Synthesis of difluoromethylated diarylmethanes via $\mathrm{Fe}(\mathrm{OTf})_{3}$-catalyzed Friedel-Crafts reaction of 2,2-difluoro-1-arylethyl phosphates
Yoshihiko Yamamoto,* Tomoya Takase, Eisuke Kuroyanagi, and Takeshi Yasui
Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Chikusa, Nagoya 464-8601
yamamoto-yoshi@ps.nagoya-u.ac.jp
Supporting Information
General Information S2
Preparation of Difluoromethyl-Substituted Benzylic Phosphates S2
Friedel-Crafts Reaction of Difluoromethylated Benzylic Phosphates S6
Synthesis of Triarylmethane 7 S13
Synthesis of Pyrazole 9 S14
DFT Calculations S15
NMR Charts S19

General Information. All air- and moisture sensitive reactions were performed under an argon atmosphere in dried glassware. Analytical thin layer chromatography was performed using 0.25 mm silica gel plate (Merck TLC Silica gel $60 \mathrm{~F}_{254}$). Column chromatography was performed on silica gel (Cica silica gel 60 N) with eluents specified below. NMR spectra were recorded for samples in deuterated solvents specified below at $25^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR chemical shifts are reported in terms of chemical shift (δ, ppm) relative to the singlet at $\delta 7.26$ or 5.32 ppm for chloroform and dichloromethane, respectively. ${ }^{13} \mathrm{C}$ NMR spectra were fully decoupled and are reported in terms of chemical shift (δ, ppm) relative to the triplet at $\delta 77.0 \mathrm{ppm}$ for CDCl_{3} or the septet at $\delta 49.0 \mathrm{ppm}$ for $\mathrm{CD}_{3} \mathrm{OD} .{ }^{19} \mathrm{~F}$ NMR spectra are reported in terms of chemical shift (δ, ppm) relative to the singlet at $\delta-63.7$ ppm for α, α, α-trifluorotoluene as an external standard. ${ }^{31} \mathrm{P}$ NMR spectra are reported in terms of chemical shift (δ, ppm) relative to the singlet at $\delta 0 \mathrm{ppm}$ for $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$ as an external standard. Splitting patterns are designated as follows: s, singlet; d, doublet; t , triplet; q, quartet; quint, quintet; sext, sextet; m, multiplet. Coupling constants are reported in Hz. High resolution mass spectra (HRMS) were obtained on an ESI- or DART-TOF mass spectrometer. $\mathrm{CF}_{2} \mathrm{HPO}(\mathrm{OEt})_{2}$, aromatic compounds, and dry solvents were purchased and used as received. Nitromethane was dried over MS 4Å. Benzylic phosphates 1a,l, 10a,b and alcohols $\mathbf{4}$ and $\mathbf{6}$ were reported in the literature. ${ }^{1}$

Preparation of Difluoromethyl-Substituted Benzylic Phosphates.

Representative procedure; Synthesis of 1b: To a solution of ${ }^{i} \operatorname{Pr}_{2} \mathrm{NH}(0.84 \mathrm{~mL}, 6.0$ mmol) in THF (10 mL) was added dropwise ${ }^{n} \mathrm{BuLi}(15 \mathrm{w} / \mathrm{w} \%$ in hexane, $4.0 \mathrm{~mL}, 6.0$ mmol) at $-78{ }^{\circ} \mathrm{C}$, and the resultant mixture was stirred for 20 minutes. To this solution was added dropwise diethyl difluoromethylphosphonate ($0.95 \mathrm{~mL}, 6.0 \mathrm{mmol}$), and the reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 30 minutes. To the resultant mixture was added a solution of o-methoxybenzaldehyde (0.61 mL , 5.0 mmol) in THF (10 mL) , and the reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 80 min . The reaction was quenched by adding sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$. The aqueous phase was extracted with EtOAc $(3 \times 10 \mathrm{~mL})$. The

[^0]combined organic extract was washed with brine (10 mL), and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvents were evaporated in vacuo, and the resultant colorless solid (crude S1) was used without purification in the next step.
According to the report, ${ }^{2}$ phospha-Brook rearrangement was carried out as follows. A solution of the crude product ($\mathbf{S 1}$) obtained as above, $\mathrm{K}_{2} \mathrm{CO}_{3}(2.76 \mathrm{~g}, 20 \mathrm{mmol})$ in $\mathrm{DMF} / \mathrm{H}_{2} \mathrm{O}(25 \mathrm{~mL} / 2.5 \mathrm{~mL})$ was stirred at $50^{\circ} \mathrm{C}$ for 3.5 h . The reaction was quenched by adding sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$. The aqueous phase was extracted with Hexane/ AcOEt $(4: 1,3 \times 10 \mathrm{~mL})$. The combined organic extract was washed with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and brine $(10 \mathrm{~mL})$ and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvents were evaporated in vacuo, and the obtained crude product was purified by silica gel column chromatography (hexane/AcOEt 5:1~1:1) to afford $\mathbf{1 b}(1.20 \mathrm{~g}, 74 \%)$ as a yellow oil. This procedure was applied to p-methoxybenzophenone to produce dephosphorylated product 6 .

Analytical data for 1b: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta 7.47(\mathrm{~d}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz})$, $7.38-7.33(\mathrm{~m}, 1 \mathrm{H}), 7.01(\mathrm{t}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}), 6.91(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 5.99(\mathrm{td}, 1 \mathrm{H}, J=$ $54.8,2.4 \mathrm{~Hz}), 5.95-5.82(\mathrm{~m}, 1 \mathrm{H}), 4.20-3.91(\mathrm{~m}, 4 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 1.29(\mathrm{t}, 3 \mathrm{H}, J=6.6 \mathrm{~Hz})$, $1.21(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta 156.5,130.5,128.5$, $121.5,120.8,113.4$ (td, $J=245.0,8.6 \mathrm{~Hz}$), 110.9, 72.5 (ddd, $J=26.7,22.9,3.8 \mathrm{~Hz}$), 64.1 (d, $J=5.7 \mathrm{~Hz}$), 63.9 (d, $J=5.8 \mathrm{~Hz}$), 55.5, $15.8 ;{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): δ 127.7 (dd, $J=277.1,57.9 \mathrm{~Hz}, 1 \mathrm{~F}),-132.0$ (dd, $J=277.1,57.9 \mathrm{~Hz}, 1 \mathrm{~F}) ;{ }^{31} \mathrm{P}$ NMR (161 $\mathrm{MHz}, \mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}$) $\delta-0.97$; HRMS (DART) $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{~F}_{2} \mathrm{O}_{5} \mathrm{P}$ 325.1016, found 325.0993.

Analytical data for 1c: $1.29 \mathrm{~g}, 69 \%$; yellow oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$,
 $\left.25^{\circ} \mathrm{C}\right): \delta 8.34(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 8.07(\mathrm{~d}, 1 \mathrm{H}, J=8.8 \mathrm{~Hz}), 7.61$ (d, $1 \mathrm{H}, J=7.6 \mathrm{~Hz}), 7.57$ (ddd, $1 \mathrm{H}, J=8.8,6.8,2.0 \mathrm{~Hz}$), 7.50 (ddd, $1 \mathrm{H}, J=8.4,6.8,1.6 \mathrm{~Hz}), 6.83(\mathrm{~d}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}), 6.13(\mathrm{td}, 1 \mathrm{H}, J$ $=55.6,4.8 \mathrm{~Hz}), 6.06(\mathrm{ddd}, 1 \mathrm{H}, J=19.4,10.0,4.0 \mathrm{~Hz}), 4.16-3.80(\mathrm{~m}, 4 \mathrm{H}), 3.99(\mathrm{~s}, 3 \mathrm{H})$, $1.22(\mathrm{td}, 3 \mathrm{H}, J=7.0,0.8 \mathrm{~Hz}), 1.07(\mathrm{td}, 3 \mathrm{H}, J=7.0,0.8 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta 156.6,131.7,127.4,127.3,125.6,125.3,122.7,122.6,120.7,114.0(\mathrm{td}$, $J=245.5,9.5 \mathrm{~Hz}), 102.9,75.4(\mathrm{t}, J=26.7 \mathrm{~Hz}), 64.1(\mathrm{~d}, J=5.7 \mathrm{~Hz}), 63.9(\mathrm{~d}, J=5.7 \mathrm{~Hz})$, $55.5,15.8(\mathrm{~d}, J=10.5 \mathrm{~Hz}), 15.7(\mathrm{~d}, J=7.6 \mathrm{~Hz}) ;{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): δ -126.1 (dd, $J=288.8,57.9 \mathrm{~Hz}, 1 \mathrm{~F}),-127.0(\mathrm{dd}, J=288.8,57.9 \mathrm{~Hz}, 1 \mathrm{~F}) ;{ }^{31} \mathrm{P}$ NMR (161 $\mathrm{MHz}, \mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}$) $\delta-1.02$; HRMS (DART) $m / z\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{~F}_{2} \mathrm{NO}_{5} \mathrm{P}$ 392.1438, found 392.1427.

[^1]Analytical data for 1d: $1.36 \mathrm{~g}, 81 \%$; yellow oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$,
 $\left.25^{\circ} \mathrm{C}\right): \delta 7.33(\mathrm{~s}, 1 \mathrm{H}), 7.20(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 6.77(\mathrm{~d}, 1 \mathrm{H}, J=8.4$ $\mathrm{Hz}), 6.05(\mathrm{td}, 1 \mathrm{H}, J=54.8,4.4 \mathrm{~Hz}), 5.34-5.25(\mathrm{~m}, 1 \mathrm{H}), 4.58(\mathrm{t}, 2 \mathrm{H}$, $J=8.8 \mathrm{~Hz}), 4.17-3.99(\mathrm{~m}, 2 \mathrm{H}), 3.94$ (quint, $2 \mathrm{H}, J=7.2 \mathrm{~Hz}$), 3.23 (t, $2 \mathrm{H}, J=8.8 \mathrm{~Hz}), 1.28(\mathrm{td}, 3 \mathrm{H}, J=7.0,0.8 \mathrm{~Hz}), 1.17(\mathrm{td}, 3 \mathrm{H}, J=7.2,0.8 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta 161.2,128.1,127.6,124.8,124.6,113.9(\mathrm{td}, J=245.1,9.5$ $\mathrm{Hz}), 109.3,77.3(\mathrm{t}, J=30 \mathrm{~Hz}), 71.5,64.1(\mathrm{~d}, J=5.7 \mathrm{~Hz}), 64.0(\mathrm{~d}, J=5.7 \mathrm{~Hz}), 29.4,15.93$ (d, $J=7.6 \mathrm{~Hz}$), $15.85(\mathrm{~d}, J=6.7 \mathrm{~Hz}) ;{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta-127.4$ (dd, $J=288.8,57.9 \mathrm{~Hz}, 1 \mathrm{~F}),-128.8$ (dd, $J=288.8,57.9 \mathrm{~Hz}, 1 \mathrm{~F}) ;{ }^{31} \mathrm{P}$ NMR (161 MHz , $\mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}$) $\delta-1.13 ; \quad$ HRMS (DART) $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{~F}_{2} \mathrm{O}_{5} \mathrm{P}$ 337.1016, found 337.1043.

Analytical data for $1 \mathrm{e}: \quad 1.46 \mathrm{~g}, 83 \%$; yellow oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$,
 $\left.25^{\circ} \mathrm{C}\right): \delta 6.95(\mathrm{~d}, 1 \mathrm{H}, J=1.6 \mathrm{~Hz}), 6.90(\mathrm{dd}, 1 \mathrm{H}, J=8.4,1.6 \mathrm{~Hz})$, $6.88(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 5.86(\mathrm{td}, 1 \mathrm{H}, J=55.2,4.8 \mathrm{~Hz}), 5.27$ (ddd, $1 \mathrm{H}, J=20.2,10.0,4.0 \mathrm{~Hz}), 4.27(\mathrm{~s}, 4 \mathrm{H}), 4.20-3.89(\mathrm{~m}, 4 \mathrm{H}), 1.30$ (td, $3 \mathrm{H}, J=7.0,0.8 \mathrm{~Hz}$), $1.21(\mathrm{td}, 3 \mathrm{H}, J=7.0,0.8 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$, $25^{\circ} \mathrm{C}$): $\delta 146.3,145.2,127.3,122.1,118.5,118.0,115.5(\mathrm{td}, J=243.6,9.5 \mathrm{~Hz}), 78.9$ (ddd, $J=29.6,21.9,4.8 \mathrm{~Hz}), 65.73(\mathrm{~d}, J=6.7 \mathrm{~Hz}), 65.68,65.60(\mathrm{~d}, J=5.8 \mathrm{~Hz}), 65.58,16.23$ (d, $J=6.7 \mathrm{~Hz}), 16.16(\mathrm{~d}, J=6.7 \mathrm{~Hz}) ;{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta-127.5(\mathrm{dd}, J$ $=288.8,57.9 \mathrm{~Hz}, 1 \mathrm{~F}),-128.8(\mathrm{dd}, J=288.8,57.9 \mathrm{~Hz}, 1 \mathrm{~F}) ;{ }^{31} \mathrm{P}$ NMR ($161 \mathrm{MHz}, \mathrm{CDCl}_{3}$, $25{ }^{\circ} \mathrm{C}$) $\delta-1.13 ; \quad$ HRMS (DART) $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{~F}_{2} \mathrm{O}_{6} \mathrm{P} 353.0966$, found 353.0984.

Analytical data for 1f: $1.69 \mathrm{~g}, 78 \%$; yellow oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$,
 $\left.25^{\circ} \mathrm{C}\right): \delta 7.44(\mathrm{~d}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 7.39-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.27$ $(\mathrm{m}, 1 \mathrm{H}), 7.01-6.98(\mathrm{~m}, 1 \mathrm{H}), 6.98(\mathrm{~s}, 1 \mathrm{H}), 6.90(\mathrm{~d}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz})$, 5.82 (td, $1 \mathrm{H}, J=55.2,4.0 \mathrm{~Hz}$), 5.28 (ddd, $1 \mathrm{H}, J=23.0,10.0,4.0$ $\mathrm{Hz}), 5.17(\mathrm{~d}, 1 \mathrm{H}, J=12.0 \mathrm{~Hz}), 5.13(\mathrm{~d}, 1 \mathrm{H}, J=12.4 \mathrm{~Hz}), 4.15-3.94(\mathrm{~m}, 2 \mathrm{H}), 3.92-3.80$ $(\mathrm{m}, 2 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 1.27(\mathrm{td}, 3 \mathrm{H}, J=7.2,1.2 \mathrm{~Hz}), 1.15(\mathrm{td}, 3 \mathrm{H}, J=7.2,1.2 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta 152.4,149.6,138.4,129.5,129.0,128.8,126.7,122.8$, $115.5(\mathrm{td}, J=243.2,9.5 \mathrm{~Hz}), 115.0,113.0,79.0(\mathrm{ddd}, J=28.6,24.8,4.8 \mathrm{~Hz}), 72.1,67.7(\mathrm{~d}$, $J=5.8 \mathrm{~Hz}), 65.5(\mathrm{~d}, J=5.7 \mathrm{~Hz}), 56.5,16.24(\mathrm{~d}, J=6.6 \mathrm{~Hz}), 16.18(\mathrm{~d}, J=6.7 \mathrm{~Hz}) ;{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta-127.6(\mathrm{dd}, J=288.8,57.9 \mathrm{~Hz}, 1 \mathrm{~F}),-129.2(\mathrm{dd}, J=$ $288.8,57.9 \mathrm{~Hz}, 1 \mathrm{~F}) ;{ }^{31} \mathrm{P}$ NMR ($161 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$) $\delta-1.13$; HRMS (DART) m / z $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$calcd for $\mathrm{C}_{20} \mathrm{H}_{29} \mathrm{~F}_{2} \mathrm{NO}_{6} \mathrm{P} 448.1701$, found 448.1695 .

Analytical data for $1 \mathrm{~g}: 1.31 \mathrm{~g}, 68 \%$; yellow oil; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$,
 $\left.25^{\circ} \mathrm{C}\right): \delta 6.64(\mathrm{~s}, 2 \mathrm{H}), 5.87(\mathrm{td}, 1 \mathrm{H}, J=55.2,4.0 \mathrm{~Hz}), 5.31(\mathrm{ddd}$, $1 \mathrm{H}, J=20.0,10.0,4.0 \mathrm{~Hz}), 4.22-3.92(\mathrm{~m}, 4 \mathrm{H}), 3.87(\mathrm{~s}, 6 \mathrm{H}), 3.86$ $(\mathrm{s}, 3 \mathrm{H}), 1.31(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}), 1.22(\mathrm{t}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\mathrm{CD}_{3} \mathrm{OD}, 25^{\circ} \mathrm{C}$): $\delta 154.8,140.2,130.3,115.5$ (td, $J=243.9,10.0 \mathrm{~Hz}), 106.3,79.2(\mathrm{ddd}, J=28.1,23.8,4.7 \mathrm{~Hz}), 67.3(\mathrm{~d}, J=5.7 \mathrm{~Hz}), 65.7(\mathrm{~d}$, $J=5.8 \mathrm{~Hz}), 61.1,56.7,16.3(\mathrm{~d}, J=3.8 \mathrm{~Hz}), 16.2(\mathrm{~d}, J=3.9 \mathrm{~Hz}) ;{ }^{19} \mathrm{~F}$ NMR $(376 \mathrm{MHz}$, $\mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta-127.5(\mathrm{dd}, J=285.8,71.4 \mathrm{~Hz}, 1 \mathrm{~F}),-128.8(\mathrm{dd}, J=285.8,71.4 \mathrm{~Hz}, 1 \mathrm{~F}) ;$ ${ }^{31} \mathrm{P}$ NMR $\left(161 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}\right) \delta-1.02$; HRMS (DART) $\mathrm{m} / \mathrm{z}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{27} \mathrm{~F}_{2} \mathrm{NO}_{7} \mathrm{P} 402.1493$, found 402.1472 .

Analytical data for $1 \mathrm{~h}: 1.65 \mathrm{~g}, 82 \%$; yellow oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$,
 $\left.25^{\circ} \mathrm{C}\right): \delta 7.63(\mathrm{~d}, 1 \mathrm{H}, J=2.0 \mathrm{~Hz}), 7.35(\mathrm{dd}, 1 \mathrm{H}, J=8.8,2.4 \mathrm{~Hz})$, $6.92(\mathrm{~d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}), 5.87(\mathrm{td}, 1 \mathrm{H}, J=55.2,4.0 \mathrm{~Hz}), 5.31$ (ddd, $1 \mathrm{H}, J=20.6,9.6,4.0 \mathrm{~Hz}), 4.21-3.90(\mathrm{~m}, 4 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 1.31$ $(\mathrm{td}, 3 \mathrm{H}, J=7.2,0.8 \mathrm{~Hz}), 1.21(\mathrm{td}, 3 \mathrm{H}, J=7.0,1.2 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\mathrm{CD}_{3} \mathrm{OD}$, $\left.25^{\circ} \mathrm{C}\right): \delta 158.5,133.8,129.9,127.7,115.3(\operatorname{td}, J=243.6,9.5 \mathrm{~Hz}), 113.1,112.6,78.1(\mathrm{td}, J$ $=25.8,4.8 \mathrm{~Hz}), 65.8(\mathrm{~d}, J=5.7 \mathrm{~Hz}), 65.7(\mathrm{~d}, J=6.7 \mathrm{~Hz}), 56.8,16.24(\mathrm{~d}, J=5.7 \mathrm{~Hz})$, $16.19(\mathrm{~d}, J=5.7 \mathrm{~Hz}) ;{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta-127.4(\mathrm{dd}, J=286.1,71.4$ $\mathrm{Hz}, 1 \mathrm{~F}),-128.8(\mathrm{dd}, J=286.1,71.4 \mathrm{~Hz}, 1 \mathrm{~F}) ;{ }^{31} \mathrm{P}$ NMR $\left(161 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}\right) \delta-$ 1.18; HRMS (DART) m/z [M+NH4] ${ }^{+}$calcd for $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{BrF}_{2} \mathrm{NO}_{5} \mathrm{P}$ 420.0387, found 420.0389.

Analytical data for 1i: $1.49 \mathrm{~g}, 88 \%$; yellow oil; ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\mathrm{CD}_{3} \mathrm{OD}$,
 $\left.25^{\circ} \mathrm{C}\right): \delta 7.40(\mathrm{~d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}), 7.32(\mathrm{~d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}), 6.08$ (td, $1 \mathrm{H}, J=55.0,4.0 \mathrm{~Hz}), 5.36(\mathrm{ddd}, 1 \mathrm{H}, J=20.8,9.6,4.0 \mathrm{~Hz})$, 4.18-4.01 (m, 2H), 3.96 (quint, $2 \mathrm{H}, J=7.4 \mathrm{~Hz}$), $2.50(\mathrm{~s}, 3 \mathrm{H}), 1.28$ $(\mathrm{t}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}), 1.18(\mathrm{t}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}, 25{ }^{\circ} \mathrm{C}$): δ $142.7,130.7,129.5,127.1,115.5(\mathrm{td}, J=244.1,9.5 \mathrm{~Hz}), 78.9(\mathrm{td}, J=26.0,5.2 \mathrm{~Hz}), 64.8$ $(\mathrm{d}, J=5.8 \mathrm{~Hz}), 65.7(\mathrm{~d}, J=6.7 \mathrm{~Hz}), 16.24(\mathrm{~d}, J=6.6 \mathrm{~Hz}), 16.17(\mathrm{~d}, J=6.7 \mathrm{~Hz}), 15.2 ;$ ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta-127.4(\mathrm{dd}, J=288.8,57.9 \mathrm{~Hz}, 1 \mathrm{~F}),-129.6(\mathrm{dd}, J$ $=288.8,57.9 \mathrm{~Hz}, 1 \mathrm{~F}) ;{ }^{31} \mathrm{P}$ NMR ($\left.161 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right) \delta-1.13 ; \quad$ HRMS (DART) $m / z\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$calcd for $\mathrm{C}_{13} \mathrm{H}_{23} \mathrm{~F}_{2} \mathrm{NO}_{4} \mathrm{PS} 358.1054$, found 358.1051.

Analytical data for 1j: $1.46 \mathrm{~g}, 83 \%$; yellow oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$,
 $\left.25{ }^{\circ} \mathrm{C}\right): \delta 7.95(\mathrm{~d}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}), 7.88(\mathrm{dd}, 1 \mathrm{H}, J=7.2,1.6 \mathrm{~Hz})$, $7.66(\mathrm{~s}, 1 \mathrm{H}), 7.46-7.38(\mathrm{~m}, 2 \mathrm{H}), 6.11(\mathrm{td}, 1 \mathrm{H}, J=55.2,4.0 \mathrm{~Hz}), 5.82$
(ddd, $1 \mathrm{H}, J=20.2,10.0,4.0 \mathrm{~Hz}), 4.21-3.83(\mathrm{~m}, 4 \mathrm{H}), 1.28(\mathrm{td}, 3 \mathrm{H}, J=7.0,0.8 \mathrm{~Hz}), 1.09$ $(\mathrm{td}, 3 \mathrm{H}, J=6.8,0.8 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta 140.4,136.8,128.0$, $127.8,127.9,124.6,122.9,122.4,113.4(\mathrm{td}, J=246.0,8.6 \mathrm{~Hz}), 73.3(\mathrm{ddd}, J=27.2,4.8$ $\mathrm{Hz}), 64.3(\mathrm{~d}, J=5.7 \mathrm{~Hz}), 64.1(\mathrm{~d}, J=5.7 \mathrm{~Hz}), 15.9(\mathrm{~d}, J=7.6 \mathrm{~Hz}), 15.7(\mathrm{~d}, J=6.7 \mathrm{~Hz})$; ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta-126.4$ (dd, $J=288.8,57.9 \mathrm{~Hz}, 1 \mathrm{~F}$), -128.8 (dd, J $=288.8,57.9 \mathrm{~Hz}, 1 \mathrm{~F}) ;{ }^{31} \mathrm{P}$ NMR ($161 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$) $\delta-1.08$; HRMS (DART) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~F}_{2} \mathrm{O}_{4} \mathrm{PS} 351.0632$, found 351.0607.

Analytical data for $\mathbf{1 k}$: $1.61 \mathrm{~g}, 91 \%$; yellow oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$,
 $\left.25{ }^{\circ} \mathrm{C}\right): \delta 6.57(\mathrm{~d}, 2 \mathrm{H}, J=2.0 \mathrm{~Hz}), 6.48(\mathrm{t}, 1 \mathrm{H}, J=2.2 \mathrm{~Hz}), 5.86$ (td, $1 \mathrm{H}, J=55.2,4.8 \mathrm{~Hz}), 5.31$ (ddd, $1 \mathrm{H}, J=20.0,10.0,4.0 \mathrm{~Hz}$), $4.21-3.91(\mathrm{~m}, 4 \mathrm{H}), 3.80(\mathrm{~s}, 6 \mathrm{H}), 1.30(\mathrm{td}, 3 \mathrm{H}, J=7.0,0.8 \mathrm{~Hz})$, 1.22 (td, $3 \mathrm{H}, J=6.8,0.8 \mathrm{~Hz}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$, $25^{\circ} \mathrm{C}$): $\delta 162.6, \quad 136.5,113.8(\mathrm{ddd}, J=245.1,242.2,9.6 \mathrm{~Hz}$), 106.8, 102.3, 79.1 (ddd, J $=28.1,23.8,4.7 \mathrm{~Hz}), 65.8(\mathrm{~d}, J=6.7 \mathrm{~Hz}), 65.7(\mathrm{~d}, J=5.8 \mathrm{~Hz}), 55.9,16.24(\mathrm{~d}, J=6.6 \mathrm{~Hz})$, $16.18(\mathrm{~d}, J=4.8 \mathrm{~Hz}) ;{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta-127.5(\mathrm{dd}, J=288.8,46.2$ $\mathrm{Hz}, 1 \mathrm{~F}),-128.8$ (dd, $J=288.8,46.2 \mathrm{~Hz}, 1 \mathrm{~F}) ;{ }^{31} \mathrm{P} \operatorname{NMR}\left(161 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right) \delta-$ 1.19; HRMS (DART) $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{~F}_{2} \mathrm{O}_{6} \mathrm{P} 355.1122$, found 355.1150 .

Friedel-Crafts Reaction of Difluoromethylated Benzylic Phosphates

Representative procedure A. Reaction of 1a with $2 a$ (Table 1, entry 10): To a solution of 1a ($100.6 \mathrm{mg}, 0.31 \mathrm{mmol}$) and 2a ($116 \mu \mathrm{~L}, 0.90 \mathrm{mmol}$) in dry $\mathrm{MeNO}_{2}(1.2$ mL) was added $\mathrm{Fe}(\mathrm{OTf})_{3}(14.7 \mathrm{mg}, 0.029 \mathrm{mmol})$ at ambient temperature. The reaction mixture was stirred at $20^{\circ} \mathrm{C}$ under an Ar atmosphere for 1 h . The reaction progress was monitored by TLC analysis. The reaction was quenched by adding $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$. The aqueous phase was extracted with $\mathrm{AcOEt}(3 \times 5 \mathrm{~mL})$. The combined organic extract was washed with brine (5 mL) and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvents were evaporated in vacuo, and the obtained crude product was purified by silica gel column chromatography (hexane/AcOEt 15:1~3:1) to afford $\mathbf{3 a a}(83.3 \mathrm{mg}, 87 \%$) as a colorless oil: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}$): $\delta 7.24(\mathrm{~d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}), 7.20(\mathrm{~d}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz})$, $6.84(\mathrm{~d}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz}), 6.50-6.46(\mathrm{~m}, 1 \mathrm{H}), 6.47(\mathrm{~s}, 1 \mathrm{H}), 6.30(\mathrm{td}, 1 \mathrm{H}, J=56.6,4.4 \mathrm{~Hz})$, $4.70(\mathrm{ddd}, 1 \mathrm{H}, J=20.2,12.4,4.4 \mathrm{~Hz}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz ,
$\left.\mathrm{CDCl}_{3}, 2{ }^{\circ}{ }^{\circ} \mathrm{C}\right): \delta 160.1,158.6,158.0,130.2,129.9,129.3,118.7,117.2(\mathrm{t}, J=242.2 \mathrm{~Hz})$, 113.7, 104.3, $98.9,55.5,55.3,55.2,47.3(\mathrm{t}, J=21.5 \mathrm{~Hz}) ;{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$, $25^{\circ} \mathrm{C}$): $\delta-117.5$ (dd, $1 \mathrm{~F}, J=277.5,57.9 \mathrm{~Hz}$), -120.5 (ddd, $1 \mathrm{~F}, J=277.5,57.9,23.3 \mathrm{~Hz}$); HRMS (DART) $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{~F}_{2} \mathrm{O}_{3} 309.1302$, found 309.1326.

Small amounts of $2: 1$ adduct $\mathbf{S 2}$ was formed as a mixture of diastereomers under conditions shown in Table 1, entries 3,4,7, and 10.

Analytical data for S2: colorless oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta 7.26$ (s,
 $1 \mathrm{H}), 7.21$ and $7.18(\mathrm{~d}, 2 \mathrm{H}+2 \mathrm{H}, J=8.8 \mathrm{~Hz}), 6.84$ and $6.82(\mathrm{~d}, 2 \mathrm{H}+2 \mathrm{H}, J=8.8 \mathrm{~Hz}), 6.46(\mathrm{~s}, 1 \mathrm{H}), 6.29$ and $6.26(\mathrm{td}, 1 \mathrm{H}$ and $1 \mathrm{H}, J=56.2,4.8 \mathrm{~Hz}$), 4.67 (ddd, 2 H , $J=24.2,12.0,6.0 \mathrm{~Hz}), 3.802(\mathrm{~s}, 3 \mathrm{H}), 3.796(\mathrm{~s}, 3 \mathrm{H})$, 3.78 (s, 6H); ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}$): $\delta-117.3$ and -117.4 (dd, $1 \mathrm{~F}, J=$ $277.5,57.9 \mathrm{~Hz}$), -120.25 and -120.31 (ddd, $1 \mathrm{~F}, ~ J=277.5,57.9,22.9 \mathrm{~Hz}$); HRMS (DART) $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{~F}_{4} \mathrm{O}_{4} 479.1846$, found 479.1844.

Analytical data for 3ab: $66.9 \mathrm{mg}, 75 \%$; colorless oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$,
 $25^{\circ} \mathrm{C}$): $\delta 7.26$ (d, 2H, $\left.J=8.8 \mathrm{~Hz}\right), 6.90-6.75$ (m, 5H), 6.33 (td, $1 \mathrm{H}, J$ $=56.6,4.4 \mathrm{~Hz}), 4.75(\mathrm{ddd}, 1 \mathrm{H}, J=20.2,12.4,4.4 \mathrm{~Hz}), 3.77(\mathrm{~s}, 3 \mathrm{H})$, $3.74(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta 158.7,153.5$, $151.2,130.2,128.7,127.4,117.0(\mathrm{t}, J=242.2 \mathrm{~Hz}), 116.2,113.8$, $112.2,112.0,56.1,55.6,55.1,48.1(\mathrm{t}, \mathrm{J}=21.5 \mathrm{~Hz}) ;{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta-117.5$ (dd, $1 \mathrm{~F}, J=277.5,57.9 \mathrm{~Hz}$), -120.4 (ddd, $1 \mathrm{~F}, J=277.5,57.9,22.9 \mathrm{~Hz}$); HRMS (DART) $m / z\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{~F}_{2} \mathrm{NO}_{3} 326.1568$, found 326.1571.

Analytical data for 3ac: $78.1 \mathrm{mg}, 87 \%$; colorless oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$,
 $25^{\circ} \mathrm{C}$): $\delta 7.21$ (d, 2H, $J=8.8 \mathrm{~Hz}$), $6.88(\mathrm{~d}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz}), 6.77(\mathrm{~s}$, $3 \mathrm{H}), 6.21(\mathrm{td}, 1 \mathrm{H}, J=56.0,4.0 \mathrm{~Hz}), 5.94(\mathrm{~s}, 2 \mathrm{H}), 4.27(\mathrm{td}, 1 \mathrm{H}, J=$ $16.0,4.0 \mathrm{~Hz}), 3.80(\mathrm{~s}, 3 \mathrm{H}) ; \quad{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta 158.8,147.8,146.8,131.0,129.9,129.2,122.2,116.9(\mathrm{t}, J=$ 243.2 Hz), 114.0, $109.4108 .2,101.0,55.1,53.7(\mathrm{t}, J=20.5 \mathrm{~Hz})$; ${ }^{19} \mathrm{~F}$ NMR (376 MHz , $\mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}$): $\delta-119.2(\mathrm{~d}, 2 \mathrm{~F}, J=69.6 \mathrm{~Hz}) ; \quad \mathrm{HRMS}(\mathrm{DART}) \mathrm{m} / \mathrm{z}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~F}_{2} \mathrm{NO}_{3} 310.1255$, found 310.1274 .

Analytical data for 3ad: 92.3 mg , 88%; colorless solid (mp 91.3-91.9 ${ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$
 NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta 7.27(\mathrm{~d}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz}), 6.80$ (d, 2H, $J=8.8 \mathrm{~Hz}$), 6.68 (ddd, $1 \mathrm{H}, J=60.6,56.8,8.0 \mathrm{~Hz}$), 6.15 ($\mathrm{s}, 2 \mathrm{H}$), $4.85(\mathrm{dt}, 1 \mathrm{H}, J=18.8,7.6 \mathrm{~Hz}), 3.80(\mathrm{~s}, 9 \mathrm{H}), 3.76(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}$): $\delta 160.4,158.7$, $158.3,130.5(\mathrm{~d}, J=9.6 \mathrm{~Hz}), 129.8,117.7(\mathrm{t}, J=240.3 \mathrm{~Hz}), 113.6,108.2(\mathrm{~d}, J=9.5 \mathrm{~Hz})$, $91.1,55.8,55.3,55.1,45.4(\mathrm{t}, J=23.9 \mathrm{~Hz}) ;{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta-$ 115.4 (ddd, 1F, $J=277.5,57.9 \mathrm{~Hz}$), -118.2 (dd, $1 \mathrm{~F}, J=277.5,57.9 \mathrm{~Hz}$); HRMS (DART) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{~F}_{2} \mathrm{O}_{4} 339.1408$, found 339.1412.

Analytical data for 3ae: $77.7 \mathrm{mg}, 89 \%$; colorless solid (mp 65.1-66.7 ${ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR
 ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta 7.21(\mathrm{~d}, 4 \mathrm{H}, J=8.8 \mathrm{~Hz}$), 6.87 (d, $4 \mathrm{H}, J=8.8 \mathrm{~Hz}), 6.23(\mathrm{td}, 1 \mathrm{H}, J=56.0,4.0 \mathrm{~Hz}), 4.31(\mathrm{dt}, 1 \mathrm{H}, J=$ $16.0,4.0 \mathrm{~Hz}), 3.79(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$, $\left.25^{\circ} \mathrm{C}\right): \delta 158.7,129.9,129.4,117.0(\mathrm{t}, J=242.7 \mathrm{~Hz}), 114.0,55.1,53.3(\mathrm{t}, J=20.5 \mathrm{~Hz})$; ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta-119.1(\mathrm{~d}, 1 \mathrm{~F}, J=23.3 \mathrm{~Hz}),-119.2(\mathrm{~d}, 1 \mathrm{~F}, J=23.3$ Hz); HRMS (DART) $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{~F}_{2} \mathrm{O}_{2}$ 279.1197, found 279.1203.

Analytical data for 3af: $66.5 \mathrm{mg}, 72 \%$; colorless oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$,
 $\left.25^{\circ} \mathrm{C}\right): \delta 7.26(\mathrm{~d}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz}), 7.09(\mathrm{~d}, 1 \mathrm{H}, J=1.6 \mathrm{~Hz}), 7.05(\mathrm{dd}$, $1 \mathrm{H}, J=8.8,2.4 \mathrm{~Hz}), 6.84(\mathrm{~d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}), 6.79(\mathrm{~d}, 1 \mathrm{H}, J=8.8$ $\mathrm{Hz}), 6.35(\mathrm{td}, 1 \mathrm{H}, J=56.6,5.2 \mathrm{~Hz}$), 4.73 (ddd, $1 \mathrm{H}, J=20.2,12.0$, $4.8 \mathrm{~Hz}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.771(\mathrm{~s}, 3 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right): \delta 158.6,154.9,130.3,130.1,129.9,129.1,128.8,126.0,117.2(\mathrm{t}, J$ $=242.2 \mathrm{~Hz}$), 113.8, 111.1, 55.7, $55.2,48.2(\mathrm{t}, J=21.0 \mathrm{~Hz}), 20.6 ;{ }^{19} \mathrm{~F}$ NMR (376 MHz , $\mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta-117.3(\mathrm{dd}, 1 \mathrm{~F}, J=277.5,57.9 \mathrm{~Hz}$), -120.3 (ddd, $1 \mathrm{~F}, J=277.5,57.9$, 23.3 Hz); HRMS (DART) $\mathrm{m} / \mathrm{z}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{~F}_{2} \mathrm{NO}_{2} 310.1619$, found 310.1649.

Analytical data for 3ag: $85.9 \mathrm{mg}, 93 \%$; yellow solid (mp 93.2-94.5 ${ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR
 ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta 7.22(\mathrm{~d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}), 6.90(\mathrm{~s}, 2 \mathrm{H})$, $6.87(\mathrm{~d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}), 6.22(\mathrm{td}, 1 \mathrm{H}, J=56.0,4.0 \mathrm{~Hz}), 4.58(\mathrm{~s}$, $1 \mathrm{H}), 4.23(\mathrm{dt}, 1 \mathrm{H}, J=16.0,4.0 \mathrm{~Hz}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 2.23(\mathrm{~s}, 6 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}$): $\delta 158.7,151.4,129.9,129.6$, $129.0,128.9,123.2,117.1(\mathrm{t}, J=242.7 \mathrm{~Hz}), 114.0,55.2,53.4(\mathrm{t}, J=20.5 \mathrm{~Hz}) ;{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta-118.5$ (dd, $1 \mathrm{~F}, J=277.5,57.9 \mathrm{~Hz}$), -119.4 (dd, $1 \mathrm{~F}, J=277.5$, 57.9 Hz); HRMS (DART) $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{~F}_{2} \mathrm{O}_{2} 292.1275$, found 292.1277.

Analytical data for 3ah: $81.0 \mathrm{mg}, 61 \%$; colorless oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$,
 $\left.25^{\circ} \mathrm{C}\right): \delta 7.54(\mathrm{~d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}), 7.42(\mathrm{t}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz})$, $7.29(\mathrm{~s}, 1 \mathrm{H}), 7.25(\mathrm{~d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}), 7.15(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz})$, 6.89 (d, 2H, $J=8.4 \mathrm{~Hz}), 6.37(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 6.29$ (td, 1 H , $J=56.0,4.0 \mathrm{~Hz}), 4.35(\mathrm{dt}, 1 \mathrm{H}, J=16.4,4.0 \mathrm{~Hz}), 3.78(\mathrm{~s}, 3 \mathrm{H})$, 3.73 ($\mathrm{s}, 2 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta 173.4$, $158.8,142.5,135.3,132.0,130.8,130.2,129.9,128.9,128.6,125.4,124.6,116.8(\mathrm{t}, J=$ $243.2 \mathrm{~Hz}), 114.1,109.0,55.1,53.8(\mathrm{t}, J=20.5 \mathrm{~Hz}), 35.6$; ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$, $25{ }^{\circ} \mathrm{C}$): $\delta-119.0(\mathrm{dd}, 1 \mathrm{~F}, J=277.5,57.9 \mathrm{~Hz}$), -120.1 (dd, $1 \mathrm{~F}, J=277.5,57.9 \mathrm{~Hz}$); HRMS (DART) $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{Cl}_{2} \mathrm{~F}_{2} \mathrm{NO}_{2} 448.0683$, found 448.0663.

Analytical data for 3ai: $64.1 \mathrm{mg}, 86 \%$; yellow oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$,
 $\left.25^{\circ} \mathrm{C}\right): \delta 7.25(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}), 6.88(\mathrm{~d}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz}), 6.15(\mathrm{td}$, $1 \mathrm{H}, J=56.2,4.4 \mathrm{~Hz}), 6.13(\mathrm{~d}, 1 \mathrm{H}, J=4.0 \mathrm{~Hz}), 5.92(\mathrm{~d}, 1 \mathrm{H}, J=4.0$ Hz), 4.34 (ddd, $1 \mathrm{H}, J=16.8,12.8,4.0 \mathrm{~Hz}$), $3.80(\mathrm{~s}, 3 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta 159.2,152.0,148.6(\mathrm{t}, J=4.8 \mathrm{~Hz}), 130.3,126.6$, $115.7(\mathrm{t}, J=244.1 \mathrm{~Hz}), 114.0,108.8,106.2,55.2,49.0(\mathrm{t}, J=22.0 \mathrm{~Hz}), 13.5 ;{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta-119.4$ (dd, $1 \mathrm{~F}, J=277.5,34.6 \mathrm{~Hz}$), -121.4 (dd, $1 \mathrm{~F}, J=277.1$, 57.9 Hz); HRMS (DART) $m / z\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~F}_{2} \mathrm{NO}_{2}$ 270.1306, found 270.1324 .

Analytical data for 3aj: $79.1 \mathrm{mg}, 87 \%$; yellow oil; ${ }^{1} \mathrm{H} \mathrm{NMR}$ ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$,
 $\left.25^{\circ} \mathrm{C}\right): \delta 7.55(\mathrm{dd}, 1 \mathrm{H}, J=7.6,1.6 \mathrm{~Hz}), 7.45(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz})$, 7.33 (d, 2H, $J=8.8 \mathrm{~Hz}$), $7.30-7.21$ (m, 2H), $6.92(\mathrm{~d}, 2 \mathrm{H}, J=8.8$ $\mathrm{Hz}), 6.69(\mathrm{~s}, 1 \mathrm{H}), 6.32(\mathrm{td}, 1 \mathrm{H}, J=55.8,4.4 \mathrm{~Hz}), 4.55(\mathrm{ddd}, 1 \mathrm{H}, J$ $=16.6,12.8,4.0 \mathrm{~Hz}), 3.81(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta 159.5,154.8$, 153.4, 130.4, 128.1, 125.7, 124.2, 122.9, 120.9, 115.4 ($\mathrm{t}, J=244.1 \mathrm{~Hz}$), 114.2, 111.1, $105.2,55.2,49.4(\mathrm{t}, J=21.9 \mathrm{~Hz}) ;{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}$): $\delta-119.5(\mathrm{dd}, 1 \mathrm{~F}$, $J=277.5,57.9 \mathrm{~Hz}$), $-121.1(\mathrm{dd}, 1 \mathrm{~F}, J=277.5,57.9 \mathrm{~Hz}) ; \quad$ HRMS (DART) $m / z[\mathrm{M}+\mathrm{H}]^{+}$ calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{~F}_{2} \mathrm{O}_{2} 289.1040$, found 289.1047.

Analytical data for 3ak: $54.5 \mathrm{mg}, 51 \%$; colorless paste; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$,
 $\left.25^{\circ} \mathrm{C}\right): \delta 7.66(\mathrm{~s}, 1 \mathrm{H}), 7.36(\mathrm{~d}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz}), 7.35(\mathrm{~d}, 1 \mathrm{H}$, $J=8.4 \mathrm{~Hz}), 6.90(\mathrm{~d}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz}), 6.85(\mathrm{dd}, 1 \mathrm{H}, J=8.8$, $2.4 \mathrm{~Hz}), 6.81(\mathrm{~d}, 1 \mathrm{H}, J=2.4 \mathrm{~Hz}), 6.44(\mathrm{td}, 1 \mathrm{H}, J=56.0,4.0$ $\mathrm{Hz}), 4.55(\mathrm{ddd}, 1 \mathrm{H}, J=18.4,14.4,4.0 \mathrm{~Hz}), 3.87(\mathrm{~s}, 3 \mathrm{H})$, $3.80(\mathrm{~s}, 3 \mathrm{H}) ; \quad{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta 162.7,161.3,159.3,155.0,141.3$,
130.3, 128.9, 126.6, 121.9, 116.1 (t, $J=243.2 \mathrm{~Hz}$), 114.2, 112.8, 112.5, 100.4, 55.8, 55.2, $49.1(\mathrm{t}, J=21.9 \mathrm{~Hz}) ;{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta-119.7(\mathrm{dd}, 1 \mathrm{~F}, J=277.5$, 57.9 Hz), -120.7 (dd, 1F, $J=277.5,57.9 \mathrm{~Hz}$); HRMS (DART) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{~F}_{2} \mathrm{O}_{4} 347.1095$, found 347.1093.

Analytical data for 3al: $54.1 \mathrm{mg}, 56 \%$; colorless oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$,
 $\left.25^{\circ} \mathrm{C}\right): \delta 8.41$ (d, 1H, $\left.J=8.4 \mathrm{~Hz}\right), 7.54(\mathrm{~s}, 1 \mathrm{H}), 7.35-7.27(\mathrm{~m}, 4 \mathrm{H})$, 7.19 (t, $1 \mathrm{H}, J=7.4 \mathrm{~Hz}), 6.89(\mathrm{~d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}), 6.32(\mathrm{td}, 1 \mathrm{H}, J=$ $56.0,3.2 \mathrm{~Hz}$), 4.63 (td, $1 \mathrm{H}, J=16.4,3.2 \mathrm{~Hz}$), 3.78 (s, 3 H), 2.66 (s, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta 168.5,159.3,135.7,130.2,129.7,126.9$, $125.5,123.6,123.0,119.3,117.8,116.6(\mathrm{t}, J=246.5 \mathrm{~Hz}), 116.5,114.1,55.2,46.1(\mathrm{t}, J=$ 21.0 Hz), 24.0; ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}$): $\delta-119.6(\mathrm{~d}, 2 \mathrm{~F}, J=57.9 \mathrm{~Hz}$); HRMS (DART) $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~F}_{2} \mathrm{NO}_{2} 330.1306$, found 330.1310.

Analytical data for 3be: $73.7 \mathrm{mg}, 80 \%$; yellow oil; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$,

3be $25^{\circ} \mathrm{C}$): $\delta 7.30$ (dd, $1 \mathrm{H}, J=8.0,1.6 \mathrm{~Hz}$), $7.26(\mathrm{~d}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz}), 6.96$ (dd, $1 \mathrm{H}, J=7.2,1.2 \mathrm{~Hz}$), $6.89(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 6.84(\mathrm{~d}, 2 \mathrm{H}, J=8.8$ Hz), 6.35 (td, 1H, $J=56.4,4.8 \mathrm{~Hz}$), 4.79 (ddd, $1 \mathrm{H}, J=20.2,12.4,4.8$ $\mathrm{Hz}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta 158.6,156.9,130.3,129.3,128.9,128.5,126.3,120.7,117.1(\mathrm{t}, J=242.2 \mathrm{~Hz}), 113.7$, $111.0,55.5,55.1,47.9(\mathrm{t}, J=21.0 \mathrm{~Hz}) ;{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}$): $\delta-117.4$ (dd, 1F, $J=277.1,34.6 \mathrm{~Hz}$), -120.5 (ddd, $1 \mathrm{~F}, J=277.5,57.5,22.9 \mathrm{~Hz}$); HRMS (DART) $m / z\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~F}_{2} \mathrm{NO}_{2}$ 296.1462, found 296.1454.

Analytical data for 3ce: $72.8 \mathrm{mg}, 74 \%$; yellow oil; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$,
 $\left.25^{\circ} \mathrm{C}\right): \delta 8.33-8.29(\mathrm{~m}, 1 \mathrm{H}), 7.87-7.84(\mathrm{~m}, 1 \mathrm{H}), 7.49(\mathrm{~d}, 1 \mathrm{H}, J=$ $8.4 \mathrm{~Hz}), 7.47-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.25(\mathrm{~d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}), 6.85-6.81$ (m, 3H), 6.43 (td, $1 \mathrm{H}, J=56.0,4.0 \mathrm{~Hz}$), 5.04 (ddd, $1 \mathrm{H}, J=18.0$, $13.2,4.0 \mathrm{~Hz}), 4.01(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right): \delta 158.8,155.0,132.5,130.3,128.9,126.9,126.2,125.4,125.3,125.0$, 123.2, 122.7, 117.3 (t, $J=242.7 \mathrm{~Hz}$), 113.9, 102.9, 55.4, 55.1, 49.3 (t, $J=21.0 \mathrm{~Hz}$); ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}, 2{ }^{\circ} \mathrm{C}$): $\delta-116.0(\mathrm{dd}, 1 \mathrm{~F}, J=277.1,57.9 \mathrm{~Hz}$), -120.4 (ddd, 1F, J $=277.5,57.9 \mathrm{~Hz}$); HRMS (DART) $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~F}_{2} \mathrm{O}_{2} 329.1353$, found 329.1374.

Analytical data for 3de: $86.6 \mathrm{mg}, 90 \%$; colorless oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$,
 $\left.25^{\circ} \mathrm{C}\right): \delta 7.22(\mathrm{~d}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz}), 7.11(\mathrm{~s}, 1 \mathrm{H}), 7.02(\mathrm{~d}, 1 \mathrm{H}, J=8.0$ $\mathrm{Hz}), 6.87(\mathrm{~d}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz}), 6.74(\mathrm{~d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}), 6.22(\mathrm{td}, 1 \mathrm{H}$, $J=56.0,4.0 \mathrm{~Hz}), 4.55(\mathrm{t}, 2 \mathrm{H}, J=8.6 \mathrm{~Hz}), 4.29(\mathrm{td}, 1 \mathrm{H}, J=16.0$, 4.8 Hz), 3.79 (s, 3H), 3.18 (t, 2H, $J=8.8 \mathrm{~Hz}$); ${ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right): \delta 159.3,158.7,129.9,129.5,129.2,128.6,127.5,125.4,117.1(\mathrm{t}, J$ $=242.2 \mathrm{~Hz}$), 113.8, 109.1, 71.2, 55.1, 53.6 (t, $J=20.5 \mathrm{~Hz}$), 29.6; ${ }^{19} \mathrm{~F}$ NMR (376 MHz , $\mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}$): $\delta-119.1(\mathrm{~d}, 2 \mathrm{~F}, J=57.9 \mathrm{~Hz}) ; \quad \mathrm{HRMS}$ (DART) $\mathrm{m} / \mathrm{z}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{~F}_{2} \mathrm{NO}_{2} 308.1462$, found 308.1451.

Analytical data for 3ee: $80.6 \mathrm{mg}, 86 \%$; yellow oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$,

$\left.25^{\circ} \mathrm{C}\right): \delta 7.21(\mathrm{~d}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz}), 6.87(\mathrm{~d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}), 6.82(\mathrm{~d}$, $1 \mathrm{H}, J=8.8 \mathrm{~Hz}), 6.81(\mathrm{~d}, 1 \mathrm{H}, J=2.8 \mathrm{~Hz}), 6.76(\mathrm{~d}, 1 \mathrm{H}, J=8.4,2.4$ Hz), $6.21(\mathrm{td}, 1 \mathrm{H}, J=56.0,4.0 \mathrm{~Hz}), 4.24(\mathrm{td}, 1 \mathrm{H}, J=16.0,4.0 \mathrm{~Hz})$, 4.24 (s, 4H), $3.79(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): δ $158.8,143.4,142.8,130.5,130.0,129.2,121.9,117.8,117.3,116.9(\mathrm{t}, J=242.7 \mathrm{~Hz})$, $114.0,64.3,55.2,53.5(\mathrm{t}, \mathrm{J}=20.5 \mathrm{~Hz}) ;{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta-119.2(\mathrm{~d}$, $2 \mathrm{~F}, ~ J=57.9 \mathrm{~Hz}$); HRMS (DART) $m / z\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{~F}_{2} \mathrm{NO}_{2}$ 324.1411, found 324.1430.

Analytical data for 3fe: $72.6 \mathrm{mg}, 65 \%$; colorless oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$,
 $\left.25^{\circ} \mathrm{C}\right): \delta 7.40-7.28(\mathrm{~m}, 5 \mathrm{H}), 7.11(\mathrm{~d}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz}), 6.85-6.82$ $(\mathrm{m}, 3 \mathrm{H}), 6.81(\mathrm{~d}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 6.15(\mathrm{td}, 1 \mathrm{H}, J=56.0,4.0 \mathrm{~Hz})$, $5.12(\mathrm{~d}, 1 \mathrm{H}, J=12.4 \mathrm{~Hz}), 5.09(\mathrm{~d}, 1 \mathrm{H}, J=12.4 \mathrm{~Hz}), 4.23(\mathrm{td}, 1 \mathrm{H}$, $J=16.0,4.0 \mathrm{~Hz}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}$): δ 158.7, 149.0, 147.9, 136.9, 129.9, 129.6, 129.1, 128.5, 127.8, 127.4, 121.8, 117.0 (t, $J=$ 243.2 Hz), 115.4, 114.0, 111.7, 60.7, 56.0, 55.1, 54.2 (t, $J=20.5 \mathrm{~Hz}$); ${ }^{19}$ F NMR (376 $\mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta-119.0(\mathrm{t}, 1 \mathrm{~F}, J=22.9 \mathrm{~Hz}$), $-119.1(\mathrm{t}, 1 \mathrm{~F}, J=22.9 \mathrm{~Hz}) ; \quad$ HRMS (DART) $m / z\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$calcd for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{~F}_{2} \mathrm{NO}_{3} 402.1881$, found 402.1890.

Analytical data for 3ge: $64.7 \mathrm{mg}, 61 \%$; colorless oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$,
 $\left.25^{\circ} \mathrm{C}\right): \delta 7.23$ (d, $2 \mathrm{H}, J=8.8 \mathrm{~Hz}$), $6.89(\mathrm{~d}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz}), 6.50$ (s, 2H), $6.24(\mathrm{td}, 1 \mathrm{H}, J=56.0,4.0 \mathrm{~Hz}), 4.29(\mathrm{td}, 1 \mathrm{H}, J=16.4,4.0$ Hz), 3.832 ($\mathrm{s}, 3 \mathrm{H}$), 3.826 (s, 6H), $3.80(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, 2{ }^{\circ} \mathrm{C}\right): \delta 158.9,153.2,137.2,132.8,129.9,128.8$, $116.8(\mathrm{t}, J=243.1 \mathrm{~Hz}), 114.0,106.1,71.1,55.9,55.2,53.5(\mathrm{t}, J=20.5 \mathrm{~Hz}) ;{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta-118.4$ (dd, $1 \mathrm{~F}, J=276.0,57.9 \mathrm{~Hz}$), -119.2 (dd, $1 \mathrm{~F}, J=276.0$,
57.9 Hz); HRMS (DART) $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{~F}_{2} \mathrm{O}_{4} 339.1408$, found 339.1394.

Analytical data for 3he: ${ }^{3} 114.9 \mathrm{mg}$, 93%; colorless oil; ${ }^{1} \mathrm{H}$ NMR (400 MHz ,
 $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}\right): \delta 7.45(\mathrm{~d}, 1 \mathrm{H}, J=1.6 \mathrm{~Hz}), 7.22-7.15(\mathrm{~m}, 3 \mathrm{H})$, $6.87(\mathrm{~d}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz}), 6.85(\mathrm{~d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}), 6.20(\mathrm{td}, 1 \mathrm{H}, J$ $=56.0,4.0 \mathrm{~Hz}), 4.27(\mathrm{td}, 1 \mathrm{H}, J=16.0,4.0 \mathrm{~Hz}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.79$ (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta 158.9,155.1,133.7,130.7,129.9,129.1$, $128.6,116.6(\mathrm{t}, ~ J=243.7 \mathrm{~Hz}), 114.1,111.8,111.7,56.1,55.1,52.9(\mathrm{t}, J=21.0 \mathrm{~Hz}) ;{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta-118.6$ (dd, 1F, $J=277.5,57.9 \mathrm{~Hz}$), $-119.8(\mathrm{dd}, 1 \mathrm{~F}, J=$ $277.5,57.9 \mathrm{~Hz}$).

Analytical data for 3ie: ${ }^{3} \quad 83.6 \mathrm{mg}$, quant; colorless oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$,
 $\left.25^{\circ} \mathrm{C}\right): \delta 7.24-7.17(\mathrm{~m}, 6 \mathrm{H}), 6.87(\mathrm{~d}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz}), 6.24(\mathrm{td}$, $1 \mathrm{H}, J=56.0,4.0 \mathrm{~Hz}), 4.32 \quad(\mathrm{td}, 1 \mathrm{H}, J=16.0,4.0 \mathrm{~Hz}), 3.79(\mathrm{~s}$, 3 H), $2.47(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}$): δ $158.8,133.6,134.0,130.0,129.3,129.0,126.6,116.8(\mathrm{t}, J=243.2 \mathrm{~Hz}), 114.0,55.1,53.6$ (t, $J=20.5 \mathrm{~Hz}$); ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta-119.1(\mathrm{~d}, 1 \mathrm{~F}, J=57.5 \mathrm{~Hz}$), 119.2 (d, 1F, $J=57.5 \mathrm{~Hz}$).

Analytical data for $\mathbf{3 j e}$: $85.1 \mathrm{mg}, 96 \%$; yellow oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$,
 $\left.25^{\circ} \mathrm{C}\right): \delta 7.86(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.53(\mathrm{~d}, 1 \mathrm{H}, J=6.8 \mathrm{~Hz}), 7.50(\mathrm{~s}$, $1 \mathrm{H}), 7.34-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.24(\mathrm{~d}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz}), 6.85(\mathrm{~d}, 2 \mathrm{H}, J=$ $8.4 \mathrm{~Hz}), 6.33(\mathrm{td}, 1 \mathrm{H}, J=56.0,4.0 \mathrm{~Hz}$), 4.72 (ddd, $1 \mathrm{H}, J=17.8$, $14.4,4.0 \mathrm{~Hz}), 3.77(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 2{ }^{\circ} \mathrm{C}$): $\delta 159.2,140.0,138.4$, $131.1,130.3,127.0,124.5,124.2,123.4,122.7,121.9,116.6(\mathrm{t}, J=243.6 \mathrm{~Hz}), 114.0,55.1$, 48.5 ($\mathrm{t}, J=21.5 \mathrm{~Hz}$); ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta-118.1(\mathrm{~d}, 1 \mathrm{~F}, J=277.1$, $57.9 \mathrm{~Hz}),-120.7(\mathrm{~d}, 1 \mathrm{~F}, J=277.1,57.9 \mathrm{~Hz}) ; \quad H R M S ~(D A R T) ~ m / z\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~F}_{2} \mathrm{NOS} 322.1077$, found 322.1090.

[^2]Analytical data for $10 \mathrm{~b} \cdot:^{5} \quad 42.9 \mathrm{mg}, 79 \%$; colorless solid (mp $153.0-155.2{ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$
 NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}$): $\delta 7.24(\mathrm{~d}, 4 \mathrm{H}, J=8.8 \mathrm{~Hz})$, $6.88(\mathrm{~d}, 4 \mathrm{H}, J=8.8 \mathrm{~Hz}), 5.05(\mathrm{~s}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right): \delta 159.3,128.8,128.2,120.1,114.4$, 55.3, 41.0.

Representative procedure B. Reaction of 11 with 2a: To a solution of $\mathbf{1 1}(92.0 \mathrm{mg}$, $0.30 \mathrm{mmol})$ and $2 \mathbf{2 a}(120 \mu \mathrm{~L}, 0.93 \mathrm{mmol})$ in dry $\mathrm{MeNO}_{2}(1.2 \mathrm{~mL})$ was added $\mathrm{TfOH}(26 \mu \mathrm{~L}$, 0.3 mmol) at ambient temperature. The reaction mixture was stirred at $50{ }^{\circ} \mathrm{C}$ under an Ar atmosphere for 1 h . The reaction progress was monitored by TLC analysis. The reaction was quenched by adding $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$. The aqueous phase was extracted with AcOEt $(3 \times 5$ $\mathrm{mL})$. The combined organic extract was washed with brine $(1 \times 5 \mathrm{~mL})$ and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvents were evaporated in vacuo, and the obtained crude product was purified by silica gel column chromatography (hexane/AcOEt 50:1~30:1) to afford 3la ($64.4 \mathrm{mg}, 74 \%$) as a colorless oil: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 25{ }^{\circ} \mathrm{C}$): δ $7.25-7.17(\mathrm{~m}, 3 \mathrm{H}), 7.12(\mathrm{~d}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz}), 6.53-6.47(\mathrm{~m}, 2 \mathrm{H}), 6.36(\mathrm{td}, 1 \mathrm{H}, J=56.8,4.4$ $\mathrm{Hz}), 4.70(\mathrm{ddd}, 1 \mathrm{H}, J=16.0,12.8,4.8 \mathrm{~Hz}), 3.78(\mathrm{~s}, 6 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta 160.1,158.0,136.7,134.3,129.9,129.1,129.0,118.6,117.2(\mathrm{t}, J$ $=242.2 \mathrm{~Hz}), 104.3,98.9,55.5,55.3,47.7(\mathrm{t}, J=21.5 \mathrm{~Hz}), 21.0 ;{ }^{19} \mathrm{~F}$ NMR (376 MHz , $\left.\mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right): \delta-117.6(\mathrm{dd}, 1 \mathrm{~F}, J=277.1,57.9 \mathrm{~Hz}),-120.2(\mathrm{ddd}, 1 \mathrm{~F}, J=277.1,57.9$, 23.3 Hz); HRMS (DART) $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{~F}_{2} \mathrm{O}_{2}$ 293.1353, found 293.1373.

Synthesis of Triarylmethane 7.

In a similar
manner with representative procedure A, benzhydrol $6(78.2 \mathrm{mg}, 0.30 \mathrm{mmol})$, anisole (100 $\mu \mathrm{L}, 0.92 \mathrm{mmol})$, and $\mathrm{Fe}(\mathrm{OTf})_{3}(29.8 \mathrm{mg}, 0.059 \mathrm{mmol})$ was stirred in nitromethane $(1.2$ mL) at $50^{\circ} \mathrm{C}$ for 5.5 h to afford triarylmethane $7(94.5 \mathrm{mg}, 90 \%)$ as a colorless solid (mp $\left.99.8-102.5^{\circ} \mathrm{C}\right): \quad{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}\right): \delta 7.35-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.13(\mathrm{~d}, 2 \mathrm{H}$,

[^3]$J=8.0 \mathrm{~Hz}), 7.03(\mathrm{~d}, 4 \mathrm{H}, J=8.8 \mathrm{~Hz}), 6.84(\mathrm{~d}, 4 \mathrm{H}, J=8.8 \mathrm{~Hz}), 6.79(\mathrm{t}, 1 \mathrm{H}, J=55.2 \mathrm{~Hz})$, 3.79 (s, 6H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}$): $\delta 158.4,142.1,133.7,131.0,129.7$, $128.1,127.1,119.2(\mathrm{t}, J=248.4 \mathrm{~Hz}), 113.4,60.6(\mathrm{t}, J=18.6 \mathrm{~Hz}), 55.2 ;{ }^{19} \mathrm{~F}$ NMR (376 $\mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta-117.2\left(\mathrm{~d}, 2 \mathrm{~F}, J=57.9 \mathrm{~Hz}\right.$); HRMS (DART) $m / z\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$ calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~F}_{2} \mathrm{NO}_{2} 372.1775$, found 372.1784.

Synthesis of Pyrazoles 8.

To a solution of $\mathbf{1 a}(103.0 \mathrm{mg}, 0.317 \mathrm{mmol})$ and acetylacetone $(92 \mu \mathrm{~L}, 0.90 \mathrm{mmol})$ in dry $\mathrm{MeNO}_{2}(1.2 \mathrm{~mL})$ was added $\mathrm{Fe}(\mathrm{OTf})_{3}(18 \mathrm{mg}, 0.036 \mathrm{mmol})$ at ambient temperature. The reaction mixture was stirred at $50{ }^{\circ} \mathrm{C}$ under an Ar atmosphere for 5 h . The reaction was quenched by adding $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$. The aqueous phase was extracted with $\mathrm{AcOEt}(3 \times 5 \mathrm{~mL})$. The combined organic extract was washed with brine (5 mL) and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvents were evaporated in vacuo, and the obtained crude materials were filtered through a pad of silica gel and the filtrate was concentrated in vacuo. To the solution of the crude product $\mathbf{S 3}$ in $\mathrm{MeOH}(0.75 \mathrm{~mL})$ was added $\mathrm{H}_{2} \mathrm{NNH}_{2} \cdot \mathrm{H}_{2} \mathrm{O}(44 \mu \mathrm{~L}$, 0.90 mmol) and the reaction mixture was stirred at $80^{\circ} \mathrm{C}$ for 1 h . The reaction mixture was concentrated in vacuo, and the crude product was purified by silica gel column chromatography (hexane/AcOEt 3:1 then AcOEt/MeOH 19:1) to afford 8a (64.1 mg , 76%) as a colorless oil: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta 11.1(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.18(\mathrm{~d}$, $2 \mathrm{H}, J=8.8 \mathrm{~Hz}$), 6.86 (d, 2H, $J=8.8 \mathrm{~Hz}$), 6.28 (td, $1 \mathrm{H}, J=56.2,4.8 \mathrm{~Hz}$), 4.34 (td, $1 \mathrm{H}, J=$ 16.4, 4.4 Hz), $3.79(\mathrm{~s}, 3 \mathrm{H}), 2.15(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}$): $\delta 158.5$, 143.1, 129.4, 128.7, $116.8(\mathrm{t}, J=242.2 \mathrm{~Hz}), 113.8,111.3,55.1,44.4(\mathrm{t}, J=21.5 \mathrm{~Hz}), 11.6$; ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta-117.7$ (ddd, $1 \mathrm{~F}, J=277.5,57.9,23.3 \mathrm{~Hz}$), -118.5 (dd, $1 \mathrm{~F}, J=277.5,57.9 \mathrm{~Hz}$); HRMS (DART) $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{~F}_{2} \mathrm{~N}_{2} \mathrm{O}$ 267.1309, found 267.1310.

Analytical data for 8b: $76.8 \mathrm{mg}, 82 \%$; yellow oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, $\left.{ }^{\mathrm{HF}_{2} \mathrm{C}} \mathrm{Et} 25^{\circ} \mathrm{C}\right): \delta 9.55(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.17(\mathrm{~d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}), 6.84(\mathrm{~d}, 2 \mathrm{H}, J=$ $8.4 \mathrm{~Hz}), 6.27(\mathrm{td}, 1 \mathrm{H}, J=56.2,4.8 \mathrm{~Hz}), 4.37(\mathrm{td}, 1 \mathrm{H}, J=16.2,4.8$ $\mathrm{Hz}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 2.52(\mathrm{sept}, J=7.6 \mathrm{~Hz}, 4 \mathrm{H}), 1.15(\mathrm{t}, 6 \mathrm{H}, J=7.8 \mathrm{~Hz})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}$): $\delta 158.4,148.4,129.3,128.9$, $116.7(\mathrm{t}, J=242.2 \mathrm{~Hz}), 113.7,109.7(\mathrm{t}, J=3.7 \mathrm{~Hz}), 55.1,44.1(\mathrm{t}, J=21.9 \mathrm{~Hz}), 19.3,13.2$;
${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta-117.2$ (ddd, $1 \mathrm{~F}, J=277.1,57.9,22.9 \mathrm{~Hz}$), -118.0 (ddd, $1 \mathrm{~F}, J=277.1,57.9,22.9 \mathrm{~Hz}$); HRMS (DART) $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{~F}_{2} \mathrm{~N}_{2} \mathrm{O}$ 295.1622, found 295.1620.

Analytical data for 8c: $\quad 75.6 \mathrm{mg}, 60 \%$; colorless solid (mp 68.8-73.4 ${ }^{\circ} \mathrm{C}$); $\quad{ }^{1} \mathrm{H}$ NMR

($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta 11.25$ (br s, 1H), 7.38-7.28 (m, 10H), 7.08 (d, 2H, $J=8.4 \mathrm{~Hz}), 6.80(\mathrm{~d}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz}), 6.27(\mathrm{td}, 1 \mathrm{H}, J=$ $56.4,7.2 \mathrm{~Hz}), 4.55$ (ddd, $1 \mathrm{H}, J=16.6,9.6,7.2 \mathrm{~Hz}$), $3.79(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}$): $\delta 158.6,147.2$ (br s), 129.9, $129.8,129.6,129.0,128.6,128.5,116.3(\mathrm{t}, J=241.7 \mathrm{~Hz}), 113.9,112.5,112.4,55.2,45.0(\mathrm{t}$, $J=22.4 \mathrm{~Hz}) ;{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta-115.2(\mathrm{dd}, 1 \mathrm{~F}, J=277.5,57.9 \mathrm{~Hz})$, $-116.7\left(\mathrm{dd}, 1 \mathrm{~F}, J=277.5,57.9 \mathrm{~Hz}\right.$); HRMS (DART) $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{~F}_{2} \mathrm{~N}_{2} \mathrm{O}$ 391.1622, found 391.1641.

DFT Calculations

The Gaussian 16 program package was used for all calculations. ${ }^{63}$ The geometries of the stationary points were fully optimized using the Becke's three-parameter hybrid density functional method (B3LYP) ${ }^{7}$ with the $6-31 \mathrm{G}(\mathrm{d})^{8}$ basis sets for all elements. The D3 version of Grimme's dispersion with Becke-Johnson damping ${ }^{9}$ was used for empirical dispersion correction. The vibrational frequencies and the thermal correction to Gibbs free energy (TCGFE) including the zero-point energy were calculated at the same level of theory. Single-point energies for geometries obtained using the above method were

[^4]calculated at the same level of theory using the $6-311++\mathrm{G}(\mathrm{d}, \mathrm{p})$ basis sets ${ }^{10}$ for all elements. The GD3BJ dispersion correction (D3) was also employed for the single-point energy calculations. To examine the solvent effect, the above geometry optimizations and single-point energy calculations were performed using the SMD model ${ }^{11}$ with MeNO_{2} as the solvent. CYLview (Ver. 1.0b) ${ }^{12}$ was used for the visualization of the optimized structures. The obtained results are summarized in Table S1 and Figure S1.

Table S1. Summary of theoretical calculations.

Model	TCGFE/au	SMD Energy/au	$\Delta \mathrm{G} / \mathrm{au}$	$\Delta \mathrm{G}_{\text {rel }} / \mathrm{kcal} \mathrm{mol}^{-1}$
ortho-Int	0.126121	-623.285244	-623.159123	+5.4
meta-Int	0.125390	-623.271310	-623.145920	+13.7
para-Int	0.126293	-623.293975	-623.167682	0.0

meta-Int $\left(\Delta \mathrm{G}_{\text {rel }}+13.7 \mathrm{kcal} / \mathrm{mol}\right)$

Figure S1. Calculated structures of cationic intermediates with interatomic distances (\AA).

[^5]
Cartesian coordinates

ortho-Int

C	-0.443000	1.047400	0.068300
C	-0.197300	0.554000	1.356300
C	0.988200	1.008200	2.099500
C	1.865200	1.971100	1.461900
C	1.595500	2.426800	0.208100
C	0.437800	1.962300	-0.479300
H	-1.309600	0.723000	-0.492300
H	2.741700	2.308300	1.997800
H	2.252500	3.139600	-0.276600
H	0.237500	2.339800	-1.477600
C	1.209200	0.491000	3.340000
H	0.532500	-0.265500	3.726600
C	2.364400	0.787200	4.252200
H	3.242200	0.187300	3.986800
F	2.713600	2.110600	4.227200
F	1.996800	0.486300	5.532700
O	-0.968600	-0.305400	1.977700
C	-2.163300	-0.816700	1.334000
H	-2.600000	-1.499200	2.060900
H	-2.848500	0.006400	1.119700
H	-1.892800	-1.350200	0.419800

21

meta-Int

C	-2.084800	1.424400	2.519100
C	-1.120400	0.693100	3.193400
C	0.215700	1.199900	3.330200
C	0.562300	2.473600	2.750900
C	-0.407500	3.175400	2.077700
C	-1.716300	2.670200	1.961700
H	-1.374500	-0.267100	3.629500
H	1.569400	2.855000	2.836400
H	-0.176600	4.132900	1.624400

H	-2.450400	3.260200	1.425300
C	1.102300	0.415000	4.029300
H	0.762600	-0.552600	4.392700
C	2.554200	0.668200	4.307300
H	3.165300	0.238100	3.503200
F	2.880600	0.063200	5.486600
F	2.848900	1.995100	4.426500
O	-3.315500	0.886900	2.441300
C	-4.341500	1.615500	1.750100
H	-5.234300	0.994200	1.822300
H	-4.525400	2.583500	2.228900
H	-4.077000	1.760800	0.697200

para-Int

C	0.161300	0.467000	-0.213500

C
0. 143200
0.548700

1. 209600

C

1. 278400
2. $240200 \quad 1.897200$

C $\quad 2.494300 \quad-0.157100 \quad 1.218300$
C $\quad 2.477500-0.224200 \quad-0.229400$
C

1. 344000
$0.073700-0.916000$
H
H
H

H
C
H
C
H
F
F
0
C
H
H
H
-2. 009800
. 070400
0. 163700

NMR Charts

1b: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) /{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

1c: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) /{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

1d: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) /{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

1e: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) /{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$)

1f: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) /{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

1g: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) /{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$

1h: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) /{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$)

1i: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) /{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$)

1j: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) /{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

1k: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) /{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3aa: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) /{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

3ab: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) /{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

3ac: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) /{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3ad: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) /{ }^{13} \mathrm{C}\left\{{ }^{〔} \mathrm{H}\right\}$ NMR $\left(100 \cdot \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

3ae: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) /{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3af: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) /{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

3ag: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) /{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3ah: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) /{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

3ai: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) /{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3aj: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) /{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

3ak: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) /{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

3al: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) /{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3be: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) /{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

3ce: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) /{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3de: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) /{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

3ee: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) /{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

3fe: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) /{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3ge: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $/{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3he: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) /{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3ie: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) /{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3je: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) /{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

31a: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) /{ }^{13} \mathrm{C}\left\{{ }^{〔} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

7: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) /{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

8a: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) /{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

8b: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

8c: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) /{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

10a: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) /{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

10b: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) /{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

[^0]: ${ }^{1}$ (a) R. Waschbümsch, M. Samadi, P. Savignac, J. Organomet. Chem. 1997, 529, 267-278. (b) B. T. Ramanjaneyyulu, S. Vidyacharan, S. J. Yim, D.-P. Kim, Eur. J. Org. Chem. 2019, 7730-7734. (c) A. Baeza, C. Nájera, J. M. Sansano, ARKIVOC 2005 (ix), 353-363. (d) Y. Zhao, W. Huang, J. Zheng, J. Hu, Org. Lett. 2011, 13, 5342-5345. (e) L. S. Dobson, G. Pattison, Chem. Commun. 2016, 52, 11116-11119.

[^1]: ${ }^{2}$ P. Beier, R. Pohl, A. V. Alexandrova, Synthesis 2009, 957-962.

[^2]: ${ }^{3}$ C. Kuang, X. Zhou, Q. Xie, C. Ni, Y. Gu, J. Hu, Org. Lett. 2020, 22, 8670-8675.
 ${ }^{4}$ R. Parnes, H. Reiss, D. Pappo, J. Org. Chem. 2018, 83, 723-732.

[^3]: 5^{5} V. V. Tumanov, A. A. Tishkov, H. Mayr, Angew. Chem. Int. Ed. 2007, 46, 3563-3566.

[^4]: ${ }^{6}$ Gaussian 16, Revision A.03, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.
 ${ }^{7}$ (a) W. Kohn, A. D. Becke, R. G. Parr, J. Phys. Chem. 1996, 100, 12974-12980. (b) P. J. Stephen, F. J. Devlin, C. F. Chabalowski, M. Frisch, J. Phys. Chem. 1994, 98, 11623-11627. (c) A. D. Becke, J. Chem. Phys. 1993, 98, 5648-5652. (d) C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785-789.
 ${ }^{8}$ (a) W. J. Hehre, R. Ditchfield, J. A. Pople, J. Chem. Phys. 1972, 56, 2257-2261. (b) P. C. Hariharan, J. A. Pople, Theor. Chim. Acta 1973, 28, 213-222. (c) M. M. Fracl, W. J. Pietro, W. J. Hehre, J. S. Binkley, M. S. Gordon, D. J. DeFrees, J. A. Pople, J. Chem. Phys. 1982, 77, 3654-3665.
 ${ }^{9}$ S. Grimme, S. Ehrlich, L. Goerigk, J. Comp. Chem. 2011, 32, 1456-1465.

[^5]: ${ }^{10}$ (a) R. Krishnan, J. S. Binkley, R. Seeger, J. A. Pople, J. Chem. Phys. 1980, 72, 650-654. (b) A. D. McLean, G. S. Chandler, J. Chem. Phys. 1980, 72, 5639-5648. (c) M. J. Frisch, J. A. Pople, J. S. Binkley, J. Chem. Phys. 1984, 80, 3265-3269. (d) T. Clark, J. Chandrasekhar, G. W. Spitznagel, P. v. R. Schleyer, J. Comp. Chem. 1983, 4, 294-301.
 ${ }^{11}$ A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B 2009, 113, 6378-6396.
 ${ }^{12}$ CYLview, 1.0b; Legault, C. Y., Université de Sherbrooke, 2009 (http://www.cylview.org).

