One-step hydrothermal synthesis of chiral carbon dots with high asymmetric catalytic activity for enantioselective direct aldol reaction

Shuang Liu,^{a,c} Yu He, ^{a,c} Yu Liu,^c Shuaibin Wang, ^{a,c} Yajun Jian,^c Baoxin Li^{a,b,c} and

Chunli Xu a,c*

S1 Experimental

S2 Photoluminescence analysis

Fig. S1 HPLC of products versus retention time by CA-D_P-CQDs and D-Pro.

Fig. S2 ¹H NMR (400Hz) of 2-hydroxy (4-nitrophenyl) methyl cyclohexanone.

Fig. S3 HRMS data of 2-hydroxy (4-nitrophenyl) methyl cyclohexanone.

Fig. S4 PL spectra of CA-D_P-CQDs. (a) PL emission spectra with excitation wavelength from 310 nm to 400 nm in 10 nm increment and (b) PL excitation /emission spectra at 340 nm and 420 nm, respectively.

S1 Experimental

S1.1 Materials

Citric acid monohydrate (CA), cyclohexanone and dimethyl sulfoxide were purchased from Sinopharm, P-nitrobenzaldehyde were from Macklin, and D-proline (D-Pro) were obtained from Sigma-Aldrich. All the reagents were used without any further purification. A cellulose dialysis bag with 500-1000 Da was purchased from Sangon Biotech (Shanghai) Co., Ltd.

S1.2 Preparation of chiral CQDs

Chiral CQDs were synthesized through hydrothermal reaction of CA and D-Pro illustrated in Scheme 1. Typically, CA (0.6600 g, 3 mmol) and D-Pro (0.6600 g, 6 mmol) were sufficiently dissolved into 10 mL ultrapure water by ultrasonic for 20 min. Then the mixed solution was transferred into a 30 mL Teflon-sealed autoclave and hydrothermally heated at 180 °C for a certain time. When the reaction was completed, the Teflon-sealed autoclave cooled naturally in the air and the yellow solution was acquired. The yellow solution was condensed by rotating evaporation. After the condensed solution were dialyzed against a 500–1000 Dalton (g/mol) cellulose dialysis membrane for 3 day and freeze-dried, light yellow chiral CQDs were obtained. The chiral CQDs were named CA-D_P-CQDs. Effect of hydrothermal time on the structure and property of CA-D_P-CQDs was studied. Without special statement, hydrothermal time was referred to 4 h.

For comparison, CQDs were also similarly prepared using single CA or D-Pro as raw materials. The time of hydrothermal synthesis were set as 4 h. The obtained carbon dots were named CA-CQDs with single CA as raw materials and D_P-CQD with single D-Pro as raw materials, respectively.

S1.3 Characterization

High resolution transmission electron microscopy (HRTEM) images were obtained on a FEI/Philips Tecnai G2 F20 field transmission electron microscope. Fourier transform infrared (FT-IR) spectra were collected on a FT-IR spectrometer (Spectrum One, Perkin Elmer). The circular dichroism (CD) spectra were recorded on a JASCO J-815 spectropolarimeter. Absolute photoluminescence quantum yield were measured on Quantaurus-QY 97 established by Hamamatsu. Proton nuclear magnetic resonance (¹H NMR) were recorded on a Bruker Avance 400 (400 MHz) spectrometer. High-resolution mass spectrometry (HRMS) was performed on a Bruker LC-MS-MAXIS (Electrospray Ionization, ESI). Enantiomer ratios were determined by High Performance Liquid Chromatography (HPLC, Hanbon Sci.&Tech.) equipped with a chiralpak AD-H column.

S1.4 Direct aldol reaction

To a suspension of *p*-nitrobenzaldehyde (75.5 mg, 0.5 mmol) and cyclohexanone (500 uL, 4.8 mmol) in 1.5 ml DMSO, a solution of CA-D_P-CQDs (Total CQDs with 0.6600 g of D-Pro as raw materials) in water (500 uL) was added and stirred for certain time. Then the product was extracted with AcOEt and the CA-D_P-CQDs remained in water layer. The organic layer was dried over Na₂SO₄ and the crude was purified by column chromatography (AcOEt/n-Hexane, 1:3). The enantiomeric excess (ee) was determined by HPLC: Chiralpak AD-H, hexanes:2-propanol of 80:20, flow

rate of 1 mL/min. The reusability of $CA-D_P-CQDs$ was tested by adding the reactants to the water layer extracted from the organic layer.

The products included anti (major) and syn (minor) isomer of 2-hydroxy (4nitrophenyl) methyl cyclohexanone. HPLC as shown in Fig. S1: anti: t_s =13.5 min, t_R =17.3 min; syn: t_s =11.6 min, t_R =12.5 min. ¹H NMR (400 MHz, CDCl₃) as shown in Fig. S2: 8.17 (d, J = 8.2 Hz, 2H), 7.46 (d, J = 8.4 Hz, 2H), 5.42 (s, J = 8.5 Hz,1H), 4.88 (d, J = 8.3 Hz, 1H), 4.09 (s, 1H), 2.74–2.21 (m, 2H), 2.17–1.96 (m, 1H), 1.91– 1.43 (m, 4H), 1.40–1.12 (m, 1H). HRMS (ESI) as shown in Fig. S3. : calculated for C₁₃H₁₅O₄N Na⁺: 272.0894, found: 273.0930.

S2 Photoluminescence analysis

Photoluminescence (PL) study was carried out with Fluorescence Spectrophotometer (F-7100, France JY company). Fig. S4a shows that, with the increase of the excitation wavelength from 310 nm to 400 nm, the emission peak of CA-D_P-CQDs undergoes a red shift. The luminescent intensity reaches a maximum at emission wavelength of 420 nm when excitation wavelength is adjusted to 340 nm (Fig. S4b). The PL spectra indicate that CA-D_P-CQDs has the property of fluorescence.

 $\label{eq:time} Time~(min.) \\ \mbox{Fig. S1}~\mbox{HPLC of products versus retention time by CA-D_P-CQDs and D-Pro.} \\$

Fig. S2 ¹H NMR (400Hz) of 2-hydroxy (4-nitrophenyl) methyl cyclohexanone.

Display Report							
Analysis Info Analysis Name Method Sample Name Comment	s Info Name D:\Data\2019/0430/Is-3.d pos_low-20151116.m Name Ilushuang nt			cquisition Date perator istrument	4/30/20 Fan maXis	19 10:06:19 AM 10103	
Acquisition Par Source Type Focus Scan Begin Scan End	zameter ESI Ion Polarity Not active Set Capitary 100 m/z Set End Plate Offset 1300 m/z Set Collision Cell RF		Positive 4000 V -500 V 200.0 Vpp	Set Nebulizer Set Dry Heater Set Dry Gas Set Divert Valve		0.4 Bar 180 °C 4.0 Vmin Waste	
x10 ⁴	272.0	695				+MS, 0.0-0.1min #(2-3	
6-							
4							
2-			273.093	2			
×10 ⁹	272.0	693			C 131	H 15 N Na O 4 272.0	
6-							
4-							
2.			273.092	7			
1			1				
0 271.5	272.0	272.5	273.0	273.5		274,0960 274.0 m	
Backer Company	DataAnalysis 4.0	ninted	4/30/2019 10:15	56 AM		Page 1 of 1	

Fig. S3 HRMS (ESI) data of 2-hydroxy (4-nitrophenyl) methyl cyclohexanone.

Fig. S4 PL spectra of CA- D_P -CQDs. (a) PL emission spectra with excitation wavelength from 310 nm to 400 nm in 10 nm increment and (b) PL excitation /emission spectra at 340 nm and 420 nm, respectively.