Supporting Information

Pd-Catalyzed Multicomponent Reactions Toward Medium-sized Sulfoximine Heterocycles via Double Carbopalladation/syn-Insertion

Cascades

Longji Dai, Jianjun Yuan, Cui Wu, and Zhiyuan Chen*

Key Laboratory of Functional Small Organic Molecules, Ministry of Education and Jiangxi Key Laboratory of Green Chemistry, College of Chemistry \& Chemical Engineering, Jiangxi Normal University, 99 Ziyang Road, Nanchang, Jiangxi 330022 (P. R. China). E-mail: zchen@jxnu.edu.cn

Contents

General remarks (S2)
Table S1. Optimization of the reaction conditions (S3-S4).
Scheme S1. Proposed mechanism (S5).
Three-component synthesis of medium-sized sulfoximines (S6-S16).
Two-component synthesis of medium-sized sulfoximine heterocycles (S17-21).
Four-component synthesis of medium-sized sulfoximine heterocycles (S22).
${ }^{1} \mathbf{H}$ and ${ }^{13} \mathbf{C}$ NMR spectra of all new compounds $\mathbf{3}$ (S23-S51).
X-ray crystal structure of compound $\mathbf{3 n}$ (S52-S53).

1. General remarks.

Unless otherwise noted, commercial reagents were purchased from commercial suppliers and were used as received. All solvents were dried and distilled according to standard procedures before use. The Flash column chromatography was performed using silica gel ($60 \AA$ pore size, 32-63 $\mu \mathrm{m}$, standard grade). Analytical thin-layer chromatography (TLC) was performed using glass plates pre-coated with 0.25 mm 230-400 mesh silica gel impregnated with a fluorescent indicator (254 nm). Organic solutions were concentrated on rotary evaporators at ~ 20 Torr (house vacuum) at 25 $35{ }^{\circ} \mathrm{C}$. Nuclear magnetic resonance (NMR) spectra were recorded in parts per million (ppm) from internal trimethylsilane (TMS) on the δ scale. High resolution mass spectrometry (HRMS) spectra analysis was performed by electrospray ionization (ESI-micrOTOF).

Table S1. Optimization of the reaction conditions. ${ }^{a}$

entry	[Pd] cat.	ligand	base	3a [\%] ${ }^{a}$
1	-	$\mathrm{P}\left(4-\mathrm{MeC}_{6} \mathrm{H}_{4}\right)_{3}$	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	20
2	-	$\mathrm{P}\left(4-\mathrm{MeOC}_{6} \mathrm{H}_{4}\right)_{3}$	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	trace
3	-	$\mathrm{P}\left(4-\mathrm{FC}_{6} \mathrm{H}_{4}\right)_{3}$	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	23
4	-	$\mathrm{P}\left(4-\mathrm{ClC}_{6} \mathrm{H}_{4}\right)_{3}$	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	31
5	-	Sphos	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	39
6	-	Mephos	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	60
7	-	PCy_{3}	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	41
8	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$	Mephos	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	53
9	$\mathrm{Pd}(\mathrm{OAc})_{2}$	Mephos	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	42
10	$\mathrm{Pd}\left(\mathrm{OCOCF}_{3}\right)_{2}$	Mephos	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	50
11	$\mathrm{Pd}(\mathrm{dba})_{2}$	Mephos	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	59
12	$\mathbf{P d}(\mathbf{M e C N})_{2} \mathbf{C l}_{2}$	Mephos	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	77
13	$\mathrm{Pd}(\mathrm{PhCN})_{2} \mathrm{Cl}_{2}$	Mephos	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	70
14	$\mathrm{Pd}(\mathrm{MeCN})_{2} \mathrm{Cl}_{2}$	Mephos	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	$30^{\text {b }}$
15	$\mathrm{Pd}(\mathrm{MeCN})_{2} \mathrm{Cl}_{2}$	Mephos	TEA	trace
16	$\mathrm{Pd}(\mathrm{MeCN})_{2} \mathrm{Cl}_{2}$	Mephos	Py	trace
17	$\mathrm{Pd}(\mathrm{MeCN})_{2} \mathrm{Cl}_{2}$	Mephos	$\mathrm{K}_{2} \mathrm{CO}_{3}$	20
18	$\mathrm{Pd}(\mathrm{MeCN})_{2} \mathrm{Cl}_{2}$	Mephos	MeONa	30
19	$\mathrm{Pd}(\mathrm{MeCN})_{2} \mathrm{Cl}_{2}$	Mephos	$t \mathrm{BuONa}$	34
20	$\mathrm{Pd}(\mathrm{MeCN})_{2} \mathrm{Cl}_{2}$	Mephos	toluene	53^{c}
21	$\mathrm{Pd}(\mathrm{MeCN})_{2} \mathrm{Cl}_{2}$	Mephos	1,4-dioxane	51^{d}

${ }^{a}$ Reaction conditions, step I: NAc-sulfoximine 4a (0.26 mmol), terminal alkyne 5a $(0.26 \mathrm{mmol})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(5 \mathrm{~mol} \%), \mathrm{CuI}(5 \mathrm{~mol} \%)$, base (2.4 equiv) in 2.0 mL of $\mathrm{CH}_{3} \mathrm{CN}$ at $50{ }^{\circ} \mathrm{C}$ for 2-4 h , then step II: ortho-alkynyl aryl iodide 2a (0.20 mmol), [Pd] cat. ($7.5 \mathrm{~mol} \%$), ligand ($15 \mathrm{~mol} \%$), and $\mathrm{MeOH}(0.20 \mathrm{~mL}), 50^{\circ} \mathrm{C}, 2-4 \mathrm{~h} .{ }^{b} \mathrm{Pd}(\mathrm{MeCN})_{2} \mathrm{Cl}_{2}$ was used instead of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2} .{ }^{c}$ toluene instead of $\mathrm{CH}_{3} \mathrm{CN}$. ${ }^{d} 1$,4-dioxane instead of $\mathrm{CH}_{3} \mathrm{CN}$. MePhos $=2$-(dicyclohexylphosphino)-2'methylbiphenyl.

In a first stage, various different phosphine ligands were evaluated in the threecomponent reaction in the absence of extra [Pd] additive in $\mathrm{CH}_{3} \mathrm{CN}$. Phosphine ligands PAr_{3} only resulted in low yield of product 3a (Table S1, entries 1-4). Pleasingly, when Buchwald-type ligand was added, the reaction was drastically accelerated within only 2-2.5 h, and 3a was formed in 60% yield when MePhos was utilized (entries 5-6). Variation of extra [Pd] catalyst (entries 8-13) showed that $\mathrm{Pd}(\mathrm{MeCN})_{2} \mathrm{Cl}_{2}$ gave the best yield of the desired product (entry 12). The use of a Pd^{0} catalyst did not offer any improvement (entry 11). Nevertheless, $\mathrm{Pd}(\mathrm{MeCN})_{2} \mathrm{Cl}_{2}$ and
$\mathrm{Pd}(\mathrm{PhCN})_{2} \mathrm{Cl}_{2}$ exhibited satisfied catalytic efficiency, affording the product 3a in 77% and 70% yields, respectively (entries 12-13). The importance of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$ in the first step was confirmed as only low yield of $\mathbf{3 a}$ was formed by replacing it with $\mathrm{Pd}(\mathrm{MeCN})_{2} \mathrm{Cl}_{2}$ as the sole catalyst (entry 14). The reaction did not proceed when organic base was used (entries 15-16), and the other bases, such as $\mathrm{K}_{2} \mathrm{CO}_{3}$, MeONa , and $t \mathrm{BuONa}$, were inferior than $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (entries 17-19). The solvent screening indicated that $\mathrm{CH}_{3} \mathrm{CN}$ was an optimal medium for this reaction (entries 20-21).

Scheme S1. Proposed mechanism.

Oxidative addition of Pd^{0} to 2-alkynyliodobenzene 2a firstly occurred to generate a $\mathrm{Pd}^{\mathrm{II}}$ intermediate \mathbf{A}, which underwent intermolecular coordination and syn-insertion into a triple bond of 1c to give $\mathrm{Pd}^{\mathrm{II}}$-complex B. Subsequently, the second intramolecular coordination and syn-insertion of $\mathrm{Pd}^{\mathrm{II}}$ species in \mathbf{B} with the adjacent triple bond would be expected to give a new $\mathrm{Pd}^{\mathrm{II}}$-complex \mathbf{C}. The N atom could coordinate with electrophilic Pd-center in \mathbf{C} species. And an intramolecular σ metathesis of ArPd-I with N-Ac could be facilitated through this coordination to generate the octa-palladacycle \mathbf{D} and Ac-I. The reaction of Ac-I with MeOH under the assistance of base would deliver the byproduct AcOMe. And the reductive elimination reaction of \mathbf{D} could be realized to give the desired product 3a, and meanwhile regenerate the active Pd^{0} species to complete the catalytic cycle. It should be noted that several competitive reactions were observed in this protocol: (1) Pd-catalyzed cyclizations of $\mathbf{1 c}$ would give the undesired compound 1,2-benzothiazine; and (2), direct annulation of \mathbf{B} would give the un-cyclized 1,2-benzoisothiazole derivative \mathbf{E}.

2. Three-component synthesis of medium-sized sulfoximines.

To a screw capped schlenk tube equipped with a stir bar was charged with orthobromophenylsulfoximine 4 (0.26 mmol), $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(7.0 \mathrm{mg}, 5 \mathrm{~mol} \%)$, $\mathrm{CuI}(2.9 \mathrm{mg}$, $5 \mathrm{~mol} \%), \mathrm{Cs}_{2} \mathrm{CO}_{3}(156 \mathrm{mg})$ in anhydrous $\mathrm{CH}_{3} \mathrm{CN}(2.0 \mathrm{~mL})$ was added terminal alkyne $5(0.26 \mathrm{mmol})$ dropwise slowly at $50^{\circ} \mathrm{C}$. The reaction was stirred at $50^{\circ} \mathrm{C}$ for an additional 4 h . The reaction was allowed to cool to room temperature, and then 2ethynyl iodobenzene $2(0.20 \mathrm{mmol}), \mathrm{Pd}(\mathrm{MeCN})_{2} \mathrm{Cl}_{2}$ ($10 \mathrm{~mol} \%$), Mephos ($15 \mathrm{~mol} \%$), $\mathrm{CH}_{3} \mathrm{OH}(0.20 \mathrm{~mL})$ were added subsequently. The resulting yellow solution was stirred at $50{ }^{\circ} \mathrm{C}$ for an additional 2-3 h under N_{2}. Upon completion of the reaction as indicated by TLC, the reaction was cooled to room temperature, diluted with ethyl acetate (5.0 mL), then filtered through a short pad of silica. The solid residue was washed with ethyl acetate ($\sim 15 \mathrm{~mL}$) unless otherwise noted. The concentrated crude residue was purified by column chromatography on silica gel (ethyl acetate/petroleum ether/dichloromethane $=1: 20: 2, v / v / v$.) to afford the product 3 .

5-Methyl-7-phenyl-12-(p-tolyl)-5 λ^{4}-benzo $[f]$ indeno $[1,2-d][1,2]$ thiazepine 5 -oxide 3a. Yield $77 \%, 68.6 \mathrm{mg}$; red solid; $\mathrm{mp}: 241-243{ }^{\circ} \mathrm{C}$.

Eluent: ethyl acetate/petroleum ether/ dichloromethane $=1: 20: 2$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.00(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.79-7.73(\mathrm{~m}, 2 \mathrm{H}), 7.53-7.49$
$(\mathrm{m}, 3 \mathrm{H}), 7.39-7.35(\mathrm{~m}, 1 \mathrm{H}), 7.30-7.24(\mathrm{~m}, 5 \mathrm{H}), 7.19-7.12(\mathrm{~m}, 3 \mathrm{H}), ~ 6.95-6.91(\mathrm{~m}, 1 \mathrm{H})$, $6.64(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.29(\mathrm{~s}, 3 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ $156.3,140.5,139.1,138.5,137.9,137.8,137.1,136.3,134.9,134.4,133.2,133.0$, $130.5,130.5,130.2,130.0,127.2,124.4,124.3,124.0,122.1,120.0,100.0,36.5,21.4$.

HRMS (ESI) calculated for $\mathrm{C}_{30} \mathrm{H}_{24} \mathrm{NOS}[\mathrm{M}+\mathrm{H}]^{+}: 446.1573$, found: 446.1570 .

5-Methyl-7,12-di-p-tolyl-5 λ^{4}-benzo[f]indeno[1,2- $\left.d\right][1,2]$ thiazepine 5-oxide 3b.
Yield $78 \%, 71.6 \mathrm{mg}$; red solid; mp: $245-247^{\circ} \mathrm{C}$.
Eluent: ethyl acetate/petroleum ether/ dichloromethane $=1: 20: 2$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.99(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.71-7.62(\mathrm{~m}, 2 \mathrm{H}), 7.50(\mathrm{~d}, J$ $=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.24(\mathrm{~m}, 4 \mathrm{H}), 7.19-7.12(\mathrm{~m}, 4 \mathrm{H}), 6.96-6.93(\mathrm{~m}$, $1 \mathrm{H}), 6.75(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.26(\mathrm{~s}, 3 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 156.7,140.8,138.0,137.9,137.7,137.7,137.0,136.4,135.0,134.4$, 133.3, 132.9, 130.5, 130.2, 129.6, 127.1, 124.4, 124.1, 123.9, 122.1, 119.9, 119.6, 36.6, 21.6, 21.4. HRMS (ESI) calculated for $\mathrm{C}_{31} \mathrm{H}_{26} \mathrm{NOS}[\mathrm{M}+\mathrm{H}]^{+}: 460.1730$, found: 460.1737 .

5-Methyl-7-(m-tolyl)-12-(p-tolyl)-5 λ^{4}-benzo[f]indeno[1,2- $\left.d\right][1,2]$ thiazepine 5 -oxide 3c.
Yield $66 \%, 60.6 \mathrm{mg}$; red solid; mp: $267-269^{\circ} \mathrm{C}$.
Eluent: ethyl acetate/petroleum ether/ dichloromethane $=1: 20: 2$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.00(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.63-7.50(\mathrm{~m}, 3 \mathrm{H}), 7.40-7.36$ $(\mathrm{m}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.13(\mathrm{~m}, 8 \mathrm{H}), 6.94(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.29(\mathrm{~s}, 3 \mathrm{H}), 2.49-2.30(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $156.6,140.5,138.3,137.8,137.0,136.4,135.0,134.4,133.3,132.9,131.2,130.6$, 130.5, 130.2, 129.6, 127.2, 124.4, 124.2, 124.0, 122.1, 119.9, 36.5, 34.7, 21.4. HRMS (ESI) calculated for $\mathrm{C}_{31} \mathrm{H}_{26} \mathrm{NOS}[\mathrm{M}+\mathrm{H}]^{+}: 460.1730$, found: 460.1735 .

7-(4-Methoxyphenyl)-5-methyl-12-(p-tolyl)-5 λ^{4}-benzo[f indeno $[1,2-d][1,2]$ thiazepine 5-oxide 3d.

Yield $80 \%, 76.1 \mathrm{mg}$; red solid; $\mathrm{mp}: 267-269{ }^{\circ} \mathrm{C}$.
Eluent: ethyl acetate/petroleum ether/ dichloromethane $=1: 20: 2$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.00(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.82-7.68(\mathrm{~m}, 2 \mathrm{H}), 7.51(\mathrm{~d}, J$ $=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.35(\mathrm{~m}, 1 \mathrm{H}), 7.30-7.25(\mathrm{~m}, 5 \mathrm{H}), 7.19-7.13(\mathrm{~m}, 3 \mathrm{H}), 7.07(\mathrm{~s}, 1 \mathrm{H})$, 6.98-6.94 (m, 1H), 6.84 (d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}$), 3.89 ($\mathrm{s}, 3 \mathrm{H}$), 3.25 ($\mathrm{s}, 3 \mathrm{H}$), $2.40(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR (100 MHz, CDCl_{3}) $\delta 161.9,156.4,138.0,137.6,137.5,136.9,136.4,135.0$, $134.4,133.4,132.9,132.8,130.5,130.2,129.5,127.0,124.3,124.0,123.8,122.0$, 119.8, 55.5, 36.6, 21.4. HRMS (ESI) calculated for $\mathrm{C}_{31} \mathrm{H}_{26} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 476.1679$, found: 476.1679 .

7-(4-Fluorophenyl)-5-methyl-12-(p-tolyl)-5 λ^{4}-benzo[f]indeno[1,2- $\left.d\right][1,2]$ thiazepine 5oxide 3 e.

Yield $67 \%, 62.7 \mathrm{mg}$; red solid; mp: 251-253 ${ }^{\circ} \mathrm{C}$.
Eluent: ethyl acetate/petroleum ether/ dichloromethane $=1: 20: 2$.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.82-7.73(\mathrm{~m}, 1 \mathrm{H}), 7.82-7.73(\mathrm{~m}, 2 \mathrm{H}), 7.51(\mathrm{~d}, J=7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.41-7.35(\mathrm{~m}, 1 \mathrm{H}), 7.29-7.25(\mathrm{~m}, 4 \mathrm{H}), 7.20-7.14(\mathrm{~m}, 4 \mathrm{H}), 7.03-6.95(\mathrm{~m}$, $2 \mathrm{H}), 6.70(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.28(\mathrm{~s}, 3 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.4\left(\mathrm{~d},{ }^{1} J=251 \mathrm{~Hz}\right), 155.0,139.8,139.1,138.6,138.5,137.9,137.8,137.1$, $136.6,136.2,134.8,134.4,133.1,133.0,130.4,130.2,129.6,127.2,124.4,124.2$ (d, ${ }^{2} J=27 \mathrm{~Hz}$), 121.9, 120.4, 36.6, 21.4. HRMS (ESI) calculated for $\mathrm{C}_{30} \mathrm{H}_{23} \mathrm{FNOS}$ $[\mathrm{M}+\mathrm{H}]^{+}: 464.1479$, found: 464.1484.

5-Methyl-12-(p-tolyl)-7-(4-(trifluoromethyl)phenyl)-5 λ^{4}-benzo[f]indeno[1,2d][1,2]thiazepine 5-oxide $\mathbf{3 f}$.
Yield $59 \%, 60.5 \mathrm{mg}$; red solid; $\mathrm{mp}: 260-262^{\circ} \mathrm{C}$.
Eluent: ethyl acetate/petroleum ether/ dichloromethane $=1: 20: 2$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.00(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.90-7.88(\mathrm{~m}, 2 \mathrm{H}), 7.71-7.62$ (m, 1H), $7.50(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.37$ (m, 1H), 7.30-7.15 (m, 8H), 6.98-6.94 (m, $1 \mathrm{H}), 6.61(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.32(\mathrm{~s}, 3 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.9,144.1,139.5,138.2,137.7,137.4,135.9,134.7,134.4,133.1,132.9,132.2$, $131.9,130.3,130.1,129.7,127.4,125.5,124.8,124.4\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=271 \mathrm{~Hz}\right), 122.8$, 121.9, 120.5, 120.3, 36.6, 21.4. HRMS (ESI) calculated for $\mathrm{C}_{31} \mathrm{H}_{23} \mathrm{~F}_{3} \mathrm{NOS}[\mathrm{M}+\mathrm{H}]^{+}$: 514.1447, found: 514.1443. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-62.43 (s).

7-(4-Chlorophenyl)-5-methyl-12-(p-tolyl)-5 λ^{4}-benzo[f]indeno[1,2- $\left.d\right][1,2]$ thiazepine 5 -oxide $\mathbf{3 g}$.

Yield $66 \%, 63.4 \mathrm{mg}$; red solid; mp: $255-257^{\circ} \mathrm{C}$.
Eluent: ethyl acetate/petroleum ether/ dichloromethane $=1: 20: 2$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.00(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.75-7.71(\mathrm{~m}, 2 \mathrm{H}), 7.50(\mathrm{~d}, J$ $=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.36(\mathrm{~m}, 1 \mathrm{H}), 7.28-7.14(\mathrm{~m}, 9 \mathrm{H}), 6.99-6.96(\mathrm{~m}, 1 \mathrm{H}), 6.73(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}$), $3.28(\mathrm{~s}, 3 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 154.6, 139.1, 138.9, 138.8, 138.6, 138.0, 137.7, 137.2, 136.6, 136.1, 134.8, 134.4, 133.0, 130.4, 130.2, 129.6, 127.3, 124.5, 124.4, 124.2, 121.9, 120.1, 36.6, 21.4. HRMS (ESI) calculated for $\mathrm{C}_{30} \mathrm{H}_{23} \mathrm{CINOS}[\mathrm{M}+\mathrm{H}]^{+}: 480.1183$, found: 480.1180 .

4-(5-Methyl-5-oxido-12-(p-tolyl)-5 λ^{4}-benzo[$\left.f\right]$ indeno[1,2- $\left.d\right][1,2]$ thiazepin-7-
yl)benzonitrile $\mathbf{3 h}$.
Yield $48 \%, 45.1 \mathrm{mg}$; red solid; $\mathrm{mp}: 220-222^{\circ} \mathrm{C}$.
Eluent: ethyl acetate/petroleum ether/ dichloromethane $=1: 20: 2$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.00(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.89-7.85(\mathrm{~m}, 2 \mathrm{H}), 7.50(\mathrm{~d}, J$ $=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.37(\mathrm{~m}, 1 \mathrm{H}), 7.32-7.16(\mathrm{~m}, 9 \mathrm{H}), 6.98-6.94(\mathrm{~m}, 1 \mathrm{H}), 6.59(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.32(\mathrm{~s}, 3 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 153.0,145.0$, $139.9,138.4,137.6,137.5,135.7,134.5,134.4,133.2,132.8,131.1,130.2,130.1$, $129.7,129.3,127.5,125.0,124.5,121.8,120.4,118.6,113.7,36.6,21.4$. HRMS (ESI) calculated for $\mathrm{C}_{31} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{OS}[\mathrm{M}+\mathrm{H}]^{+}: 471.1526$, found: 471.1525 .

5-Methyl-7-(4-nitrophenyl)-12-(p-tolyl)-5 λ^{4}-benzo[f]indeno[1,2- $\left.d\right][1,2]$ thiazepine 5 oxide $3 \mathbf{i}$.

Yield $55 \%, 53.9 \mathrm{mg}$; brownness solid; mp: $218-220^{\circ} \mathrm{C}$.
Eluent: ethyl acetate/petroleum ether/ dichloromethane $=1: 20: 2$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.39-8.21(\mathrm{~m}, 2 \mathrm{H}), 8.02-7.96(\mathrm{~m}, 3 \mathrm{H}), 7.50(\mathrm{~d}, J=7.7$ $\mathrm{Hz}, 1 \mathrm{H}), 7.43-7.39(\mathrm{~m}, 1 \mathrm{H}), 7.30-7.25(\mathrm{~m}, 4 \mathrm{H}), 7.21-7.16(\mathrm{~m}, 3 \mathrm{H}), 6.97-6.94(\mathrm{~m}, 1 \mathrm{H})$, $6.60(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.34(\mathrm{~s}, 3 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $152.4,148.9,146.8,140.2,138.4,137.6,135.7,134.5,134.4,133.2,132.7,130.3$, $130.2,130.1,129.7,127.5,125.1,124.6,124.5,121.8,121.2,120.5,36.7,21.4$. HRMS (ESI) calculated for $\mathrm{C}_{30} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 491.1424$, found: 491.1420.

7-(4,5-Dihydrothiophen-3-yl)-5-methyl-12-(p-tolyl)-5 ${ }^{4}$-benzo[f]indeno[1,2d][1,2]thiazepine 5 -oxide $\mathbf{3} \mathbf{j}$.

Yield $32 \%, 28.8 \mathrm{mg}$; red solid; mp: 288-290 ${ }^{\circ} \mathrm{C}$.
Eluent: ethyl acetate/petroleum ether/ dichloromethane $=1: 20: 2$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.99(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{~s}, 1 \mathrm{H}), 7.51(\mathrm{~d}, J=7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.43(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.34$ (m, 2H), 7.29-7.25 (m, 4H), 7.19-7.15 (m, $3 \mathrm{H}), 7.03(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.26(\mathrm{~s}, 3 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.2,138.0,137.7,137.0,136.0,134.9,134.4,133.2,132.9,130.2,130.0,129.6$, 127.1, 125.4, 124.3, 124.0, 121.9, 120.0, 36.6, 21.4. HRMS (ESI) calculated for $\mathrm{C}_{28} \mathrm{H}_{22} \mathrm{NOS}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 452.1137$, found: 452.1142 .

7-Hexyl-5-methyl-12-(p-tolyl)-5 ${ }^{4}$-benzo[f]indeno[1,2- $\left.d\right][1,2]$ thiazepine 5 -oxide $\mathbf{3 k}$. Yield $64 \%, 58.4 \mathrm{mg}$; red solid; mp: 219-221 ${ }^{\circ} \mathrm{C}$.

Eluent: ethyl acetate/petroleum ether/ dichloromethane $=1: 20: 2$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.96(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.57$ (d, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.28(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.21-7.16(\mathrm{~m}, 6 \mathrm{H})$, 3.27-3.20 (m, 1H), $3.17(\mathrm{~s}, 3 \mathrm{H}), 2.95-2.88(\mathrm{~m}, 1 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 1.95-1.89(\mathrm{~m}, 2 \mathrm{H})$, $1.57-1.50(\mathrm{~m}, 2 \mathrm{H}), 1.40-1.37(\mathrm{~m}, 4 \mathrm{H}), 0.91(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 160.9,138.2,138.1,137.6,136.9,135.1,134.9,134.8,133.5,132.7,130.4$, $129.6,128.8,127.1,124.8,124.2,124.1,121.9,120.5,119.3,39.4,36.0,31.8,29.6$, 28.1, 22.7, 21.4, 14.1. HRMS (ESI) calculated for $\mathrm{C}_{30} \mathrm{H}_{32} \mathrm{NOS}[\mathrm{M}+\mathrm{H}]^{+}: 454.2199$, found: 454.2199 .

7-Cyclopropyl-5-methyl-12-(p-tolyl)-5 λ^{4}-benzo[f]indeno[1,2- $\left.d\right][1,2]$ thiazepine 5 oxide 31 .

Yield $80 \%, 65.4 \mathrm{mg}$; yellow solid; mp: 228-230 ${ }^{\circ} \mathrm{C}$.
Eluent: ethyl acetate/petroleum ether/ dichloromethane $=1: 20: 2$.
1H NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 8.21(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.94(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H})$, $7.59(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.26(\mathrm{~m}, 1 \mathrm{H}), 7.24-7.18(\mathrm{~m}, 6 \mathrm{H})$, $3.07(\mathrm{~s}, 3 \mathrm{H}), 2.75-2.73(\mathrm{~m}, 1 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 1.76-1.75(\mathrm{~m}, 1 \mathrm{H}), 1.34-1.29(\mathrm{~m}, 1 \mathrm{H})$, 0.95-0.92 (m, 2H). ${ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 162.4,137.9,137.6,136.7,136.1$, $135.3,135.0,134.6,133.7,132.8,130.4,129.5,129.4,126.9,124.3,123.8,122.1$, $120.4,119.3,35.8,21.4,19.7,11.4,7.4$. HRMS (ESI) calculated for $\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{NOS}$ $[\mathrm{M}+\mathrm{H}]^{+}: 410.1573$, found: 410.1579 .

5,9,10-Trimethyl-7,12-diphenyl-5 ${ }^{4}$-benzo $[f]$ indeno $[1,2-d][1,2]$ thiazepine 5 -oxide $\mathbf{3 m}$. Yield $82 \%, 74.3 \mathrm{mg}$; red solid; $\mathrm{mp}: 308-310{ }^{\circ} \mathrm{C}$.

Eluent: ethyl acetate/petroleum ether/ dichloromethane $=1: 20: 2$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.99(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{~s}, 2 \mathrm{H}), 7.54-7.52(\mathrm{~m}$, 2H), 7.38-7.25 (m, 6H), 7.24-7.23 (m, 4H), $6.38(\mathrm{~s}, 1 \mathrm{H}), 3.28(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 3 \mathrm{H})$, $2.24(\mathrm{~s}, 3 \mathrm{H}), 2.05-2.04(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 155.3,140.7,138.6$, $137.7,136.6,136.4,134.9,134.8,134.7,134.4,133.3,132.8,130.3,130.3,130.1$, $128.8,127.3,127.1,124.4,123.1,120.4,120.0,36.4,29.7,20.5,20.1$. HRMS (ESI) calculated for $\mathrm{C}_{31} \mathrm{H}_{26} \mathrm{NOS}[\mathrm{M}+\mathrm{H}]^{+}: 460.1730$, found: 460.1739 .

5-Methyl-7,12-diphenyl-5 λ^{4}-benzo[f]indeno[1,2- $\left.d\right][1,2]$ thiazepine 5-oxide 3n.
Yield $77 \%, 66.5 \mathrm{mg}$; red solid; mp: $230-232{ }^{\circ} \mathrm{C}$.
Eluent: ethyl acetate/petroleum ether/ dichloromethane $=1: 20: 2$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.00(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.78-7.73(\mathrm{~m}, 2 \mathrm{H}), 7.54-7.49$ $(\mathrm{m}, 3 \mathrm{H}), 7.37-7.34(\mathrm{~m}, 7 \mathrm{H}), 7.27-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.16-7.13(\mathrm{~m}, 1 \mathrm{H}), 6.95-6.91(\mathrm{~m}, 1 \mathrm{H})$, $6.65(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.29(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.7,140.5$, $138.4,138.3,137.8,137.8,136.4,136.3,134.7,134.5,133.0,130.8,130.7,130.5$, 130.4, 128.9, 127.3, 124.4, 124.3, 124.1, 122.1, 119.9, 36.5. HRMS (ESI) calculated for $\mathrm{C}_{29} \mathrm{H}_{22} \mathrm{NOS}[\mathrm{M}+\mathrm{H}]^{+}: 432.1417$, found: 432.1420 .

12-(4-Methoxyphenyl)-5-methyl-7-phenyl-5 λ^{4}-benzo[f]indeno[1,2- $\left.d\right][1,2]$ thiazepine 5-oxide 30.

Yield $76 \%, 70.2 \mathrm{mg}$; red solid; $\mathrm{mp}: 215-217^{\circ} \mathrm{C}$.
Eluent: ethyl acetate/petroleum ether/ dichloromethane $=1: 20: 2$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.99(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.79-7.70(\mathrm{~m}, 2 \mathrm{H}), 7.53-7.49$ $(\mathrm{m}, 3 \mathrm{H}), 7.38-7.23(\mathrm{~m}, 6 \mathrm{H}), 7.16-7.13(\mathrm{~m}, 1 \mathrm{H}), 6.95-6.91(\mathrm{~m}, 3 \mathrm{H}), 6.64(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, $1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.28(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.0,156.1,140.6$, $138.1,138.0,137.8,136.3,135.0,134.4,133.0,131.5,130.4,130.2,128.5,127.1$, 124.4, 124.3, 124.1, 122.1, 119.9, 114.4, 55.3, 36.5. HRMS (ESI) calculated for $\mathrm{C}_{30} \mathrm{H}_{24} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 462.1522$, found: 462.1528 .

12-(3-Methoxyphenyl)-5-methyl-7-phenyl-5 λ^{4}-benzo[f]indeno[1,2- $\left.d\right][1,2]$ thiazepine 5-oxide 3p.

Yield $48 \%, 44.3 \mathrm{mg}$; red solid; mp: $178-180^{\circ} \mathrm{C}$.
Eluent: ethyl acetate/petroleum ether/ dichloromethane $=1: 20: 2$.
1H NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.00(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.82-7.67(\mathrm{~m}, 2 \mathrm{H}), 7.54-7.52$ $(\mathrm{m}, 3 \mathrm{H}), 7.40-7.37(\mathrm{~m}, 1 \mathrm{H}), 7.31-7.23(\mathrm{~m}, 4 \mathrm{H}), 7.17-7.13(\mathrm{~m}, 1 \mathrm{H}), 6.99-6.83(\mathrm{~m}, 4 \mathrm{H})$, $6.65(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.28(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $159.9,156.8,140.5,138.0,137.8,137.7,136.3,136.2,134.7,134.4,133.1,133.0$, $130.9,130.5,129.9,127.4,124.4,124.3,124.0,122.9,122.8,122.1,119.9,116.0$, 112.6, 55.3, 36.4. HRMS (ESI) calculated for $\mathrm{C}_{30} \mathrm{H}_{24} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 462.1522$, found: 462.1521 .

12-(4-Fluorophenyl)-5-methyl-7-phenyl-5 λ^{4}-benzo $[f]$ indeno $[1,2-d][1,2]$ thiazepine 5oxide $\mathbf{3 q}$.

Yield 58%, 52.1 mg ; red solid; mp: $240-242{ }^{\circ} \mathrm{C}$.
Eluent: ethyl acetate/petroleum ether/ dichloromethane $=1: 20: 2$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.01(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.79-7.72(\mathrm{~m}, 2 \mathrm{H}), 7.55-7.51$ $(\mathrm{m}, 2 \mathrm{H}), 7.47-7.45(\mathrm{~m}, 1 \mathrm{H}), 7.42-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.28(\mathrm{~m}, 3 \mathrm{H}), 7.25-7.23(\mathrm{~m}, 1 \mathrm{H})$, 7.18-7.14 (m, 1H), 7.11-7.07 (m, 2H), 6.96-6.92 (m, 1H), 6.66 (d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H})$, $3.28(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.1\left(\mathrm{~d},{ }^{1} J=246 \mathrm{~Hz}\right.$), 156.9, 140.4, $137.9,137.6,137.0,136.2,134.5,134.3,133.0,132.3,132.0,131.9,130.9,130.6$, $127.4,124.5,124.4,124.2\left(\mathrm{~d},{ }^{2} J=21 \mathrm{~Hz}\right), 122.1,119.6,116.1,115.8\left(\mathrm{~d},{ }^{2} J=21 \mathrm{~Hz}\right)$, 36.5. HRMS (ESI) calculated for $\mathrm{C}_{29} \mathrm{H}_{21} \mathrm{FNOS}[\mathrm{M}+\mathrm{H}]^{+}$: 450.1322, found: 450.1324. ${ }^{19} \mathbf{F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-114.4.

12-(4-Chlorophenyl)-5-methyl-7-phenyl-5 λ^{4}-benzo[ffindeno[1,2-d][1,2]thiazepine 5oxide 3 r.

Yield $66 \%, 61.4 \mathrm{mg}$; red solid; mp: $216-218{ }^{\circ} \mathrm{C}$.
Eluent: ethyl acetate/petroleum ether/ dichloromethane $=1: 20: 2$.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.01(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.73-7.59(\mathrm{~m}, 2 \mathrm{H}), 7.54-7.51$ $(\mathrm{m}, 2 \mathrm{H}), 7.47-7.35(\mathrm{~m}, 5 \mathrm{H}), 7.32-7.29(\mathrm{~m}, 3 \mathrm{H}), 7.24(\mathrm{~s}, 1 \mathrm{H}), 7.17-7.14(\mathrm{~m}, 1 \mathrm{H}), 6.96-$ $6.93(\mathrm{~m}, 1 \mathrm{H}), 6.66(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.27(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $157.1,140.3,137.3,136.6,136.5,136.2,134.9,134.8,134.5,134.4,133.2,133.1$, 131.7, 131.6, 131.0, 130.7, 129.1, 127.5, 124.4, 124.2, 122.2, 119.5, 36.4. HRMS (ESI) calculated for $\mathrm{C}_{29} \mathrm{H}_{21} \mathrm{ClNOS}[\mathrm{M}+\mathrm{H}]^{+}: 466.1027$, found: 466.1023.

12-Hexyl-5-methyl-7-phenyl-5 λ^{4}-benzo[$\left.f\right]$ indeno[1,2- $\left.d\right][1,2]$ thiazepine 5-oxide 3s.
Yield $78 \%, 68 \mathrm{mg}$; red solid; mp: $224-226^{\circ} \mathrm{C}$.
Eluent: ethyl acetate/petroleum ether/ dichloromethane $=1: 20: 2$.
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.05(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.72-7.66(\mathrm{~m}, 4 \mathrm{H}), 7.53-7.46$ $(\mathrm{m}, 4 \mathrm{H}), 7.30(\mathrm{~s}, 1 \mathrm{H}), 7.20-7.16(\mathrm{~m}, 1 \mathrm{H}), 6.92-6.88(\mathrm{~m}, 1 \mathrm{H}), 6.58(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $3.06-3.04(\mathrm{~m}, 3 \mathrm{H}), 3.03-2.98(\mathrm{~m}, 1 \mathrm{H}), 2.94-2.87(\mathrm{~m}, 1 \mathrm{H}), 1.90-1.82(\mathrm{~m}, 1 \mathrm{H}), 1.74-$ $1.67(\mathrm{~m}, 1 \mathrm{H}), 1.48-1.42(\mathrm{~m}, 2 \mathrm{H}), 1.34-1.30(\mathrm{~m}, 4 \mathrm{H}), 0.89(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.3,140.6,138.7,138.6,138.2,136.2,135.0,133.5$, $132.4,131.1,130.2,128.9,127.9,127.4,124.7,124.1,123.9,121.8,120.2,119.0$, 36.9, 31.6, 30.5, 29.9, 26.9, 22.7, 14.2. HRMS (ESI) calculated for $\mathrm{C}_{29} \mathrm{H}_{30} \mathrm{NOS}$ $[\mathrm{M}+\mathrm{H}]^{+}: 440.2043$, found: 440.2047.

12-Cyclopropyl-5-methyl-7-phenyl-5 λ^{4}-benzo[$\left.f\right]$ indeno $[1,2-d][1,2]$ thiazepine 5 -oxide 3t.

Yield $61 \%, 48.2 \mathrm{mg}$; red solid; mp: 230-232 ${ }^{\circ} \mathrm{C}$.
Eluent: ethyl acetate/petroleum ether/ dichloromethane $=1: 20: 2$.
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.08-8.02(\mathrm{~m}, 2 \mathrm{H}), 7.78-7.64(\mathrm{~m}, 4 \mathrm{H}), 7.55-7.48(\mathrm{~m}$, $3 \mathrm{H}), 7.32(\mathrm{~s}, 1 \mathrm{H}), 7.23-7.19(\mathrm{~m}, 1 \mathrm{H}), 6.92(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $3.03(\mathrm{~s}, 3 \mathrm{H}), 2.19-2.17(\mathrm{~m}, 1 \mathrm{H}), 1.23-1.16(\mathrm{~m}, 2 \mathrm{H}), 0.84-0.82(\mathrm{~m}, 1 \mathrm{H}), 0.55-0.52(\mathrm{~m}$, $1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.7,140.6,139.3,139.1,137.2,135.8,135.7$, $134.4,134.3,133.8,132.8,132.7,132.4,130.2,127.5,124.2,124.1,123.9,121.8$, 119.4, 36.6, 9.5, 9.0, 7.8. HRMS (ESI) calculated for $\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{NOS}[\mathrm{M}+\mathrm{H}]^{+}: 396.1417$, found: 396.1419.

7-(4-Fluorophenyl)-12-(4-methoxyphenyl)-5-methyl-5 ${ }^{4}$-benzo[f]indeno[1,2d] [1,2]thiazepine 5-oxide 3u.

Yield $49 \%, 47.0 \mathrm{mg}$; red solid; mp: 287-289 ${ }^{\circ} \mathrm{C}$.
Eluent: ethyl acetate/petroleum ether/ dichloromethane $=1: 20: 2$.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.00(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.83-7.71(\mathrm{~m}, 2 \mathrm{H}), 7.51(\mathrm{~d}, J$ $=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.36(\mathrm{~m}, 1 \mathrm{H}), 7.29-7.15(\mathrm{~m}, 6 \mathrm{H}), 7.03-6.92(\mathrm{~m}, 4 \mathrm{H}), 6.70(\mathrm{~d}, J=$ $8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.28(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.3\left(\mathrm{~d},{ }^{1} J=\right.$ 249 Hz), 159.0, 154.8, 138.2, 138.0, 137.9, 137.8, 136.6, 136.5, 136.2, 134.9, 134.3, $133.0,131.4,131.3,130.1,128.4,127.2,124.4,124.3$, $121.0\left(\mathrm{~d},{ }^{2} J=19 \mathrm{~Hz}\right), 114.4$, 55.3, 36.6. HRMS (ESI) calculated for $\mathrm{C}_{30} \mathrm{H}_{23} \mathrm{FNO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 480.1428$, found: 480.1425. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-110.0.
3. Two-component synthesis of medium-sized sulfoximine heterocycles.

To a screw capped schlenk tube equipped with a stir bar was charged with orthoalkynylphenylsulfoximine $\mathbf{1}(0.30 \mathrm{mmol})$ and 2-ethynyl iodobenzene $2(0.36 \mathrm{mmol})$, $\mathrm{Pd}(\mathrm{MeCN})_{2} \mathrm{Cl}_{2}(7.5 \mathrm{~mol} \%)$, Mephos ($15 \mathrm{~mol} \%$), $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (1.2 equiv), $\mathrm{CH}_{3} \mathrm{OH}(0.2 \mathrm{~mL}$) and dry $\mathrm{MeCN}(2.0 \mathrm{~mL})$. The reaction was purged with N_{2} and stirred at $50^{\circ} \mathrm{C}$ for 4 hours. The reaction was monitored by TLC. Upon completion, the reaction was allowed to cool to room temperature, diluted with ethyl acetate (5.0 mL), then filtered through a short pad of silica. The solid residue was washed with ethyl acetate (~ 15 mL) unless otherwise noted. Concentration of the filtrate under reduced pressure provided the crude product, which was purified by silica gel column chromatography (ethyl acetate/petroleum ether/ dichloromethane $=1: 20: 2, v / v / v$. .) to afford the desired compound 3.

5-Methyl-7-phenyl-12-(p-tolyl)-5 λ^{4}-benzo[f indeno[1,2- $\left.d\right][1,2]$ thiazepine 5-oxide 3a. Yield $89 \%, 118.8 \mathrm{mg}$; red solid; mp: 241-243 ${ }^{\circ} \mathrm{C}$.

Eluent: ethyl acetate/petroleum ether/ dichloromethane $=1: 20: 2$.

7-(4-Methoxyphenyl)-5-methyl-12-(p-tolyl)-5 λ^{4}-benzo[f indeno[1,2- $\left.d\right][1,2]$ thiazepine 5-oxide 3d.

Yield $90 \%, 126.8 \mathrm{mg}$; red solid; mp: 267-269 ${ }^{\circ} \mathrm{C}$.
Eluent: ethyl acetate/petroleum ether/ dichloromethane $=1: 20: 2$.

5-Methyl-12-(p-tolyl)-7-(4-(trifluoromethyl)phenyl)-5 λ^{4}-benzo[f]indeno[1,2-
$d][1,2]$ thiazepine 5 -oxide $\mathbf{3 f}$.
Yield $70 \%, 107.7 \mathrm{mg}$; red solid; mp: $260-262^{\circ} \mathrm{C}$.
Eluent: ethyl acetate/petroleum ether/ dichloromethane $=1: 20: 2$.

5-Methyl-7-(4-nitrophenyl)-12-(p-tolyl)-5 λ^{4}-benzo[f]indeno[1,2- $\left.d\right][1,2]$ thiazepine $5-$ oxide $3 \mathbf{i}$.

Yield 64%, 94 mg ; brownness solid; mp: 218-220 ${ }^{\circ} \mathrm{C}$.
Eluent: ethyl acetate/petroleum ether/ dichloromethane $=1: 20: 2$.

7-Cyclopropyl-5-methyl-12-(p-tolyl)-5 ${ }^{4}$-benzo $[f]$ indeno $[1,2-d][1,2]$ thiazepine $5-$ oxide 31.

Yield $92 \%, 112.8 \mathrm{mg}$; yellow solid; $\mathrm{mp}: 228-230^{\circ} \mathrm{C}$.
Eluent: ethyl acetate/petroleum ether/ dichloromethane $=1: 20: 2$.

5-Methyl-7,12-diphenyl-5 λ^{4}-benzo[f]indeno[1,2- $\left.d\right][1,2]$ thiazepine 5 -oxide $\mathbf{3 n}$.
Yield $95 \%, 122.8 \mathrm{mg}$; red solid; mp: 230-232 ${ }^{\circ} \mathrm{C}$.
Eluent: ethyl acetate/petroleum ether/ dichloromethane $=1: 20: 2$.

12-Hexyl-5-methyl-7-phenyl-5 λ^{4}-benzo $[f]$ indeno $[1,2-d][1,2]$ thiazepine 5 -oxide 3s.
Yield $93 \%, 122.4 \mathrm{mg}$; red solid; mp: $224-226^{\circ} \mathrm{C}$.
Eluent: ethyl acetate/petroleum ether/ dichloromethane $=1: 20: 2$.

12-(4-Chlorophenyl)-5-methyl-7-(p-tolyl)-5 λ^{4}-benzo[f]indeno[1,2- $\left.d\right][1,2]$ thiazepine 5-oxide 3v.
Yield $50 \%, 71.8 \mathrm{mg}$; red solid; mp: $280-282{ }^{\circ} \mathrm{C}$.
Eluent: ethyl acetate/petroleum ether/ dichloromethane $=1: 20: 2$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.00(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.73-7.59(\mathrm{~m}, 2 \mathrm{H}), 7.46(\mathrm{~d}, J$ $=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.22(\mathrm{~m}, 8 \mathrm{H}), 7.15(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.98-6.94(\mathrm{~m}, 1 \mathrm{H}), 6.77(\mathrm{~d}$, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.25(\mathrm{~s}, 3 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 157.6$, $141.1,137.9,137.8,137.4,137.2,136.3,136.1,135.0,134.5,134.4,133.1,133.0$, $131.7,131.6,131.1,129.1,127.5,124.5,124.2,124.0,122.2,119.5,36.5,21.7$.
HRMS (ESI) calculated for $\mathrm{C}_{30} \mathrm{H}_{23} \mathrm{ClNOS}[\mathrm{M}+\mathrm{H}]^{+}: 480.1183$, found: 480.1190 .

7-(4-Chlorophenyl)-12-(4-fluorophenyl)-5-methyl-5 ${ }^{4}$-benzo[f]indeno[1,2d] [1,2]thiazepine 5 -oxide $\mathbf{3 w}$.

Yield $60 \%, 86.9 \mathrm{mg}$; red solid; $\mathrm{mp}: 285-287^{\circ} \mathrm{C}$.
Eluent: ethyl acetate/petroleum ether/ dichloromethane $=1: 20: 2$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.00(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.78-7.67(\mathrm{~m}, 2 \mathrm{H}), 7.53-7.39$ $(\mathrm{m}, 4 \mathrm{H}), 7.32 .7 .28(\mathrm{~m}, 3 \mathrm{H}), 7.22-7.16(\mathrm{~m}, 2 \mathrm{H}), 7.11-7.07(\mathrm{~m}, 2 \mathrm{H}), 7.01-6.97(\mathrm{~m}, 1 \mathrm{H})$, $6.75(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.27(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.2\left(\mathrm{~d},{ }^{1} J=\right.$ $245 \mathrm{~Hz}), 155.3,138.8,137.9,137.8,137.7$, 137.3, 137.2, 136.8, 135.9, 134.4, 134.3, 133.1, 132.2, 131.9, 130.7, 127.5, 127.6, 127.5, 124.4 (d, ${ }^{2} J=26 \mathrm{~Hz}$), 122.0, 119.8, $116.0\left(\mathrm{~d},{ }^{2} J=22 \mathrm{~Hz}\right)$, 36.5. HRMS (ESI) calculated for $\mathrm{C}_{29} \mathrm{H}_{20} \mathrm{ClFNOS}[\mathrm{M}+\mathrm{H}]^{+}$: 484.0933, found: 484.0929. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-114.1.

7-(4-Methoxyphenyl)-5-methyl-12-phenyl-5 λ^{4}-benzo[f]indeno[1,2- $\left.d\right][1,2]$ thiazepine 5-oxide 3x.

Yield $92 \%, 127.2 \mathrm{mg}$; red solid; mp: $255-257^{\circ} \mathrm{C}$.
Eluent: ethyl acetate/petroleum ether/ dichloromethane $=1: 20: 2$.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.99(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.77-7.74(\mathrm{~m}, 2 \mathrm{H}), 7.52-7.50$ $(\mathrm{m}, 1 \mathrm{H}), 7.37-7.22(\mathrm{~m}, 8 \mathrm{H}), 7.17-7.12(\mathrm{~m}, 1 \mathrm{H}), 7.06(\mathrm{~s}, 1 \mathrm{H}), 6.99-6.95(\mathrm{~m}, 1 \mathrm{H}), 6.86-$ $6.84(\mathrm{~m}, 2 \mathrm{H}), 3.88-3.87(\mathrm{~m}, 3 \mathrm{H}), 3.24(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.9$, $156.8,138.0,137.5,137.4,136.5,136.4,134.9,134.5,132.9,132.8,131.9,130.8$, $130.4,128.8,127.2,124.4,124.1,123.8$, $122.0,119.8,114.2,113.3,55.5,36.6$. HRMS (ESI) calculated for $\mathrm{C}_{30} \mathrm{H}_{24} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 462.1522$, found: 462.1521.

5-Butyl-7-phenyl-12-(p-tolyl)-5 λ^{4}-benzo[f]indeno[1,2- $\left.d\right][1,2]$ thiazepine 5 -oxide $\mathbf{3 y}$.
Yield $75 \%, 73.1 \mathrm{mg}$; red solid; $\mathrm{mp}: 256-258^{\circ} \mathrm{C}$.
Eluent: ethyl acetate/petroleum ether/ dichloromethane $=1: 20: 2$.
${ }^{\mathbf{1}} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.99(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.83-7.69(\mathrm{~m}, 2 \mathrm{H}), 7.55-7.69$ $(\mathrm{m}, 3 \mathrm{H}), 7.38-7.35(\mathrm{~m}, 1 \mathrm{H}), 7.29-7.18(\mathrm{~m}, 7 \mathrm{H}), 7.15-7.11(\mathrm{~m}, 1 \mathrm{H}), 6.93-6.90(\mathrm{~m}, 1 \mathrm{H})$, $6.64(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.64-3.57(\mathrm{~m}, 1 \mathrm{H}), 3.37-3.29(\mathrm{~m}, 1 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 1.87-$ $1.72(\mathrm{~m}, 2 \mathrm{H}), 1.41-1.32(\mathrm{~m}, 2 \mathrm{H}), 0.79(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 156.5,140.7,137.8,137.0,136.3,135.0,134.4,133.4,132.9,132.6,130.5$, $130.5,130.2,129.9,129.6,128.9,128.0,127.3,125.4,124.1,123.9,122.1,119.9$, $119.8,46.8,23.8,21.7,21.4,13.6$. HRMS (ESI) calculated for $\mathrm{C}_{33} \mathrm{H}_{29} \mathrm{NOS}[\mathrm{M}+\mathrm{H}]^{+}$: 488.2043, found: 488.2048 .

4. Four-component synthesis of medium-sized sulfoximine heterocycles.

To a screw capped schlenk tube equipped with a stir bar was charged with orthobromophenylsulfoximine $\mathbf{4 a}(0.30 \mathrm{mmol}), \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(7.0 \mathrm{mg}, 5 \mathrm{~mol} \%), \mathrm{CuI}(2.9$ $\mathrm{mg}, 5 \mathrm{~mol} \%), \mathrm{Cs}_{2} \mathrm{CO}_{3}\left(156.7 \mathrm{mg}, 2.4\right.$ equiv), dry $\mathrm{CH}_{3} \mathrm{CN}(2.0 \mathrm{~mL})$, and 1-ethynyl-4methylbenzene $5 \mathbf{a}(0.20 \mathrm{mmol})$ was added dropwise slowly at $50^{\circ} \mathrm{C}$, and the stirred kept for an additional 4 h . Upon completion of the reaction as indicated by TLC, the reaction was allowed to cool to room temperature, then 1,2-diiodobenzene 6 (0.3 $\mathrm{mmol}), \mathrm{Pd}(\mathrm{MeCN})_{2} \mathrm{Cl}_{2}$ ($7.5 \mathrm{~mol} \%$), Mephos ($15 \mathrm{~mol} \%$), $\mathrm{CH}_{3} \mathrm{OH}(0.20 \mathrm{~mL}$) were added subsequently, followed by the addition of ethynylbenzene 5a' (0.3 mmol) drop wise slowly at $50^{\circ} \mathrm{C}$. The reaction was stirred for 4 h under N_{2}. The reaction was monitored by TLC. Upon completion, the reaction was allowed to cool to room temperature, diluted with ethyl acetate $(5.0 \mathrm{~mL})$, then filtered through a short pad of silica. The solid residue was washed with ethyl acetate ($\sim 15 \mathrm{~mL}$) unless otherwise noted. Concentration of the filtrate under reduced pressure provided the crude product, which was purified by silica gel column chromatography (ethyl acetate/petroleum ether/ dichloromethane $=1: 20: 2, v / v / v$.) to afford the desired compound 3a, yield 31 $\mathrm{mg}, 35 \%$.
6. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of all new compounds 3 .

3a.

3b.

内

10
190
$180 \quad 17$
160 150 140 130 $120 \quad 110$ $10 \quad \begin{array}{lll}100 & 90 \\ & f 1 & (\mathrm{ppm})\end{array}$

3c．

べ

3d.

3 e.

$\underset{\sim}{0}$ in i
$1 / 11| |_{1}$

3f.

3g．

すが
$\underset{\sim}{\sim}$

3h.

 గi ¢ ¢

$3 i$.

$11 \mathrm{j}-02-021$

3j.

$\left|\int\right|||\mid$

							1			1			1							
10	190	180	170	160	150	140	130	120	110	100	${ }_{(p \mathrm{pz})}^{90}$	80	70	60	50	40	30	20	10	0

3k.

31.

3m.

\qquad

3n.

$\iint \|_{11} 1$

$\bar{\omega}$
$\stackrel{0}{0}$
$\stackrel{T}{0}$

${ }_{0}$	190	180	170	160	150	140	130	120	110	$\begin{array}{r} 100 \\ f 1 \end{array}$	$\begin{gathered} 90 \\ (\mathrm{ppm}) \end{gathered}$	80	70	60	50	40	30	20	10	0

30.

 18 81

3p.

3q.

10	190	180	170	160	150	140	130	120	110	100								
							130	120	$f 1$		90	80	10	60	50	10	30	20

3r.

$\stackrel{\text { N }}{\text { N }}$

\ddagger

3s.

$$
\begin{aligned}
& \text { 엉 }
\end{aligned}
$$

: 8 4 48%
Mウgigin

3t.

8
$\stackrel{8}{6}$
1

3u.

 $\begin{array}{ll}8 & 8 \\ 4 & 8 \\ 10 \\ 1 & 1\end{array}$

3v.

3w.

3x.

$\begin{array}{ll}9 & 4 \\ \stackrel{8}{4} & 8 \\ 1 & 1\end{array}$

3y

7. X-ray crystal structure of compound 3n.

3n
CCDC 2059008

