Electronic Supplementary Material (ESI) for Chemical Communications. This journal is © The Royal Society of Chemistry 2021

Supplementary Information

A Fast and Direct Iodide-Catalyzed Oxidative 2-Selenylation of Tryptophan

Yu-Ting Gao, Shao-Dong Liu, Liang Cheng,* and Li Liu*

Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China and University of Chinese Academy of Sciences, Beijing 100049, China.

chengl@iccas.ac.cn; lliu@iccas.ac.cn

14 June 2021

Note added after first publication:

This supplementary information file replaces that originally published on 02 March 2021. Some of the NMR assignments in the original version were incorrect but these data have now been corrected in this revised version. Some of the structures included with the NMR spectra were also incorrect, as some COOMe groups were drawn as OMe. These structures have also been corrected. This does not affect any of the results or conclusions of the paper.

Table of contents								
1	General information S2							
	Synthesis of Substrates							
3	Optimization of reaction conditions	S10						
4	General procedure for synthesis of 3 , 4 and 5	S11-S21						
5	Control experiments	S22-S23						
6	X-ray crystallographic date	S24-S29						
7	NMR spectra	S30-S86						
8	HPLC spectra	S87						
9	CD spectra	S88						
10	References	S89						

1. General Information

Unless otherwise noted, all reagents were obtained from commercially suppliers and were used without further purification. All reactions were carried out under the air atmosphere. Trp-substrates **1** and diselenides **2** were obtained from commercially suppliers or prepared according to the literature procedures.^[1-4]

TLC analysis was performed on glass-baked silica plates and visualized with UV light. Column chromatography was performed on silica gel (200-300 mesh) using petroleum ether / ethyl acetate / dichloromethane/methanol. ¹H, ¹³C and ¹⁹F NMR spectra were obtained on Bruker 300 MHz, 400 MHz or 500 MHz NMR spectrometer in the deuterated solvents indicated. Chemical shifts are reported in ppm from tetramethylsilane with the solvent resonance as the internal standard. The following abbreviations were used to designate chemical shift multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, h = heptet, m = multiplet. All first-order splitting patterns were assigned on the basis of the appearance of the multiplet. Splitting patterns that could not be easily interpreted are designated as multiplet (m) or (br). Melting points were measured on Beijing Tech X-4 apparats without correction. IR spectra were recorded on a Nicolet 6700 FT-IR spectrometer. HRMS were obtained using electrospray ionization (ESI), nano electrospray ionization (nano ESI), electron ionization (EI) and atmospheric pressure chemical ionization (APCI) mass spectrometers. HPLC analyses were performed on Varian Prostar 210 liquid chromatograph. Circular dichroism spectra was JASCO J-815 spectropolarimeter.

2. Synthesis of substrates

2.1 Preparation of methyl acetyl-L-tryptophanate and methyl acetyl-DL-tryptophanate^[1]

General procedure: L-Tryptophan or *DL*-Tryptophan (4.9 mmol, 1.0 g) was dispersed in MeOH (9.8 mL) under the argon atmosphere. To the suspension was added thionyl chloride (5.4 mmol, 0.39 mL) dropwise at 0 °C. The mixture was then heated to reflux for 23 hours and then cooled to room temperature. MeOH and excess thionyl chloride were removed in vaccum. The pink solid (methyl *L*-tryptophanate hydrochloride) was obtained and was used for the next step without further purification. The pink solid was dispersed in dry THF (20 mL) under the argon atmosphere and Et₃N (9.8 mmol, 1.4 mL) was added. The mixture was stirred at room temperature for 5 minutes. Acetic anhydride (5.4 mmol, 0.5 mL) was then added dropwise at 0 °C. The resulting solution was heated to reflux for 2.5 hours. After cooling to room temperature, the mixture was diluted with ethyl acetate (50 mL) and the organic layer was washed by 1M HCl (20 mL), saturated NaHCO₃ (20 mL) and saturated NaCl (10 mL). Ethyl acetate was removed by rotary evaporator and the crude product was purified by silica column chromatography (elute: dichloromethane /methanol 50/1) to afford the desired product methyl acetyl-*L*-tryptophanate or methyl acetyl-*DL*-tryptophanate **1a**.

methyl acetyl-*L***-tryptophanate** *L***-1a**. White solid, m.p. 55-57 °C. ¹H NMR (300 MHz, DMSO-*d*₆) δ 10.85 (s, 1H), 8.29 (d, *J* = 7.5 Hz, 1H), 7.48 (d, *J* = 7.8 Hz, 1H), 7.34 (d, *J* = 7.8 Hz, 1H), 7.14 (d, *J* = 2.1 Hz, 1H), 7.09-6.96 (m, 2H), 4.49 (dd, *J* = 13.5, 8.1 Hz, 1H), 3.57 (s, 3H), 3.17-2.97 (m, 2H), 1.81 (s, 3H). ¹³C NMR (75 MHz, DMSO-*d*₆) δ 172.5, 169.3, 136.1, 127.0, 123.6, 120.9, 118.4, 117.9, 111.4, 109.5, 53.1, 51.7, 27.1, 22.3. IR ν_{max} (KBr, film, cm⁻¹): 2389, 3058, 2951, 2926, 2850, 1738, 1655, 1530, 1458, 1437, 1375, 1216, 1010, 743. HRMS (ESI): calcd for C₁₄H₂₄O₁₆O₃N₂Na⁺ [M+Na]⁺: 283.1053, found: 283.1053.

2.2 Preparation of substituted methyl acetyl tryptophanate 1^[2,3]

General procedure: The substituted indole (3.3 mmol) and *DL*-serine (6.6 mmol, 693.6 mg) were dissolved in acetic acid (7.7 mL) under the argon atmosphere, acetic anhydride (6.6 mmol, 0.6 mL) was then added dropwise. The mixture was stirred at 75 °C for 3.5 hours. After cooling to room temperature, the solution was adjusted to pH = 11 by addition of 30% aqueous sodium hydroxide carefully in ice bath and extracted with ether (10 mL × 3). The ether phase was washed by 1M NaOH (30 mL). All the aqueous solutions were combined and adjusted to pH = 2 using concentrated hydrochloric acid at 0 °C. The resulting mixture was extracted by EA/MeOH (10/1, 30 mL × 3). The organic was dried over anhydrous sodium sulfate,

evaporated and got the crude intermediate product.

To the crude intermediate product we got above was added dry MeOH (10 mL) under argon atmosphere, the mixture was stirred at 0 °C for 5 minutes. Then the thionyl chloride (3.6 mmol, 0.7 mL) was added dropwise and the reaction was stirred at 0 °C for another 1.5 hours. After stirring at room temperature overnight, MeOH and excess thionyl chloride were removed in vaccum. The crude product was diluted with ethyl acetate (50 mL) and washed by H₂O (50 mL). Ethyl acetate was removed by rotary evaporator and the crude product was purified by silica column chromatography (elute: petroleum ether / ethyl acetate 1/3) to afford the desired product substituted methyl acetyl tryptophanate **1b-g**.

methyl 2-acetamido-3-(5-chloro-1*H***-indol-3-yl)propanoate 1b**. White solid, m.p. 72-73 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.71 (s, 1H), 7.49 (s, 1H), 7.29 (d, *J* = 8.0 Hz, 1H), 7.14 (d, *J* = 8.0 Hz, 1H), 7.00 (s, 1H), 6.19 (d, *J* = 7.5 Hz, 1H), 4.95 (dd, *J* = 13.0, 5.0 Hz, 1H), 3.73 (s, 3H), 3.34-3.24 (m, 2H), 2.00 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 172.2, 169.9, 134.5, 128.7, 125.3, 124.3, 122.4, 118.0, 112.4, 109.6, 53.0, 52.4, 27.5, 23.1. IR ν_{max} (KBr, film, cm⁻¹): 3282, 2951, 1734, 1654, 1528, 1437, 1374, 1215, 893, 729. HRMS (ESI): calcd for C₁₄H₁₅O₃N₂ClNa⁺ [M+Na]⁺: 317.0663, found: 317.0669.

methyl 2-acetamido-3-(5-iodo-1*H***-indol-3-yl)propanoate 1c**. White solid, m.p. 72-73 °C. ¹H NMR (300 MHz, CDCl₃) δ 8.34 (s, 1H), 7.84 (s, 1H), 7.42 (d, *J* = 8.7 Hz, 1H), 7.13 (d, *J* = 8.4 Hz, 1H), 6.93 (d, *J* = 2.1 Hz, 1H), 6.04 (d, *J* = 7.2 Hz, 1H), 4.93 (dd, *J* = 12.9, 8.1 Hz, 1H), 3.72 (s, 3H), 3.34-3.20 (m, 2H), 2.00 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 172.2, 169.7, 135.1, 130.5, 130.3, 127.7, 123.6, 113.3, 109.6, 83.1, 53.0, 52.5, 27.5, 23.3. IR ν_{max} (KBr, film, cm⁻¹): 3276, 2951, 2923, 2850, 1737, 1655, 1527, 1455, 1436, 1373, 1213, 879, 795. HRMS (ESI): calcd for C₁₄H₁₅O₃N₂INa⁺ [M+Na]⁺: 409.0020, found: 409.0020.

methyl 2-acetamido-3-(6-methyl-1*H***-indol-3-yl)propanoate 1d**. Yellow solid, m.p. 53-54 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.09 (s, 1H), 7.40 (d, *J* = 8.0 Hz, 1H), 7.15 (s, 1H), 6.95 (d, *J* = 8.0 Hz, 1H), 6.89 (s, 1H), 6.00 (d, *J* = 6.5 Hz, 1H), 4.94 (dd, *J* = 12.3, 5.3 Hz, 1H), 3.70 (s, 3H), 3.34-3.25 (m, 2H), 2.45 (s, 3H), 1.95 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 172.4, 169.7, 136.6, 132.1, 125.6, 122.0, 121.5, 118.2, 111.2, 109.8, 53.0, 52.3, 27.6, 23.2, 21.6. IR ν_{max} (KBr, film, cm⁻¹): 3292, 3011, 2951, 2922, 2855, 1740, 1655, 1528, 1437, 1374, 1215, 801. HRMS (ESI): calcd for C₁₅H₁₈O₃N₂Na⁺ [M+Na]⁺: 297.1210, found: 297.1211.

methyl 2-acetamido-3-(6-fluoro-1*H***-indol-3-yl)propanoate 1e**. White solid, m.p. 144-145 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.93 (s, 1H), 8.31 (d, *J* = 7.2 Hz, 1H), 7.50-7.44 (m, 1H), 7.14-7.09 (m, 2H), 6.85 (t, *J* = 8.8 Hz, 1H), 4.47 (dd, *J* = 14.0, 7.2 Hz, 1H), 3.57 (s, 3H), 3.13-2.97 (m, 2H), 1.80 (s, 3H). ¹³C NMR (126 MHz, DMSO-*d*₆) δ 172.5, 169.3, 158.8 (d, *J* = 187.9 Hz), 135.9 (d, *J* = 10.1 Hz), 124.2 (d, *J* = 2.0 Hz), 123.9, 119.0 (d, *J* = 8.1 Hz), 109.8, 106.9 (d, *J* = 19.2 Hz), 97.4 (d, *J* = 20.2 Hz), 53.1, 51.8, 27.0, 22.3. ¹⁹F NMR (377 MHz, CDCl₃) δ -121.0 (s). IR ν_{max} (KBr, film, cm⁻¹): 3291, 3067, 2953, 2925, 2850, 1738, 1657, 1629, 1550, 1458, 1438, 1374, 1216, 1140, 952, 804. HRMS (ESI): calcd for C₁₄H₁₅O₃N₂FNa⁺ [M+Na]⁺: 301.0959, found: 301.0962.

methyl 2-acetamido-3-(6-chloro-1*H***-indol-3-yl)propanoate 1f.** White solid, m.p. 144-145 °C. ¹H NMR (300 MHz, CDCl₃) δ 8.17 (s, 1H), 7.43 (d, *J* = 8.4 Hz, 1H), 7.35 (d, *J* = 1.5 Hz, 1H), 7.09 (dd, *J* = 8.4, 1.8 Hz, 1H), 6.96 (d, *J* = 2.4 Hz, 1H), 5.98 (d, *J* = 6.9 Hz, 1H), 4.94 (dd, *J* = 13.2, 5.4 Hz, 1H), 3.69 (s, 3H), 3.36-3.23 (m, 2H), 1.97 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 172.3, 169.7, 136.4, 128.2, 126.4, 123.2, 120.5, 119.5, 111.2, 110.4, 53.0, 52.4, 27.6, 23.3. IR ν_{max} (KBr, film, cm⁻¹): 3282, 2925, 2852, 1737, 1657, 1544, 1456, 1327, 1374, 1215, 907, 805. HRMS (ESI): calcd for C₁₄H₁₅O₃N₂ClNa⁺ [M+Na]⁺: 317.0663, found: 317.0668.

methyl 2-acetamido-3-(7-methyl-1*H***-indol-3-yl)propanoate 1g**. White solid, m.p. 172-173 °C. ¹H NMR (500 MHz, DMSO-*d*₆) δ 10.82 (s, 1H), 8.28 (d, *J* = 7.5 Hz, 1H), 7.31 (d, *J* = 7.5 Hz, 1H), 7.13 (d, *J* = 1.5 Hz, 1H), 6.92-6.86 (m, 2H), 4.48 (dd, *J* = 14.0, 8.0 Hz, 1H), 3.58 (s, 3H), 3.13-2.98 (m, 2H), 2.43 (s, 3H), 1.81 (s, 3H). ¹³C NMR (126 MHz, DMSO-*d*₆) δ 172.6, 169.3, 135.6, 126.7, 123.3, 121.5, 120.5, 118.6, 115.6, 109.9, 53.1, 51.7, 27.2, 22.3, 16.7. IR v_{max} (KBr, film, cm⁻¹): 3292, 3054, 2924, 2854, 1738, 1657, 1527, 1437, 1374, 1216, 779, 747. HRMS (ESI): calcd for C₁₅H₁₈O₃N₂Na⁺ [M+Na]⁺: 297.1210, found: 297.1212.

Preparation of **1***h*: methyl *L*-tryptophanate hydrochloride (2.0 mmol, 509.4 mg) was dispersed in dry THF (8 mL) under the argon atmosphere and Et₃N (4.0 mmol, 0.6 mL) was added. The mixture was stirred at room temperature for 5 minutes. Trifluoroacetic anhydride (2.2 mmol, 0.3 mL) was then added dropwise at 0 °C. The resulting solution was heated to reflux for 2.5 hours. After cooling to room temperature, the mixture was diluted with ethyl acetate (50 mL) and the organic layer was washed by water (15 mL) and saturated NaCl (10 mL). Ethyl acetate was removed *in vacuum* and the crude product was purified by silica column chromatography (elute: petroleum ether / ethyl acetate from 50/1 to 7/1) to afford the desired product methyl (2,2,2-trifluoroacetyl)-*L*-tryptophanate **1h**.

methyl (2,2,2-trifluoroacetyl)-*L*-tryptophanate 1h. Pale yellow solid, m.p. 109 -111 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.89 (s, 1H), 9.92 (d, *J* = 7.6 Hz, 1H), 7.53 (d, *J* = 8.0 Hz, 1H), 7.34 (d, *J* = 8.0 Hz, 1H), 7.15 (s, 1H), 7.08 (t, *J* = 7.4 Hz, 1H), 6.99 (t, *J* = 7.4 Hz, 1H), 4.59 (dd, *J* = 13.2, 9.2 Hz, 1H), 3.67 (s, 3H), 3.33-3.16 (m, 2H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 170.7, 156.4 (q, *J* = 37.0 Hz), 136.1, 126.9, 123.7, 121.1, 118.5, 117.9, 115.7 (q, *J* = 289.1 Hz), 111.5, 109.1, 53.7, 52.3, 25.9. ¹⁹F NMR (377 MHz, DMSO-*d*₆) δ -74.2 (s). IR ν_{max} (KBr, film, cm⁻¹): 3408, 2925, 2851, 1714, 1550, 1458, 1439, 1213, 1175, 745. HRMS (ESI): calcd for C₁₄H₁₂O₃N₂F₂⁺ [M-H]⁺: 313.0806, found: 313.0800.

Preparation of **1***i*: methyl *L*-tryptophanate hydrochloride (2.0 mmol, 509.4 mg) was dispersed in 1,4-dioxane (2 mL), Na₂CO₃ aqueous solution (10%, 4.0 mL) was then added at 0 °C. After stirring 30 min at 0 °C, FmocCl (1.95 mmol, 504.5 mg in 2 mL of 1,4-dioxane) was added dropwise. The mixture was stirred at 0 °C for another 2 hour and continued overnight at room temperature. After the reaction completed, the mixture was diluted with ethyl acetate (50 mL) and the organic layer was washed by water and saturated NaCl (10 mL). Ethyl acetate was removed by rotary evaporator and the crude product was purified by silica column chromatography (elute: petroleum ether / ethyl acetate from 5/1 to 3/1) to afford the desired product methyl (((9*H*-fluoren-9-yl)methoxy)carbonyl)-*L*-tryptophanate **1***i*.

methyl (((9*H*-fluoren-9-yl)methoxy)carbonyl)-*L*-tryptophanate 1i. Pale yellow solid, m.p. 72 -74 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.89 (s, 1H), 7.88 (d, *J* = 7.2 Hz, 3H), 7.67 (t, *J* = 8.0 Hz, 2H), 7.54 (d, *J* = 8.0 Hz, 1H), 7.43-7.27 (m, 5H), 7.19 (s, 1H), 7.08 (t, *J* = 7.4 Hz, 1H), 7.00 (t, *J* = 7.4 Hz, 1H), 4.32 (dd, *J* = 13.8, 8.6 Hz, 1H), 4.26-4.19 (m, 3H), 3.62 (s, 3H), 3.22-3.04 (m, 2H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 172.7, 155.9, 143.7, 143.7, 140.7, 136.1, 127.6, 127.1, 125.2, 123.8, 121.0, 120.1, 118.4, 118.0, 111.5, 109.7, 65.7, 55.0, 51.9, 46.6, 26.9. IR ν_{max} (KBr, film, cm⁻¹): 3414, 3062, 2951, 1710, 1517, 1451, 1340, 1214, 1053, 739. HRMS (ESI): calcd for C₂₇H₂₄O₄N₂Na⁺ [M+Na]⁺: 463.1628, found: 463.1625.

2.3 Preparation of substituted diselenides 2^[4]

RX
$$\xrightarrow{\text{KSeCN, NaOH}}$$
 $R_{Se}^{Se_R}$
EtOH + H₂O,
r.t., 5 h

General procedure: To the solution of benzyl or alkyl bromide (5 mmol) in ethanol (15 mL) was added KSeCN (6.0 mmol). The solution became cloudy very quickly. The 3.0 M NaOH (4 mL) was added into the mixture after the benzyl or alkyl bromide converted to the intermediates completely (monitored by TLC). The reaction was allowed to stir at room temperature until the intermediates totally converted to the products (monitored by TLC). Most ethanol was removed *in vacuum* and the mixture was diluted with DCM (20 mL) and washed by H₂O (50 mL). The organic layer was dried over anhydrous sodium sulfate, evaporated and purified by silica column chromatography (elute: petroleum ether /dichloromethane) to afford the desired product substituted diselenides **2**.

1,2-bis(2-fluorobenzyl)diselane 2b. Yellow solid, m.p. 58-59 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.25-7.17 (m, 4H), 7.10-7.01 (m, 4H), 3.91 (s, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 160.6 (d, *J* = 248.5 Hz), 131.0 (d, *J* = 4.0 Hz), 128.9 (d, *J* = 9.1 Hz), 126.4 (d, *J* = 14.1 Hz), 123.9 (d, *J* = 3.0 Hz), 115.5 (d, *J* = 21.2 Hz), 25.1 (d, *J* = 2.0 Hz). ¹⁹F NMR (377 MHz, CDCl₃) δ -116.9 (s). IR v_{max} (KBr, film, cm⁻¹): 3069, 2921, 1581, 1489, 1457, 1234, 1171, 1079, 1074, 856, 764. HRMS (APCI): calcd for C₁₄H₁₃F₂Se₂+ [M+H]+: 378.9310, found: 378.9307.

1,2-bis(2-chlorobenzyl)diselane 2c. Yellow solid, m.p. 102-103 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.40-7.34 (m, 2H), 7.20-7.19 (m, 6H), 3.99 (s, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 136.7, 133.8, 130.8, 129.7, 128.5, 126.6, 30.5. IR v_{max} (KBr, film, cm⁻¹): 3060, 2996, 2923, 1589, 1475, 1442, 1414, 1172, 1050, 1032, 831, 757, 725. HRMS (EI): calcd for C₁₄H₁₂Cl₂Se₂+ [M]⁺: 409.8641, found: 409.8634.

1,2-bis(2-iodobenzyl)diselane 2d. Yellow solid, m.p. 96-97 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.82 (d, *J* = 8.0 Hz, 2H), 7.30-7.27 (m, 2H), 7.21-7.19 (m, 2H), 6.93 (t, *J* = 7.4 Hz, 2H), 3.99 (s, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 141.4, 139.7, 130.0, 128.7, 128.2, 100.5, 38.5. IR ν_{max} (KBr, film, cm⁻¹): 3356, 2922, 2851, 2372, 2320, 1658, 1632, 1467, 1435, 1362, 1010, 752. HRMS (APCI): calcd for C₁₄H₁₃I₂Se₂⁺ [M+H]⁺: 594.7432, found: 594.7428.

1,2-bis(3-methoxybenzyl)diselane 2e. Yellow oil. ¹H NMR (300 MHz, CDCl₃) δ 7.21 (t, *J* = 7.7 Hz, 2H), 6.84-6.78 (m, 6H), 3.83 (s, 4H), 3.81 (s, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 159.6, 140.5, 129.4, 121.3, 114.5, 112.7, 55.2, 32.7. IR ν_{max} (KBr, film, cm⁻¹): 2998, 2936, 2833, 1598, 1584, 1486, 1465, 1452, 1436, 1294, 1264, 1152, 1044, 780, 734, 695. HRMS (APCI): calcd for C₁₆H₁₇O₂Se₂⁺ [M+H]⁺: 402.9710, found: 402.9706.

1,2-bis(3-nitrobenzyl)diselane 2f. Yellow solid, m.p. 108-109 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.10-8.05 (m, 4H), 7.67 (d, *J* = 7.6 Hz, 2H), 7.59 (t, *J* = 7.6 Hz, 2H), 4.12 (s, 4H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 147.5, 141.9, 135.5, 129.8, 123.3, 121.8, 29.6. IR v_{max} (KBr, film, cm⁻¹): 3083, 2924, 1525, 1353, 1315, 1097, 1075, 807, 738, 684, 673. HRMS (APCI): calcd for C₁₄H₁₃O₄N₂Se₂+ [M+H]⁺: 432.9200, found: 432.9202.

1,2-bis(4-methylbenzyl)diselane 2g. Yellow solid, m.p. 58-59 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.12 (s, 8H), 3.85 (s, 4H), 2.33 (s, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 136.8, 135.9, 129.1, 128.9, 32.5, 21.2. IR ν_{max} (KBr, film, cm⁻¹): 3020, 2919, 2854, 1896, 1152, 1448, 1417, 1171, 814. HRMS (nano ESI): calcd for C₁₆H₁₈Se₂Na⁺ [M+Na]⁺: 392.9634, found: 392.9616.

1,2-bis(4-bromobenzyl)diselane 2h. Yellow solid, m.p. 105-106 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.42 (d, *J* = 8.5 Hz, 4H), 7.06 (d, *J* = 8.0 Hz, 4H), 3.79 (s, 4H). ¹³C NMR (126 MHz, CDCl₃) δ 137.9, 131.6, 130.6, 121.0, 31.7. IR v_{max} (KBr, film, cm⁻¹): 2923, 2850, 1900, 1527, 1483, 1399, 1352, 1168, 1070, 1009, 847, 819, 802, 475. HRMS (EI): calcd for C₁₄H₁₂Br₂Se₂⁺ [M]⁺: 497.7631, found: 497.7621.

1,2-bis(3-chloro-2-fluorobenzyl)diselane 2i. Yellow solid, m.p. 54-55 °C. 1H NMR (400 MHz, CDCl₃) δ 7.30 (t, *J* = 7.4 Hz, 2H), 7.05-7.00 (m, 4H), 3.92 (s, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 156.1 (d, *J* = 251.5 Hz), 129.6, 129.1 (d, *J* = 3.0 Hz), 128.1 (d, *J* = 15.2 Hz), 124.3 (d, *J* = 4.0 Hz), 121.2 (d, *J* = 18.2 Hz), 24.8 (d, *J* = 2.0 Hz). ¹⁹F NMR (377 MHz, CDCl₃) δ -118.7 (s). IR ν_{max}

 $(KBr, film, cm^{-1}): 2921, 2850, 2320, 1468, 1458, 1229, 1189, 1170, 894, 778, 725. HRMS (EI): calcd for C_{14}H_{12}F_2Cl_2Se_2^+ [M]^+: 445.8453, found: 445.8444.$

1,2-bis(3,5-bis(trifluoromethyl)benzyl)diselane 2j. Yellow solid, m.p. 62-63 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.78 (s, 2H), 7.61 (s, 4H), 3.86 (s, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 141.1, 131.7 (q, *J* = 34.3 Hz), 128.6 (q, *J* = 3.0 Hz), 122.9 (q, *J* = 267.3 Hz), 120.9 (q, *J* = 4.0 Hz), 30.2. ¹⁹F NMR (377 MHz, CDCl₃) δ -63.0 (s). IR v_{max} (KBr, film, cm⁻¹): 3359, 3189, 2923, 2851, 1464, 1374, 1278, 1171, 1132, 923, 896, 857, 729, 704, 683. HRMS (APCI): calcd for C₁₈H₁₉F₁₂Se₂⁺ [M+H]⁺: 612.8849, found: 612.8842.

1,2-bis(3,5-dimethoxybenzyl)diselane 2k. Yellow solid, m.p. 53-54 °C. ¹H NMR (500 MHz, CDCl₃) δ 6.40 (s, 4H), 6.36 (s, 2H), 3.83 (s, 4H), 3.79 (s, 12H). ¹³C NMR (126 MHz, CDCl₃) δ 160.7, 141.2, 106.9, 99.3, 55.3, 33.0. IR ν_{max} (KBr, film, cm⁻¹): 2998, 2937, 2835, 1595, 1462, 1429, 1345, 1322, 1297, 1206, 1156, 1059, 833, 694. HRMS (APCI): calcd for C₁₈H₂₃O₄Se₂+ [M+H]⁺: 462.9921, found: 462.9919.

1,2-dihexyldiselane 2m. Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 2.91 (t, *J* = 7.4 Hz, 4H), 1.76-1.69 (m, 4H), 1.41-1.26 (m, 12H), 0.89 (t, *J* = 6.6 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 31.3, 31.0, 30.3, 29.2, 22.6, 14.0. IR v_{max} (KBr, film, cm⁻¹): 2956, 2925, 2854, 1466, 1378, 1227, 1183, 723. HRMS (EI): calcd for C₁₂H₂₆Se₂+ [M+H]⁺: 330.0359, found: 330.0357.

3. Optimizaiton of reaction conditions

Entry	[I] (equiv.)	Oxidant (equiv.)	solvent	time	Yield (%)
1^b	TBAI (0.1)	35% H ₂ O ₂ (1.02)	CH3CN	24 h	31
2^b	TBAI (0.1)	35% H ₂ O ₂ (1.02)	H ₂ O	24 h	N. R.
3 ^c	TBAI (0.1)	35% H ₂ O ₂ (1.02)	$H_2O + CH_3CN$	24 h	trace
4^b	TBAI (0.1)	35% H2O2 (2.04)	CH ₃ CN	19 h	41
5^b	TBAI (1.0)	35% H ₂ O ₂ (1.02)	CH ₃ CN	24 h	N. R.
6^b	TBAI (1.0)	35% H ₂ O ₂ (2.04)	CH ₃ CN	24 h	N. R.
7^b	TBAI (0.1)	35% H2O2 (2.04)	DCM	24 h	42
8^b	TBAI (0.1)	35% H ₂ O ₂ (2.04)	THF	24 h	6
9^b	TBAI (0.1)	35% H ₂ O ₂ (2.04)	EA	24 h	47
10^{b}	TBAI (0.1)	35% H ₂ O ₂ (2.04)	MeOH	24 h	21
11^b	TBAI (0.1)	35% H ₂ O ₂ (2.04)	DMF	24 h	N. R.
12^d	KI (0.1)	Oxone (1.00)	$H_2O + CH_3CN$	1 h	56
13^d	KI (0.2))	Oxone (1.00)	$H_2O + CH_3CN$	1 h	53
14^d	KI (0.05)	Oxone (1.00)	$H_2O + CH_3CN$	1 h	49
15^d	TBAI (0.05)	Oxone (1.00)	$H_2O + CH_3CN$	1 h	59
16^d	NaI (0.05)	Oxone (1.00)	$H_2O + CH_3CN$	1 h	55
17^d	KI (0.05)	Oxone (0.75)	$H_2O + CH_3CN$	1 h	54
18^d	KI (0.05)	Oxone (0.50)	$H_2O + CH_3CN$	1 h	54
19 ^e	TBAI (0.05)	Oxone (1.00)	H ₂ O	1 h	N. D.
20^{e}	TBAI (0.05)	Oxone (1.00)	CH ₃ CN	1 h	43
21^e	TBAI (0.05)	Oxone (1.00)	DMSO	20 min	85
22 ^e	TBAI (0.05)	Oxone (1.00)	DMF	20 min	69
23 ^e	TBAI (0.05)	Oxone (1.00)	MeOH	15 min	31
24 ^{<i>e,f</i>}	TBAI (0.05)	Oxone (1.00)	DMSO	8 min	94
25 ^{e,f}	<i>n</i> -Bu ₄ NI ₃ (0.05)	Oxone (1.00)	DMSO	10 min	89
26 ^{e,f}	TBAI (0.05)	O ₂ (1 atm)	DMSO	24 h	N. R.

^{*a*} Unless noted otherwise, all the reactions were conducted with *L*-methyl acetyl-tryptophanate (0.1 mmol), dibenzyldiselenide (0.1 mmol), catalyst, oxidant in solvent. Isolated yields were given. ^{*b*} 0.5 mL solvent: ^{*c*} Solvent: 0.25 mL CH₃CN and 0.25 mL H₂O. ^{*d*} Solvent: 0.5 mL CH₃CN and 0.05 mL H₂O. ^{*e*} 0.55 mL solvent. ^{*f*} Quenched by 1 mL saturated Na₂S₂O₃ (aq.) before purification.

4. General procedure for synthesis of 3, 4 and 5

General procedure: To the mixture of acetyl tryptophanate (0.1 mmol), diselenide (0.1 mmol) and TBAI (5 mol%) was added DMSO (0.55 mL). And then oxone (0.1 mmol) was added in one portion. The reaction was stirred at room temperature until the acetyl tryptophanate totally disappeared (monitored by TLC). Saturated sodium thiosulfate (1 mL) was added to quench the reaction. The reaction was diluted with ethyl acetate (5 mL) and washed by H_2O (20 mL). Aqueous phase was extracted with ethyl acetate (5 mL × 2). The organic layer was combined, ethyl acetate was removed by rotary evaporator and the crude product was purified by silica column chromatography (elute: petroleum ether / ethyl acetate 1/3) to afford the desired products **3/4**.

methyl (*S***)-2-acetamido-3-(2-(benzylselanyl)-1***H***-indol-3-yl)propanoate 3a. Yellow solid, 40.2 mg (from 0.1 mmol), 94% yield, > 99.9% ee, m.p. 55-57 °C. [α]_D ²⁸ = 20.4 (c 0.25, CHCl₃) ¹H NMR (300 MHz, CDCl₃) δ 7.94 (s, 1H), 7.51 (d,** *J* **= 7.8 Hz, 1H), 7.22-7.17 (m, 5H), 7.14-7.09 (m, 1H), 7.04-7.01 (m, 2H), 6.00 (d,** *J* **= 7.6 Hz, 1H), 4.84 (dd,** *J* **= 13.8, 6.0 Hz, 1H), 3.92 (s, 2H), 3.66 (s, 3H), 3.22-3.06 (m, 2H), 1.91 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 172.4, 169.7, 138.6, 137.4, 128.7, 128.6, 127.7, 127.1, 123.0, 120.9, 119.8, 118.7, 117.1, 110.7, 52.9, 52.4, 33.5, 27.9, 23.2. IR ν_{max} (KBr, film, cm⁻¹): 3272, 3059, 2950, 2854, 1738, 1657, 1517, 1494, 1436, 1373, 1340, 1216, 743, 697. HRMS (ESI): calcd for C₂₀H₁₉O₃N₂Se⁺ [M-H]⁺: 429.0723, found: 429.0730. The enantiomeric excess was determined by HPLC on the Chiralpak IA column connected in series (***n***-Hexane : isopropanol = 80 :1, flowing rate = 1.0 mL/min, 25 °C, UV detection at \lambda = 254 nm),** *t***_R = 16.2 min.**

methyl 2-acetamido-3-(2-((2-fluorobenzyl)selanyl)-1*H***-indol-3-yl)propanoate 3b.** Pale yellow solid, 38.5 mg (from 0.1 mmol), 86% yield, m.p. 52-54 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.14 (s, 1H), 7.51 (d, *J* = 8.0 Hz, 1H), 7.23 (s, 1H), 7.19-7.16 (m, 2H), 7.10 (t, *J* = 7.4 Hz, 1H), 6.97 (t, *J* = 9.2 Hz, 1H), 6.89 (t, *J* = 7.4 Hz, 1H), 6.81 (t, *J* = 7.6 Hz, 1H), 5.99 (d, *J* = 7.6 Hz, 1H), 4.84 (dd, *J* = 12.8, 6.0 Hz, 1H), 3.92 (s, 2H), 3.67 (s, 3H), 3.52 (s, 1H), 3.19-3.03 (m, 2H), 1.90 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 172.3, 169.6, 160.45 (d, *J* = 248.5 Hz), 137.4, 130.6 (d, *J* = 4.0 Hz), 129.0 (d, *J* = 8.0 Hz), 127.7, 126.0 (d, *J* = 14.1 Hz), 124.0 (d, *J* = 4.0 Hz), 123.1, 120.6, 119.9, 118.8, 117.5, 115.4 (d, *J* = 21.2 Hz), 110.8, 52.8, 52.4, 27.8, 26.0 (d, *J* = 3.0 Hz), 23.2. ¹⁹F NMR (377 MHz, CDCl₃) δ -117.3 (s). IR ν_{max} (KBr, film, cm⁻¹): 3271, 3059, 2950, 2922, 2850, 1738, 1657, 1520, 1491, 1437, 1374, 1340, 1233, 1216, 858, 745. HRMS (ESI): calcd for C₂₁H₂₁O₃N₂FNaSe⁺ [M+Na]⁺: 471.0594, found: 471.0591.

methyl 2-acetamido-3-(2-((2-chlorobenzyl)selanyl)-1*H***-indol-3-yl)propanoate 3c.** Pale yellow solid, 33.6 mg (from 0.1 mmol), 72% yield, m.p. 62-63 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.95 (s, 1H), 7.51 (d, *J* = 8.0 Hz, 1H), 7.35 (d, *J* = 8.0 Hz, 1H), 7.24 (s, 1H), 7.21-7.09 (m, 3H), 6.98 (t, *J* = 7.2 Hz, 1H), 6.75 (d, *J* = 7.6 Hz, 1H), 5.95 (d, *J* = 6.8 Hz, 1H), 4.83 (dd, *J* = 13.2, 6.0 Hz, 1H), 4.00 (s, 2H), 3.67 (s, 3H), 3.18-3.00 (m, 2H), 1.90 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 172.3, 169.6, 137.3, 136.4, 133.7, 130.4, 129.8, 128.6, 127.8, 126.7, 123.2, 120.5, 120.0, 118.9, 117.8, 110.7, 52.8, 52.4, 31.3, 27.9, 23.2. IR ν_{max} (KBr, film, cm⁻¹): 3264, 3056, 2950, 2921, 2849, 1738, 1658, 1521, 1444, 1374, 1340, 1215, 1052, 1033, 745. HRMS (ESI): calcd for C₂₁H₂₀O₃N₂ClSe⁺ [M-H]⁺: 463.0333, found: 463.0329.

methyl 2-acetamido-3-(2-((2-iodobenzyl)selanyl)-1*H***-indol-3-yl)propanoate 3d**. Pale yellow solid, 49.2 mg (from 0.1 mmol), 89% yield, m.p. 67-69 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.97 (s, 1H), 7.83 (d, *J* = 7.6 Hz, 1H), 7.51 (d, *J* = 7.6 Hz, 1H), 7.19 (t, *J* = 7.6 Hz, 1H), 7.08 (dt, *J* = 22.8, 7.6 Hz, 2H), 6.89 (t, *J* = 7.6 Hz, 1H), 6.75 (d, *J* = 7.6 Hz, 1H), 5.96 (d, *J* = 7.6 Hz, 1H), 4.83 (dd, *J* = 13.2, 6.0 Hz, 1H), 4.02 (s, 2H), 3.68 (s, 3H), 3.17-2.99 (m, 2H), 1.91 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 172.3, 169.6, 141.0, 139.8, 137.4, 129.6, 128.8, 128.2, 127.8, 123.2, 120.4, 120.0, 118.9, 117.9, 110.8, 100.3, 52.8, 52.4, 39.4, 27.9, 23.2. IR ν_{max} (KBr, film, cm⁻¹): 3271, 3055, 2923, 2851, 1737, 1655, 1520, 1436, 1374, 1340, 1215, 1011, 744. HRMS (ESI): calcd for $C_{21}H_{20}O_{3}N_{2}ISe^{+}$ [M-H]⁺: 554.9689, found: 554.9686.

methyl 2-acetamido-3-(2-((3-methoxybenzyl)selanyl)-1*H***-indol-3-yl)propanoate 3e**. Pale yellow solid, 42.6 mg (from 0.1 mmol), 93% yield, m.p. 48-50 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.87 (s, 1H), 7.51 (d, *J* = 7.6 Hz, 1H), 7.24-7.22 (m, 1H), 7.19-7.08 (m, 3H), 6.75 (d, *J* = 8.0 Hz, 1H), 6.67 (d, *J* = 7.2 Hz, 1H), 6.47 (s, 1H), 5.97 (d, *J* = 6.8 Hz, 1H), 4.84 (dd, *J* = 12.4, 6.4 Hz, 1H), 3.89 (s, 2H), 3.67 (s, 3H), 3.55 (s, 3H), 3.24-3.11 (m, 2H), 1.91 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 172.3, 169.6, 159.5, 140.1, 137.3, 129.5, 127.8, 123.0, 120.1, 120.9, 119.9, 118.7, 117.2, 113.6, 113.3, 110.7, 55.0, 52.9, 52.4, 33.4, 27.9, 23.2. IR ν_{max} (KBr, film, cm⁻¹): 3268, 3054, 2916, 2849, 1743, 1659, 1599, 1517, 1488, 1437, 1374, 1340, 1265, 1215, 1040, 738, 697. HRMS (ESI): calcd for C₂₂H₂₃O₄N₂Se⁺ [M-H]⁺: 459.0829, found: 459.0826.

methyl 2-acetamido-3-(2-((3-nitrobenzyl)selanyl)-1*H***-indol-3-yl)propanoate 3f. Yellow solid, 43.5 mg (from 0.1 mmol), 92% yield, m.p. 64-66 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.04-8.01 (m, 2H), 7.88 (s, 1H), 7.49 (d,** *J* **= 8.0 Hz, 1H), 7.31 (t,** *J* **= 8.0 Hz, 1H), 7.24 -7.18 (m, 3H), 7.11 (t,** *J* **= 7.2 Hz, 1H), 5.95 (d,** *J* **= 7.6 Hz, 1H), 4.84 (dd,** *J* **= 13.0, 6.2 Hz, 1H), 3.99 (s, 2H), 3.65 (s, 3H), 3.16-3.02 (m, 2H), 1.91 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 172.2, 169.6, 148.1, 140.8, 137.4, 134.6, 129.3, 127.7, 123.6, 123.5, 122.0, 120.2, 119.5, 118.9, 118.2, 110.8, 52.8, 52.4, 32.1, 28.1, 23.2. IR ν_{max} (KBr, film, cm⁻¹): 3263, 3059, 2922, 2850, 1737, 1657, 1527, 1436, 1349, 1216, 810, 739, 686. HRMS (ESI): calcd for C₂₁H₂₀O₅N₃Se⁺ [M-H]⁺: 474.0574, found: 474.0570.**

methyl 2-acetamido-3-(2-((4-methylbenzyl)selanyl)-1*H***-indol-3-yl)propanoate 3g**. Pale yellow solid, 35.4 mg (from 0.1 mmol), 80% yield, m.p. 56-57 °C. ¹H NMR (400 MHz, CDCl3) δ 7.84 (s, 1H), 7.52 (d, *J* = 7.6 Hz, 1H), 7.23-7.15 (m, 2H), 7.10 (t, *J* = 7.4 Hz, 1H), 7.02 (d, *J* = 7.6 Hz, 2H), 6.94 (d, *J* = 7.6 Hz, 2H), 5.97 (d, *J* = 7.2 Hz, 1H), 4.85 (dd, *J* = 13.0, 6.2 Hz, 1H), 3.91 (s, 2H), 3.67 (s, 3H), 3.25-3.12 (m, 2H), 2.32 (s, 3H), 1.91 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 172.3, 169.6, 137.3, 137.0, 135.6, 129.2, 128.6, 127.8, 123.0, 121.2, 119.9, 118.8, 117.0, 110.7, 52.9, 52.4, 33.4, 28.0, 23.2, 21.1. IR ν_{max} (KBr, film, cm⁻¹): 3269, 3051, 2923, 2851, 1737, 1655, 1513, 1437, 1374, 1340, 1216, 817, 742. HRMS (ESI): calcd for C₂₂H₂₃O₃N₂Se⁺ [M-H]⁺: 443.0879, found: 443.0878.

methyl 2-acetamido-3-(2-((4-bromobenzyl)selanyl)-1*H***-indol-3-yl)propanoate 3h. Pale yellow solid, 45.3 mg (from 0.1 mmol), 89% yield, m.p. 68-69 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.93 (s, 1H), 7.52 (d,** *J* **= 7.6 Hz, 1H), 7.30 (d,** *J* **= 7.6 Hz, 2H), 7.24 (s, 1H), 7.19 (t,** *J* **= 7.6 Hz, 1H), 7.11 (t,** *J* **= 7.4 Hz, 1H), 6.87 (d,** *J* **= 8.0 Hz, 2H), 5.96 (d,** *J* **= 7.6 Hz, 1H), 4.86 (dd,** *J* **= 13.0, 6.2 Hz, 1H), 3.86 (s, 2H), 3.66 (s, 3H), 3.21-3.07 (m, 2H), 1.91 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 172.3, 169.6, 137.8, 137.3, 131.6, 130.3, 127.7, 123.2, 121.0, 120.4, 120.0, 118.8, 117.6, 110.8, 52.8, 52.4, 32.7, 28.0, 23.2. IR ν_{max} (KBr, film, cm⁻¹): 3270, 3056, 2917, 2849, 1737, 1655, 1521, 1486, 1437, 1374, 1340, 1216, 1011, 744. HRMS (ESI): calcd for C₂₁H₂₀O₃N₂BrSe⁺ [M-H]⁺: 506.9828, found: 506.9822.**

methyl 2-acetamido-3-(2-((3-chloro-2-fluorobenzyl)selanyl)-1*H***-indol-3-yl)propanoate 3i. Pale yellow solid, 42.4 mg (from 0.1 mmol), 88% yield, m.p. 59-61 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.02 (s, 1H), 7.52 (d,** *J* **= 8.0 Hz, 1H), 7.28 (s, 1H), 7.24-7.18 (m, 2H), 7.10 (t,** *J* **= 7.2 Hz, 1H), 6.82 (t,** *J* **= 7.6 Hz, 1H), 6.68 (t,** *J* **= 7.0 Hz, 1H), 5.95 (d,** *J* **= 7.2 Hz, 1H), 4.85 (dd,** *J* **= 12.4, 6.0 Hz, 1H), 3.92 (s, 2H), 3.67 (s, 3H), 3.21-3.04 (m, 2H), 1.90 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 172.3, 169.6, 155.9 (d,** *J* **= 250.5 Hz), 137.4, 129.5, 128.7 (d,** *J* **= 3.0 Hz), 127.9 (d,** *J* **= 15.2 Hz), 127.7, 124.3 (d,** *J* **= 5.1 Hz), 123.3, 121.2 (d,** *J* **= 17.2 Hz), 120.1, 120.0, 118.9, 117.8, 110.8, 52.8, 52.4, 28.0, 25.9 (d,** *J* **= 2.0 Hz), 23.2. ¹⁹F NMR (377 MHz, CDCl₃) δ -119.0 (s). IR v_{max} (KBr, film, cm⁻¹): 3271, 3056, 2952, 2925, 2848, 1734, 1655, 1516, 1459, 1436, 1373, 1340, 1216, 895, 784, 743, 728. HRMS (ESI): calcd for C_{21H19}O_{3N2}FClSe⁺ [M-H]⁺: 481.0239, found: 481.0234.**

methyl 2-acetamido-3-(2-((3,5-bis(trifluoromethyl)benzyl)selanyl)-1*H***-indol-3-yl)propanoate 3j. Pale yellow solid, 47.7 mg (from 0.1 mmol), 84% yield, m.p. 54-56 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.05 (s, 1H), 7.66 (s, 1H), 7.48 (d,** *J* **= 8.0 Hz, 1H), 7.34 (s, 2H), 7.24-7.17 (m, 2H), 7.11 (t,** *J* **= 7.2 Hz, 1H), 5.95 (d,** *J* **= 7.6 Hz, 1H), 4.85 (dd,** *J* **= 13.0, 6.2 Hz, 1H), 3.98 (s, 2H), 3.65 (s, 3H), 3.11-2.95 (m, 2H), 1.89 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 172.3, 169.6, 141.4, 137.4, 131.6 (q,** *J* **= 33.7 Hz), 128.6 (q,** *J* **= 3.7 Hz), 127.6, 123.6, 123.0 (q,** *J* **= 274.0 Hz), 120.7 (q,** *J* **= 3.7 Hz), 120.2, 118.9, 118.8, 118.2, 110.9, 52.9, 52.4, 31.7, 28.0, 23.1. ¹⁹F NMR (377 MHz, CDCl₃) δ -63.0 (s). IR ν_{max} (KBr, film, cm⁻¹): 3263, 2915, 2850, 1737, 1659, 1521, 1438, 1375, 1278, 1173, 1134, 895, 744, 704, 683. HRMS (ESI): calcd for C₂₃H₁₉O₃N₂F₆Se⁺ [M-H]⁺: 565.0471, found: 565.0466.**

methyl 2-acetamido-3-(2-((3,5-dimethoxybenzyl)selanyl)-1*H***-indol-3-yl)propanoate 3k**. Pale yellow solid, 44.1 mg (from 0.1 mmol), 90% yield, m.p. 55-57 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.99 (s, 1H), 7.51 (d, *J* = 7.8 Hz, 1H), 7.24-7.07 (m, 3H), 6.30 (s, 1H), 6.13 (d, *J* = 2.1 Hz, 2H), 6.00 (d, *J* = 7.8 Hz, 1H), 4.85 (dd, *J* = 13.6, 5.9 Hz, 1H), 3.84 (s, 2H), 3.67 (s, 3H), 3.55 (s, 6H), 3.28-3.13 (m, 2H), 1.91 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 172.3, 169.6, 160.7, 140.9, 137.3, 127.8, 123.1, 120.9, 119.9, 118.7, 117.2, 110.7, 106.3, 99.7, 55.1, 52.9, 52.4, 33.6, 28.0, 23.2. IR v_{max} (KBr, film, cm⁻¹): 3271, 3000, 2923, 2849, 1743, 1657, 1595, 1520, 1459, 1430, 1340, 1205, 1152, 1059, 836, 745, 695. HRMS (ESI): calcd for C₂₃H₂₅O₅N₂Se⁺ [M-H]⁺: 489.0934, found: 489.0934.

methyl (S)-2-acetamido-3-(2-(methylselanyl)-1H-indol-3-yl)propanoate 3l. Yellow solid, 27.9 mg (from 0.1 mmol), 79% yield, m.p. 52-54 °C. [α]_D ²⁸ = 45.6 (c 0.25, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 8.38 (s, 1H), 7.51 (d, *J* = 7.6 Hz, 1H), 7.29 (d, *J* = 8.4 Hz, 1H), 7.17 (t, *J* = 7.4 Hz, 1H), 7.10 (t, *J* = 7.4 Hz, 1H), 6.10 (d, *J* = 7.4 Hz, 1H), 4.92 (dd, *J* = 13.4, 5.8 Hz, 1H), 3.69 (s, 3H), 3.43-3.31 (m, 2H), 2.23 (s, 3H), 1.94 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 172.4, 169.7, 137.3, 127.9, 122.8, 121.9, 119.9, 118.5, 115.5, 110.7, 53.0, 52.4, 28.2, 23.2, 9.7. IR ν_{max} (KBr, film, cm⁻¹): 3271, 3056, 2928, 2852, 1737, 1657, 1525, 1436, 1374, 1340, 1265, 1216, 1010, 802, 743. HRMS (ESI): calcd for C₁₅H₁₇O₃N₂Se⁺ [M-H]⁺: 353.0410, found: 353.0417.

methyl 2-acetamido-3-(2-(hexylselanyl)-1*H***-indol-3-yl)propanoate 3m**. Orange oil, 34.0 mg (from 0.1 mmol), 80% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.40 (s, 1H), 7.52 (d, *J* = 7.6 Hz, 1H), 7.29 (d, *J* = 8.0 Hz, 1H), 7.17 (t, *J* = 7.4 Hz, 1H), 7.10 (t, *J* = 7.4 Hz, 1H), 6.11 (d, *J* = 7.4 Hz, 1H), 4.91 (dd, *J* = 12.2, 5.4 Hz, 1H), 3.69 (s, 3H), 3.41-3.33 (m, 2H), 2.75 (t, *J* = 7.4 Hz, 2H), 1.94 (s, 3H), 1.63-1.56 (m, 2H), 1.37-1.20 (m, 6H), 0.85 (t, *J* = 6.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 172.4, 169.7, 137.3, 127.8, 122.8, 121.2, 119.8, 118.5, 116.2, 110.7, 53.0, 52.4, 31.2, 30.6, 30.0, 29.3, 28.2, 23.2, 22.5, 14.0. IR ν_{max} (KBr, film, cm⁻¹): 3271, 3057, 2955, 2926, 2854, 1737, 1657, 1521. 1436, 1374, 1340, 1261, 1216, 1011 799, 743. HRMS (ESI): calcd for C₂₀H₂₈O₃N₂NaSe⁺ [M+Na]⁺: 447.1157, found: 447.1164.

methyl (*S*)-2-acetamido-3-(2-(phenylselanyl)-1*H*-indol-3-yl)propanoate 3n. Pale yellow solid, 31.5 mg (from 0.1 mmol), 76% yield, m.p. 65-66 °C. [α]_D ²⁸ = 38.8 (c 0.25, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 8.32 (s, 1H), 7.60 (d, *J* = 8.0 Hz, 1H), 7.31 (d, *J* = 8.0 Hz, 1H), 7.24-7.20 (m, 6H), 7.14 (t, *J* = 7.6 Hz, 1H), 5.99 (d, *J* = 7.6 Hz, 1H), 4.91 (dd, *J* = 13.4, 5.8 Hz, 1H), 3.68 (s, 3H), 3.46-3.33 (m, 2H), 1.78 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 172.3, 169.8, 137.7, 131.4, 129.6, 129.6, 127.8, 126.9, 123.4, 120.1, 119.8, 119.0, 117.6, 111.0, 52.9, 52.4, 28.2, 23.0. IR ν_{max} (KBr, film, cm⁻¹): 3261, 3056, 2924, 2853, 1734, 1657, 1517, 1477, 1438, 1374, 1340, 1218, 1021, 799, 737, 689. HRMS (ESI): calcd for C₂₀H₁₉O₃N₂Se⁺ [M-H]⁺: 415.0566, found: 415.0577.

methyl (S)-2-acetamido-3-(2-((2-bromophenyl)selanyl)-1H-indol-3-yl)propanoate 30. Yellow solid, 15.7 mg (from 0.1

mmol), 32% yield, m.p. 80-81 °C. [α]_D ²⁸ = 37.6 (c 0.125, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ , 8.41 (s, 1H), 7.65 (d, *J* = 8.0 Hz, 1H), 7.49-7.47 (m, 1H), 7.36 (d, *J* = 8.4 Hz, 1H), 7.27-7.25 (m, 1H), 7.18 (t, *J* = 7.4 Hz, 1H), 7.06-7.00 (m, 2H), 6.59-6.56 (m, 1H), 5.99 (d, *J* = 7.6 Hz, 1H), 4.92 (dd, *J* = 13.4, 5.8 Hz, 1H), 3.68 (s, 3H), 3.46-3.30 (m, 2H), 1.77 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 172.2, 169.8, 138.0, 135.4, 132.8, 129.0, 128.3, 127.9, 127.6, 123.9, 121.8, 120.3, 119.4, 119.3, 119.0, 111.2, 52.9, 52.5, 28.2, 23.0. IR v_{max} (KBr, film, cm⁻¹): 3261, 3055, 2950, 2923, 2850, 1737, 1657, 1521, 1441, 1374, 1341, 1218, 1010, 744. HRMS (ESI): calcd for C₂₀H₁₈O₃N₂BrSe⁺ [M-H]⁺: 492.9672, found: 492.9681.

methyl (*S***)-2-acetamido-3-(2-(***p***-tolylselanyl)-1***H***-indol-3-yl)propanoate 3p. Pale yellow solid, 26.6 mg (from 0.1 mmol), 62% yield, m.p. 65-66 °C. [α]_D ²⁸ = 42.9 (c 0.245, CHCl₃). ¹H NMR (400 MHz, CDCl3) δ 8.21 (s, 1H), 7.58 (d,** *J* **= 8.0 Hz, 1H), 7.29 (d,** *J* **= 8.0 Hz, 1H), 7.20 (t,** *J* **= 7.5 Hz, 1H), 7.18-7.11 (m, 3H), 7.04 (d,** *J* **= 8.0 Hz, 2H), 5.99 (d,** *J* **= 7.6 Hz, 1H), 4.91 (dd,** *J* **= 13.2, 6.0 Hz, 1H), 3.69 (s, 3H), 3.45-3.33 (m, 2H), 2.28 (s, 3H), 1.80 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 172.3, 169.8, 137.6, 137.1, 130.4, 130.3, 127.9, 127.2, 123.2, 120.6, 120.1, 118.9, 116.9, 110.9, 52.9, 52.5, 28.2, 23.0, 21.0. IR ν_{max} (KBr, film, cm⁻¹): 3271, 3056, 2950, 2925, 2855, 1743, 1657, 1517, 1489, 1436, 1374, 1340, 1216, 1014, 802, 744. HRMS (ESI): calcd for C₂₀H₂₁O₃N₂Se⁺ [M-H]⁺: 429.0723, found: 429.0733.**

methyl (*S***)-2-acetamido-3-(2-((4-(***tert***-butyl)phenyl)selanyl)-1***H***-indol-3-yl)propanoate 3q. Pale yellow solid, 36.9 mg (from 0.1 mmol), 78% yield, m.p. 80-82 °C. [α]_D ²⁸ = 29.0 (c 0.255, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 8.25 (s, 1H), 7.59 (d,** *J* **= 8.0 Hz, 1H), 7.30 (d,** *J* **= 8.0 Hz, 1H), 7.24-7.23 (m, 2H), 7.21-7.12 (m, 4H), 5.98 (d,** *J* **= 7.6 Hz, 1H), 4.91 (dd,** *J* **= 13.2, 6.0 Hz, 1H), 3.70 (s, 3H), 3.47-3.34 (m, 2H), 1.76 (s, 3H), 1.26 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 172.3, 169.8, 150.4, 137.7, 129.7, 127.8, 127.5, 126.7, 123.3, 120.3, 120.1, 118.9, 117.2, 110.9, 53.0, 52.5, 34.5, 31.2, 28.2, 23.0. IR ν_{max} (KBr, film, cm⁻¹): 3271, 3054, 2960, 2865, 1738, 1659, 1517, 1498, 1436, 1374, 1341, 1217, 1113, 1010, 820, 743, 542. HRMS (ESI): calcd for C_{24}H_{27}O_3N_2Se^+ [M-H]⁺: 471.1192, found: 471.1202.**

methyl (*S***)-2-acetamido-3-(2-((4-chlorophenyl)selanyl)-1***H***-indol-3-yl)propanoate 3r.** Pale yellow solid, 32.9 mg (from 0.1 mmol), 73% yield, m.p. 72-74 °C. $[\alpha]_D$ ²⁸ = 41.2 (c 0.255, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 8.29 (s, 1H), 7.60 (d, *J* = 7.6 Hz, 1H), 7.31 (d, *J* = 8.0 Hz, 1H), 7.23 (t, *J* = 7.6 Hz, 1H), 7.19-7.10 (m, 5H), 5.99 (d, *J* = 8.0 Hz, 1H), 4.92 (dd, *J* = 13.4, 5.8 Hz, 1H),

3.67 (s, 3H), 3.45-3.31 (m, 2H), 1.84 (s, 3H). 13 C NMR (101 MHz, CDCl₃) δ 172.3, 169.7, 137.7, 133.1, 130.9, 129.7, 129.6, 127.8, 123.6, 120.3, 119.4, 119.1, 117.9, 111.1, 52.9, 52.5, 28.3, 23.1. IR ν_{max} (KBr, film, cm⁻¹): 3271, 3056, 2951, 2926, 2854, 2738, 1651, 1517, 1473, 1436, 1374, 1340, 1218, 1088, 1009, 812, 744. HRMS (ESI): calcd for C₂₀H₁₈O₃N₂ClSe⁺ [M-H]⁺: 449.0177, found: 449.0186.

methyl (*S***)-2-acetamido-3-(2-((4-(trifluoromethyl)phenyl)selanyl)-1***H***-indol-3-yl)propanoate 3s. Yellow solid, 32.1 mg (from 0.1 mmol), 66% yield, m.p. 77-79 °C. [α]_D ²⁸ = 45.6 (c 1.01, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 8.47 (s, 1H), 7.62 (d,** *J* **= 7.6 Hz, 1H), 7.42 (d,** *J* **= 8.4 Hz, 2H), 7.33 (d,** *J* **= 8.4 Hz, 1H), 7.27-7.25 (m, 1H), 7.22 (d,** *J* **= 8.4 Hz, 2H), 7.17 (t,** *J* **= 7.6 Hz, 1H), 6.00 (d,** *J* **= 7.6 Hz, 1H), 4.92 (dd,** *J* **= 13.6, 6.0 Hz, 1H), 3.66 (s, 3H), 3.45-3.31 (m, 2H), 1.81 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 172.2, 169.7, 137.9, 137.2, 128.8 (q,** *J* **= 33.3 Hz), 127.7, 126.2 (q,** *J* **= 3.7 Hz), 123.9 (q,** *J* **= 273.2 Hz), 123.8, 122.5, 120.3, 119.2, 118.7, 118.2, 111.2, 52.9, 52.5, 28.4, 23.0. ¹⁹F NMR (377 MHz, CDCl₃) δ -62.7 (s). IR ν_{max} (KBr, film, cm⁻¹): 3258, 2921, 1737, 1659, 1601, 1522, 1438, 1325, 1165, 1123, 1074, 1012, 827, 745. HRMS (ESI): calcd for C₂₁H₁₈O₃N₂F₃Se⁺ [M-H]⁺: 483.0440, found: 483.0450.**

methyl (*S***)-2-acetamido-3-(2-((4-cyanophenyl)selanyl)-1***H***-indol-3-yl)propanoate 3t. Pale yellow solid, 39.1 mg (from 0.1 mmol), 89% yield, m.p. 87-88 °C. [α]_D ²⁹ = 48.4 (c 0.25, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 8.45 (s, 1H), 7.63 (d,** *J* **= 8.0 Hz, 1H), 7.42 (d,** *J* **= 8.4 Hz, 2H), 7.35 (d,** *J* **= 8.4 Hz, 1H), 7.28-7.27 (m, 1H), 7.18 (t,** *J* **= 8.2 Hz, 3H), 6.00 (d,** *J* **= 8.0 Hz, 1H), 4.91 (dd,** *J* **= 13.8, 5.8 Hz, 1H), 3.65 (s, 3H), 3.43-3.29 (m, 2H), 1.84 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 172.1, 169.6, 139.8, 137.9, 132.7, 128.7, 127.7, 124.1, 120.5, 119.3, 119.2, 118.5, 117.4, 111.3, 109.9, 52.9, 52.5, 28.4, 23.1. IR ν_{max} (KBr, film, cm⁻¹): 3356, 3059, 2951, 2922, 2851, 2226, 1740, 1657, 1586, 1523, 1483, 1437, 1374, 1341, 1218, 1014, 821, 746, 544. HRMS (ESI): calcd for C₂₁H₁₈O₃N₃Se⁻ [M-H]⁻: 440.0519, found: 440.0526.**

methyl (*S***)-2-acetamido-3-(2-(mesitylselanyl)-1***H***-indol-3-yl)propanoate 3u**. Pale yellow solid, 7.4 mg (from 0.1 mmol), 16% yield, m.p. 74-76 °C. [α]_D ²⁹ = 38.2(c 0.11, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.54 (s, 1H), 7.44 (d, *J* = 8.0 Hz, 1H), 7.15-7.13 (m, 1H), 7.07-7.06 (m, 2H), 6.97 (s, 2H), 6.03 (d, *J* = 7.2 Hz, 1H), 4.97 (dd, *J* = 12.8, 5.2 Hz, 1H), 3.73 (s, 3H), 3.37-3.36 (m, 2H), 2.42 (s, 6H), 2.30 (s, 3H), 1.99 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 172.3, 169.6, 142.9, 139.4, 137.7, 129.3, 128.5,

125.3, 123.2, 121.8, 119.8, 117.8, 111.9, 110.3, 52.7, 52.5, 28.4, 24.2, 23.3, 20.9. IR ν_{max} (KBr, film, cm⁻¹): 3271, 2951, 2923, 2852, 1737, 1661, 1517, 1436, 1374, 1340, 1261, 1217, 1021, 851, 801, 742. HRMS (ESI): calcd for C₂₃H₂₅O₃N₂Se⁺ [M-H]⁺: 457.1036, found: 457.1045.

methyl 2-acetamido-3-(2-(benzylselanyl)-5-chloro-1*H***-indol-3-yl)propanoate 4a**. Yellow solid, 28.3 mg (from 0.1 mmol), 61% yield, m.p. 61-63 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.01 (s, 1H), 7.44 (s, 1H), 7.19-7.16 (m, 3H), 7.09 (s, 2H), 7.00-6.98 (m, 2H), 6.00 (d, *J* = 7.6 Hz, 1H), 4.84 (dd, *J* = 13.2, 5.6 Hz, 1H), 3.92 (s, 2H), 3.69 (s, 3H), 3.14-3.01 (m, 2H), 1.94 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 172.2, 169.6, 138.4, 135.6, 128.7, 128.6, 127.2, 125.6, 123.3, 122.5, 118.2, 116.9, 111.7, 52.7, 52.5, 33.5, 27.9, 23.2. IR ν_{max} (KBr, film, cm⁻¹): 3262, 3061, 3028, 2926, 1851, 1737, 1657, 1520, 1437, 1374, 1263, 1215, 800, 737, 697. HRMS (ESI): calcd for C₂₁H₂₁O₃N₂ClNaSe⁺ [M+Na]⁺: 487.0298, found: 487.0297.

methyl 2-acetamido-3-(2-(benzylselanyl)-5-iodo-1*H*-indol-3-yl)propanoate 4b. Yellow solid, 43.1 mg (from 0.1 mmol), 78% yield, m.p. 70-72 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.89 (s, 1H), 7.80 (s, 1H), 7.39 (dd, *J* = 8.5, 1.3 Hz, 1H), 7.20-7.15 (m, 3H), 7.01-6.94 (m, 3H), 5.97 (d, *J* = 8.1 Hz, 1H), 4.84 (dd, *J* = 13.5, 5.4 Hz, 1H), 3.92 (s, 2H), 3.71 (s, 3H), 3.16-3.01 (m, 2H), 1.96 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 172.1, 169.6, 138.5, 136.3, 131.2, 130.2, 128.7, 128.6, 127.8, 127.3, 122.1, 116.5, 112.6, 83.3, 52.7, 52.5, 33.5, 27.8, 23.3. IR ν_{max} (KBr, film, cm⁻¹): 3262, 3059, 3028, 2923, 2851, 1734, 1657, 1517, 1436, 1374, 1213, 797, 759, 696. HRMS (ESI): calcd for C₂₁H₂₁O₃N₂INaSe⁺ [M+Na]⁺: 578.9654, found: 578.9659.

methyl 2-acetamido-3-(2-(benzylselanyl)-6-methyl-1*H***-indol-3-yl)propanoate 4c. Yellow solid, 32.7 mg (from 0.1 mmol), 74% yield, m.p. 52-54 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.71 (s, 1H), 7.38 (d,** *J* **= 8.1 Hz, 1H), 7.21-7.19 (m, 3H), 7.03-7.01 (m, 3H), 6.93 (d,** *J* **= 8.1 Hz, 1H), 5.95 (d,** *J* **= 7.5 Hz, 1H), 4.82 (dd,** *J* **= 13.5, 6.0 Hz, 1H), 3.90 (s, 2H), 3.67 (s, 3H), 3.18-3.03 (m, 2H), 2.44 (s, 3H), 1.91 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 172.4, 169.6, 138.8, 137.8, 133.0, 128.7, 128.5, 127.1, 125.7, 121.7, 119.9, 118.5, 117.2, 110.6, 52.8, 52.4, 33.6, 27.9, 23.2, 21.7. IR ν_{max} (KBr, film, cm⁻¹): 3271, 3061, 3028, 2917, 2849, 1739, 1657, 1520, 1437, 1373, 1340, 2161, 1216, 1029, 802, 760, 736, 697. HRMS (ESI): calcd for C₂₂H₂₄O₃N₂NaSe⁺ [M+Na]⁺: 467.0844, found: 467.0847.**

methyl 2-acetamido-3-(2-(benzylselanyl)-6-fluoro-1*H***-indol-3-yl)propanoate 4d. Yellow solid, 40.8 mg (from 0.1 mmol), 91% yield, m.p. 52-54 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.04 (s, 1H), 7.43-7.40 (m, 1H), 7.22-7.15 (m, 3H), 7.00 (d,** *J* **= 6.0 Hz, 2H), 6.88-6.84 (m, 2H), 6.02 (d,** *J* **= 7.6 Hz, 1H), 4.83 (dd,** *J* **= 13.2, 6.0 Hz, 1H), 3.90 (s, 2H), 3.66 (s, 3H), 3.15-3.03 (m, 2H), 1.92 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 172.3, 169.7, 160.4 (d,** *J* **= 16.6 Hz), 138.5, 137.2 (d,** *J* **= 12.4 Hz), 128.7, 128.5, 127.2, 124.3, 120.8 (d,** *J* **= 4.0 Hz), 119.6 (d,** *J* **= 11.1 Hz), 117.5, 108.7 (d,** *J* **= 24.2 Hz), 97.0 (d,** *J* **= 26.3 Hz), 52.8, 52.4, 33.5, 28.0, 23.2. ¹⁹F NMR (377 MHz, CDCl₃) δ -119.5 (s). IR \nu_{max} (KBr, film, cm⁻¹):3268, 3061, 3028, 2918, 2849, 1739, 1657, 1525, 1439, 1346, 1291, 1216, 1120, 958, 836, 803, 760, 697. HRMS (ESI): calcd for C₂₁H₂₁O₃N₂FNaSe⁺ [M+Na]⁺: 471.0594, found: 471.0597.**

methyl 2-acetamido-3-(2-(benzylselanyl)-6-chloro-1*H***-indol-3-yl)propanoate 4e**. Yellow solid, 36.3 mg (from 0.1 mmol), 78% yield, m.p. 62-64 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.02 (s, 1H), 7.40 (d, *J* = 8.4 Hz, 1H), 7.22-7.16 (m, 4H), 7.05 (d, *J* = 8.4 Hz, 1H), 6.99 (d, *J* = 6.4 Hz, 2H), 6.00 (d, *J* = 7.6 Hz, 1H), 4.83 (dd, *J* = 13.2, 6.0 Hz, 1H), 3.91 (s, 2H), 3.66 (s, 3H), 3.15-3.02 (m, 2H), 1.92 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 172.3, 169.6, 138.5, 137.5, 129.0, 128.7, 128.5, 127.2, 126.3, 121.6, 120.6, 119.6, 117.4, 110.6, 52.8, 52.5, 33.5, 27.9, 23.2. IR ν_{max} (KBr, film, cm⁻¹): 3261, 3062, 3029, 2951, 2849, 1737, 1657, 1520, 1437, 1374, 1336, 1217, 1063, 917, 803, 759, 737, 697. HRMS (ESI): calcd for C₂₁H₂₁O₃N₂ClNaSe⁺ [M+Na]⁺: 487.0298, found: 487.0297.

methyl 2-acetamido-3-(2-(benzylselanyl)-7-methyl-1*H***-indol-3-yl)propanoate 4f. Yellow solid, 38.0 mg (from 0.1 mmol), 86% yield, m.p. 60-62 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.59 (s, 1H), 7.35 (d,** *J* **= 7.8 Hz, 1H), 7.23-7.19 (m, 3H), 7.09-6.94 (m, 4H), 5.97 (d,** *J* **= 7.8 Hz, 1H), 4.86 (dd,** *J* **= 13.8, 5.7 Hz, 1H), 3.93 (s, 2H), 3.68 (s, 3H), 3.26-3.10 (m, 2H), 2.31 (s, 3H), 1.91 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 172.3, 169.6, 139.0, 136.9, 128.9, 128.6, 127.3, 127.2, 123.4, 120.4, 120.1, 119.9, 117.5, 116.5, 52.9, 52.4, 33.5, 28.1, 23.3, 16.3. IR ν_{max} (KBr, film, cm⁻¹): 3271, 3026, 3027, 2920, 2849, 1737, 1657, 1517, 1453, 1374, 1218, 1029, 759, 748, 670. HRMS (ESI): calcd for C₂₂H₂₄O₃N₂NaSe⁺ [M+Na]⁺: 467.0844, found: 467.0847.**

methyl 3-(2-(benzylselanyl)-1*H***-indol-3-yl)-2-(2,2,2-trifluoroacetamido)propanoate 4g**. Yellow solid, 45.3 mg (from 0.1 mmol), 94% yield, m.p. 129-131 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.84 (s, 1H), 7.48 (d, *J* = 8.0 Hz, 1H), 7.25-7.18 (m, 5H), 7.12 (t, *J* = 7.4 Hz, 1H), 7.02-7.00 (m, 2H), 6.86 (d, *J* = 7.6 Hz, 1H), 4.80 (dd, *J* = 13.4, 6.2 Hz, 1H), 3.92 (s, 2H), 3.69 (s, 3H), 3.22-3.10 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 170.6, 156.7 (q, *J* = 37.8 Hz), 138.6, 137.3, 128.7, 128.5, 127.4, 127.2, 123.3, 120.9, 120.1, 118.4, 116.3, 115.5 (q, *J* = 37.8 Hz), 110.8, 53.2, 52.8, 33.5, 27.5. ¹⁹F NMR (377 MHz, CDCl₃) δ -75.8 (s). IR ν_{max} (KBr, film, cm⁻¹): 3366, 3059, 2925, 2854, 1714, 1545, 1441, 1340, 1212, 1173, 745, 697. HRMS (ESI): calcd for $C_{21}H_{18}O_3N_2F_3Se^+$ [M-H]+: 483.0429, found: 483.0436.

methyl 2-((((9*H***-fluoren-9-yl)methoxy)carbonyl)amino)-3-(2-(benzylselanyl)-1***H***-indol-3-yl)propanoate 4h. White solid, 47 mg (from 0.1 mmol), 77% yield, m.p. 70-72 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.79 (s, 1H), 7.74 (d,** *J* **= 7.6 Hz, 2H), 7.57-7.50 (m, 3H), 7.38 (t,** *J* **= 7.2 Hz, 2H), 7.29-7.25 (m, 2H), 7.23-7.16 (m, 5H), 7.11 (t,** *J* **= 7.2 Hz, 1H), 7.04-7.03 (m, 2H), 5.38 (d,** *J* **= 8.0 Hz, 1H), 4.66 (dd,** *J* **= 14.0, 6.4 Hz, 1H), 4.33 (d,** *J* **= 6.8 Hz, 2H), 4.17 (t,** *J* **= 7.0 Hz, 1H), 3.91 (s, 2H), 3.69 (s, 3H), 3.26-3.12 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 172.4, 155.6, 143.9, 143.8, 141.2, 138.8, 137.3, 128.7, 128.5, 127.6, 127.1, 127.0, 125.1, 123.1, 121.0, 119.9, 119.9, 118.8, 117.2, 110.7, 67.0, 54.6, 52.4, 47.1, 33.5, 28.3. IR ν_{max} (KBr, film, cm⁻¹): 3353, 3060, 2921, 2850, 1706, 1517, 1448, 1340, 1214, 1057, 759, 740, 697. HRMS (ESI): calcd for C₃₄H₃₁O₄N₂Se⁺ [M+H]⁺: 611.1444, found: 611.1436.**

Gram-Scale preparation: To the mixture of *L*-acetyl tryptophanate *L*-1a (5 mmol, 1.3 g), dibenzyldiselenide (5 mmol, 1.7 g), TBAI (1 mol%, 18.5 mg) was added DMSO (27.5 mL). And then oxone (5 mmol, 3.1 g) was added in one portion. The mixture was stirred at room temperature for 15 min. Saturated sodium thiosulfate (30 mL) was added to quench the reaction. The reaction was diluted with ethyl acetate (50 mL) and washed by H_2O (200 mL). Aqueous phase was extracted with ethyl acetate (50 mL × 4). The organic layer was combined, ethyl acetate was removed by rotary evaporator and the crude product was purified by silica column chromatography (elute: petroleum ether / ethyl acetate 1/3) to afford the desired product **3a** in the yield of 89%.

To the mixture of methyl 2-acetamido-3-(2-((2-iodobenzyl)selanyl)-1*H*-indol-3-yl)propanoate **3d** (0.050 mmol, 27.76 mg), CuI (0.003 mmol, 0.57 mg), K_3PO_4 (0.075 mmol, 15.92 mg) was added toluene (0.5 mL) under argon atmosphere. *N*,*N*'-diethylethylenediamine (0.005 mmol, 0.52 µL) was then added. The mixture was heated to reflux for 23 hours. After

cooling to room temperature, the mixture was filtered through silica gel, the filter cake was washed with ethyl acetate (30 mL) and the filtrate was concentrated *in vacuum*. The crude was purified by silica column chromatography (elute: petroleum ether / ethyl acetate 1/3) to afford desired compound **5** as a white solid.

methyl 2-acetamido-3-(5*H*-benzo[4,5][1,3]selenazino[3,2-*a*]indol-7-yl)propanoate 5. White solid, 19.2 mg (from 0.05 mmol), 90% yield, m.p. 92-93 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.85-7.84 (m, 2H), 7.50-7.38 (m, 3H), 7.24-7.17 (m, 3H), 6.06 (d, J = 7.6 Hz, 1H), 5.06-5.02 (m, 1H), 3.84-3.74 (m, 2H), 3.70 (s, 3H), 3.44-3.27 (m, 2H), 1.99 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 172.0, 169.6, 137.3, 136.3, 130.0, 129.8, 128.2, 127.9, 127.0, 124.7, 122.2, 121.3, 121.2, 117.9, 112.0, 111.5, 52.7, 52.6, 29.2, 23.9, 23.4. IR ν_{max} (KBr, film, cm⁻¹): 3357, 3194, 2922, 2850, 1943, 1659, 1632, 1490, 1448, 1369, 1212, 744. HRMS (ESI): calcd for C₂₁H₂₀O₃N₂NaSe⁺ [M+Na]⁺: 451.0531, found: 451.0537.

5. Control experiments

To the mixture of acetyl tryptophanate **1a** (0.1 mmol, 26.0 mg), diselenide (0.1 mmol, 34.0 mg), TBAI (5 mol%, 1.85 mg) and additive (TEMPO or BHT, 0.1 mmol) was added DMSO (0.55 mL). And then oxone (0.1 mmol, 61.5 mg) was added in one portion. The reaction was stirred at room temperature until the acetyl tryptophanate **1a** totally disappeared (monitored by TLC). Saturated sodium thiosulfate (1 mL) was added to quench the reaction. The reaction was diluted with ethyl acetate (5 mL) and washed by H_2O (20 mL). The organic layer was combined, ethyl acetate was removed by rotary evaporator and the crude product was purified by silica column chromatography (elute: petroleum ether / ethyl acetate 1/3) to afford the desired product **3a**.

Entries (1), (3), (4) and (5): To solution of acetyl tryptophanate **1a** (0.1 mmol, 26.0 mg) and diselenide (0.1 mmol, 34.0 mg) in DMSO (0.55 mL) was added iodine (0.1 mmol, 25.4 mg) or tetrabutylammonium triiodide (0.1 mmol, 62.3 mg) or sodium iodate (0.1 mmol, 19.8 mg) or sodium periodate (0.1 mmol, 21.4 mg) in one portion. The mixture was stirred at room temperature and monitored by TLC. Saturated sodium thiosulfate (1 mL) was added to quench the reaction. The reaction was diluted with ethyl acetate (5 mL) and washed by H_2O (20 mL). Aqueous phase was extracted with ethyl acetate (5 mL × 2). The organic layer was combined, ethyl acetate was removed by rotary evaporator and the crude product was purified by silica column chromatography (elute: petroleum ether / ethyl acetate 1/3). (26.2 mg, yield 61% for entry 1, no reaction for entry3, 4, 5)

Entry (2): Iodine (0.1 mmol, 25.4 mg) and 25% aqueous tetrabutylammoniumhydroxide (0.2 mmol, 205 µL) were mixed in DMSO (0.55 mL), and the mixture was stirred at room temperature for 10 minutes. Acetyl tryptophanate **1a** (0.1 mmol, 26.0 mg), diselenide (0.1 mmol, 34.0 mg) was added to the mixture in sequence. The mixture was stirred at room temperature and monitored by TLC. After stirring for 24 hours, saturated sodium thiosulfate (1 mL) was added to quench the reaction.(,

yield 85%)

Entry (6): To solution of acetyl tryptophanate **1a** (0.1 mmol, 26.0 mg), diselenide (0.1 mmol, 34.0 mg) and KHSO₄ (0.2 mmol, 27.2 mg) in DMSO (0.55 mL) was added iodine (0.1 mmol, 25.4 mg) in one portion. The mixture was stirred at room temperature and monitored by TLC. After stirring for 24 hours at room temperature, saturated sodium thiosulfate (1 mL) was added to quench the reaction. The reaction was diluted with ethyl acetate (5 mL) and washed by H₂O (20 mL). Aqueous phase was extracted with ethyl acetate (5 mL × 2). The organic layer was combined, ethyl acetate was removed by rotary evaporator and the crude product was purified by silica column chromatography (elute: petroleum ether / ethyl acetate 1/3) to afford the desired product **3a** (36.5 mg, yield 85%).

Entry (7): To solution of acetyl tryptophanate **1a** (0.1 mmol, 26.0 mg), diselenide (0.1 mmol, 34.0 mg) and KHSO₄ (0.2 mmol, 27.2 mg) in DMSO (0.55 mL) was added tetrabutylammonium triiodide (0.1 mmol, 62.3 mg) in one portion. The mixture was stirred at room temperature and monitored by TLC. After stirring for 24 hours at room temperature, saturated sodium thiosulfate (1 mL) was added to quench the reaction. The reaction was diluted with ethyl acetate (5 mL) and washed by H₂O (20 mL). Aqueous phase was extracted with ethyl acetate (5 mL × 2). The organic layer was combined, ethyl acetate was removed by rotary evaporator and the crude product was purified by silica column chromatography (elute: petroleum ether / ethyl acetate 1/3) to afford the desired product **3a** (19.5 mg, yield 45%).

The PhSeI^[5] synthesised herein are sensitive to moisture, therefore the reaction techniques were employed throughout, with all additions being performed in an N₂ filled glove box. Under the N₂ atmosphere, I₂ (0.75 mmol, 190.5 mg) was dissolved in CDCl₃ (5 mL), and then diphenyldiselenide was added. The mixture was sealed tube and stirred at 65 °C for 40 minutes. The dark purple solution containing PhSeI (0.1 M in CDCl₃) was obtained. NMR spectra of the resulting solution under N₂ atmosphere also proved the formation of PhSeI (¹H NMR (300 MHz, CDCl₃) δ 7.73-7.70 (m, 2H), 7.34–7.26 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 134.1, 129.4, 129.3.). Under the N₂ atmosphere, **(DL)-1a** (0.1 mmol, 26.0 mg) in the reaction tube was added PhSeI (0.1 M in CDCl₃, 2 mL). The mixture was stirred at room temperature for 24 h. Saturated sodium thiosulfate (1 mL) was added to quench the reaction. The reaction was diluted with ethyl acetate (5 mL) and washed by H₂O (20 mL). Aqueous phase was extracted with ethyl acetate (5 mL × 2). The organic layer was combined, ethyl acetate was removed by rotary evaporator and the crude product was purified by silica column chromatography (elute: petroleum ether / ethyl acetate 1/3) to afford the products **(DL)-3n** with the yield of 28%.

6. X-ray crystallographic date

X-ray crystallography of compound 3j (CCDC 2058699)

Table 1 Crystal data and structure refinement for A. Identification code A Empirical formula C₂₃H₂₀F₆N₂O₃Se Formula weight 565.37 Temperature/K 169.99(11) Crystal system triclinic Space group P-1 a/Å 9.17100(10) b/Å 10.0901(3) c/Å 13.7727(3) $\alpha/^{\circ}$ 109.3780(10) β/° 91.5750(10) $\gamma/^{\circ}$ 100.5370(10) Volume/Å³ 1176.65(5) 2 Z $\rho calcg/cm^3$ 1.596 µ/mm⁻¹ 2.860 F(000) 568.0 Crystal size/mm3 0.11 × 0.08 × 0.05 Radiation Cu K α (λ = 1.54178) 2Θ range for data collection/° 6.834 to 150.786 Index ranges $-11 \le h \le 11, -12 \le k \le 12, -17 \le l \le 17$ Reflections collected 16758 Independent reflections 4667 [Rint = 0.0262, Rsigma = 0.0261] Data/restraints/parameters 4667/0/318 Goodness-of-fit on F2 1.109 Final R indexes $[I \ge 2\sigma (I)]$ R1 = 0.0642, wR2 = 0.1983 Final R indexes [all data]R1 = 0.0648, wR2 = 0.1986 Largest diff. peak/hole / e Å⁻³1.70/-0.72

Table 2 Fractional Atomic Coordinates ($\times 10^4$) and Equivalent Isotropic Displacement Parameters (Å2 $\times 103$) for A. Ueq is defined as 1/3 of of the trace of the orthogonalised UIJ tensor.

Atom U(eq) Х у \mathbf{Z} Se1 2904.5(6) 6652.2(6) 8098.8(4) F1 3743(6) 4133(6) 3724(5) 90.0(17) F2 4251(6) 2670(8) 4380(4) 95.5(19) F3 2597(5) 1979(7) 3101(4) 97(2) F4 -1869(8) 1364(7) 6202(4) 120(3) F5 -1736(6) 285(5) 4681(4) 93.1(19) F6 -2892(6) 1927(8) 5093(10) 172(5) 01 5509(4) 3098(4) 9575(3) 38.3(9) 02 5345(5) 1352(4) 8044(3) 40.8(9) 03 8318(4) 5515(4) 8214(3) 40.0(9) N1 921(5) 4583(4) 8675(3) 29.6(9) N2 5982(5) 5177(4) 8657(3) 30.4(9) C00V 3112(7) 3002(8) 3980(5) 46.0(14) C1 2204(6) 4838(5) 8216(4) 29.1(10) C2 2775(5) 3600(5) 7851(4) 26.9(10) C3 1741(5) 2517(5) 8097(4) 25.7(9) C4 1644(6) 1043(5) 7898(4) 31.8(11) C5 467(6) 303(6) 8234(5) 39.7(13) C6 -635(6) 986(6) 8752(5) 41.4(13) C7 -598(6) 2422(6) 8930(4) 35.1(11) C8 601(5) 3169(5) 8600(4) 27.8(10) C9 4140(6) 3390(6) 7299(4) 32.3(11) C10 5585(5) 3683(5) 8004(4) 28.8(10) C11 5483(5) 2719(5) 8656(4) 30.5(11) C12 5203(8) 317(7) 8564(6) 53.3(17) C13 7300(5) 6001(5) 8681(4) 27.1(10) C14 7474(6) 7565(6) 9280(5) 37.1(12) C15 1355(6) 6480(6) 6996(4) 35.7(12) C16 1124(6) 5038(6) 6168(4) 30.5(10) C17 2160(6) 4703(6) 5455(4) 33.9(11) C18 1953(6) 3353(6) 4712(4) 33.2(11) C19 694(6) 2303(6) 4658(4) 35.1(11) C20 -332(6) 2652(6) 5361(4) 33.6(11) C21 -125(6) 4013(6) 6121(4) 32.0(11) C22 -1713(7) 1575(7) 5332(5) 43.5(13)

Table 3 Anisotropic Displacement Parameters (Å 2×103) for A. The Anisotropic displacement factor exponent takes the form: $-2\pi2[h2a*2U11+2hka*b*U12+...]$.

34.1(2)

Ator	n U11	U22 U33	U23 U13	U12		
Se1	37.1(3)	24.4(3)	38.9(3)	12.6(2)	-5.2(2)	-0.7(2)
F1	89(4)	92(4)	97(4)	41(3)	60(3)	14(3)
F2	62(3)	165(6)	83(3)	49(4)	22(3)	69(4)
F3	58(3)	125(5)	52(3)	-32(3)	23(2)	-6(3)

F4	140(6)	120(5)	60(3)	29(3)	18(3)	-69(4)
F5	88(4)	61(3)	88(4)	-10(3)	27(3)	-25(3)
F6	31(3)	120(5)	408(15)	165(8)	-22(5)	-12(3)
01	38(2)	40(2)	38(2)	12.7(17)	5.4(16)	12.2(17)
02	43(2)	24.2(18)	53(2)	8.8(17)	13.0(18)	8.8(16)
03	27.1(19)	41(2)	49(2)	10.3(18)	10.7(16)	8.4(16)
N1	28(2)	27(2)	33(2)	6.9(17)	1.8(17)	9.6(17)
N2	25(2)	24(2)	38(2)	4.2(17)	10.2(17)	4.6(16)
C00V	V 36(3	62(4	4) 36(3	3) 12(3	5(2)	10(3)
C1	31(3)	24(2)	30(2)	7.3(19)	-2.1(19)	4.3(19)
C2	27(2)	25(2)	25(2)	5.1(18)	-2.0(18)	1.9(19)
С3	24(2)	24(2)	25(2)	5.6(18)	-2.7(18)	1.7(18)
C4	26(2)	24(2)	38(3)	3(2) 1(2)	2.3(19)	
C5	35(3)	22(2)	57(4)	10(2)	3(3) 0(2)	
C6	28(3)	34(3)	60(4)	18(3)	8(2) -5(2))
С7	24(2)	36(3)	45(3)	14(2)	5(2) 5(2)	
C8	23(2)	27(2)	31(2)	8(2) -2.5((18) 3.9(2	19)
С9	36(3)	30(3)	27(2)	7(2) 8(2)	3(2)	
C10	25(2)	23(2)	35(3)	5(2) 10.4	(19) 3.0(2	18)
C11	19(2)	28(2)	45(3)	10(2)	8(2) 7.5(2	18)
C12	45(4)	32(3)	90(5)	28(3)	16(3)	12(3)
C13	24(2)	28(2)	31(2)	13(2)	0.8(19)	5.9(19)
C14	29(3)	27(3)	54(3)	14(2)	3(2) 2(2)	
C15	40(3)	30(3)	38(3)	13(2)	-3(2)	9(2)
C16	32(3)	35(3)	29(2)	14(2)	-2(2)	10(2)
C17	29(3)	42(3)	33(3)	18(2)	-1(2)	4(2)
C18	30(3)	44(3)	29(2)	13(2)	2(2) 11(2	2)
C19	37(3)	37(3)	31(3)	10(2)	1(2) 9(2)	
C20	36(3)	36(3)	30(3)	14(2)	0(2) 7(2)	
C21	32(3)	36(3)	31(3)	14(2)	3(2) 10(2	!)
C22	43(3)	41(3)	43(3)	13(3)	5(3) 2(3)	

Table 4 Bond Lengths for A.

Ator	n	Aton	n	Leng	gth/Å	L	Ator	n	Atom	Length/Å
Se1	C1	1.88	7(5)		C2	С9	1.49	4(7)		
Se1	C15	1.99	3(5)		С3	C4	1.40	6(7)		
F1	C007	V	1.34	1(9)		С3	C8	1.41	2(7)	
F2	C00V	V	1.31	4(8)		C4	C5	1.37	8(8)	
F3	C007	V	1.31	0(8)		C5	С6	1.40	5(8)	
F4	C22	1.29	3(8)		С6	С7	1.38	1(8)		
F5	C22	1.30	9(8)		С7	C8	1.39	1(7)		
F6	C22	1.26	5(9)		С9	C10	1.54	3(7)		
01	C11	1.19	2(7)		C10	C11	1.52	1(7)		
02	C11	1.33	7(6)		C13	C14	1.49	5(7)		

02	C12	1.440(8)	C15	C16	1.496(7)
03	C13	1.231(6)	C16	C17	1.389(8)
N1	C1	1.374(7)	C16	C21	1.379(8)
N1	C8	1.371(7)	C17	C18	1.382(8)
N2	C10	1.447(6)	C18	C19	1.399(8)
N2	C13	1.329(7)	C19	C20	1.376(8)
C00V	V	C18 1.494(8)		C20	C21 1.399(8)
C1	C2	1.388(7)	C20	C22	1.500(8)
C2	С3	1.446(7)			

Table 5 Bond Angles for A.

Atom	Ator	n	Atom	Angl	le/°		Ator	n	Atom	Atom	Angle/°
C1 Se1	C15	96.8	(2)	N2	C10	C11	110.	4(4)			
C11 O2	C12	115	.6(5)	C11	C10	С9	112.	4(4)			
C8 N1	C1	109	.1(4)	01	C11	02	124.	0(5)			
C13 N2	C10	122	.7(4)	01	C11	C10	126.	1(5)			
F1 C00	V	C18	112.0(6)		02	C11	C10	109.	8(5)		
F2 C00	V	F1	103.1(6)		03	C13	N2	122.	1(5)		
F2 C00	V	C18	113.1(5)		03	C13	C14	121.	3(5)		
F3 C00	V	F1	105.4(6)		N2	C13	C14	116.	5(4)		
F3 C00	V	F2	108.6(6)		C16	C15	Se1	110.	6(3)		
F3 C00	V	C18	113.8(5)		C17	C16	C15	121.	1(5)		
N1 C1	Se1	120	.6(4)	C21	C16	C15	119.	5(5)			
N1 C1	C2	110	4(4)	C21	C16	C17	119.	4(5)			
C2 C1	Se1	129	.0(4)	C18	C17	C16	120.	5(5)			
C1 C2	С3	105	.2(4)	C17	C18	C00	V	119.	4(5)		
C1 C2	С9	128	.3(5)	C17	C18	C19	120.	7(5)			
C3 C2	С9	126	.5(4)	C19	C18	C00	V	119.	8(5)		
C4 C3	C2	133	.6(5)	C20	C19	C18	118.	3(5)			
C4 C3	C8	118	.7(5)	C19	C20	C21	121.	3(5)			
C8 C3	C2	107	.6(4)	C19	C20	C22	120.	6(5)			
C5 C4	С3	118	.6(5)	C21	C20	C22	118.	1(5)			
C4 C5	C6	121	4(5)	C16	C21	C20	119.	8(5)			
C7 C6	C5	121	.4(5)	F4	C22	F5	102.	9(6)			
C6 C7	C8	117	.0(5)	F4	C22	C20	113.	0(5)			
N1 C8	С3	107	.7(4)	F5	C22	C20	114.	0(5)			
N1 C8	C7	129	.5(5)	F6	C22	F4	107.	1(8)			
C7 C8	C3	122	.8(5)	F6	C22	F5	106.	2(7)			
C2 C9	C10	115	.1(4)	F6	C22	C20	112.	9(6)			
N2 C10	С9	111	.0(4)								

Table 6 Hydrogen Bonds for A.

D H A d(D-H)/Åd(H-A)/Åd(D-A)/ÅD-H-A/° N1 H1 031 0.86 2.26 2.850(6) 125.3 1-1+X,+Y,+Z

Table 7 Torsion Angles for A.

А	В	С	D	Angle/°	А	В	С	D	Angle/°
Se1	C1	C2	С3	-176.2(4)	C8	N1	C1	Se1	175.9(3)
Se1	C1	C2	С9	2.5(8)	C8	N1	C1	C2	-1.5(6)
Se1	C15	C16	C17	-74.6(5)	C8	С3	C4	С5	-2.2(8)
Se1	C15	C16	C21	104.1(5)	С9	C2	С3	C4	-2.0(9)
F1	C007	V	C18	C17 -35.5(8)		С9	C2	С3	C8 -178.8(5)
F1	C007	V	C18	C19 146.3(6)		С9	C10	C11	01 -114.6(6)
F2	C007	V	C18	C17 80.5(8)		С9	C10	C11	02 65.0(5)
F2	C007	V	C18	C19 -97.7(7)		C10	N2	C13	03 -6.2(8)
F3	C007	V	C18	C17 -154.9(6)		C10	N2	C13	C14 171.9(5)
F3	C007	V	C18	C19 26.9(9)		C12	02	C11	01 0.9(7)
N1	C1	C2	С3	1.0(5)	C12	02	C11	C10	-178.7(4)
N1	C1	C2	С9	179.6(5)	C13	N2	C10	С9	-124.5(5)
N2	C10	C11	01	9.9(7)	C13	N2	C10	C11	110.1(5)
N2	C10	C11	02	-170.5(4)	C15	Se1	C1	N1	-72.6(4)
C007	V	C18	C19	C20 178.4(5)		C15	Se1	C1	C2 104.2(5)
C1	N1	C8	С3	1.4(5)	C15	C16	C17	C18	178.1(5)
C1	N1	C8	С7	-178.3(5)	C15	C16	C21	C20	-178.6(5)
C1	C2	C3	C4	176.7(5)	C16	C17	C18	C007	V -177.7(5)
C1	C2	С3	C8	-0.1(5)	C16	C17	C18	C19	0.5(8)
C1	C2	С9	C10	90.2(6)	C17	C16	C21	C20	0.2(7)
C2	С3	C4	C5	-178.8(5)	C17	C18	C19	C20	0.2(8)
C2	C3	C8	N1	-0.7(5)	C18	C19	C20	C21	-0.7(8)
C2	С3	C8	C7	178.9(5)	C18	C19	C20	C22	179.2(5)
C2	С9	C10	N2	-64.6(6)	C19	C20	C21	C16	0.5(8)
C2	C9	C10	C11	59.7(6)	C19	C20	C22	F4	124.7(7)
С3	C2	C9	C10	-91.4(6)	C19	C20	C22	F5	7.7(9)
С3	C4	C5	C6	1.0(9)	C19	C20	C22	F6	-113.6(9)
C4	С3	C8	N1	-178.1(4)	C21	C16	C17	C18	-0.7(8)
C4	С3	C8	C7	1.5(8)	C21	C20	C22	F4	-55.4(8)
C4	C5	C6	C7	1.1(10)	C21	C20	C22	F5	-172.4(6)
C5	C6	C7	C8	-1.8(9)	C21	C20	C22	F6	66.2(9)
C6	C7	C8	N1	-179.9(5)	C22	C20	C21	C16	-179.4(5)
C6	C7	C8	С3	0.5(8)					

Table 8 Hydrogen Atom Coordinates (Å×104) and Isotropic Displacement Parameters (Å2×103) for A.

 Atom
 x
 y
 z
 U(eq)

 H1
 401.24
 5210.98
 8963.43
 36

 H2
 5337.9
 5546.63
 9044.66
 37

 H4
 2359.86
 576.25
 7547.14
 38

 H5
 401.04
 -669.85
 8116.14
 48

H6 -140	6.36	459.	56	8979	9.14	50	
H7 -134	1.61	2869	9.17	9255	5.18	42	
H9A 4284	4.23	4018	3.01	6892	2.74	39	
H9B 3972	2.49	2410	0.16	6822	2.53	39	
H10 6388	3.3	3478	3	7556	5.91	35	
H12A	5415	5.73	-565	.25	811	0.49	80
H12B	4205	5.37	145.	26	875	5.34	80
H12C	5892	2.8	679.	61	9174	4.04	80
H14A	8499	9.8	7965	5.68	9538	3.54	56
H14B	6868	3.91	7691	1.31	9848	3.2	56
H14C	7166	6.53	8043	3.96	883	6.36	56
H15A	424.	85	6617	7.18	729	5.07	43
H15B	1662	1.93	7221	1.69	6698	3.17	43
H17 2998	3.44	5392	2.71	5478	3.23	41	
H19 554.	3	1393	3.06	4160).1	42	
H21 -827	.36	4222	7.13	6593	3.14	38	
H19 554. H21 -827	3 .36	1393 4222	3.06 7.13	4160 6593).1 3.14	42 38	
01.							

7. NMR spectra

-8,000 -8,000 -8,000 -6,000 -6,000 -6,000 -6,000 -1,003 -2,000

-10.024 -10.024 -1.0000 -1.00000 -1.0000 -1.0000 -1.00000 -1.00000 -1.0000 -1.0

S35

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210

---3.907

7.1210 7.110 7.110 7.110 7.110 7.110 7.110 7.110 7.110 7.110 7.107

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210

10 0

-10

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210

----119.021

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210

S66

-172, 30 -172, 30 -100, 65 -27, 06 -23, 200, 20 -23, 200, 20-23, 200, 200, 200, 200, 200, 2

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210

-75.764

S84

S85

8. HPLC spectra

9. CD Spectra

CD spectra were recorded on a Jasco J810 instrument using a cell of 1cm path length. Spectral accumulation parameters included the scanning rate at 1000 nm/min with a 1-nm bandwidth, over the wavelength range of 200-600 nm. Each spectrum was obtained from an average of 5 scans. The CD spectra were measured with **1a** (*ca.* 5×10⁻⁵ M) and **3a** (*ca.* 4×10⁻⁵ M) in CH₃CN at 25 °C. The CD spectra were corrected for solvent contributions.

10. References

[1] M. Martínez-Mingo, N. Rodríguez, R. G. Arrayás, and J. C. Carretero, Org. Lett., 2019, 21, 4345-4349.

- [2] C. P. Katzka, PhD. Dissertation, Universität Dortmund of Germany, 2009.
- [3] S. Johansson, T. Redeby, T. M. Altamore, Ulrika Nilsson, A. Börje, *Chem. Res. Toxicol.*, 2009, **22**, 1774-1781.
- [4] M. Iwaoka, T. Katsuda, H. Komatsu, S. Tomoda, J. Org. Chem., 2005, **70**, 321-327.
- [5] K. M. N. Win, A. D. Sonawane and M. Koketsu, Org. Biomol. Chem., 2019, **17**, 9039-9049.