O                           | C34 H25 N O                            |
| Formula weight                                | 429.49                                   | 461.53                             | 483.96                                   | 463.55                                 |
| Temperature (K)                               | 298(2)                                   | 298(2)                             | 298(2)                                   | 298(2)                                 |
| Radiation                                     | Мо-Ка                                    | Μο-Κα                              | Μο-Κα                                    | Μο-Κα                                  |
| Wavelength( $\lambda$ )                       | 0.71073 Å                                | 0.71073 Å                          | 0.71073 Å                                | 0.71073 Å                              |
| Crystal system                                | Monoclinic                               | Triclinic                          | Triclinic                                | Orthorhombic                           |
| Space group                                   | $P2_{1}/n$                               | Pī                                 | Pī                                       | <i>F d d</i> 2                         |
| <i>a</i> [Å]                                  | 16.09(3)                                 | 10.249(4)                          | 9.5167(14)                               | 29.4033(13)                            |
| <i>b</i> [Å]                                  | 5.262(13)                                | 10.824(6)                          | 11.0235(17)                              | 34.6034(15)                            |
| <i>c</i> [Å]                                  | 23.54(5)                                 | 11.279(4)                          | 13.535(2)                                | 9.5921(5)                              |
| α[°]                                          | 90                                       | 80.260(13)                         | 94.069(11)                               | 90                                     |
| $\beta[^{\circ}]$                             | 96.07(2)                                 | 67.268(13)                         | 97.179(10)                               | 90                                     |
| γ[°]                                          | 90                                       | 85.10(2)                           | 99.905(11)                               | 90                                     |
| Volume[Å <sup>3</sup> ]                       | 1982(7)                                  | 1137.1(9)                          | 1381.6(4)                                | 9759.5(8)                              |
| Ζ                                             | 4                                        | 2                                  | 2                                        | 16                                     |
| Density<br>(calculated)                       | 1.439                                    | 1.348                              | 1.163                                    | 1.262                                  |
| [Mg/m <sup>3</sup> ]                          |                                          |                                    |                                          |                                        |
| Absorption<br>coefficient [mm <sup>-1</sup> ] | 0.083                                    | 0.080                              | 0.163                                    | 0.075                                  |
| F(000)                                        | 896                                      | 484                                | 504                                      | 3904                                   |
| Refl. used $[I > 2\sigma(I)]$                 | 2028                                     | 2403                               | 1325                                     | 2408                                   |
| Independent<br>reflections                    | 4124                                     | 4773                               | 6112                                     | 5196                                   |
| Rint                                          | 0.0946                                   | 0.0571                             | 0.1039                                   | 0.1659                                 |
| Refinement method                             | full-matrix<br>least-squares<br>on $F^2$ | full-matrix least-squares on $F^2$ | full-matrix<br>least-squares on<br>$F^2$ | full-matrix least-<br>squares on $F^2$ |
| GOF                                           | 1.029                                    | 1.054                              | 0.741                                    | 0.972                                  |
| Final R indices                               | $R_1 = 0.0624;$<br>$wR_2 = 0.1510$       | $R_1 = 0.0613;$<br>$wR_2 = 0.1497$ | $R_1 = 0.0845; \\ wR_2 = 0.1889$         | $R_1 = 0.0686;$<br>$wR_2 = 0.1718$     |
| R indices (all data)                          | $R_1 = 0.1462;$<br>$wR_2 = 0.1961$       | $R_1 = 0.1253;$<br>$wR_2 = 0.2084$ | $R_1 = 0.2816;$<br>$wR_2 = 0.2585$       | $R_1 = 0.1599;$<br>$wR_2 = 0.2219$     |

 Table S4: Crystal data and structure refinements for the molecules 7d, 7c, 3v, and 6c.



**Figure S6:** ORTEP view of the molecular structure of **7d** with thermal ellipsoids drawn at the 50% probability level.



**Figure S7:** ORTEP view of the molecular structure of **7c** with thermal ellipsoids drawn at the 50% probability level.



**Figure S8:** ORTEP view of the molecular structure of **3v** with thermal ellipsoids drawn at the 50% probability level.



**Figure S9:** ORTEP view of the molecular structure of **6c** with thermal ellipsoids drawn at the 50% probability level.
## **References:**

- (a) SAINT+, 6.02ed, Bruker AXS, Madison, WI, **1999**, (b) XPREP, 5.1 ed. Siemens Industrial Automation Inc., Madison, WI, **1995**, (c) G. M. Sheldrick, *SHELXTL* ™*Reference Manual*: version 5.1, Bruker AXS, Madison, WI, **1997**, (d) G. M. Sheldrick, Crystal Structure Refinement with SHELXL. *Acta Cryst C*, 2015, **71**, 3–8, (e) A. L. Spek, *J. Appl. Crystallogr.* 2003, **36**, 7–13.
- 2. W. H. Melhuish, J. Phys. Chem., 1961, 65, 229–235.
- 3. J. R. Lakowicz, Principles of Fluorescence Spectroscopy; Plenum: New York, **1999**; 3rd edition.
- T. Tsuchimoto, H. Matsubayashi, M. Kaneko, Y. Nagase, T. Miyamura and E. Shirakawa, J. Am. Chem. Soc., 2008, 130, 15823–15835.
- 5. W. Rettig and M. Zander, Chem. Phys. Lett., 1982, 87, 229–234.
- (a) X.-L. Lian, H. Lei, X.-J. Quan, Z.-H. Ren, Y.-Y. Wanga and Z.-H. Guan, *Chem. Commun.*, 2013, **49**, 8196–8198; (b) T. Bzeih, K. Zhang, A. Khalaf, A. Hachem, M. Alami and A. Hamze, *J. Org. Chem.*, 2019, **84**, 228–238; (c) S.-D. Yang, C.-L. Sun, Z. Fang, B.-J. Li, Y.-Z. Li and Z.-J. Shi, *Angew. Chem., Int. Ed.*, 2008, **47**, 1473–1476; (d) C. Shen, N. Zeidan, Q. Wu, C. B. J. Breuers, R.-R. Liu, Y.-X. Jia and M. Lautens, *Chem. Sci.*, 2019, **10**, 3118–3122; (e) P. Ni, J. Tan, W. Zhao, H. Huang, F. Xiao and G.-J. Deng, *Org. Lett.*, 2019, **21**, 3518–3522; (f) P. K. Mishra, S. Verma, M. Kumar and A. K. Verma, *Org. Lett.*, 2018, **20**, 7182–7185.
- (a) X. Zhang, R. J. Staples, A. L. Rheingold and W. D. Wulff, J. Am. Chem. Soc., 2014, 136, 13971–13974.; (b) B. Qin, X. Liu, J. Shi, K. Zheng, H. Zhao and X. Feng, J. Org. Chem., 2007, 72, 2374–2378; (c) M. Schlegel and C. Schneider, Chem. Commun., 2018, 54, 11124–11127; (d) A. Banerjee and M. S. Maji, Chem. Eur. J., 2019, 25, 11521–11527.
- (a) M. M. Oliveira, M. A. Salvador, P. J. Coelho and L. M. Carvalho, *Tetrahedron*, 2005,
  61, 1681–1691; (b) J. Fang, L. Li, C. Yang, J. Chen, G.-J. Deng and H. Gong, *Org. Lett.*,
  2018, 20, 7308–7311; (c) F. Wu, W. Huang, Yiliqi. J. Yang and Y. Gu, *Adv. Synth. Catal.*,
  2018, 360, 3318–3330.



S37
















































































