Supplementary Information

A Fast and Direct Iodide-Catalyzed 0xidative 2-Selenylation of Tryptophan
Yu-Ting Gao, Shao-Dong Liu, Liang Cheng,* and Li Liu*
Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, CAS
Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China and University of Chinese Academy of Sciences, Beijing 100049, China.
chengl@iccas.ac.cn; lliu@iccas.ac.cn

14 June 2021

Note added after first publication:
This supplementary information file replaces that originally published on 02 March 2021. Some of the NMR assignments in the original version were incorrect but these data have now been corrected in this revised version. Some of the structures included with the NMR spectra were also incorrect, as some COOMe groups were drawn as OMe. These structures have also been corrected. This does not affect any of the results or conclusions of the paper.

Table of contents		
$\mathbf{1}$	General information	S2
	Synthesis of Substrates	S3-S9
$\mathbf{3}$	Optimization of reaction conditions	S10
$\mathbf{4}$	General procedure for synthesis of $\mathbf{3 , 4}$ and $\mathbf{5}$	S11-S21
$\mathbf{5}$	Control experiments	S22-S23
$\mathbf{6}$	X-ray crystallographic date	S24-S29
$\mathbf{7}$	NMR spectra	S30-S86
$\mathbf{8}$	HPLC spectra	S 87
$\mathbf{9}$	CD spectra	S 88
$\mathbf{1 0}$	References	S 89

1. General Information

Unless otherwise noted, all reagents were obtained from commercially suppliers and were used without further purification. All reactions were carried out under the air atmosphere. Trp-substrates $\mathbf{1}$ and diselenides $\mathbf{2}$ were obtained from commercially suppliers or prepared according to the literature procedures. ${ }^{[1-4]}$

TLC analysis was performed on glass-baked silica plates and visualized with UV light. Column chromatography was performed on silica gel (200-300 mesh) using petroleum ether / ethyl acetate / dichloromethane/methanol. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR spectra were obtained on Bruker $300 \mathrm{MHz}, 400 \mathrm{MHz}$ or 500 MHz NMR spectrometer in the deuterated solvents indicated. Chemical shifts are reported in ppm from tetramethylsilane with the solvent resonance as the internal standard. The following abbreviations were used to designate chemical shift multiplicities: $\mathrm{s}=$ singlet, $\mathrm{d}=\operatorname{doublet}, \mathrm{t}=$ triplet, $\mathrm{q}=\mathrm{quartet}, \mathrm{h}=$ heptet, $\mathrm{m}=$ multiplet. All first-order splitting patterns were assigned on the basis of the appearance of the multiplet. Splitting patterns that could not be easily interpreted are designated as multiplet (m) or (br). Melting points were measured on Beijing Tech X-4 apparats without correction. IR spectra were recorded on a Nicolet 6700 FT-IR spectrometer. HRMS were obtained using electrospray ionization (ESI), nano electrospray ionization (nano ESI), electron ionization (EI) and atmospheric pressure chemical ionization (APCI) mass spectrometers. HPLC analyses were performed on Varian Prostar 210 liquid chromatograph and Agilent 1260 liquid chromatograph. Circular dichroism spectra was JASCO J-815 spectropolarimeter.

2. Synthesis of substrates

2.1 Preparation of methyl acetyl-L-tryptophanate and methyl acetyl-DL-tryptophanate ${ }^{[1]}$

General procedure: L-Tryptophan or DL-Tryptophan ($4.9 \mathrm{mmol}, 1.0 \mathrm{~g}$) was dispersed in $\mathrm{MeOH}(9.8 \mathrm{~mL})$ under the argon atmosphere. To the suspension was added thionyl chloride $(5.4 \mathrm{mmol}, 0.39 \mathrm{~mL})$ dropwise at $0{ }^{\circ} \mathrm{C}$. The mixture was then heated to reflux for 23 hours and then cooled to room temperature. MeOH and excess thionyl chloride were removed in vaccum. The pink solid (methyl L-tryptophanate hydrochloride) was obtained and was used for the next step without further purification. The pink solid was dispersed in dry THF (20 mL) under the argon atmosphere and Et $\mathrm{t}_{3} \mathrm{~N}(9.8 \mathrm{mmol}, 1.4 \mathrm{~mL})$ was added. The mixture was stirred at room temperature for 5 minutes. Acetic anhydride ($5.4 \mathrm{mmol}, 0.5 \mathrm{~mL}$) was then added dropwise at $0^{\circ} \mathrm{C}$. The resulting solution was heated to reflux for 2.5 hours. After cooling to room temperature, the mixture was diluted with ethyl acetate (50 mL) and the organic layer was washed by $1 \mathrm{M} \mathrm{HCl}(20 \mathrm{~mL})$, saturated $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$ and saturated $\mathrm{NaCl}(10 \mathrm{~mL})$. Ethyl acetate was removed by rotary evaporator and the crude product was purified by silica column chromatography (elute: dichloromethane /methanol 50/1) to afford the desired product methyl acetyl-L-tryptophanate or methyl acetyl-DL-tryptophanate 1a.

(L)-1a
methyl acetyl-L-tryptophanate L-1a. White solid, m.p. $55-57^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$) $\delta 10.85(\mathrm{~s}, 1 \mathrm{H}), 8.29(\mathrm{~d}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.09-6.96(\mathrm{~m}, 2 \mathrm{H}), 4.49(\mathrm{dd}, J=13.5,8.1 \mathrm{~Hz}$, 1H), $3.57(\mathrm{~s}, 3 \mathrm{H}), 3.17-2.97(\mathrm{~m}, 2 \mathrm{H}), 1.81(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz, DMSO-d6) $\delta 172.5,169.3,136.1,127.0,123.6,120.9$, 118.4, 117.9, 111.4, 109.5, 53.1, 51.7, 27.1, 22.3. IR $v_{\max }\left(\mathrm{KBr}\right.$, film, $\left.\mathrm{cm}^{-1}\right): 2389,3058,2951,2926,2850,1738,1655,1530$, 1458, 1437, 1375, 1216, 1010, 743. HRMS (ESI): calcd for $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{O}_{16} \mathrm{O}_{3} \mathrm{~N}_{2} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 283.1053$, found: 283.1053.
2.2 Preparation of substituted methyl acetyl tryptophanate $\mathbf{1}^{[2,3]}$

General procedure: The substituted indole (3.3 mmol) and $D L$-serine ($6.6 \mathrm{mmol}, 693.6 \mathrm{mg}$) were dissolved in acetic acid (7.7 mL) under the argon atmosphere, acetic anhydride ($6.6 \mathrm{mmol}, 0.6 \mathrm{~mL}$) was then added dropwise. The mixture was stirred at $75^{\circ} \mathrm{C}$ for 3.5 hours. After cooling to room temperature, the solution was adjusted to $\mathrm{pH}=11$ by addition of 30% aqueous sodium hydroxide carefully in ice bath and extracted with ether ($10 \mathrm{~mL} \times 3$). The ether phase was washed by $1 \mathrm{M} \mathrm{NaOH}(30$ mL). All the aqueous solutions were combined and adjusted to $\mathrm{pH}=2$ using concentrated hydrochloric acid at $0^{\circ} \mathrm{C}$. The resulting mixture was extracted by $\mathrm{EA} / \mathrm{MeOH}(10 / 1,30 \mathrm{~mL} \times 3)$. The organic was dried over anhydrous sodium sulfate,
evaporated and got the crude intermediate product.

To the crude intermediate product we got above was added dry $\mathrm{MeOH}(10 \mathrm{~mL})$ under argon atmosphere, the mixture was stirred at $0^{\circ} \mathrm{C}$ for 5 minutes. Then the thionyl chloride ($3.6 \mathrm{mmol}, 0.7 \mathrm{~mL}$) was added dropwise and the reaction was stirred at $0{ }^{\circ} \mathrm{C}$ for another 1.5 hours. After stirring at room temperature overnight, MeOH and excess thionyl chloride were removed in vaccum. The crude product was diluted with ethyl acetate (50 mL) and washed by $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$. Ethyl acetate was removed by rotary evaporator and the crude product was purified by silica column chromatography (elute: petroleum ether / ethyl acetate $1 / 3$) to afford the desired product substituted methyl acetyl tryptophanate $\mathbf{1 b} \mathbf{- g}$.

1b
methyl 2-acetamido-3-(5-chloro-1H-indol-3-yl)propanoate 1b. White solid, m.p. $72-73{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (500 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ $8.71(\mathrm{~s}, 1 \mathrm{H}), 7.49(\mathrm{~s}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~s}, 1 \mathrm{H}), 6.19(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.95(\mathrm{dd}, J=13.0$, $5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.34-3.24(\mathrm{~m}, 2 \mathrm{H}), 2.00(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.2,169.9,134.5,128.7,125.3,124.3$, 122.4, 118.0, 112.4, 109.6, 53.0, 52.4, 27.5, 23.1. IR $v_{\max }\left(\mathrm{KBr}\right.$, film, $\left.\mathrm{cm}^{-1}\right): 3282,2951,1734,1654,1528,1437,1374,1215$, 893, 729. HRMS (ESI): calcd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{O}_{3} \mathrm{~N}_{2} \mathrm{ClNa}^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 317.0663$, found: 317.0669.

1 c
methyl 2-acetamido-3-(5-iodo-1H-indol-3-yl)propanoate 1c. White solid, m.p. $72-73{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $8.34(\mathrm{~s}, 1 \mathrm{H}), 7.84(\mathrm{~s}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.04(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.93(\mathrm{dd}$, $J=12.9,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.34-3.20(\mathrm{~m}, 2 \mathrm{H}), 2.00(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.2,169.7,135.1,130.5$, $130.3,127.7,123.6,113.3,109.6,83.1,53.0,52.5,27.5,23.3$. IR $v_{\max }\left(\mathrm{KBr}\right.$, film, $\left.\mathrm{cm}^{-1}\right): 3276,2951,2923,2850,1737,1655$, $1527,1455,1436,1373,1213,879,795$. HRMS (ESI): calcd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{O}_{3} \mathrm{~N}_{2} \mathrm{INa}^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 409.0020$, found: 409.0020 .

methyl 2-acetamido-3-(6-methyl-1H-indol-3-yl)propanoate 1d. Yellow solid, m.p. 53-54 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $8.09(\mathrm{~s}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{~s}, 1 \mathrm{H}), 6.95(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~s}, 1 \mathrm{H}), 6.00(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.94(\mathrm{dd}, J=12.3$, $5.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.34-3.25(\mathrm{~m}, 2 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 1.95(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl 3) $\delta 172.4,169.7,136.6,132.1$, $125.6,122.0,121.5,118.2,111.2,109.8,53.0,52.3,27.6,23.2,21.6$. IR $v_{\max }\left(K B r, f i l m, \mathrm{~cm}^{-1}\right): 3292,3011,2951,2922,2855$, $1740,1655,1528,1437,1374,1215,801$. HRMS (ESI): calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{~N}_{2} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$: 297.1210, found: 297.1211 .

1e
methyl 2-acetamido-3-(6-fluoro-1H-indol-3-yl)propanoate 1e. White solid, m.p. 144-145 ${ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d6) $\delta 10.93(\mathrm{~s}, 1 \mathrm{H}), 8.31(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-7.44(\mathrm{~m}, 1 \mathrm{H}), 7.14-7.09(\mathrm{~m}, 2 \mathrm{H}), 6.85(\mathrm{t}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{dd}, J=14.0$, $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{~s}, 3 \mathrm{H}), 3.13-2.97(\mathrm{~m}, 2 \mathrm{H}), 1.80(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, DMSO-d6) $\delta 172.5,169.3,158.8(\mathrm{~d}, J=187.9 \mathrm{~Hz})$, $135.9(\mathrm{~d}, J=10.1 \mathrm{~Hz}), 124.2(\mathrm{~d}, J=2.0 \mathrm{~Hz}), 123.9,119.0(\mathrm{~d}, J=8.1 \mathrm{~Hz}), 109.8,106.9(\mathrm{~d}, J=19.2 \mathrm{~Hz}), 97.4(\mathrm{~d}, J=20.2 \mathrm{~Hz}), 53.1$, 51.8, 27.0, 22.3. ${ }^{19} \mathrm{~F}$ NMR ($377 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-121.0(\mathrm{~s}) . \quad$ IR $v_{\max }\left(\mathrm{KBr}\right.$, film, $\left.\mathrm{cm}^{-1}\right): 3291,3067,2953,2925,2850,1738,1657$, $1629,1550,1458,1438,1374,1216,1140,952,804$. HRMS (ESI): calcd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{O}_{3} \mathrm{~N}_{2} \mathrm{FNa}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 301.0959$, found: 301.0962 .

$1 f$
methyl 2-acetamido-3-(6-chloro-1H-indol-3-yl)propanoate 1f. White solid, m.p. 144-145 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.17(\mathrm{~s}, 1 \mathrm{H}), 7.43(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{dd}, J=8.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.98(\mathrm{~d}, J=$ $6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.94(\mathrm{dd}, J=13.2,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.36-3.23(\mathrm{~m}, 2 \mathrm{H}), 1.97(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl 3$) \delta 172.3$, $169.7,136.4,128.2,126.4,123.2,120.5,119.5,111.2,110.4,53.0,52.4,27.6,23.3$. IR $v_{\max }\left(\mathrm{KBr}\right.$, film, $\left.\mathrm{cm}^{-1}\right): 3282,2925,2852$, 1737, 1657, 1544, 1456, 1327, 1374, 1215, 907, 805. HRMS (ESI): calcd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{O}_{3} \mathrm{~N}_{2} \mathrm{ClNa}^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 317.0663$, found: 317.0668.

1g
methyl 2-acetamido-3-(7-methyl-1H-indol-3-yl)propanoate 1 g . White solid, m.p. 172-173 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 10.82(\mathrm{~s}, 1 \mathrm{H}), 8.28(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.92-6.86(\mathrm{~m}, 2 \mathrm{H}), 4.48(\mathrm{dd}, J=$ $14.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{~s}, 3 \mathrm{H}), 3.13-2.98(\mathrm{~m}, 2 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 1.81(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, DMSO-d6) $\delta 172.6,169.3$, $135.6,126.7,123.3,121.5,120.5,118.6,115.6,109.9,53.1,51.7,27.2,22.3,16.7$. IR $v_{\max }\left(\mathrm{KBr}\right.$, film, $\left.\mathrm{cm}^{-1}\right): 3292,3054,2924$, 2854, 1738, 1657, 1527, 1437, 1374, 1216, 779, 747. HRMS (ESI): calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{~N}_{2} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 297.1210$, found: 297.1212.

Preparation of $\mathbf{1 h}$: methyl L-tryptophanate hydrochloride ($2.0 \mathrm{mmol}, 509.4 \mathrm{mg}$) was dispersed in dry THF (8 mL) under the argon atmosphere and $E t_{3} \mathrm{~N}(4.0 \mathrm{mmol}, 0.6 \mathrm{~mL})$ was added. The mixture was stirred at room temperature for 5 minutes. Trifluoroacetic anhydride ($2.2 \mathrm{mmol}, 0.3 \mathrm{~mL}$) was then added dropwise at $0^{\circ} \mathrm{C}$. The resulting solution was heated to reflux for 2.5 hours. After cooling to room temperature, the mixture was diluted with ethyl acetate (50 mL) and the organic layer was washed by water (15 mL) and saturated $\mathrm{NaCl}(10 \mathrm{~mL})$. Ethyl acetate was removed in vacuum and the crude product was purified by silica column chromatography (elute: petroleum ether / ethyl acetate from $50 / 1$ to $7 / 1$) to afford the desired product methyl (2,2,2-trifluoroacetyl)-L-tryptophanate $\mathbf{1 h}$.

methyl (2,2,2-trifluoroacetyl)-L-tryptophanate $\mathbf{1 h}$. Pale yellow solid, m.p. 109-111 ${ }^{\circ} \mathrm{C} . \quad{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) δ $10.89(\mathrm{~s}, 1 \mathrm{H}), 9.92(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{~s}, 1 \mathrm{H}), 7.08(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{t}$, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.59(\mathrm{dd}, J=13.2,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 3.33-3.16(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-d6) $\delta 170.7,156.4(\mathrm{q}$, $J=37.0 \mathrm{~Hz}), 136.1,126.9,123.7,121.1,118.5,117.9,115.7(\mathrm{q}, ~ J=289.1 \mathrm{~Hz}), 111.5,109.1,53.7,52.3,25.9 . \quad 19 \mathrm{~F}$ NMR (377 MHz , DMSO- d_{6}) $\delta-74.2(\mathrm{~s}) . \quad$ IR $\nu_{\max }\left(\mathrm{KBr}\right.$, film, $\left.\mathrm{cm}^{-1}\right): 3408,2925,2851,1714,1550,1458,1439,1213,1175,745$. HRMS (ESI): calcd for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{3} \mathrm{~N}_{2} \mathrm{~F}_{2}{ }^{+}[\mathrm{M}-\mathrm{H}]^{+}: 313.0806$, found: 313.0800.

Preparation of 1i: methyl L-tryptophanate hydrochloride ($2.0 \mathrm{mmol}, 509.4 \mathrm{mg}$) was dispersed in 1,4-dioxane (2 mL), $\mathrm{Na}_{2} \mathrm{CO}_{3}$ aqueous solution $(10 \%, 4.0 \mathrm{~mL})$ was then added at $0^{\circ} \mathrm{C}$. After stirring 30 min at $0^{\circ} \mathrm{C}, \mathrm{FmocCl}(1.95 \mathrm{mmol}, 504.5 \mathrm{mg}$ in 2 mL of 1,4-dioxane) was added dropwise. The mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for another 2 hour and continued overnight at room temperature. After the reaction completed, the mixture was diluted with ethyl acetate (50 mL) and the organic layer was washed by water and saturated $\mathrm{NaCl}(10 \mathrm{~mL})$. Ethyl acetate was removed by rotary evaporator and the crude product was purified by silica column chromatography (elute: petroleum ether / ethyl acetate from $5 / 1$ to $3 / 1$) to afford the desired product methyl (((9H-fluoren-9-yl)methoxy)carbonyl)-L-tryptophanate $\mathbf{1 i}$.

$1 i$
methyl (($\left(\mathbf{9 H}\right.$-fluoren-9-yl)methoxy)carbonyl)-L-tryptophanate 1i. Pale yellow solid, m.p. $72-74{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} N M R(400 \mathrm{MHz}$, DMSO-d6) $\delta 10.89(\mathrm{~s}, 1 \mathrm{H}), 7.88(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 7.67(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.54(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.43-7.27(\mathrm{~m}, 5 \mathrm{H}), 7.19(\mathrm{~s}, 1 \mathrm{H})$, $7.08(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{dd}, J=13.8,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.26-4.19(\mathrm{~m}, 3 \mathrm{H}), 3.62(\mathrm{~s}, 3 \mathrm{H}), 3.22-3.04(\mathrm{~m}, 2 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-d6) $\delta 172.7,155.9,143.7,143.7,140.7,136.1,127.6,127.1,125.2,123.8,121.0,120.1,118.4,118.0$, $111.5,109.7,65.7,55.0,51.9,46.6,26.9$. IR $v_{\max }\left(\mathrm{KBr}\right.$, film, $\left.\mathrm{cm}^{-1}\right): 3414,3062,2951,1710,1517,1451,1340,1214,1053,739$. HRMS (ESI): calcd for $\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{O}_{4} \mathrm{~N}_{2} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 463.1628$, found: 463.1625 .

General procedure: To the solution of benzyl or alkyl bromide (5 mmol) in ethanol (15 mL) was added KSeCN (6.0 mmol). The solution became cloudy very quickly. The $3.0 \mathrm{M} \mathrm{NaOH}(4 \mathrm{~mL})$ was added into the mixture after the benzyl or alkyl bromide converted to the intermediates completely (monitored by TLC). The reaction was allowed to stir at room temperature until the intermediates totally converted to the products (monitored by TLC). Most ethanol was removed in vacuum and the mixture was diluted with DCM (20 mL) and washed by $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$. The organic layer was dried over anhydrous sodium sulfate, evaporated and purified by silica column chromatography (elute: petroleum ether /dichloromethane) to afford the desired product substituted diselenides 2.

2b
1,2-bis(2-fluorobenzyl)diselane 2b. Yellow solid, m.p. 58-59 ${ }^{\circ} \mathrm{C} . \quad{ }^{1} \mathrm{H} N \mathrm{NRR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.25-7.17(\mathrm{~m}, 4 \mathrm{H}), 7.10-7.01$ $(\mathrm{m}, 4 \mathrm{H}), 3.91(\mathrm{~s}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 160.6(\mathrm{~d}, J=248.5 \mathrm{~Hz}), 131.0(\mathrm{~d}, J=4.0 \mathrm{~Hz}), 128.9(\mathrm{~d}, J=9.1 \mathrm{~Hz}), 126.4(\mathrm{~d}, J$ $=14.1 \mathrm{~Hz}), 123.9(\mathrm{~d}, J=3.0 \mathrm{~Hz}), 115.5(\mathrm{~d}, J=21.2 \mathrm{~Hz}), 25.1(\mathrm{~d}, J=2.0 \mathrm{~Hz}) .{ }^{19} \mathrm{~F} \operatorname{NMR}\left(377 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-116.9(\mathrm{~s})$. IR $v_{\max }$ (KBr , film, cm^{-1}): $3069,2921,1581,1489,1457,1234,1171,1079,1074,856,764$. HRMS (APCI): calcd for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{~F}_{2} \mathrm{Se}_{2}{ }^{+}$ $[\mathrm{M}+\mathrm{H}]+: 378.9310$, found: 378.9307 .

1,2-bis(2-chlorobenzyl)diselane 2c. Yellow solid, m.p. 102-103 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.40-7.34(\mathrm{~m}, 2 \mathrm{H}$), 7.20-7.19 (m, 6H), $3.99(\mathrm{~s}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 136.7,133.8,130.8,129.7,128.5,126.6,30.5 . \quad \mathrm{IR} v_{\max }(\mathrm{KBr}$, film, cm^{-1}): $3060,2996,2923,1589,1475,1442,1414,1172,1050,1032,831,757,725$. HRMS (EI): calcd for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{Se}_{2}{ }^{+}$ [M]+: 409.8641, found: 409.8634 .

2d
1,2-bis(2-iodobenzyl)diselane 2d. Yellow solid, m.p. $96-97{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H} N \mathrm{NR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.82(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, 7.30-7.27 (m, 2H), 7.21-7.19 (m, 2H), $6.93(t, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.99(\mathrm{~s}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 141.4,139.7,130.0$, $128.7,128.2,100.5,38.5 . \quad$ IR $v_{\max }\left(\mathrm{KBr}\right.$, film, $\left.\mathrm{cm}^{-1}\right): 3356,2922,2851,2372,2320,1658,1632,1467,1435,1362,1010,752$. HRMS (APCI): calcd for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{I}_{2} \mathrm{Se}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 594.7432, found: 594.7428.

1,2-bis(3-methoxybenzyl)diselane 2e. Yellow oil. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.21(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.84-6.78(\mathrm{~m}, 6 \mathrm{H})$, $3.83(\mathrm{~s}, 4 \mathrm{H}), 3.81(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.6,140.5,129.4,121.3,114.5,112.7,55.2,32.7 . \quad$ IR $v_{\max }(\mathrm{KBr}$, film, cm^{-1}): 2998, 2936, 2833, 1598, 1584, 1486, 1465, 1452, 1436, 1294, 1264, 1152, 1044, 780, 734, 695. HRMS (APCI): calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{O}_{2} \mathrm{Se}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 402.9710$, found: 402.9706 .

1,2-bis(3-nitrobenzyl)diselane 2f. Yellow solid, m.p. 108-109 ${ }^{\circ} \mathrm{C} . \quad{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 8.10-8.05(\mathrm{~m}, 4 \mathrm{H}), 7.67$ $(\mathrm{d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.59(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.12(\mathrm{~s}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 147.5,141.9,135.5,129.8,123.3,121.8$, 29.6. IR $v_{\max }\left(\mathrm{KBr}\right.$, film, $\left.\mathrm{cm}^{-1}\right): 3083,2924,1525,1353,1315,1097,1075,807,738,684,673$. HRMS (APCI): calcd for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{O}_{4} \mathrm{~N}_{2} \mathrm{Se}_{2^{+}}[\mathrm{M}+\mathrm{H}]^{+}: 432.9200$, found: 432.9202 .

1,2-bis(4-methylbenzyl)diselane 2g. Yellow solid, m.p. 58-59 ${ }^{\circ} \mathrm{C} . \quad{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.12(\mathrm{~s}, 8 \mathrm{H}), 3.85(\mathrm{~s}, 4 \mathrm{H})$, $2.33(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 136.8,135.9,129.1,128.9,32.5,21.2$. IR $v_{\max }\left(\mathrm{KBr}\right.$, film, $\left.\mathrm{cm}^{-1}\right): 3020,2919,2854$, $1896,1152,1448,1417,1171,814$. HRMS (nano ESI): calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{Se}_{2} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 392.9634$, found: 392.9616.

1,2-bis(4-bromobenzyl)diselane 2h. Yellow solid, m.p. $105-106^{\circ} \mathrm{C} . \quad{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.42(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 4 \mathrm{H})$, $7.06(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 3.79(\mathrm{~s}, 4 \mathrm{H}) . \quad{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 137.9,131.6,130.6,121.0,31.7 . \quad$ IR $v_{\max }\left(\mathrm{KBr}, \mathrm{film}, \mathrm{cm}^{-1}\right)$: 2923, 2850, 1900, 1527, 1483, 1399, 1352, 1168, 1070, 1009, 847, 819, 802, 475. HRMS (EI): calcd for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{Br}_{2} \mathrm{Se}_{2}{ }^{+}[\mathrm{M}]^{+}$: 497.7631, found: 497.7621 .

1,2-bis(3-chloro-2-fluorobenzyl)diselane 2i. Yellow solid, m.p. $54-55^{\circ} \mathrm{C} . \quad 1 \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.30(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}$, $2 \mathrm{H}), 7.05-7.00(\mathrm{~m}, 4 \mathrm{H}), 3.92(\mathrm{~s}, 4 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 156.1(\mathrm{~d}, J=251.5 \mathrm{~Hz}), 129.6,129.1(\mathrm{~d}, J=3.0 \mathrm{~Hz}), 128.1(\mathrm{~d}$, $J=15.2 \mathrm{~Hz}), 124.3(\mathrm{~d}, J=4.0 \mathrm{~Hz}), 121.2(\mathrm{~d}, J=18.2 \mathrm{~Hz}), 24.8(\mathrm{~d}, J=2.0 \mathrm{~Hz}) . \quad{ }^{19} \mathrm{~F}$ NMR $\left(377 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-118.7(\mathrm{~s}) . \quad$ IR $v_{\max }$
(KBr , film, cm^{-1}): 2921, 2850, 2320, 1468, 1458, 1229, 1189, 1170, 894, 778, 725. HRMS (EI): calcd for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~F}_{2} \mathrm{Cl}_{2} \mathrm{Se}_{2}{ }^{+}[\mathrm{M}]^{+}$: 445.8453, found: 445.8444 .

1,2-bis(3,5-bis(trifluoromethyl)benzyl)diselane 2j. Yellow solid, m.p. 62-63 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.78(\mathrm{~s}, 2 \mathrm{H})$, $7.61(\mathrm{~s}, 4 \mathrm{H}), 3.86(\mathrm{~s}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 141.1,131.7(\mathrm{q}, J=34.3 \mathrm{~Hz}), 128.6(\mathrm{q}, J=3.0 \mathrm{~Hz}), 122.9(\mathrm{q}, J=267.3$ $\mathrm{Hz}), 120.9(\mathrm{q}, J=4.0 \mathrm{~Hz}), 30.2 .{ }^{19} \mathrm{~F} \operatorname{NMR}\left(377 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-63.0(\mathrm{~s}) . \quad \mathrm{IR} v_{\max }\left(\mathrm{KBr}\right.$, film, $\left.\mathrm{cm}^{-1}\right): 3359,3189,2923,2851,1464$, $1374,1278,1171,1132,923,896,857,729,704,683$. HRMS (APCI): calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~F}_{12} \mathrm{Se}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]+: 612.8849$, found:612.8842.

1,2-bis(3,5-dimethoxybenzyl)diselane 2k. Yellow solid, m.p. $53-54^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.40(\mathrm{~s}, 4 \mathrm{H}), 6.36(\mathrm{~s}$, 2 H), $3.83(\mathrm{~s}, 4 \mathrm{H}), 3.79(\mathrm{~s}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 160.7,141.2,106.9,99.3,55.3,33.0 . \quad$ IR $v_{\max }\left(\mathrm{KBr}\right.$, film, $\left.\mathrm{cm}^{-1}\right)$: 2998, 2937, 2835, 1595, 1462, 1429, 1345, 1322, 1297, 1206, 1156, 1059, 833, 694. HRMS (APCI): calcd for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{O}_{4} \mathrm{Se}_{2}{ }^{+}$ [M+H]+: 462.9921, found: 462.9919.

1,2-dihexyldiselane 2m. Yellow oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.91(\mathrm{t}, J=7.4 \mathrm{~Hz}, 4 \mathrm{H}), 1.76-1.69(\mathrm{~m}, 4 \mathrm{H}), 1.41-1.26(\mathrm{~m}$, $12 \mathrm{H}), 0.89(\mathrm{t}, J=6.6 \mathrm{~Hz}, 6 \mathrm{H}) . \quad{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 31.3,31.0,30.3,29.2,22.6,14.0 . \quad \mathrm{IR} v_{\max }\left(\mathrm{KBr}\right.$, film, $\left.\mathrm{cm}^{-1}\right): 2956$, 2925, 2854, 1466, 1378, 1227, 1183, 723. HRMS (EI): calcd for $\mathrm{C}_{12} \mathrm{H}_{26} \mathrm{Se}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 330.0359$, found: 330.0357.

3. Optimizaiton of reaction conditions

Entry	[I] (equiv.)	Oxidant (equiv.)	solvent	time	Yield (\%)
$1{ }^{\text {b }}$	TBAI (0.1)	$35 \% \mathrm{H}_{2} \mathrm{O}_{2}$ (1.02)	$\mathrm{CH}_{3} \mathrm{CN}$	24 h	31
$2^{\text {b }}$	TBAI (0.1)	$35 \% \mathrm{H}_{2} \mathrm{O}_{2}$ (1.02)	$\mathrm{H}_{2} \mathrm{O}$	24 h	N. R.
$3{ }^{\text {c }}$	TBAI (0.1)	$35 \% \mathrm{H}_{2} \mathrm{O}_{2}(1.02)$	$\mathrm{H}_{2} \mathrm{O}+\mathrm{CH}_{3} \mathrm{CN}$	24 h	trace
4^{b}	TBAI (0.1)	$35 \% \mathrm{H}_{2} \mathrm{O}_{2}$ (2.04)	$\mathrm{CH}_{3} \mathrm{CN}$	19 h	41
5^{b}	TBAI (1.0)	$35 \% \mathrm{H}_{2} \mathrm{O}_{2}(1.02)$	$\mathrm{CH}_{3} \mathrm{CN}$	24 h	N. R.
6^{b}	TBAI (1.0)	$35 \% \mathrm{H}_{2} \mathrm{O}_{2}$ (2.04)	$\mathrm{CH}_{3} \mathrm{CN}$	24 h	N. R.
$7^{\text {b }}$	TBAI (0.1)	$35 \% \mathrm{H}_{2} \mathrm{O}_{2}$ (2.04)	DCM	24 h	42
8^{b}	TBAI (0.1)	$35 \% \mathrm{H}_{2} \mathrm{O}_{2}(2.04)$	THF	24 h	6
9^{b}	TBAI (0.1)	$35 \% \mathrm{H}_{2} \mathrm{O}_{2}$ (2.04)	EA	24 h	47
10^{b}	TBAI (0.1)	$35 \% \mathrm{H}_{2} \mathrm{O}_{2}$ (2.04)	MeOH	24 h	21
$11^{\text {b }}$	TBAI (0.1)	$35 \% \mathrm{H}_{2} \mathrm{O}_{2}$ (2.04)	DMF	24 h	N. R.
$12^{\text {d }}$	KI (0.1)	Oxone (1.00)	$\mathrm{H}_{2} \mathrm{O}+\mathrm{CH}_{3} \mathrm{CN}$	1 h	56
13^{d}	KI (0.2))	Oxone (1.00)	$\mathrm{H}_{2} \mathrm{O}+\mathrm{CH}_{3} \mathrm{CN}$	1 h	53
14^{d}	KI (0.05)	Oxone (1.00)	$\mathrm{H}_{2} \mathrm{O}+\mathrm{CH}_{3} \mathrm{CN}$	1 h	49
15^{d}	TBAI (0.05)	Oxone (1.00)	$\mathrm{H}_{2} \mathrm{O}+\mathrm{CH}_{3} \mathrm{CN}$	1 h	59
16^{d}	NaI (0.05)	Oxone (1.00)	$\mathrm{H}_{2} \mathrm{O}+\mathrm{CH}_{3} \mathrm{CN}$	1 h	55
17^{d}	KI (0.05)	Oxone (0.75)	$\mathrm{H}_{2} \mathrm{O}+\mathrm{CH}_{3} \mathrm{CN}$	1 h	54
18^{d}	KI (0.05)	Oxone (0.50)	$\mathrm{H}_{2} \mathrm{O}+\mathrm{CH}_{3} \mathrm{CN}$	1 h	54
19^{e}	TBAI (0.05)	Oxone (1.00)	$\mathrm{H}_{2} \mathrm{O}$	1 h	N. D.
20^{e}	TBAI (0.05)	Oxone (1.00)	$\mathrm{CH}_{3} \mathrm{CN}$	1 h	43
21^{e}	TBAI (0.05)	Oxone (1.00)	DMSO	20 min	85
22^{e}	TBAI (0.05)	Oxone (1.00)	DMF	20 min	69
23^{e}	TBAI (0.05)	Oxone (1.00)	MeOH	15 min	31
$24{ }^{e f}$	TBAI (0.05)	Oxone (1.00)	DMSO	8 min	94
$25^{\text {ef }}$ f	$n-\mathrm{Bu}_{4} \mathrm{NI}_{3}(0.05)$	Oxone (1.00)	DMSO	10 min	89
$26^{\text {eff }}$	TBAI (0.05)	$\mathrm{O}_{2}(1 \mathrm{~atm})$	DMSO	24 h	N. R.

${ }^{a}$ Unless noted otherwise, all the reactions were conducted with L-methyl acetyl-tryptophanate (0.1 $\mathrm{mmol})$, dibenzyldiselenide (0.1 mmol), catalyst, oxidant in solvent. Isolated yields were given. ${ }^{b} 0.5$ mL solvent. ${ }^{c}$ Solvent: $0.25 \mathrm{~mL} \mathrm{CH}_{3} \mathrm{CN}$ and $0.25 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O} .{ }^{d}$ Solvent: $0.5 \mathrm{~mL} \mathrm{CH}_{3} \mathrm{CN}$ and $0.05 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$. ${ }^{e} 0.55 \mathrm{~mL}$ solvent. $\quad f$ Quenched by 1 mL saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ (aq.) before purification.

4. General procedure for synthesis of 3,4 and 5

General procedure: To the mixture of acetyl tryptophanate (0.1 mmol), diselenide (0.1 mmol) and TBAI ($5 \mathrm{~mol} \%$) was added DMSO (0.55 mL). And then oxone (0.1 mmol) was added in one portion. The reaction was stirred at room temperature until the acetyl tryptophanate totally disappeared (monitored by TLC). Saturated sodium thiosulfate (1 mL) was added to quench the reaction. The reaction was diluted with ethyl acetate (5 mL) and washed by $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$. Aqueous phase was extracted with ethyl acetate ($5 \mathrm{~mL} \times 2$). The organic layer was combined, ethyl acetate was removed by rotary evaporator and the crude product was purified by silica column chromatography (elute: petroleum ether / ethyl acetate $1 / 3$) to afford the desired products 3/4.

3a
methyl (\boldsymbol{S})-2-acetamido-3-(2-(benzylselanyl)-1H-indol-3-yl)propanoate 3a. Yellow solid, 40.2 mg (from 0.1 mmol), 94% yield, $>99.9 \%$ ee, m.p. $55-57{ }^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{28}=20.4\left(\mathrm{c} 0.25, \mathrm{CHCl}_{3}\right){ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.94(\mathrm{~s}, 1 \mathrm{H}), 7.51(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, 7.22-7.17 (m, 5H), 7.14-7.09 (m, 1H), 7.04-7.01 (m, 2H), $6.00(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.84(\mathrm{dd}, J=13.8,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{~s}, 2 \mathrm{H}), 3.66$ $(\mathrm{s}, 3 \mathrm{H}), 3.22-3.06(\mathrm{~m}, 2 \mathrm{H}), 1.91(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.4,169.7,138.6,137.4,128.7,128.6,127.7,127.1$, $123.0,120.9,119.8,118.7,117.1,110.7,52.9,52.4,33.5,27.9,23.2$. IR $v_{\max }\left(\mathrm{KBr}, \mathrm{film}, \mathrm{cm}^{-1}\right): 3272,3059,2950,2854,1738$, 1657, 1517, 1494, 1436, 1373, 1340, 1216, 743, 697. HRMS (ESI): calcd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{O}_{3} \mathrm{~N}_{2} \mathrm{Se}^{+}[\mathrm{M}-\mathrm{H}]^{+}: 429.0723$, found: 429.0730. The enantiomeric excess was determined by HPLC on the Chiralpak IA column connected in series (n-Hexane : isopropanol = $80: 1$, flowing rate $=1.0 \mathrm{~mL} / \mathrm{min}, 25^{\circ} \mathrm{C}$, UV detection at $\left.\lambda=254 \mathrm{~nm}\right), t_{R}=16.2 \mathrm{~min}$.

methyl 2-acetamido-3-(2-((2-fluorobenzyl)selanyl)-1H-indol-3-yl)propanoate 3b. Pale yellow solid, 38.5 mg (from 0.1 $\mathrm{mmol}), 86 \%$ yield, m.p. $52-54{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.14(\mathrm{~s}, 1 \mathrm{H}), 7.51(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{~s}, 1 \mathrm{H}), 7.19-7.16(\mathrm{~m}$, $2 \mathrm{H}), 7.10(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{t}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.99(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.84$ (dd, $J=12.8,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{~s}, 2 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 3.52(\mathrm{~s}, 1 \mathrm{H}), 3.19-3.03(\mathrm{~m}, 2 \mathrm{H}), 1.90(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl $\left.{ }_{3}\right) \delta$ $172.3,169.6,160.45(\mathrm{~d}, J=248.5 \mathrm{~Hz}), 137.4,130.6(\mathrm{~d}, J=4.0 \mathrm{~Hz}), 129.0(\mathrm{~d}, J=8.0 \mathrm{~Hz}), 127.7,126.0(\mathrm{~d}, J=14.1 \mathrm{~Hz}), 124.0(\mathrm{~d}, J=$ $4.0 \mathrm{~Hz}), 123.1,120.6,119.9,118.8,117.5,115.4(\mathrm{~d}, J=21.2 \mathrm{~Hz}), 110.8,52.8,52.4,27.8,26.0(\mathrm{~d}, \mathrm{~J}=3.0 \mathrm{~Hz}), 23.2 .{ }^{19} \mathrm{~F}$ NMR (377 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-117.3(\mathrm{~s}) . \quad$ IR $v_{\max }\left(\mathrm{KBr}\right.$, film, $\left.\mathrm{cm}^{-1}\right): 3271,3059,2950,2922,2850,1738,1657,1520,1491,1437,1374,1340$, 1233, 1216, 858, 745. HRMS (ESI): calcd for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{O}_{3} \mathrm{~N}_{2} \mathrm{FNaSe}^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 471.0594$, found: 471.0591 .

methyl 2-acetamido-3-(2-((2-chlorobenzyl)selanyl)-1H-indol-3-yl)propanoate 3c. Pale yellow solid, 33.6 mg (from 0.1 $\mathrm{mmol}), 72 \%$ yield, m.p. $62-63^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.95(\mathrm{~s}, 1 \mathrm{H}), 7.51(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.24$ $(\mathrm{s}, 1 \mathrm{H}), 7.21-7.09(\mathrm{~m}, 3 \mathrm{H}), 6.98(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.95(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.83(\mathrm{dd}, J=13.2,6.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.00(\mathrm{~s}, 2 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 3.18-3.00(\mathrm{~m}, 2 \mathrm{H}), 1.90(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.3,169.6,137.3,136.4,133.7,130.4$, $129.8,128.6,127.8,126.7,123.2,120.5,120.0,118.9,117.8,110.7,52.8,52.4,31.3,27.9,23.2$. IR $v_{\max }\left(\mathrm{KBr}\right.$, film, $\left.\mathrm{cm}^{-1}\right): 3264$, $3056,2950,2921,2849,1738,1658,1521,1444,1374,1340,1215,1052,1033,745$. HRMS (ESI): calcd for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{~N}_{2} \mathrm{ClSe}^{+}$ [M-H]+: 463.0333, found: 463.0329.

methyl 2-acetamido-3-(2-((2-iodobenzyl)selanyl)-1H-indol-3-yl)propanoate 3d. Pale yellow solid, 49.2 mg (from 0.1 $\mathrm{mmol}), 89 \%$ yield, m.p. $67-6 \mathrm{o}^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.97(\mathrm{~s}, 1 \mathrm{H}), 7.83(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.19$ $(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{dt}, J=22.8,7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.89(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.96(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.83(\mathrm{dd}, J$ $=13.2,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{~s}, 2 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.17-2.99(\mathrm{~m}, 2 \mathrm{H}), 1.91(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.3,169.6,141.0$, $139.8,137.4,129.6,128.8,128.2,127.8,123.2,120.4,120.0,118.9,117.9,110.8,100.3,52.8,52.4,39.4,27.9,23.2$. IR $v_{\max }$ (KBr, film, cm^{-1}): $3271,3055,2923,2851,1737,1655,1520,1436,1374,1340,1215,1011,744$. HRMS (ESI): calcd for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{~N}_{2} \mathrm{ISe}^{+}$[M-H] ${ }^{+}$: 554.9689, found: 554.9686.

methyl 2-acetamido-3-(2-((3-methoxybenzyl)selanyl)-1H-indol-3-yl)propanoate 3e. Pale yellow solid, 42.6 mg (from $0.1 \mathrm{mmol}), 93 \%$ yield, m.p. $48-50{ }^{\circ} \mathrm{C} . \quad{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.87(\mathrm{~s}, 1 \mathrm{H}), 7.51(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.22(\mathrm{~m}, 1 \mathrm{H})$, $7.19-7.08(\mathrm{~m}, 3 \mathrm{H}), 6.75(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.47(\mathrm{~s}, 1 \mathrm{H}), 5.97(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.84(\mathrm{dd}, J=12.4,6.4 \mathrm{~Hz}$, $1 \mathrm{H}), 3.89(\mathrm{~s}, 2 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 3.55(\mathrm{~s}, 3 \mathrm{H}), 3.24-3.11(\mathrm{~m}, 2 \mathrm{H}), 1.91(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.3,169.6,159.5$, $140.1,137.3,129.5,127.8,123.0,120.1,120.9,119.9,118.7,117.2,113.6,113.3,110.7,55.0,52.9,52.4,33.4,27.9,23.2$. IR $v_{\text {max }}\left(\mathrm{KBr}\right.$, film, $\left.\mathrm{cm}^{-1}\right): 3268,3054,2916,2849,1743,1659,1599,1517,1488,1437,1374,1340,1265,1215,1040,738,697$. HRMS (ESI): calcd for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{O}_{4} \mathrm{~N}_{2} \mathrm{Se}^{+}$[M-H] ${ }^{+}$: 459.0829, found: 459.0826 .

methyl 2-acetamido-3-(2-((3-nitrobenzyl)selanyl)-1H-indol-3-yl)propanoate 3f. Yellow solid, 43.5 mg (from 0.1 mmol$)$, 92% yield, m.p. $64-66^{\circ} \mathrm{C} . \quad{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.04-8.01(\mathrm{~m}, 2 \mathrm{H}), 7.88(\mathrm{~s}, 1 \mathrm{H}), 7.49(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{t}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.24-7.18(\mathrm{~m}, 3 \mathrm{H}), 7.11(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.95(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.84(\mathrm{dd}, J=13.0,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{~s}, 2 \mathrm{H}), 3.65(\mathrm{~s}$, 3H), 3.16-3.02 (m, 2H), $1.91(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.2,169.6,148.1,140.8,137.4,134.6,129.3,127.7,123.6$, $123.5,122.0,120.2,119.5,118.9,118.2,110.8,52.8,52.4,32.1,28.1,23.2$. IR $v_{\max }\left(\mathrm{KBr}_{\mathrm{f}} \mathrm{film}, \mathrm{cm}^{-1}\right): 3263,3059,2922,2850$, 1737, 1657, 1527, 1436, 1349, 1216, 810, 739, 686. HRMS (ESI): calcd for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{O}_{5} \mathrm{~N}_{3} \mathrm{Se}^{+}$[M-H] ${ }^{+}: 474.0574$, found: 474.0570 .

methyl 2-acetamido-3-(2-((4-methylbenzyl)selanyl)-1H-indol-3-yl)propanoate 3g. Pale yellow solid, 35.4 mg (from 0.1 $\mathrm{mmol}), 80 \%$ yield, m.p. $56-57^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 7.84(\mathrm{~s}, 1 \mathrm{H}), 7.52(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-7.15(\mathrm{~m}, 2 \mathrm{H}), 7.10(\mathrm{t}, J$ $=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.94(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.97(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.85(\mathrm{dd}, J=13.0,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{~s}, 2 \mathrm{H})$, $3.67(\mathrm{~s}, 3 \mathrm{H}), 3.25-3.12(\mathrm{~m}, 2 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 1.91(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.3,169.6,137.3,137.0,135.6,129.2$, $128.6,127.8,123.0,121.2,119.9,118.8,117.0,110.7,52.9,52.4,33.4,28.0,23.2,21.1$. IR $v_{\max }\left(\mathrm{KBr}\right.$, film, $\left.\mathrm{cm}^{-1}\right): 3269,3051$, 2923, 2851, 1737, 1655, 1513, 1437, 1374, 1340, 1216, 817, 742. HRMS (ESI): calcd for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{O}_{3} \mathrm{~N}_{2} \mathrm{Se}^{+}[\mathrm{M}-\mathrm{H}]^{+}: 443.0879$, found: 443.0878 .

methyl 2-acetamido-3-(2-((4-bromobenzyl)selanyl)-1H-indol-3-yl)propanoate $\mathbf{3 h}$. Pale yellow solid, 45.3 mg (from 0.1 $\mathrm{mmol}), 89 \%$ yield, m.p. $68-6 \mathrm{o}^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $87.93(\mathrm{~s}, 1 \mathrm{H}), 7.52(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.24$ $(\mathrm{s}, 1 \mathrm{H}), 7.19(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.96(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.86(\mathrm{dd}, J=13.0,6.2 \mathrm{~Hz}$, $1 \mathrm{H}), 3.86(\mathrm{~s}, 2 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 3.21-3.07(\mathrm{~m}, 2 \mathrm{H}), 1.91(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.3,169.6,137.8,137.3,131.6$, $130.3,127.7,123.2,121.0,120.4,120.0,118.8,117.6,110.8,52.8,52.4,32.7,28.0,23.2 . \quad$ IR $v_{\max }\left(K B r\right.$, film, $\left.\mathrm{cm}^{-1}\right): 3270,3056$, 2917, 2849, 1737, 1655, 1521, 1486, 1437, 1374, 1340, 1216, 1011, 744. HRMS (ESI): calcd for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{~N}_{2} \mathrm{BrSe}^{+}[\mathrm{M}-\mathrm{H}]^{+}$: 506.9828, found: 506.9822.

methyl 2-acetamido-3-(2-((3-chloro-2-fluorobenzyl)selanyl)-1H-indol-3-yl)propanoate 3i. Pale yellow solid, 42.4 mg (from 0.1 mmol), 88% yield, m.p. $59-61^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.02(\mathrm{~s}, 1 \mathrm{H}), 7.52(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{~s}, 1 \mathrm{H})$, $7.24-7.18(\mathrm{~m}, 2 \mathrm{H}), 7.10(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.95(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.85(\mathrm{dd}, J=$ $12.4,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{~s}, 2 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 3.21-3.04(\mathrm{~m}, 2 \mathrm{H}), 1.90(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.3,169.6,155.9(\mathrm{~d}$, $J=250.5 \mathrm{~Hz}), 137.4,129.5,128.7(\mathrm{~d}, J=3.0 \mathrm{~Hz}), 127.9(\mathrm{~d}, J=15.2 \mathrm{~Hz}), 127.7,124.3(\mathrm{~d}, J=5.1 \mathrm{~Hz}), 123.3,121.2(\mathrm{~d}, J=17.2 \mathrm{~Hz})$, $120.1,120.0,118.9,117.8,110.8,52.8,52.4,28.0,25.9(\mathrm{~d}, J=2.0 \mathrm{~Hz}), 23.2 .{ }^{19} \mathrm{~F}$ NMR ($377 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-119.0(\mathrm{~s})$. IR $v_{\max }$ (KBr, film, cm^{-1}): $3271,3056,2952,2925,2848,1734,1655,1516,1459,1436,1373,1340,1216,895,784,743,728$. HRMS (ESI): calcd for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{O}_{3} \mathrm{~N}_{2} \mathrm{FClSe}^{+}[\mathrm{M}-\mathrm{H}]^{+}: 481.0239$, found: 481.0234.

3j
methyl 2-acetamido-3-(2-((3,5-bis(trifluoromethyl)benzyl)selanyl)-1H-indol-3-yl)propanoate 3j. Pale yellow solid, 47.7 mg (from 0.1 mmol), 84% yield, m.p. $54-56^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.05(\mathrm{~s}, 1 \mathrm{H}), 7.66(\mathrm{~s}, 1 \mathrm{H}), 7.48(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.34(\mathrm{~s}, 2 \mathrm{H}), 7.24-7.17(\mathrm{~m}, 2 \mathrm{H}), 7.11(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.95(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.85(\mathrm{dd}, J=13.0,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{~s}, 2 \mathrm{H})$, $3.65(\mathrm{~s}, 3 \mathrm{H}), 3.11-2.95(\mathrm{~m}, 2 \mathrm{H}), 1.89(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.3,169.6,141.4,137.4,131.6(\mathrm{q}, J=33.7 \mathrm{~Hz})$, $128.6(\mathrm{q}, ~ J=3.7 \mathrm{~Hz}), 127.6,123.6,123.0(\mathrm{q}, ~ J=274.0 \mathrm{~Hz}), 120.7(\mathrm{q}, J=3.7 \mathrm{~Hz}), 120.2,118.9,118.8,118.2,110.9,52.9,52.4,31.7$, 28.0, 23.1. ${ }^{19} \mathrm{~F}$ NMR ($377 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-63.0(\mathrm{~s}) . \quad$ IR $v_{\max }\left(\mathrm{KBr}\right.$, film, $\left.\mathrm{cm}^{-1}\right): 3263,2915,2850,1737,1659,1521,1438,1375$, 1278, 1173, 1134, 895, 744, 704, 683. HRMS (ESI): calcd for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{O}_{3} \mathrm{~N}_{2} \mathrm{~F}_{6} \mathrm{Se}^{+}[\mathrm{M}-\mathrm{H}]^{+}: 565.0471$, found: 565.0466.

methyl 2-acetamido-3-(2-((3,5-dimethoxybenzyl)selanyl)-1H-indol-3-yl)propanoate 3k. Pale yellow solid, 44.1 mg (from 0.1 mmol), 90% yield, m.p. $55-57{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.99(\mathrm{~s}, 1 \mathrm{H}), 7.51(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.07(\mathrm{~m}, 3 \mathrm{H})$, $6.30(\mathrm{~s}, 1 \mathrm{H}), 6.13(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.00(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.85(\mathrm{dd}, J=13.6,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 2 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 3.55(\mathrm{~s}, 6 \mathrm{H})$, 3.28-3.13 (m, 2H), $1.91(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.3,169.6,160.7,140.9,137.3,127.8,123.1,120.9,119.9$, $118.7,117.2,110.7,106.3,99.7,55.1,52.9,52.4,33.6,28.0,23.2$. IR $v_{\max }\left(\mathrm{KBr}, \mathrm{film}, \mathrm{cm}^{-1}\right): 3271,3000,2923,2849,1743,1657$, $1595,1520,1459,1430,1340,1205,1152,1059,836,745,695$. HRMS (ESI): calcd for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{O}_{5} \mathrm{~N}_{2} \mathrm{Se}^{+}[\mathrm{M}-\mathrm{H}]^{+}: 489.0934$, found: 489.0934 .

31
methyl (S)-2-acetamido-3-(2-(methylselanyl)-1H-indol-3-yl)propanoate 31. Yellow solid, 27.9 mg (from 0.1 mmol), 79% yield, m.p. $52-54^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{28}=45.6\left(\mathrm{c} 0.25, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.38(\mathrm{~s}, 1 \mathrm{H}), 7.51(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.10(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.92(\mathrm{dd}, J=13.4,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H})$, 3.43-3.31 (m, 2H), $2.23(\mathrm{~s}, 3 \mathrm{H}), 1.94(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.4,169.7,137.3,127.9,122.8,121.9,119.9$, $118.5,115.5,110.7,53.0,52.4,28.2,23.2,9.7$. IR $v_{\max }\left(\mathrm{KBr}\right.$, film, $\left.\mathrm{cm}^{-1}\right): 3271,3056,2928,2852,1737,1657,1525,1436,1374$, $1340,1265,1216,1010,802,743$. HRMS (ESI): calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{O}_{3} \mathrm{~N}_{2} \mathrm{Se}^{+}[\mathrm{M}-\mathrm{H}]^{+}: 353.0410$, found: 353.0417.

methyl 2-acetamido-3-(2-(hexylselanyl)-1H-indol-3-yl)propanoate $\mathbf{3 m}$. Orange oil, 34.0 mg (from 0.1 mmol), 80% yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.40(\mathrm{~s}, 1 \mathrm{H}), 7.52(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{t}, J=7.4$ $\mathrm{Hz}, 1 \mathrm{H}), 6.11(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.91(\mathrm{dd}, J=12.2,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.41-3.33(\mathrm{~m}, 2 \mathrm{H}), 2.75(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.94(\mathrm{~s}$, $3 \mathrm{H}), 1.63-1.56(\mathrm{~m}, 2 \mathrm{H}), 1.37-1.20(\mathrm{~m}, 6 \mathrm{H}), 0.85(\mathrm{t}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.4,169.7,137.3,127.8$, $122.8,121.2,119.8,118.5,116.2,110.7,53.0,52.4,31.2,30.6,30.0,29.3,28.2,23.2,22.5,14.0 . \quad$ IR $v_{\max }\left(\mathrm{KBr}\right.$, film, $\left.\mathrm{cm}^{-1}\right): 3271$, 3057, 2955, 2926, 2854, 1737, 1657, 1521. 1436, 1374, 1340, 1261, 1216, 1011799,743 . HRMS (ESI): calcd for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O}_{3} \mathrm{~N}_{2} \mathrm{NaSe}^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 447.1157$, found: 447.1164 .

3n
methyl (\boldsymbol{S})-2-acetamido-3-(2-(phenylselanyl)-1H-indol-3-yl)propanoate $\mathbf{3 n}$. Pale yellow solid, 31.5 mg (from 0.1 mmol), 76% yield, m.p. $65-6{ }^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{28}=38.8\left(\mathrm{c} 0.25, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.32(\mathrm{~s}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.31$ $(\mathrm{d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.20(\mathrm{~m}, 6 \mathrm{H}), 7.14(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.99(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.91(\mathrm{dd}, J=13.4,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H})$, 3.46-3.33 (m, 2H), $1.78(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.3,169.8,137.7,131.4,129.6,129.6,127.8,126.9,123.4$, 120.1, 119.8, 119.0, 117.6, 111.0, 52.9, 52.4, 28.2, 23.0. IR $v_{\max }\left(\mathrm{KBr}\right.$, film, $\left.\mathrm{cm}^{-1}\right): 3261,3056,2924,2853,1734,1657,1517$, $1477,1438,1374,1340,1218,1021,799,737,689$. HRMS (ESI): calcd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{O}_{3} \mathrm{~N}_{2} \mathrm{Se}^{+}[\mathrm{M}-\mathrm{H}]+$: 415.0566, found: 415.0577.

methyl (S)-2-acetamido-3-(2-((2-bromophenyl)selanyl)-1H-indol-3-yl)propanoate 3o. Yellow solid, 15.7 mg (from 0.1
$\mathrm{mmol}), 32 \%$ yield, m.p. $80-81{ }^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{28}=37.6\left(\mathrm{c} 0.125, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta, 8.41(\mathrm{~s}, 1 \mathrm{H}), 7.65(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.49-7.47(\mathrm{~m}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.25(\mathrm{~m}, 1 \mathrm{H}), 7.18(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.06-7.00(\mathrm{~m}, 2 \mathrm{H}), 6.59-6.56(\mathrm{~m}, 1 \mathrm{H})$, $5.99(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.92(\mathrm{dd}, J=13.4,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.46-3.30(\mathrm{~m}, 2 \mathrm{H}), 1.77(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl ${ }_{3}$) $\delta 172.2,169.8,138.0,135.4,132.8,129.0,128.3,127.9,127.6,123.9,121.8,120.3,119.4,119.3,119.0,111.2,52.9,52.5,28.2$, 23.0. IR $v_{\max }\left(\mathrm{KBr}\right.$, film, $\left.\mathrm{cm}^{-1}\right): 3261,3055,2950,2923,2850,1737,1657,1521,1441,1374,1341,1218,1010,744$. HRMS (ESI): calcd for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{~N}_{2} \mathrm{BrSe}^{+}[\mathrm{M}-\mathrm{H}]+$: 492.9672 , found: 492.9681 .

methyl (\boldsymbol{S})-2-acetamido-3-(2-(\boldsymbol{p}-tolylselanyl)-1H-indol-3-yl)propanoate 3p. Pale yellow solid, 26.6 mg (from 0.1 mmol), 62% yield, m.p. $65-66^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{28}=42.9\left(\mathrm{c} 0.245,^{\left(\mathrm{CHCl}_{3}\right)}\right.$. ${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{CDCl} 3\right) \delta 8.21(\mathrm{~s}, 1 \mathrm{H}), 7.58(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.29$ $(\mathrm{d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.18-7.11(\mathrm{~m}, 3 \mathrm{H}), 7.04(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.99(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.91(\mathrm{dd}, J=13.2$, $6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.45-3.33(\mathrm{~m}, 2 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}), 1.80(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.3,169.8,137.6,137.1$, $130.4,130.3,127.9,127.2,123.2,120.6,120.1,118.9,116.9,110.9,52.9,52.5,28.2,23.0,21.0 . \quad$ IR $v_{\max }\left(\mathrm{KBr}\right.$, film, $\left.\mathrm{cm}^{-1}\right): 3271$, 3056, 2950, 2925, 2855, 1743, 1657, 1517, 1489, 1436, 1374, 1340, 1216, 1014, 802, 744 . HRMS (ESI): calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{O}_{3} \mathrm{~N}_{2} \mathrm{Se}^{+}[\mathrm{M}-\mathrm{H}]^{+}$: 429.0723, found: 429.0733.

methyl (S)-2-acetamido-3-(2-((4-(tert-butyl)phenyl)selanyl)-1H-indol-3-yl)propanoate 3q. Pale yellow solid, 36.9 mg (from 0.1 mmol), 78% yield, m.p. $80-82^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{28}=29.0\left(\mathrm{c} 0.255, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.25(\mathrm{~s}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.12(\mathrm{~m}, 4 \mathrm{H}), 5.98(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.91(\mathrm{dd}, J=13.2,6.0 \mathrm{~Hz}, 1 \mathrm{H})$, $3.70(\mathrm{~s}, 3 \mathrm{H}), 3.47-3.34(\mathrm{~m}, 2 \mathrm{H}), 1.76(\mathrm{~s}, 3 \mathrm{H}), 1.26(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.3,169.8,150.4,137.7,129.7,127.8$, $127.5,126.7,123.3,120.3,120.1,118.9,117.2,110.9,53.0,52.5,34.5,31.2,28.2,23.0 . \quad$ IR $v_{\max }\left(\mathrm{KBr}\right.$, film, $\left.\mathrm{cm}^{-1}\right): 3271,3054$, $2960,2865,1738,1659,1517,1498,1436,1374,1341,1217,1113,1010,820,743,542$. HRMS (ESI): calcd for $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{O}_{3} \mathrm{~N}_{2} \mathrm{Se}^{+}[\mathrm{M}-\mathrm{H}]^{+}: 471.1192$, found: 471.1202.

methyl (\boldsymbol{S})-2-acetamido-3-(2-((4-chlorophenyl)selanyl)-1H-indol-3-yl)propanoate $\mathbf{3 r}$. Pale yellow solid, 32.9 mg (from $0.1 \mathrm{mmol}), 73 \%$ yield, m.p. $72-74^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{28}=41.2\left(\mathrm{c} 0.255, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.29(\mathrm{~s}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.31(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.19-7.10(\mathrm{~m}, 5 \mathrm{H}), 5.99(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.92(\mathrm{dd}, J=13.4,5.8 \mathrm{~Hz}, 1 \mathrm{H})$,
$3.67(\mathrm{~s}, 3 \mathrm{H}), 3.45-3.31(\mathrm{~m}, 2 \mathrm{H}), 1.84(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.3,169.7,137.7,133.1,130.9,129.7,129.6$, $127.8,123.6,120.3,119.4,119.1,117.9,111.1,52.9,52.5,28.3,23.1$. IR $v_{\max }\left(\mathrm{KBr}, \mathrm{film}, \mathrm{cm}^{-1}\right): 3271,3056,2951,2926,2854$, 2738, 1651, 1517, 1473, 1436, 1374, 1340, 1218, 1088, 1009, 812, 744. HRMS (ESI): calcd for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{~N}_{2} \mathrm{ClSe}^{+}[\mathrm{M}-\mathrm{H}]^{+}$: 449.0177, found: 449.0186 .

methyl (S)-2-acetamido-3-(2-((4-(trifluoromethyl)phenyl)selanyl)-1H-indol-3-yl)propanoate 3s. Yellow solid, 32.1 mg (from 0.1 mmol), 66% yield, m.p. $77-79{ }^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{28}=45.6\left(\mathrm{c} 1.01, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.47(\mathrm{~s}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.25(\mathrm{~m}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.17(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $6.00(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.92(\mathrm{dd}, J=13.6,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 3.45-3.31(\mathrm{~m}, 2 \mathrm{H}), 1.81(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl $\left.{ }_{3}\right)$ $\delta 172.2,169.7,137.9,137.2,128.8(q, J=33.3 \mathrm{~Hz}), 127.7,126.2(\mathrm{q}, J=3.7 \mathrm{~Hz}), 123.9(\mathrm{q}, J=273.2 \mathrm{~Hz}), 123.8,122.5,120.3,119.2$, 118.7, 118.2, 111.2, 52.9, 52.5, 28.4, 23.0. ${ }^{19} \mathrm{~F}$ NMR ($377 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-62.7(\mathrm{~s}) . \quad$ IR $v_{\max }\left(\mathrm{KBr}, \mathrm{film}, \mathrm{cm}^{-1}\right): 3258,2921,1737$, 1659, 1601, 1522, 1438, 1325, 1165, 1123, 1074, 1012, 827, 745. HRMS (ESI): calcd for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{~N}_{2} \mathrm{~F}_{3} \mathrm{Se}^{+}[\mathrm{M}-\mathrm{H}]^{+}: 483.0440$, found: 483.0450 .

methyl (\boldsymbol{S})-2-acetamido-3-(2-((4-cyanophenyl)selanyl)-1H-indol-3-yl)propanoate 3t. Pale yellow solid, 39.1 mg (from $0.1 \mathrm{mmol}), 89 \%$ yield, m.p. $87-88^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{29}=48.4\left(\mathrm{c} 0.25, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.45(\mathrm{~s}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.42(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.18(\mathrm{t}, J=8.2 \mathrm{~Hz}, 3 \mathrm{H}), 6.00(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.91(\mathrm{dd}, J$ $=13.8,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 3.43-3.29(\mathrm{~m}, 2 \mathrm{H}), 1.84(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.1,169.6,139.8,137.9,132.7$, $128.7,127.7,124.1,120.5,119.3,119.2,118.5,117.4,111.3,109.9,52.9,52.5,28.4,23.1 . \quad \operatorname{IR} v_{\max }\left(\mathrm{KBr}\right.$, film, $\left.\mathrm{cm}^{-1}\right): 3356,3059$, 2951, 2922, 2851, 2226, 1740, 1657, 1586, 1523, 1483, 1437, 1374, 1341, 1218, 1014, 821, 746, 544. HRMS (ESI): calcd for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{~N}_{3} \mathrm{Se}^{-}[\mathrm{M}-\mathrm{H}]: 440.0519$, found: 440.0526 .

methyl (\mathbf{S})-2-acetamido-3-(2-(mesitylselanyl)-1H-indol-3-yl)propanoate 3 u . Pale yellow solid, 7.4 mg (from 0.1 mmol), 16% yield, m.p. $74-76{ }^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{29}=38.2\left(\mathrm{c} 0.11, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.54(\mathrm{~s}, 1 \mathrm{H}), 7.44(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.15-7.13(\mathrm{~m}, 1 \mathrm{H}), 7.07-7.06(\mathrm{~m}, 2 \mathrm{H}), 6.97(\mathrm{~s}, 2 \mathrm{H}), 6.03(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.97(\mathrm{dd}, J=12.8,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.37-3.36$ $(\mathrm{m}, 2 \mathrm{H}), 2.42(\mathrm{~s}, 6 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}), 1.99(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.3,169.6,142.9,139.4,137.7,129.3,128.5$,
$125.3,123.2,121.8,119.8,117.8,111.9,110.3,52.7,52.5,28.4,24.2,23.3,20.9 . \quad$ IR $v_{\max }\left(\mathrm{KBr}, \mathrm{film}, \mathrm{cm}^{-1}\right): 3271,2951,2923$, 2852, 1737, 1661, 1517, 1436, 1374, 1340, 1261, 1217, 1021, 851, 801, 742. HRMS (ESI): calcd for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{O}_{3} \mathrm{~N}_{2} \mathrm{Se}^{+}[\mathrm{M}-\mathrm{H}]^{+}$: 457.1036, found: 457.1045 .

methyl 2-acetamido-3-(2-(benzylselanyl)-5-chloro-1H-indol-3-yl)propanoate 4a. Yellow solid, 28.3 mg (from 0.1 mmol), 61% yield, m.p. 61-63 ${ }^{\circ} \mathrm{C} . \quad{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.01(\mathrm{~s}, 1 \mathrm{H}), 7.44(\mathrm{~s}, 1 \mathrm{H}), 7.19-7.16(\mathrm{~m}, 3 \mathrm{H}), 7.09(\mathrm{~s}, 2 \mathrm{H}), 7.00-6.98(\mathrm{~m}$, $2 \mathrm{H}), 6.00(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.84(\mathrm{dd}, J=13.2,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{~s}, 2 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.14-3.01(\mathrm{~m}, 2 \mathrm{H}), 1.94(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.2,169.6,138.4,135.6,128.7,128.6,127.2,125.6,123.3,122.5,118.2,116.9,111.7,52.7,52.5,33.5$, 27.9, 23.2. IR $v_{\max }\left(\mathrm{KBr}\right.$, film, cm^{-1}): 3262, 3061, 3028, 2926, 1851, 1737, 1657, 1520, 1437, 1374, 1263, 1215, 800, $737,697$. HRMS (ESI): calcd for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{O}_{3} \mathrm{~N}_{2} \mathrm{ClNaSe}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$: 487.0298, found: 487.0297.

methyl 2-acetamido-3-(2-(benzylselanyl)-5-iodo-1H-indol-3-yl)propanoate $\mathbf{4 b}$. Yellow solid, 43.1 mg (from 0.1 mmol), 78% yield, m.p. $70-72{ }^{\circ} \mathrm{C} . \quad{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.89(\mathrm{~s}, 1 \mathrm{H}), 7.80(\mathrm{~s}, 1 \mathrm{H}), 7.39(\mathrm{dd}, J=8.5,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.15(\mathrm{~m}$, $3 \mathrm{H}), 7.01-6.94(\mathrm{~m}, 3 \mathrm{H}), 5.97(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.84(\mathrm{dd}, J=13.5,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{~s}, 2 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.16-3.01(\mathrm{~m}, 2 \mathrm{H}), 1.96$ (s, 3H). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.1,169.6,138.5,136.3,131.2,130.2,128.7,128.6,127.8,127.3,122.1,116.5,112.6$, 83.3, 52.7, 52.5, 33.5, 27.8, 23.3. IR $v_{\max }\left(\mathrm{KBr}\right.$, film, $\left.\mathrm{cm}^{-1}\right): 3262,3059,3028,2923,2851,1734,1657,1517,1436,1374,1213$, 797, 759, 696. HRMS (ESI): calcd for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{O}_{3} \mathrm{~N}_{2} \mathrm{INaSe}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$: 578.9654, found: 578.9659.

4c
methyl 2-acetamido-3-(2-(benzylselanyl)-6-methyl-1H-indol-3-yl)propanoate 4c. Yellow solid, 32.7 mg (from 0.1 mmol), 74% yield, m.p. $52-54^{\circ} \mathrm{C} . \quad{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.71(\mathrm{~s}, 1 \mathrm{H}), 7.38(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.21-7.19(\mathrm{~m}, 3 \mathrm{H})$, $7.03-7.01(\mathrm{~m}, 3 \mathrm{H}), 6.93(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.95(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.82(\mathrm{dd}, J=13.5,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 2 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H})$, 3.18-3.03 (m, 2H), $2.44(\mathrm{~s}, 3 \mathrm{H}), 1.91(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.4,169.6,138.8,137.8,133.0,128.7,128.5$, $127.1,125.7,121.7,119.9,118.5,117.2,110.6,52.8,52.4,33.6,27.9,23.2,21.7 . \quad$ IR $v_{\max }\left(\mathrm{KBr}, \mathrm{film}, \mathrm{cm}^{-1}\right): 3271,3061,3028$, 2917, 2849, 1739, 1657, 1520, 1437, 1373, 1340, 2161, 1216, 1029, 802, 760, 736, 697. HRMS (ESI): calcd for
$\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{O}_{3} \mathrm{~N}_{2} \mathrm{NaSe}^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 467.0844$, found: 467.0847.

methyl 2-acetamido-3-(2-(benzylselanyl)-6-fluoro-1H-indol-3-yl)propanoate 4d. Yellow solid, 40.8 mg (from 0.1 mmol), 91% yield, m.p. 52-54 ${ }^{\circ} \mathrm{C} . \quad{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.04(\mathrm{~s}, 1 \mathrm{H}), 7.43-7.40(\mathrm{~m}, 1 \mathrm{H}), 7.22-7.15(\mathrm{~m}, 3 \mathrm{H}), 7.00(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz}$, $2 \mathrm{H}), 6.88-6.84(\mathrm{~m}, 2 \mathrm{H}), 6.02(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.83(\mathrm{dd}, J=13.2,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 2 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 3.15-3.03(\mathrm{~m}, 2 \mathrm{H}), 1.92$ ($\mathrm{s}, 3 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.3,169.7,160.4(\mathrm{~d}, J=16.6 \mathrm{~Hz}), 138.5,137.2(\mathrm{~d}, J=12.4 \mathrm{~Hz}), 128.7,128.5,127.2$, $124.3,120.8(\mathrm{~d}, J=4.0 \mathrm{~Hz}), 119.6(\mathrm{~d}, J=11.1 \mathrm{~Hz}), 117.5,108.7(\mathrm{~d}, J=24.2 \mathrm{~Hz}), 97.0(\mathrm{~d}, J=26.3 \mathrm{~Hz}), 52.8,52.4,33.5,28.0,23.2$. ${ }^{19} \mathrm{~F}$ NMR ($377 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-119.5$ (s). IR $v_{\max }\left(\mathrm{KBr}\right.$, film, $\left.\mathrm{cm}^{-1}\right): 3268,3061,3028,2918,2849,1739,1657,1525,1439,1346$, $1291,1216,1120,958,836,803,760,697$. HRMS (ESI): calcd for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{O}_{3} \mathrm{~N}_{2} \mathrm{FNaSe}^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 471.0594$, found: 471.0597.

4e
methyl 2-acetamido-3-(2-(benzylselanyl)-6-chloro-1H-indol-3-yl)propanoate $\mathbf{4 e}$. Yellow solid, 36.3 mg (from 0.1 mmol), 78% yield, m.p. $62-64^{\circ} \mathrm{C} . \quad{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.02(\mathrm{~s}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-7.16(\mathrm{~m}, 4 \mathrm{H}), 7.05(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 1 \mathrm{H}), 6.99(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.00(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.83(\mathrm{dd}, J=13.2,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{~s}, 2 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 3.15-3.02(\mathrm{~m}$, $2 \mathrm{H}), 1.92(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.3,169.6,138.5,137.5,129.0,128.7,128.5,127.2,126.3,121.6,120.6$, $119.6,117.4,110.6,52.8,52.5,33.5,27.9,23.2$. IR $v_{\max }\left(\mathrm{KBr}\right.$, film, $\left.\mathrm{cm}^{-1}\right): 3261,3062,3029,2951,2849,1737,1657,1520$, 1437, 1374, 1336, 1217, 1063, 917, 803, 759, 737, 697. HRMS (ESI): calcd for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{O}_{3} \mathrm{~N}_{2} \mathrm{ClNaSe}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$: 487.0298, found: 487.0297.

4f
methyl 2-acetamido-3-(2-(benzylselanyl)-7-methyl-1H-indol-3-yl)propanoate 4f. Yellow solid, 38.0 mg (from 0.1 mmol), 86% yield, m.p. 60-62 ${ }^{\circ} \mathrm{C} . \quad{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.59(\mathrm{~s}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-7.19(\mathrm{~m}, 3 \mathrm{H}), 7.09-6.94(\mathrm{~m}$, $4 \mathrm{H}), 5.97(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.86(\mathrm{dd}, J=13.8,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{~s}, 2 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.26-3.10(\mathrm{~m}, 2 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 1.91(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.3,169.6,139.0,136.9,128.9,128.6,127.3,127.2,123.4,120.4,120.1,119.9,117.5,116.5,52.9$, 52.4, 33.5, 28.1, 23.3, 16.3. IR $v_{\max }\left(\mathrm{KBr}\right.$, film, cm^{-1}): 3271, 3026, 3027, 2920, 2849, 1737, 1657, 1517, 1453, 1374, 1218, 1029, 759, 748, 670. HRMS (ESI): calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{O}_{3} \mathrm{~N}_{2} \mathrm{NaSe}^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 467.0844$, found: 467.0847.

$4 g$
methyl 3-(2-(benzylselanyl)-1H-indol-3-yl)-2-(2,2,2-trifluoroacetamido)propanoate 4g. Yellow solid, 45.3 mg (from $0.1 \mathrm{mmol}), 94 \%$ yield, m.p. $129-131^{\circ} \mathrm{C} . \quad^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.84(\mathrm{~s}, 1 \mathrm{H}), 7.48(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.18(\mathrm{~m}, 5 \mathrm{H})$, $7.12(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.02-7.00(\mathrm{~m}, 2 \mathrm{H}), 6.86(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.80(\mathrm{dd}, J=13.4,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{~s}, 2 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H})$, 3.22-3.10 (m, 2H). ${ }^{13} \mathrm{C}^{2} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.6,156.7(\mathrm{q}, \mathrm{J}=37.8 \mathrm{~Hz}), 138.6,137.3,128.7,128.5,127.4,127.2,123.3$, $120.9,120.1,118.4,116.3,115.5(\mathrm{q}, ~ J=37.8 \mathrm{~Hz}), 110.8,53.2,52.8,33.5,27.5 .{ }^{19} \mathrm{~F} \operatorname{NMR}\left(377 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-75.8(\mathrm{~s})$. IR $v_{\max }$ (KBr, film, cm^{-1}): 3366, 3059, 2925, 2854, 1714, 1545, 1441, 1340, 1212, 1173, 745, 697. HRMS (ESI): calcd for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{~N}_{2} \mathrm{~F}_{3} \mathrm{Se}^{+}[\mathrm{M}-\mathrm{H}]^{+}: 483.0429$, found: 483.0436 .

4h
methyl 2-((($\mathbf{9 H}$-fluoren-9-yl)methoxy)carbonyl)amino)-3-(2-(benzylselanyl)-1H-indol-3-yl)propanoate 4h. White solid, 47 mg (from 0.1 mmol$), 77 \%$ yield, m.p. $70-72^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.79(\mathrm{~s}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, 7.57-7.50 (m, 3H), $7.38(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.29-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.16(\mathrm{~m}, 5 \mathrm{H}), 7.11(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.04-7.03(\mathrm{~m}, 2 \mathrm{H}), 5.38$ $(\mathrm{d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.66(\mathrm{dd}, J=14.0,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.17(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{~s}, 2 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H})$, 3.26-3.12 (m, 2H). ${ }^{13} \mathrm{C}^{\mathrm{N}} \mathrm{NR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.4,155.6,143.9,143.8,141.2,138.8,137.3,128.7,128.5,127.6,127.1$, 127.0, 125.1, 123.1, 121.0, 119.9, 119.9, 118.8, 117.2, 110.7, 67.0, 54.6, 52.4, 47.1, 33.5, 28.3. IR $v_{\max }\left(\mathrm{KBr}^{2}\right.$ film, $\left.\mathrm{cm}^{-1}\right): 3353$, 3060, 2921, 2850, 1706, 1517, 1448, 1340, 1214, 1057, 759, 740, 697. HRMS (ESI): calcd for $\mathrm{C}_{34} \mathrm{H}_{31} \mathrm{O}_{4} \mathrm{~N}_{2} \mathrm{Se}^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 611.1444, found: 611.1436.

Gram-Scale preparation: To the mixture of L-acetyl tryptophanate \boldsymbol{L} - $\mathbf{1 a}(5 \mathrm{mmol}, 1.3 \mathrm{~g}$), dibenzyldiselenide ($5 \mathrm{mmol}, 1.7 \mathrm{~g}$), TBAI ($1 \mathrm{~mol} \%, 18.5 \mathrm{mg}$) was added DMSO (27.5 mL). And then oxone ($5 \mathrm{mmol}, 3.1 \mathrm{~g}$) was added in one portion. The mixture was stirred at room temperature for 15 min . Saturated sodium thiosulfate (30 mL) was added to quench the reaction. The reaction was diluted with ethyl acetate (50 mL) and washed by $\mathrm{H}_{2} \mathrm{O}(200 \mathrm{~mL})$. Aqueous phase was extracted with ethyl acetate ($50 \mathrm{~mL} \times 4$). The organic layer was combined, ethyl acetate was removed by rotary evaporator and the crude product was purified by silica column chromatography (elute: petroleum ether / ethyl acetate $1 / 3$) to afford the desired product 3a in the yield of 89%.

To the mixture of methyl 2-acetamido-3-(2-((2-iodobenzyl)selanyl)-1H-indol-3-yl)propanoate 3d ($0.050 \mathrm{mmol}, 27.76 \mathrm{mg}$), CuI ($0.003 \mathrm{mmol}, 0.57 \mathrm{mg}$), $\mathrm{K}_{3} \mathrm{PO}_{4}(0.075 \mathrm{mmol}, 15.92 \mathrm{mg})$ was added toluene (0.5 mL) under argon atmosphere.
N, N^{\prime}-diethylethylenediamine ($0.005 \mathrm{mmol}, 0.52 \mu \mathrm{~L}$) was then added. The mixture was heated to reflux for 23 hours. After
cooling to room temperature, the mixture was filtered through silica gel, the filter cake was washed with ethyl acetate (30 mL) and the filtrate was concentrated in vacuum. The crude was purified by silica column chromatography (elute: petroleum ether / ethyl acetate $1 / 3$) to afford desired compound 5 as a white solid.

5
methyl 2-acetamido-3-(5H-benzo[4,5][1,3]selenazino[3,2-a]indol-7-yl)propanoate 5. White solid, 19.2 mg (from 0.05 mmol), 90% yield, m.p. 92-93 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.85-7.84(\mathrm{~m}, 2 \mathrm{H}), 7.50-7.38(\mathrm{~m}, 3 \mathrm{H}), 7.24-7.17(\mathrm{~m}, 3 \mathrm{H}), 6.06(\mathrm{~d}$, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.06-5.02(\mathrm{~m}, 1 \mathrm{H}), 3.84-3.74(\mathrm{~m}, 2 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.44-3.27(\mathrm{~m}, 2 \mathrm{H}), 1.99(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl 3$) \delta$ $172.0,169.6,137.3,136.3,130.0,129.8,128.2,127.9,127.0,124.7,122.2,121.3,121.2,117.9,112.0,111.5,52.7,52.6,29.2$, 23.9, 23.4. IR $v_{\max }\left(\mathrm{KBr}\right.$, film, $\left.\mathrm{cm}^{-1}\right): 3357,3194,2922,2850,1943,1659,1632,1490,1448,1369,1212,744$. HRMS (ESI): calcd for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{~N}_{2} \mathrm{NaSe}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$: 451.0531, found: 451.0537.

5. Control experiments

To the mixture of acetyl tryptophanate 1a ($0.1 \mathrm{mmol}, 26.0 \mathrm{mg}$), diselenide ($0.1 \mathrm{mmol}, 34.0 \mathrm{mg}$), TBAI ($5 \mathrm{~mol} \%, 1.85 \mathrm{mg}$) and additive (TEMPO or BHT, 0.1 mmol) was added DMSO (0.55 mL). And then oxone ($0.1 \mathrm{mmol}, 61.5 \mathrm{mg}$) was added in one portion. The reaction was stirred at room temperature until the acetyl tryptophanate 1a totally disappeared (monitored by TLC). Saturated sodium thiosulfate (1 mL) was added to quench the reaction. The reaction was diluted with ethyl acetate (5 $\mathrm{mL})$ and washed by $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$. The organic layer was combined, ethyl acetate was removed by rotary evaporator and the crude product was purified by silica column chromatography (elute: petroleum ether / ethyl acetate $1 / 3$) to afford the desired product 3a.

I_{2} (1.0 equiv.), 24 h :	61\%	(1)
$\mathrm{I}_{2}(1.0$ equiv. $)+n-\mathrm{Bu}_{4} \mathrm{OH}$ (2.0 equiv.), 24 h :	0\%	(2)
TBAI 3 (1.0 equiv.), $24 \mathrm{~h}:$	0\%	(3)
NaIO_{3} (1.0 equiv.), $24 \mathrm{~h}:$	0\%	(4)
NaIO_{4} (1.0 equiv.), 24 h :	0\%	(5)
$\mathrm{I}_{2}\left(1.0\right.$ equiv.) $+\mathrm{KHSO}_{4}$ (2.0 equiv.), 24 h :	76\%	(6)
TBAI 3 (1.0 equiv.) $+\mathrm{KHSO}_{4}$ (2.0 equiv.), 24 h	45\%	(7)

Entries (1), (3), (4) and (5): To solution of acetyl tryptophanate 1 a ($0.1 \mathrm{mmol}, 26.0 \mathrm{mg}$) and diselenide ($0.1 \mathrm{mmol}, 34.0 \mathrm{mg}$) in DMSO (0.55 mL) was added iodine ($0.1 \mathrm{mmol}, 25.4 \mathrm{mg}$) or tetrabutylammonium triiodide ($0.1 \mathrm{mmol}, 62.3 \mathrm{mg}$) or sodium iodate ($0.1 \mathrm{mmol}, 19.8 \mathrm{mg}$) or sodium periodate ($0.1 \mathrm{mmol}, 21.4 \mathrm{mg}$) in one portion. The mixture was stirred at room temperature and monitored by TLC. Saturated sodium thiosulfate (1 mL) was added to quench the reaction. The reaction was diluted with ethyl acetate (5 mL) and washed by $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$. Aqueous phase was extracted with ethyl acetate $(5 \mathrm{~mL} \times$ 2). The organic layer was combined, ethyl acetate was removed by rotary evaporator and the crude product was purified by silica column chromatography (elute: petroleum ether / ethyl acetate $1 / 3$). (26.2 mg , yield 61% for entry 1, no reaction for entry3, 4, 5)

Entry (2): Iodine ($0.1 \mathrm{mmol}, 25.4 \mathrm{mg}$) and 25% aqueous tetrabutylammoniumhydroxide ($0.2 \mathrm{mmol}, 205 \mu \mathrm{~L}$) were mixed in DMSO (0.55 mL), and the mixture was stirred at room temperature for 10 minutes. Acetyl tryptophanate 1a ($0.1 \mathrm{mmol}, 26.0$ mg), diselenide ($0.1 \mathrm{mmol}, 34.0 \mathrm{mg}$) was added to the mixture in sequence. The mixture was stirred at room temperature and monitored by TLC. After stirring for 24 hours, saturated sodium thiosulfate (1 mL) was added to quench the reaction.(,

Entry (6): To solution of acetyl tryptophanate $1 \mathbf{1 a}(0.1 \mathrm{mmol}, 26.0 \mathrm{mg})$, diselenide ($0.1 \mathrm{mmol}, 34.0 \mathrm{mg}$) and $\mathrm{KHSO}_{4}(0.2 \mathrm{mmol}$, 27.2 mg) in DMSO (0.55 mL) was added iodine ($0.1 \mathrm{mmol}, 25.4 \mathrm{mg}$) in one portion. The mixture was stirred at room temperature and monitored by TLC. After stirring for 24 hours at room temperature, saturated sodium thiosulfate (1 mL) was added to quench the reaction. The reaction was diluted with ethyl acetate (5 mL) and washed by $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$. Aqueous phase was extracted with ethyl acetate ($5 \mathrm{~mL} \times 2$). The organic layer was combined, ethyl acetate was removed by rotary evaporator and the crude product was purified by silica column chromatography (elute: petroleum ether / ethyl acetate $1 / 3$) to afford the desired product 3a (36.5 mg , yield 85%).

Entry (7): To solution of acetyl tryptophanate $\mathbf{1 a}(0.1 \mathrm{mmol}, 26.0 \mathrm{mg})$, diselenide ($0.1 \mathrm{mmol}, 34.0 \mathrm{mg}$) and $\mathrm{KHSO}_{4}(0.2 \mathrm{mmol}$, 27.2 mg) in DMSO (0.55 mL) was added tetrabutylammonium triiodide ($0.1 \mathrm{mmol}, 62.3 \mathrm{mg}$) in one portion. The mixture was stirred at room temperature and monitored by TLC. After stirring for 24 hours at room temperature, saturated sodium thiosulfate (1 mL) was added to quench the reaction. The reaction was diluted with ethyl acetate (5 mL) and washed by $\mathrm{H}_{2} \mathrm{O}$ (20 mL). Aqueous phase was extracted with ethyl acetate ($5 \mathrm{~mL} \times 2$). The organic layer was combined, ethyl acetate was removed by rotary evaporator and the crude product was purified by silica column chromatography (elute: petroleum ether / ethyl acetate $1 / 3$) to afford the desired product $\mathbf{3 a}$ (19.5 mg , yield 45%).

The $\mathrm{PhSeI}^{[5]}$ synthesised herein are sensitive to moisture, therefore the reaction techniques were employed throughout, with all additions being performed in an N_{2} filled glove box. Under the N_{2} atmosphere, $\mathrm{I}_{2}(0.75 \mathrm{mmol}, 190.5 \mathrm{mg})$ was dissolved in $\mathrm{CDCl}_{3}(5 \mathrm{~mL})$, and then diphenyldiselenide was added. The mixture was sealed tube and stirred at $65{ }^{\circ} \mathrm{C}$ for 40 minutes. The dark purple solution containing $\mathrm{PhSeI}\left(0.1 \mathrm{M} \mathrm{in}_{\mathrm{CDCl}}^{3}\right.$) was obtained. NMR spectra of the resulting solution under N_{2} atmosphere also proved the formation of PhSeI (${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 7.73-7.70(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.26(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 134.1,129.4,129.3$.$) . Under the \mathrm{N}_{2}$ atmosphere, ($\boldsymbol{D L}$) $\mathbf{- 1 a}$ ($0.1 \mathrm{mmol}, 26.0 \mathrm{mg}$) in the reaction tube was added $\mathrm{PhSeI}\left(0.1 \mathrm{M}\right.$ in $\left.\mathrm{CDCl}_{3}, 2 \mathrm{~mL}\right)$. The mixture was stirred at room temperature for 24 h . Saturated sodium thiosulfate (1 mL) was added to quench the reaction. The reaction was diluted with ethyl acetate (5 mL) and washed by $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$. Aqueous phase was extracted with ethyl acetate ($5 \mathrm{~mL} \times 2$). The organic layer was combined, ethyl acetate was removed by rotary evaporator and the crude product was purified by silica column chromatography (elute: petroleum ether / ethyl acetate $1 / 3$) to afford the products ($D L$)-3n with the yield of 28%.

6. X-ray crystallographic date

X-ray crystallography of compound $\mathbf{3 j}$ (CCDC 2058699)

Table 1 Crystal data and structure refinement for A.
Identification code A
Empirical formula $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Se}$
Formula weight 565.37
Temperature/K 169.99(11)
Crystal system triclinic
Space group P-1
a/Å 9.17100(10)
b/Å 10.0901(3)
c/Å 13.7727(3)
$\alpha /{ }^{\circ} 109.3780(10)$
$\beta /{ }^{\circ} 91.5750(10)$
$\gamma /{ }^{\circ} 100.5370(10)$
Volume/Å ${ }^{3}$ 1176.65(5)
Z 2
ρ calcg $/ \mathrm{cm}^{3} \quad 1.596$
$\mu / \mathrm{mm}^{-1} \quad 2.860$
F(000) 568.0
Crystal size $/ \mathrm{mm} 3 \quad 0.11 \times 0.08 \times 0.05$
RadiationCu $\mathrm{K} \alpha(\lambda=1.54178)$
2Θ range for data collection/ ${ }^{\circ} \quad 6.834$ to 150.786
Index ranges $-11 \leq h \leq 11,-12 \leq k \leq 12,-17 \leq 1 \leq 17$
Reflections collected 16758
Independent reflections 4667 [Rint $=0.0262$, Rsigma $=0.0261$]
Data/restraints/parameters 4667/0/318
Goodness-of-fit on F2 1.109
Final R indexes [I>=2 $\sigma(\mathrm{I})] \quad \mathrm{R} 1=0.0642, \mathrm{wR} 2=0.1983$
Final R indexes [all data]R1 $=0.0648, \mathrm{wR} 2=0.1986$
Largest diff. peak/hole / e $\AA^{-3} 1.70 /-0.72$

Table 2 Fractional Atomic Coordinates $\left(\times 10^{4}\right)$ and Equivalent Isotropic Displacement Parameters $(\AA 2 \times 103)$ for A. Ueq is defined as $1 / 3$ of of the trace of the orthogonalised UIJ tensor.

Atom	x	y z	$\mathrm{U}(\mathrm{eq})$		
Se1	2904.5(6)		2.2(6)	8098.8(4)	34.1(2)
F1	3743(6)	4133(6)	3724(5)	90.0(17)	
F2	4251(6)	2670(8)	4380(4)	95.5(19)	
F3	2597(5)	1979(7)	3101(4)	97(2)	
F4	-1869(8)	1364(7)	6202(4)	120 (3)	
F5	-1736(6)	285(5)	4681(4)	93.1(19)	
F6	-2892(6)	1927(8)	5093(10)	172(5)	
01	5509(4)	3098(4)	9575(3)	38.3(9)	
02	5345(5)	1352(4)	8044(3)	40.8(9)	
03	8318(4)	5515(4)	8214(3)	40.0(9)	
N1	921(5)	4583(4)	8675(3)	29.6(9)	
N2	5982(5)	5177(4)	8657(3)	30.4(9)	
C00V	V 3112	$2(7) 3002$	(8) 398	(5) 46.0(14)	
C1	2204(6)	4838(5)	8216(4)	29.1(10)	
C2	2775(5)	3600(5)	7851(4)	26.9(10)	
C3	1741(5)	2517(5)	8097(4)	25.7(9)	
C4	1644(6)	1043(5)	7898(4)	31.8(11)	
C5	467(6)	303(6)	8234(5)	39.7(13)	
C6	-635(6)	986(6)	8752(5)	41.4(13)	
C7	-598(6)	2422(6)	8930(4)	35.1(11)	
C8	601(5)	3169(5)	8600(4)	27.8(10)	
C9	4140(6)	3390(6)	7299(4)	32.3(11)	
C10	5585(5)	3683(5)	8004(4)	28.8(10)	
C11	5483(5)	2719(5)	8656(4)	30.5(11)	
C12	5203(8)	317(7)	8564(6)	53.3(17)	
C13	7300(5)	6001(5)	8681(4)	27.1(10)	
C14	7474(6)	7565(6)	9280(5)	37.1(12)	
C15	1355(6)	6480(6)	6996(4)	35.7(12)	
C16	1124(6)	5038(6)	6168(4)	30.5(10)	
C17	2160(6)	4703(6)	5455(4)	$33.9(11)$	
C18	1953(6)	3353(6)	4712(4)	33.2(11)	
C19	694(6)	2303(6)	4658(4)	35.1(11)	
C20	-332(6)	2652(6)	5361(4)	33.6(11)	
C21	-125(6)	4013(6)	6121(4)	32.0 (11)	
C22	-1713(7)	1575(7)	5332(5)	43.5(13)	

Table 3 Anisotropic Displacement Parameters $(\AA ̊ \times 103)$ for A. The Anisotropic displacement factor exponent takes the form:

F4	140(6)	120(5)	60(3)	29(3)	18(3)	-69(4)
F5	88(4)	61(3)	88(4)	-10(3)	27(3)	-25(3)
F6	31(3)	120(5)	408(15)	165(8)	-22(5)	-12(3)
01	38(2)	40(2)	38(2)	12.7(17)	$5.4(16)$	12.2(17)
02	43(2)	24.2(18)	53(2)	8.8(17)	13.0(18)	8.8(16)
03	27.1(19)	41(2)	49(2)	10.3(18)	$10.7(16)$	$8.4(16)$
N1	28(2)	27(2)	33(2)	6.9 (17)	1.8(17)	$9.6(17)$
N2	25(2)	24(2)	38(2)	4.2(17)	10.2(17)	.6(16)
C00V	$V 36(3)$) 62(4)) 36(3)	12(3)	5(2)	$0(3)$
C1	31(3)	24(2)	30(2)	7.3(19)	-2.1(19)	4.3(19)
C2	27(2)	25(2)	25(2)	5.1(18)	-2.0(18)	$1.9(19)$
C3	24(2)	24(2)	25(2)	5.6(18)	-2.7(18)	$1.7(18)$
C4	26(2)	24(2)	38(3)	3(2) 1(2)	$2.3(19)$	
C5	35(3)	22(2)	57(4)	10(2)	$3(3) 0(2)$	
C6	28(3)	34(3)	60(4)	18(3)	8(2)-5(2)	
C7	24(2)	36(3)	45(3)	14(2)	5(2) 5(2)	
C8	23(2)	27(2)	31(2)	8(2) -2.5((18) 3.9	
C9	36(3)	30(3)	27(2)	$7(2) 8(2)$		
C10	25(2)	23(2)	35(3)	5(2) 10.4	9) $3.0(18$	
C11	19(2)	28(2)	45(3)	10(2)	8(2) 7.5(18)	
C12	45(4)	32(3)	90(5)	28(3)	16(3)	12(3)
C13	24(2)	28(2)	31(2)	13(2)	$0.8(19)$	5.9(19)
C14	29(3)	27(3)	54(3)	14(2)	3(2) 2(2)	
C15	40(3)	30(3)	38(3)	13(2)	-3(2)	9(2)
C16	32(3)	35(3)	29(2)	14(2)	-2(2)	10(2)
C17	29(3)	42(3)	33(3)	18(2)	-1(2)	4(2)
C18	30(3)	44(3)	29(2)	13(2)	2(2) 11(2)	
C19	37(3)	37(3)	31(3)	10(2)	1(2) 9(2)	
C20	36(3)	36(3)	30(3)	14(2)	$0(2) 7(2)$	
C21	32(3)	36(3)	31(3)	14(2)	3(2) 10(2)	
C22	43(3)	41(3)	43(3)	13(3)	5(3) 2(3)	

Table 4 Bond Lengths for A.

Atom	Atom	Length/Å	Atom	Atom	Length/Å		
Se1	C1	$1.887(5)$	C2	C9	$1.494(7)$		
Se1	C15	$1.993(5)$	C3	C4	$1.406(7)$		
F1	C00V	$1.341(9)$		C3	C8	$1.412(7)$	
F2	C00V	$1.314(8)$		C4	C5	$1.378(8)$	
F3	C00V	$1.310(8)$		C5	C6	$1.405(8)$	
F4	C22	$1.293(8)$	C6	C7	$1.381(8)$		
F5	C22	$1.309(8)$	C7	C8	$1.391(7)$		
F6	C22	$1.265(9)$	C9	C10	$1.543(7)$		
O1	C111	$1.192(7)$	C10	C11	$1.521(7)$		
O2	C111	$1.337(6)$	C13	C14	$1.495(7)$		

O2	C12	$1.440(8)$		C15 C16	$1.496(7)$
O3	C13	$1.231(6)$		C16 C17	$1.389(8)$
N1	C1	$1.374(7)$		C16	C21
N1	C8	$1.379(8)$			
N2	C10	$1.447(6)$		C17	C18
N2	C13	$1.382(8)$			
C19	$1.399(8)$				
C00V	C18	$1.494(8)$	C19 C20	$1.376(8)$	
C1	C2	$1.388(7)$	C20	C22	$1.500(8)$
C2	C3	$1.446(7)$			$1.399(8)$

Table 5 Bond Angles for A.

Table 6 Hydrogen Bonds for A.
D H A d(D-H)/Åd(H-A)/Åd(D-A)/ÅD-H-A/ ${ }^{\circ}$
N1 H1 $0310.862 .262 .850(6) 125.3$

Table 7 Torsion Angles for A.

A	B	C	D	Angle/ ${ }^{\circ}$	A	B	C	D	Angle/ ${ }^{\circ}$
Se1	C1	C2	C3	-176.2(4)	C8	N1	C1	Se1	175.9(3)
Se1	C1	C2	C9	2.5(8)	C8	N1	C1	C2	-1.5(6)
Se1	C15	C16	C17	-74.6(5)	C8	C3	C4	C5	-2.2(8)
Se1	C15	C16	C21	104.1(5)	C9	C2	C3	C4	-2.0(9)
F1	C00V		C18	C17-35.5(8)		C9	C2	C3	C8 -178.8(5)
F1	C00V		C18	C19 146.3(6)		C9	C10	C11	$01-114.6(6)$
F2	C00V		C18	C17 80.5(8)		C9	C10	C11	02 65.0(5)
F2	C00V		C18	C19 -97.7(7)		C10	N2	C13	$03-6.2(8)$
F3	C00V		C18	C17-154.9(6)		C10	N2	C13	C14 171.9(5)
F3	C00V		C18	C19 26.9(9)		C12	02	C11	$01 \quad 0.9(7)$
N1	C1	C2	C3	1.0(5)	C12	02	C11	C10	-178.7(4)
N1	C1	C2	C9	179.6(5)	C13	N2	C10	C9	-124.5(5)
N2	C10	C11	01	9.9(7)	C13	N2	C10	C11	110.1(5)
N2	C10	C11	02	-170.5(4)	C15	Se1	C1	N1	-72.6(4)
C00V		C18	C19	C20 178.4(5)		C15	Se1	C1	C2 104.2(5)
C1	N1	C8	C3	1.4(5)	C15	C16	C17	C18	178.1(5)
C1	N1	C8	C7	-178.3(5)	C15	C16	C21	C20	-178.6(5)
C1	C2	C3	C4	176.7(5)	C16	C17	C18	C00	-177.7(5)
C1	C2	C3	C8	-0.1(5)	C16	C17	C18	C19	0.5(8)
C1	C2	C9	C10	90.2(6)	C17	C16	C21	C20	0.2(7)
C2	C3	C4	C5	-178.8(5)	C17	C18	C19	C20	0.2(8)
C2	C3	C8	N1	-0.7(5)	C18	C19	C20	C21	-0.7(8)
C2	C3	C8	C7	178.9(5)	C18	C19	C20	C22	179.2(5)
C2	C9	C10	N2	-64.6(6)	C19	C20	C21	C16	0.5(8)
C2	C9	C10	C11	59.7(6)	C19	C20	C22	F4	124.7(7)
C3	C2	C9	C10	-91.4(6)	C19	C20	C22	F5	7.7(9)
C3	C4	C5	C6	1.0(9)	C19	C20	C22	F6	-113.6(9)
C4	C3	C8	N1	-178.1(4)	C21	C16	C17	C18	-0.7(8)
C4	C3	C8	C7	1.5(8)	C21	C20	C22	F4	-55.4(8)
C4	C5	C6	C7	1.1(10)	C21	C20	C22	F5	-172.4(6)
C5	C6	C7	C8	-1.8(9)	C21	C20	C22	F6	66.2(9)
C6	C7	C8	N1	-179.9(5)	C22	C20	C21	C16	-179.4(5)
C6	C7	C8	C3	0.5(8)					

Table 8 Hydrogen Atom Coordinates $(\AA \times 104)$ and Isotropic Displacement Parameters $(\AA \AA 2 \times 103)$ for A.
Atom x y z U(eq)
$\begin{array}{lllll}\text { H1 } & 401.24 & 5210.98 & 8963.43 & 36\end{array}$
$\begin{array}{llllll}\mathrm{H} 2 & 5337.9 & 5546.63 & 9044.66 & 37\end{array}$
$\begin{array}{llllll}\text { H4 } & 2359.86 & 576.25 & 7547.14 & 38\end{array}$
$\begin{array}{llllll}\text { H5 } & 401.04 & -669.85 & 8116.14 & 48\end{array}$

H6 $\quad-1406.36459 .56 \quad 8979.14 \quad 50$
H7 $-1341.612869 .17 \quad 9255.18 \quad 42$
$\begin{array}{llllll}\text { H9A } 4284.23 & 4018.01 & 6892.74 & 39\end{array}$
H9B $3972.49 \quad 2410.16 \quad 6822.53 \quad 39$
$\begin{array}{lllll}H 10 & 6388.3 & 3478 & 7556.91 & 35\end{array}$
H12A $\quad 5415.73-565.25 \quad 8110.4980$
$\begin{array}{llllll}\text { H12B } & 4205.37 & 145.26 & 8755.34 & 80\end{array}$
$\begin{array}{lllll}\mathrm{H} 12 \mathrm{C} & 5892.8 & 679.61 & 9174.04 & 80\end{array}$
$\begin{array}{llllll}H 14 A & 8499.8 & 7965.68 & 9538.54 & 56\end{array}$
$\begin{array}{llllll}\text { H14B } & 6868.91 & 7691.31 & 9848.2 & 56\end{array}$
H14C $\quad 7166.53 \quad 8043.96 \quad 8836.36 \quad 56$
$\begin{array}{llllll}H 15 A & 424.85 & 6617.18 & 7295.07 & 43\end{array}$
H15B $\quad 1661.93 \quad 7221.69 \quad 6698.17 \quad 43$
$\begin{array}{lllll}\text { H17 } & 2998.44 & 5392.71 & 5478.23 & 41\end{array}$
$\begin{array}{lllll}H & 554.3 & 1393.06 & 4160.1 & 42\end{array}$
$\begin{array}{llllll}H 21 & -827.36 & 4227.13 & 6593.14 & 38\end{array}$

	\%		
M M \%	V	-	0

\%)		す¢	\%
)	\checkmark) $\ 10$	V	- \%		1

F2
11

10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	${ }_{-160}$	-170	-180	-190	-200	-210
		$\begin{aligned} & \mathscr{\cong} \\ & \stackrel{1}{0} \end{aligned}$			\%													$\stackrel{8}{0_{4}^{5}}$				

\begin{abstract}

[^0]

Coses

45

韤

2c Cl

然

䱏

2e

N

NO

v

$$
\text { 边 } \sin _{20}
$$

哭慰 $\stackrel{1}{1}$

$$
x^{3}
$$

Cl

[^1]$$
\mathrm{C}_{\mathrm{H}, \mathrm{C}}^{2}
$$

nemosicos

\[

$$
\begin{aligned}
& \text { 筑 } \\
& \text { 㯺 }
\end{aligned}
$$
\]

mos.

に切行侍

$3 c$
 － 20

3e $\quad \mathrm{Me}$

会

[^2]
$3 g$

3g

3h

[^3]

\qquad

	部鬼		E	\%	
$0{ }^{\circ}$	V	Vij	\%	\%	verumis

${ }^{3}$

3k

3k

3m

\％\％	¢	あ ミ以	¢ํㅜํ	9ち889スを
¢	ิิ．		¢	
11		｜\117｜	，	H／？${ }^{\text {a }}$

$3 m$

3n

30

3o

\% \%	ฐֻ¢			$\stackrel{\square}{1}$
VMminisis	10	E	\cdots	T

$\begin{array}{lccccc}210 & 200 & 190 & 180 & 170 & 160\end{array}$ $140 \quad 1$

$$
\begin{array}{lcccccccccccccc}
1 & 120 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 \\
\hline
\end{array}
$$

			$\begin{aligned} & 8 \% \\ & \dot{\sim} \\ & \dot{\sim} \\ & 0 \end{aligned}$	$\stackrel{\text { ¢ }}{\text { ¢ }}$

Abstract

$\stackrel{\square}{9}$		N	-ベ\%								
충		ั่									
\|		\|		U	l					V	V/

$\left.\begin{array}{lllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30\end{array}\right) 20$

98
11
Nis
1

	눙융		¢		운
	¢0\％	ザj゙j	∞		1

[^4]$\stackrel{\text { 卷 }}{\stackrel{\circ}{\circ}}$

$$
0-2
$$

| 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

8. HPLC spectra

9. CD Spectra

CD spectra were recorded on a Jasco J 810 instrument using a cell of 1 cm path length. Spectral accumulation parameters included the scanning rate at $1000 \mathrm{~nm} / \mathrm{min}$ with a $1-\mathrm{nm}$ bandwidth, over the wavelength range of 200-600 nm. Each spectrum was obtained from an average of 5 scans. The CD spectra were measured with $\mathbf{1 a}\left(c a .5 \times 10^{-5} \mathrm{M}\right)$ and $\mathbf{3 a}\left(c a .4 \times 10^{-5}\right.$ M) in $\mathrm{CH}_{3} \mathrm{CN}$ at $25^{\circ} \mathrm{C}$. The CD spectra were corrected for solvent contributions.

10. References

[1] M. Martínez-Mingo, N. Rodríguez, R. G. Arrayás, and J. C. Carretero, Org. Lett., 2019, 21, 4345-4349.
[2] C. P. Katzka, PhD. Dissertation, Universität Dortmund of Germany, 2009.
[3] S. Johansson, T. Redeby, T. M. Altamore, Ulrika Nilsson, A. Börje, Chem. Res. Toxicol., 2009, 22, 1774-1781.
[4] M. Iwaoka, T. Katsuda, H. Komatsu, S. Tomoda, J. Org. Chem., 2005, 70, 321-327.
[5] K. M. N. Win, A. D. Sonawane and M. Koketsu, Org. Biomol. Chem., 2019, 17, 9039-9049.

[^0]:

[^1]:

[^2]:

[^3]:

[^4]: $\begin{array}{lllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$

