# Interconversion between Möbius Chiroptical States Sustained by Hexaphyrin Dynamic Coordination

Bernard Boitrel, and Stéphane Le Gac

## SUPPORTING INFORMATION

## 1. Experimental part

General

Characterization of 1.Zn<sub>L1</sub><sup>L2</sup>

Figure S1. Selected <sup>1</sup>H NMR Complexation Induced Shift for  $1.2n_{L1}^{L2}$ .

Typical procedures for the switching between  $1.Zn_{L1}$  and  $1.Zn_{L1}^{L2}$ 

## 2. Selected <sup>1</sup>H NMR spectra for the optimization of the Boc protection sequence

**Figure S2.** <sup>1</sup>H NMR spectra corresponding to the interconversion between **1.Zn**<sub>OAc</sub> and **1.Zn**<sub>OAc</sub><sup>NH2Bu</sup>, performed at RT.

**Figure S3.** <sup>1</sup>H NMR spectra corresponding to the interconversion between **1.Zn**<sub>OAc</sub> and **1.Zn**<sub>OAc</sub><sup>NH2Bu</sup>, the backward process being performed at 50 °C.

**Figure S4.** Comparison of the <sup>1</sup>H NMR spectra of **1.Zn**<sub>OAc</sub>, before and after interconversion with **1.Zn**<sub>OAc</sub><sup>NH2Bu</sup>, with the backward process performed at RT or at 50 °C.

**Figure S5.** <sup>1</sup>H NMR spectra corresponding to the interconversion between **1.Zn**<sub>OAc</sub> and **1.Zn**<sub>OAc</sub><sup>NH2Bu</sup>, the backward process being performed at RT with different amounts of Boc<sub>2</sub>O.

## 3. Selected <sup>1</sup>H NMR spectra for the switching between 1.Zn<sub>L1</sub> and 1.Zn<sub>L1</sub><sup>L2</sup>

**Figure S6.** Partial <sup>1</sup>H NMR spectra related to the *in situ* interconversion between **1.Zn**<sub>OAC</sub> and **1.Zn**<sub>OAC</sub><sup>NH2Bu</sup>.

**Figure S7.** Partial <sup>1</sup>H NMR spectra related to the *in situ* interconversion between **1.Zn**<sub>L1</sub> and **1.Zn**<sub>L1</sub><sup>NH2Bu</sup> (L<sub>1</sub> = (*S*)BocProO<sup>-</sup>).

**Figure S8.** Partial <sup>1</sup>H NMR spectra related to the *in situ* interconversion between **1.Zn**<sub>OAC</sub> and **1.Zn**<sub>OAC</sub><sup>(S)MBA</sup>.

## 4. Selected ECD spectra for the switching between $1.Zn_{L1}$ and $1.Zn_{L1}^{L2}$

**Figure S9.** ECD spectra (general overview) related to the *in situ* interconversion between **1.Zn**<sub>L1</sub> and **1.Zn**<sub>L1</sub><sup>L2</sup>: (a) with  $L_1 = (S)BocProO^{-}/L_2 = BuNH_2$ ; (b) with  $L_1 = (R)BocProO^{-}/L_2 = BuNH_2$ .

**Figure S10.** ECD spectra (detailed steps) related to the *in situ* interconversion between  $1.Zn_{L1}$  and  $1.Zn_{L1}^{L2}$ , with  $L_1 = (S)BocProO^{-}/L_2 = BuNH_2$ .

**Figure S11.** ECD spectra (general overview) related to the *in situ* interconversion between **1.Zn**<sub>OAc</sub> and **1.Zn**<sub>OAc</sub><sup>(S)MBA</sup> or **1.Zn**<sub>OAc</sub><sup>(R)MBA</sup>.

**Figure S12.** ECD spectra (detailed steps) related to the *in situ* interconversion between **1.Zn**<sub>OAc</sub> and **1.Zn**<sub>OAc</sub><sup>(S)MBA</sup>.

**Figure S13.** ECD spectra (detailed steps) related to the *in situ* interconversion between  $1.Zn_{OAC}$  and  $1.Zn_{OAC}$ <sup>(S)MBA</sup> or  $1.Zn_{OAC}$ <sup>(R)MBA</sup>.

#### 1. Experimental part

#### General

All chemicals were commercial products used as received. <sup>1</sup>H NMR spectra were recorded at 298 K (unless otherwise stated), at 500 MHz. Residual traces of solvent were used as internal standard. The NMR experiments were conducted in 5 mm standard NMR tubes. The ECD spectra were recorded in a quartz glass cuvette of 2 mm optical path length, at ca. 20 °C. The synthesis of **1** and the <sup>1</sup>H NMR characterization of the various complexes **1Zn**<sub>L1</sub> and **1Zn**<sub>L1</sub><sup>L2</sup> were previously reported.<sup>1</sup> It is worth to note that these metal complexes exhibit hindered rotation of the 2-acetamidophenyl *meso* substituents, and thus correspond to dynamic mixtures of atropisomers.

#### Characterization of $1.Zn_{\text{L1}}^{\text{L2}}$



<sup>1</sup>H NMR (CDCl<sub>3</sub>/CD<sub>3</sub>OD 9:1, 298 K, partial descriptions because of a strong overlapping and/or highly broaden signals; selected complexation induced shifts are displayed Figure S1):

| 1.Zn <sub>OAc</sub> <sup>a</sup>            | β-pyr <i>inner</i>                                                                                                                   | β-pyr <i>twisted</i>                                 |  |  |  |
|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|--|--|--|
|                                             | M: -2.60 (s <sub>b</sub> , 1H), -1.95 (d, <i>J</i> = 4.7 Hz, 1H)<br>m: -2.81 (s <sub>b</sub> , 1H), -1.79 (d, <i>J</i> = 4.5 Hz, 1H) | 5.2 to 5.9: broad signals with strong<br>overlapping |  |  |  |
|                                             | HAr <sup>ortho</sup> inward                                                                                                          | OAc                                                  |  |  |  |
|                                             | M: 4.17 (d <i>, J</i> = 7.1 Hz, 1H)                                                                                                  | -0.99 (s <sub>b</sub> )                              |  |  |  |
|                                             | m: 4.19 (d <i>, J</i> = 6.1 Hz, 1H)                                                                                                  | -0.95 (s <sub>b</sub> )                              |  |  |  |
| $^a$ "M" and "m" stand for major and minor. |                                                                                                                                      |                                                      |  |  |  |

| β-pyr <i>inner</i>                           | β-pyr <i>twisted</i>                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>A</b> : -2.68 (d, <i>J</i> = 4.6 Hz, 1H), | <b>A</b> : 4.84 (d, <i>J</i> = 4.3 Hz,                                                                                                                                                                                                                                                                                                              | 1H),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| -1.66 (d, J = 4.8 Hz, 1H)                    | 4.87 (d <i>, J</i> = 4.5 Hz,                                                                                                                                                                                                                                                                                                                        | 1H)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| <b>B</b> : -2.57 (d, <i>J</i> = 4.4 Hz, 1H), | <b>B</b> : 4.89 (d, <i>J</i> = 4.4 Hz, 1H),                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| -1.51 (d, <i>J</i> = 4.4 Hz, 1H)             | 4.99 (d, J = 4.3 Hz,                                                                                                                                                                                                                                                                                                                                | 1H)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| <b>C</b> : -2.42 (d, <i>J</i> = 4.9 Hz, 1H), | <b>C</b> : 4.95 (d, <i>J</i> = 4.5 Hz,                                                                                                                                                                                                                                                                                                              | 1H),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| -1.60 (d, <i>J</i> = 4.7 Hz, 1H)             | 5.05 (d, J = 4.4 Hz, 1H)                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| HAr <sup>ortho</sup> inward                  | OAc                                                                                                                                                                                                                                                                                                                                                 | BuNH <sub>2</sub> (α-CH <sub>2</sub> ) <sup>b</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| <b>A</b> : 4.61 (d, <i>J</i> = 7.5 Hz, 1H)   | A: -1.16 (s, 3H)                                                                                                                                                                                                                                                                                                                                    | 1.76/2.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| <b>B</b> : 4.62 (d, <i>J</i> = 7.2 Hz, 1H)   | <b>B:</b> -1.12 (s, 3H)                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| <b>C</b> : 4.44 (d, <i>J</i> = 7.2 Hz, 1H)   | <b>C:</b> -1.20 (s, 3H)                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                              | β-pyr inner<br>A: -2.68 (d, $J$ = 4.6 Hz, 1H),<br>-1.66 (d, $J$ = 4.8 Hz, 1H)<br>B: -2.57 (d, $J$ = 4.4 Hz, 1H),<br>-1.51 (d, $J$ = 4.4 Hz, 1H)<br>C: -2.42 (d, $J$ = 4.9 Hz, 1H),<br>-1.60 (d, $J$ = 4.7 Hz, 1H)<br>HAr <sup>ortho</sup> inward<br>A: 4.61 (d, $J$ = 7.5 Hz, 1H)<br>B: 4.62 (d, $J$ = 7.2 Hz, 1H)<br>C: 4.44 (d, $J$ = 7.2 Hz, 1H) | $\beta$ -pyr inner $\beta$ -pyr twistedA: -2.68 (d, J = 4.6 Hz, 1H),<br>-1.66 (d, J = 4.8 Hz, 1H)A: 4.84 (d, J = 4.3 Hz,<br>4.87 (d, J = 4.5 Hz,<br>B: -2.57 (d, J = 4.4 Hz, 1H)B: -2.57 (d, J = 4.4 Hz, 1H),<br>-1.51 (d, J = 4.4 Hz, 1H)B: 4.89 (d, J = 4.4 Hz,<br>4.99 (d, J = 4.3 Hz,<br>C: -2.42 (d, J = 4.9 Hz, 1H)C: -2.42 (d, J = 4.9 Hz, 1H),<br>-1.60 (d, J = 4.7 Hz, 1H)C: 4.95 (d, J = 4.5 Hz,<br>5.05 (d, J = 4.5 Hz,<br>5.05 (d, J = 4.4 Hz,HArortho inwardOAcA: 4.61 (d, J = 7.5 Hz, 1H)A: -1.16 (s, 3H)<br>B: 4.62 (d, J = 7.2 Hz, 1H)B: 4.62 (d, J = 7.2 Hz, 1H)C: -1.20 (s, 3H) |

<sup>*a*</sup> At 278 K. The labeling "A", "B" and "C" corresponds to the three major species retaining the characteristic resonances of Zn(II) Möbius complexes (see ref [1]).<sup>*b*</sup> Average values obtained from 2D ROESY experiment.

<sup>&</sup>lt;sup>1</sup> B. Boitrel and S. Le Gac, *Chem. Commun.*, 2020, **56**, 9166.

| 1.Zn <sub>(S)-BocProO</sub> NH2Bu a                                                             | β-pyr <i>inner</i>                   | β-pyr <i>twisted</i>                 |  |  |
|-------------------------------------------------------------------------------------------------|--------------------------------------|--------------------------------------|--|--|
|                                                                                                 | M: -2.61 (d, <i>J</i> = 4.7 Hz, 1H), | M: 4.52 (d, <i>J</i> = 4.4 Hz, 1H),  |  |  |
|                                                                                                 | -1.68 (d, <i>J</i> = 4.9 Hz, 1H)     | 4.70 (d, J = 4.6 Hz, 1H)             |  |  |
|                                                                                                 | m: -2.58 (d, <i>J</i> = 4.6 Hz, 1H), | m: 4.63 (d <i>, J</i> = 4.3 Hz, 1H), |  |  |
|                                                                                                 | -1.61 (d, <i>J</i> = 4.4 Hz, 1H)     | 4.74 (d, J = 4.3 Hz, 1H)             |  |  |
|                                                                                                 | HAr <sup>ortho</sup> inward          | BuNH₂ (α-CH₂) <sup>b</sup>           |  |  |
|                                                                                                 | M: 5.09 (d, J = 7.5 Hz, 1H)          | 1.79/2.04                            |  |  |
|                                                                                                 | m: 5.04 (d <i>, J</i> = 7.6 Hz, 1H)  |                                      |  |  |
| g (NA) and (m) atom of far major and minor h Average values a lateined from 2D DOFGV superiment |                                      |                                      |  |  |

<sup>a</sup> "M" and "m" stand for major and minor. <sup>b</sup> Average values obtained from 2D ROESY experiment.

| <b>1.Zn<sub>OAc</sub><sup>(S)-MBA</sup></b> a | β-pyr inner                                                                                                                                                                                                               | β-pyr <i>twisted</i>                                     |                                                               |  |
|-----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------|--|
|                                               | <ul> <li>A: -2.70 (d, J = 4.0 Hz, 1H),<br/>-1.69 (d, J = 4.1 Hz, 1H)</li> <li>B: -2.64 (d, J = 4.9 Hz, 1H),<br/>-1.60 (d<sub>b</sub>, 1H)</li> <li>C: -2.85 (d, J = 4.8 Hz, 1H),<br/>-1.65 (d<sub>b</sub>, 1H)</li> </ul> | 4.8 to 5.15: broad signals with strong overlapping       |                                                               |  |
|                                               | HAr <sup>ortho</sup> inward                                                                                                                                                                                               | OAc                                                      | (S)-MBA (α-CH) <sup>b</sup>                                   |  |
|                                               | <b>A</b> : 4.61 (d, <i>J</i> = 7.8 Hz, 1H)<br><b>B</b> : 4.58 (d, <i>J</i> = 7.3 Hz, 1H)<br><b>C</b> : 4.46 (d, <i>J</i> = 7.8 Hz, 1H)                                                                                    | A: -1.22 (s, 3H)<br>B: -1.20 (s, 3H)<br>C: -1.25 (s, 3H) | 2.76 (q <sub>b</sub> , J = 7.0 Hz, 1H)<br>2.92 (broad signal) |  |

<sup>*a*</sup> The labeling "A", "B" and "C" corresponds to the three major species retaining the characteristic resonances of Zn(II) Möbius complexes (in total, five Möbius-type NMR patterns are observed). <sup>*b*</sup> Average values obtained from 2D ROESY experiment.



**Figure S1.** Selected <sup>1</sup>H NMR Complexation Induced Shift (CIS in ppm,  $\Delta \delta = \delta_{\text{bound}} - \delta_{\text{free}}$ ) for **1.Zn**<sub>L1</sub><sup>L2</sup> (CDCl<sub>3</sub>/CD<sub>3</sub>OD 9:1, 298 K). Because of the presence of multiple species, the CISs are given for the major species as single values or, for complex spectra, as a range of values.

#### Typical procedures for the switching between 1.Zn<sub>L1</sub> and 1.Zn<sub>L1</sub><sup>L2</sup>

### <sup>1</sup>H NMR monitoring of the switching between **1.Zn**<sub>OAc</sub> and **1.Zn**<sub>OAc</sub><sup>NH2Bu</sup> (approach A)

The two following solutions were prepared:

- **S1**: 8.0 mg of Zn(OAc)<sub>2</sub> in 9:1 CDCl<sub>3</sub>/CD<sub>3</sub>OD (500 μL).
- **S2**: 125.0 mg of Boc<sub>2</sub>O in 9:1 CDCl<sub>3</sub>/CD<sub>3</sub>OD (500 μL).

In a NMR tube, hexaphyrin 1 (3.0 mg, 2.2  $\mu$ mol) was dissolved in 9:1 CDCl<sub>3</sub>/CD<sub>3</sub>OD (500  $\mu$ L). To this solution, 2 µL of DIPEA (11.5 µmol, 5 equiv.) and 45 µL of S1 (3.3 µmol, 1.5 equiv.) were successively added at room temperature. A <sup>1</sup>H NMR spectrum was immediately recorded showing formation of 1.Zn<sub>OAc</sub>.

Forward process: 1.0 µL of BuNH<sub>2</sub> (10.1 µmol, 5 equiv.) was added, and a <sup>1</sup>H NMR spectrum was immediately recorded showing formation of  ${\bf 1.Zn}_{OAc}{}^{\rm NH2Bu}$  [for the second and third forward processes, 1.5  $\mu$ L of BuNH<sub>2</sub> (15.1  $\mu$ mol, 7 equiv.) were added].

Backward process: 16 μL of S2 (14.2 μmol, 7 equiv.) were added and the NMR tube was left at RT; <sup>1</sup>H NMR spectra were regularly recorded showing completion of the backward process after 2 hours (only the signature of **1.Zn**<sub>OAc</sub> was observed).

These two steps were repeated three times (see text, Figure 2A).

<sup>1</sup>H NMR monitoring of the switching between  $1.Zn_{L1}$  and  $1.Zn_{L1}^{NH2Bu}$  (L<sub>1</sub> = (S)BocProO<sup>-</sup>)

The following solutions were prepared:

- **S3**: 20 mg of Zn(OTf)<sub>2</sub> in 9:1 CDCl<sub>3</sub>/CD<sub>3</sub>OD (500 μL).
- **S4**: 58 mg of (S)BocProOH in 9:1 CDCl<sub>3</sub>/CD<sub>3</sub>OD (500 μL).

In a NMR tube, hexaphyrin 1 (3.0 mg, 2.2  $\mu$ mol) was dissolved in 9:1 CDCl<sub>3</sub>/CD<sub>3</sub>OD (500  $\mu$ L). To this solution, 5 μL of DIPEA (28.7 μmol, 13 equiv.), 30 μL of **S3** (3.1 μmol, 1.5 equiv.), 20 μL of **S4** (9.7 μmol, 4 equiv.) were successively added at room temperature. A <sup>1</sup>H NMR spectrum was immediately recorded showing almost no metalation of 1.

Forward process: 1.0 µL of BuNH<sub>2</sub> (10.1 µmol, 5 equiv.) was added and the NMR tube was heated at 50 °C for 30 min [for the second and third forward processes, 1.5  $\mu$ L of BuNH<sub>2</sub> (15.1  $\mu$ mol, 7 equiv.) were added]. A <sup>1</sup>H NMR spectrum was recorded showing the formation of  $1.Zn_{L1}^{NH2Bu}$  (L<sub>1</sub> = (S)BocProO<sup>-</sup> ) as major product(s).<sup>2</sup>

Backward process: 16  $\mu$ L of **S2** (14.2  $\mu$ mol, 7 equiv.) were added and the NMR tube was left at RT; <sup>1</sup>H NMR spectra were regularly recorded showing completion of the backward process after 2 hours (the signature of  $1.Zn_{L1}^{NH2Bu}$  (L<sub>1</sub> = (S)BocProO<sup>-</sup>) was no longer observed).

These two steps were repeated three times (Figure S7).

ECD monitoring of the switching between  $1.Zn_{L1}$  and  $1.Zn_{L1}^{NH2Bu}$  ( $L_1 = BocProO^-$ ) and between  $1.Zn_{OAC}$ and **1.Zn**OAc<sup>MBA</sup>

Same procedure as for the NMR studies (same concentration of ca. 4 mM), but non-deuterated solvents were used, and NMR tubes were replaced by sealed vials with screw caps. For ECD

<sup>&</sup>lt;sup>2</sup> A mixture of isomers is formed; note that an incomplete metalation is observed, which is likely due the steric hindrance of BocProO<sup>-</sup> larger than that of AcO<sup>-</sup> (see ref 1).

measurements, aliquots of 5  $\mu L$  were diluted in 500  $\mu L$  of CHCl<sub>3</sub>/MeOH 9 :1 and ECD spectra immediately recorded.

For the switching between  $\mathbf{1.Zn_{L1}}$  and  $\mathbf{1.Zn_{L1}}^{NH2Bu}$  (L<sub>1</sub> = BocProO<sup>-</sup>), short time heating at 50 °C (15-30 min) was needed to complete the forward and backward processes (Figure S10).

For the switching between **1.Zn**<sub>OAc</sub> and **1.Zn**<sub>OAc</sub><sup>MBA</sup>, no heating was required, all processes were realized at RT.

#### 2. Selected <sup>1</sup>H NMR spectra for the optimization of the Boc protection sequence



**Figure S2-A.** <sup>1</sup>H NMR spectra (CDCl<sub>3</sub>/CD<sub>3</sub>OD 9:1, 298 K, selected parts) corresponding to the interconversion between **1.Zn**<sub>OAc</sub> and **1.Zn**<sub>OAc</sub><sup>NH2Bu</sup>, performed at RT: a) **1**, 5 eq. DIPEA; b) upon addition of 1.5 eq. Zn(OAc)<sub>2</sub>; c) upon addition of 5 eq. BuNH<sub>2</sub>; d-g) respectively 5 min, 40 min, 2h15 and 5h30 upon addition of 5 eq. of Boc<sub>2</sub>O. S = solvent, G = grease.



**Figure S2-B.** Same <sup>1</sup>H NMR experiment, selected part 3.5-0.7 ppm, scale/20, showing disappearance of BuNH<sub>2</sub> and formation of BuNHBoc.

**Figure S2-C.** Same <sup>1</sup>H NMR experiment, selected part 1.45-1.15 ppm, scale/200, showing disappearance of  $Boc_2O$  and formation of BuNHBoc along with tBuOH.



**Figure S3.** <sup>1</sup>H NMR spectra (CDCl<sub>3</sub>/CD<sub>3</sub>OD 9:1, 298 K, selected parts) corresponding to the interconversion between **1.Zn**<sub>OAc</sub> and **1.Zn**<sub>OAc</sub><sup>NH2Bu</sup>, the backward process being performed at 50 °C: a) **1**, 5 eq. DIPEA; b) upon addition of 1.5 eq.  $Zn(OAc)_2$ ; c) upon addition of 5 eq.  $BuNH_2$ ; d-g) respectively 20 min, 40 min, 80 min and 110 min upon addition of 5 eq. of Boc<sub>2</sub>O. S = solvent, G = grease.



**Figure S4.** Comparison of the <sup>1</sup>H NMR spectra of **1.Zn**<sub>OAc</sub> (CDCl<sub>3</sub>/CD<sub>3</sub>OD 9:1, 298 K, selected parts), before (a) and after interconversion with **1.Zn**<sub>OAc</sub><sup>NH2Bu</sup> (addition of 5 eq. BuNH<sub>2</sub>, then reaction with 5 eq. of Boc<sub>2</sub>O), with the backward process performed at RT for 5h30 (b) or at 50 °C for 110 min (c). Dashed circle: apparition of a complex set of signals in the "non-aromatic" region, which might correspond to hexaphyrin degradation. S = solvent, G = grease.



**Figure S5.** <sup>1</sup>H NMR spectra (CDCl<sub>3</sub>/CD<sub>3</sub>OD 9:1, 298 K, selected parts) corresponding to the interconversion between **1.Zn**<sub>OAc</sub> and **1.Zn**<sub>OAc</sub><sup>NH2Bu</sup>, the backward process being performed at RT with different amounts of Boc<sub>2</sub>O: a) **1**, 5 eq. DIPEA and 1.5 eq. Zn(OAc)<sub>2</sub>; b) upon addition of 5 eq. BuNH<sub>2</sub>; c-d) respectively 17 min and 60 min upon addition of 20 eq. of Boc<sub>2</sub>O. e) **1**, 5 eq. DIPEA and 1.5 eq. Zn(OAc)<sub>2</sub>; f) upon addition of 5 eq. BuNH<sub>2</sub>; g-h) respectively 28 min and 120 min upon addition of 7.5 eq. of Boc<sub>2</sub>O. S = solvent, G = grease.

#### 3. Selected <sup>1</sup>H NMR spectra for the switching between $1Zn_{L1}$ and $1Zn_{L1}^{L2}$



**Figure S6.** Partial <sup>1</sup>H NMR spectra (CDCl<sub>3</sub>/CD<sub>3</sub>OD 9:1, 298 K) related to the *in situ* interconversion between **1.Zn**<sub>OAc</sub> and **1.Zn**<sub>OAc</sub><sup>NH2Bu</sup> (approach "B", forward and backward processes performed at RT): a) **1.Zn**<sub>OAc</sub>, formed by addition of 1.5 eq. of Zn(OAc)<sub>2</sub> to **1**, in the presence of 5 eq. of DIPEA; b) upon addition of 5 eq. of BuNH<sub>2</sub>; c) upon addition of 20 eq. of Boc<sub>2</sub>O/17 min; d-e) upon addition of 5 eq. of BuNH<sub>2</sub>/3 min and 40 min; f-g) upon addition of 5 eq. of BuNH<sub>2</sub>/4 min and 48 min; h) upon addition of 5 eq. of BuNH<sub>2</sub>/4 min; i) upon addition of 15 eq. of BuNH<sub>2</sub>/4 min and 53 min. S = solvent, G = grease.



**Figure S7.** Partial <sup>1</sup>H NMR spectra (CDCl<sub>3</sub>/CD<sub>3</sub>OD 9:1, 298 K) related to the *in situ* interconversion between **1.Zn**<sub>L1</sub> and **1.Zn**<sub>L1</sub><sup>NH2Bu</sup> (L<sub>1</sub> = (*S*)BocProO<sup>-</sup>): a) **1**, 1.5 eq. Zn(OTf)<sub>2</sub>, 4 eq. (*S*)BocProOH, 13 eq. DIPEA; b) upon addition of 5 eq. BuNH<sub>2</sub>/50°C 30 min; c) upon addition of 7 eq. Boc<sub>2</sub>O/RT 2h; d) upon addition of 7 eq. BuNH<sub>2</sub>/RT 10 min then 50°C 30 min; e) upon addition of 7 eq. Boc<sub>2</sub>O/RT 1h30; f) upon addition of 7 eq. BuNH<sub>2</sub>/RT 15 min then 50°C 30 min; g) upon addition of 7 eq. Boc<sub>2</sub>O/RT 1h. S = solvent.



**Figure S8.** Partial <sup>1</sup>H NMR spectra (CDCl<sub>3</sub>/CD<sub>3</sub>OD 9:1, 298 K) related to the *in situ* interconversion between **1.Zn**<sub>OAc</sub> and **1.Zn**<sub>OAc</sub><sup>(S)MBA</sup>: a) **1.Zn**<sub>OAc</sub>, formed by addition of 1.5 eq. of  $Zn(OAc)_2$  to **1**, in the presence of 5 eq. of DIPEA; b) upon addition of 5 eq. of (*S*)MBA; c) upon addition of 20 eq. of Boc<sub>2</sub>O/1h30 RT; d) upon addition of 5 eq. of (*S*)MBA/3 min RT; e) upon addition of 5 eq. of Boc<sub>2</sub>O/2h RT; f) upon addition of 5 eq. of (*S*)MBA/4 min RT; g) upon addition of 5 eq. of Boc<sub>2</sub>O/1h45 RT; h) upon addition of 5 eq. of Soc<sub>2</sub>O/1h45 RT; h) upon addition of 5 eq. of Soc<sub>2</sub>O/1h45 RT; h) upon addition of 5 eq. of Soc<sub>2</sub>O/1h45 RT; h) upon addition of 5 eq. of Soc<sub>2</sub>O/1h45 RT; h) upon addition of 5 eq. of Soc<sub>2</sub>O/1h45 RT; h) upon addition of 5 eq. of Soc<sub>2</sub>O/1h45 RT; h) upon addition of 5 eq. of Soc<sub>2</sub>O/1h45 RT; h) upon addition of 5 eq. of Soc<sub>2</sub>O/1h45 RT; h) upon addition of 5 eq. of Soc<sub>2</sub>O/1h45 RT; h) upon addition of 5 eq. of Soc<sub>2</sub>O/1h45 RT. G = grease .

## 4. Selected ECD spectra for the switching between $1.Zn_{L1}$ and $1.Zn_{L1}^{L2}$



**Figure S9.** ECD spectra (general overview) related to the *in situ* interconversion between  $1.2n_{L1}$  and  $1.2n_{L1}^{L2}$  (CHCl<sub>3</sub>/MeOH 9:1): (a) with L<sub>1</sub> = (S)BocProO<sup>-</sup>/L<sub>2</sub> = BuNH<sub>2</sub>; (b) with L<sub>1</sub> = (R)BocProO<sup>-</sup>/L<sub>2</sub> = BuNH<sub>2</sub>.



**Figure S10.** ECD spectra (detailed steps) related to the *in situ* interconversion between  $1.Zn_{L1}$  and  $1.Zn_{L1}^{L2}$  (CHCl<sub>3</sub>/MeOH 9:1), with L<sub>1</sub> = (*S*)BocProO<sup>-</sup>/L<sub>2</sub> = BuNH<sub>2</sub>: (a) steps 1 and 2; (b) steps 3 and 4.



**Figure S11.** ECD spectra (general overview) related to the *in situ* interconversion between **1.Zn**<sub>OAc</sub> and **1.Zn**<sub>OAc</sub><sup>(S)MBA</sup> or **1.Zn**<sub>OAc</sub><sup>(R)MBA</sup> (CHCl<sub>3</sub>/MeOH 9:1): (a) starting from **1.Zn**<sub>OAc</sub>, successive addition of (S)MBA and reaction with Boc<sub>2</sub>O, performed twice (steps 1 to 4), then last addition of (S)MBA (step 5); (b) starting from **1.Zn**<sub>OAc</sub>, addition of (S)MBA and reaction with Boc<sub>2</sub>O (steps 1 and 2), followed by addition of (*R*)MBA and reaction with Boc<sub>2</sub>O (steps 3 and 4), then last addition of (S)MBA (step 5). Intermediate spectra for each steps are depicted in Figures S12 and S13.



**Figure S12.** ECD spectra (detailed steps) related to the *in situ* interconversion between  $1.Zn_{OAc}$  and  $1.Zn_{OAc}$ <sup>(S)MBA</sup> (CHCl<sub>3</sub>/MeOH 9:1): starting from  $1.Zn_{OAc}$ , successive addition of (S)MBA (a, c) and reaction with Boc<sub>2</sub>O (b, d), performed twice (steps 1 to 4), then last addition of (S)MBA (step 5, e).



**Figure S13.** ECD spectra (detailed steps) related to the *in situ* interconversion between **1.** $Zn_{OAc}$  and **1.** $Zn_{OAc}$ <sup>(S)MBA</sup> or **1.** $Zn_{OAc}$ <sup>(R)MBA</sup> (CHCl<sub>3</sub>/MeOH 9:1): starting from **1.** $Zn_{OAc}$ , addition of (S)MBA (a) and reaction with Boc<sub>2</sub>O (b) (steps 1 and 2), followed by addition of (R)MBA (c) and reaction with Boc<sub>2</sub>O (d) (steps 3 and 4), then last addition of (S)MBA (e) (step 5).