Electronic Supplementary Material (ESI) for Chemical Communications. This journal is © The Royal Society of Chemistry 2021

Supporting Information

Pd-Catalyzed Multicomponent Reactions Toward Medium-sized Sulfoximine Heterocycles *via* Double Carbopalladation/*syn*-Insertion Cascades

Longji Dai, Jianjun Yuan, Cui Wu, and Zhiyuan Chen*

 Key Laboratory of Functional Small Organic Molecules, Ministry of Education and Jiangxi Key Laboratory of Green Chemistry, College of Chemistry & Chemical
 Engineering, Jiangxi Normal University, 99 Ziyang Road, Nanchang, Jiangxi 330022 (P. R. China).

E-mail: zchen@jxnu.edu.cn

Contents

General remarks (S2)

Table S1. Optimization of the reaction conditions (S3-S4).
Scheme S1. Proposed mechanism (S5).
Three-component synthesis of medium-sized sulfoximines (S6-S16).
Two-component synthesis of medium-sized sulfoximine heterocycles (S17-21).
Four-component synthesis of medium-sized sulfoximine heterocycles (S22).
¹H and ¹³C NMR spectra of all new compounds 3 (S23-S51).
X-ray crystal structure of compound 3n (S52-S53).

1. General remarks.

Unless otherwise noted, commercial reagents were purchased from commercial suppliers and were used as received. All solvents were dried and distilled according to standard procedures before use. The Flash column chromatography was performed using silica gel (60 Å pore size, 32-63 μ m, standard grade). Analytical thin-layer chromatography (TLC) was performed using glass plates pre-coated with 0.25 mm 230-400 mesh silica gel impregnated with a fluorescent indicator (254 nm). Organic solutions were concentrated on rotary evaporators at ~20 Torr (house vacuum) at 25-35 °C. Nuclear magnetic resonance (NMR) spectra were recorded in parts per million (ppm) from internal trimethylsilane (TMS) on the δ scale. High resolution mass spectrometry (HRMS) spectra analysis was performed by electrospray ionization (ESI-micrOTOF).

	l: Cul (5 mol%)			
		PdCl ₂ (PF	$^{\rm 2}h_3)_2$ (5 mol%)	le
	0	base	(2.4 equiv)	=N
	S. Me	CH ₃ CN (2	2.0 mL), 50 °C	→ Ph
	∬`NAc ⁺ [⁺		at (7.5 mol%)	
	Br	Ph ligand	(15 mol%)	
	Ме	МеОН ((Tol°	\mathbb{N}
	4a 5a	2a	3.2 me), 30° 0	a
entry	[Pd] <i>cat</i> .	ligand	base	3a [%] ^a
1	-	$P(4-MeC_6H_4)_3$	Cs_2CO_3	20
2	-	$P(4-MeOC_6H_4)_3$	Cs_2CO_3	trace
3	-	$P(4-FC_{6}H_{4})_{3}$	Cs_2CO_3	23
4	-	$P(4-ClC_6H_4)_3$	Cs_2CO_3	31
5	-	Sphos	Cs_2CO_3	39
6	-	Mephos	Cs_2CO_3	60
7	-	PCy ₃	Cs_2CO_3	41
8	$Pd(PPh_3)_2Cl_2$	Mephos	Cs_2CO_3	53
9	$Pd(OAc)_2$	Mephos	Cs_2CO_3	42
10	$Pd(OCOCF_3)_2$	Mephos	Cs_2CO_3	50
11	$Pd(dba)_2$	Mephos	Cs_2CO_3	59
12	Pd(MeCN) ₂ Cl ₂	Mephos	Cs ₂ CO ₃	77
13	$Pd(PhCN)_2Cl_2$	Mephos	Cs_2CO_3	70
14	Pd(MeCN) ₂ Cl ₂	Mephos	Cs_2CO_3	30^{b}
15	Pd(MeCN) ₂ Cl ₂	Mephos	TEA	trace
16	$Pd(MeCN)_2Cl_2$	Mephos	Ру	trace
17	$Pd(MeCN)_2Cl_2$	Mephos	K_2CO_3	20
18	Pd(MeCN) ₂ Cl ₂	Mephos	MeONa	30
19	Pd(MeCN) ₂ Cl ₂	Mephos	tBuONa	34
20	Pd(MeCN) ₂ Cl ₂	Mephos	toluene	53 ^c
21	$Pd(MeCN)_2Cl_2$	Mephos	1,4-dioxane	51 ^d

Table S1. Optimization of the reaction conditions.^a

^{*a*} Reaction conditions, step I: NAc-sulfoximine **4a** (0.26 mmol), terminal alkyne **5a** (0.26 mmol) and Pd(PPh₃)₂Cl₂ (5 mol%), CuI (5 mol%), base (2.4 equiv) in 2.0 mL of CH₃CN at 50 °C for 2-4 h, then step II: *ortho*-alkynyl aryl iodide **2a** (0.20 mmol), [Pd] *cat*. (7.5 mol%), ligand (15 mol%), and MeOH (0.20 mL), 50 °C, 2-4 h. ^{*b*} Pd(MeCN)₂Cl₂ was used instead of Pd(PPh₃)₂Cl₂. ^{*c*} toluene instead of CH₃CN. ^{*d*}1,4-dioxane instead of CH₃CN. MePhos = 2-(dicyclohexylphosphino)-2'-methylbiphenyl.

In a first stage, various different phosphine ligands were evaluated in the threecomponent reaction in the absence of extra [Pd] additive in CH₃CN. Phosphine ligands PAr₃ only resulted in low yield of product **3a** (Table S1, entries 1-4). Pleasingly, when Buchwald-type ligand was added, the reaction was drastically accelerated within only 2-2.5 h, and **3a** was formed in 60% yield when MePhos was utilized (entries 5-6). Variation of extra [Pd] catalyst (entries 8-13) showed that Pd(MeCN)₂Cl₂ gave the best yield of the desired product (entry 12). The use of a Pd⁰ catalyst did not offer any improvement (entry 11). Nevertheless, Pd(MeCN)₂Cl₂ and Pd(PhCN)₂Cl₂ exhibited satisfied catalytic efficiency, affording the product **3a** in 77% and 70% yields, respectively (entries 12-13). The importance of Pd(PPh₃)₂Cl₂ in the first step was confirmed as only low yield of **3a** was formed by replacing it with Pd(MeCN)₂Cl₂ as the sole catalyst (entry 14). The reaction did not proceed when organic base was used (entries 15-16), and the other bases, such as K₂CO₃, MeONa, and *t*BuONa, were inferior than Cs₂CO₃ (entries 17-19). The solvent screening indicated that CH₃CN was an optimal medium for this reaction (entries 20-21).

Scheme S1. Proposed mechanism.

Oxidative addition of Pd⁰ to 2-alkynyliodobenzene **2a** firstly occurred to generate a Pd^{II} intermediate **A**, which underwent intermolecular coordination and *syn*-insertion into a triple bond of **1c** to give Pd^{II}-complex **B**. Subsequently, the second intramolecular coordination and *syn*-insertion of Pd^{II} species in **B** with the adjacent triple bond would be expected to give a new Pd^{II}-complex **C**. The N atom could coordinate with electrophilic Pd-center in **C** species. And an intramolecular σ metathesis of ArPd-I with *N*-Ac could be facilitated through this coordination to generate the octa-palladacycle **D** and Ac-I. The reaction of Ac-I with MeOH under the assistance of base would deliver the byproduct AcOMe. And the reductive elimination reaction of **D** could be realized to give the desired product **3a**, and meanwhile regenerate the active Pd⁰ species to complete the catalytic cycle. It should be noted that several competitive reactions were observed in this protocol: (1) Pd-catalyzed cyclizations of **1c** would give the undesired compound 1,2-benzothiazine; and (2), direct annulation of **B** would give the un-cyclized 1,2-benzoisothiazole derivative **E**.

2. Three-component synthesis of medium-sized sulfoximines.

To a screw capped schlenk tube equipped with a stir bar was charged with *ortho*bromophenylsulfoximine **4** (0.26 mmol), PdCl₂(PPh₃)₂ (7.0 mg, 5 mol%), CuI (2.9 mg, 5 mol%), Cs₂CO₃ (156 mg) in anhydrous CH₃CN (2.0 mL) was added terminal alkyne **5** (0.26 mmol) dropwise slowly at 50°C. The reaction was stirred at 50°C for an additional 4 h. The reaction was allowed to cool to room temperature, and then 2ethynyl iodobenzene **2** (0.20 mmol), Pd(MeCN)₂Cl₂ (10 mol%), Mephos (15 mol%), CH₃OH (0.20 mL) were added subsequently. The resulting yellow solution was stirred at 50 °C for an additional 2-3 h under N₂. Upon completion of the reaction as indicated by TLC, the reaction was cooled to room temperature, diluted with ethyl acetate (5.0 mL), then filtered through a short pad of silica. The solid residue was washed with ethyl acetate (~15 mL) unless otherwise noted. The concentrated crude residue was purified by column chromatography on silica gel (ethyl acetate/petroleum ether/dichloromethane = 1: 20:2, v/v/v.) to afford the product **3**.

5-Methyl-7-phenyl-12-(*p*-tolyl)- $5\lambda^4$ -benzo[*f*]indeno[1,2-*d*][1,2]thiazepine 5-oxide **3a**. Yield 77%, 68.6 mg; red solid; mp: 241-243 °C.

Eluent: ethyl acetate/petroleum ether/ dichloromethane =1: 20:2.

¹**H NMR** (400 MHz, CDCl₃) δ 8.00 (d, J = 7.8 Hz, 1H), 7.79-7.73 (m, 2H), 7.53-7.49 (m, 3H), 7.39-7.35 (m, 1H), 7.30-7.24 (m, 5H), 7.19-7.12 (m, 3H), 6.95-6.91 (m, 1H), 6.64 (d, J = 8.1 Hz, 1H), 3.29 (s, 3H), 2.40 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 156.3, 140.5, 139.1, 138.5, 137.9, 137.8, 137.1, 136.3, 134.9, 134.4, 133.2, 133.0, 130.5, 130.5, 130.2, 130.0, 127.2, 124.4, 124.3, 124.0, 122.1, 120.0, 100.0, 36.5, 21.4.

HRMS (ESI) calculated for C₃₀H₂₄NOS [M+H]⁺: 446.1573, found: 446.1570.

5-Methyl-7,12-di-p-tolyl- $5\lambda^4$ -benzo[*f*]indeno[1,2-*d*][1,2]thiazepine 5-oxide **3b**. Yield 78%, 71.6 mg; red solid; mp: 245-247 °C.

Eluent: ethyl acetate/petroleum ether/ dichloromethane =1: 20:2.

¹**H NMR** (400 MHz, CDCl₃) δ 7.99 (d, *J* = 7.8 Hz, 1H), 7.71-7.62 (m, 2H), 7.50 (d, *J* = 7.8 Hz, 1H), 7.39-7.35 (m, 2H), 7.30-7.24 (m, 4H), 7.19-7.12 (m, 4H), 6.96-6.93 (m, 1H), 6.75 (d, *J* = 8.1 Hz, 1H), 3.26 (s, 3H), 2.45 (s, 3H), 2.40 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 156.7, 140.8, 138.0, 137.9, 137.7, 137.7, 137.0, 136.4, 135.0, 134.4, 133.3, 132.9, 130.5, 130.2, 129.6, 127.1, 124.4, 124.1, 123.9, 122.1, 119.9, 119.6, 36.6, 21.6, 21.4. **HRMS (ESI)** calculated for C₃₁H₂₆NOS [M+H]⁺: 460.1730, found: 460.1737.

5-Methyl-7-(m-tolyl)-12-(p-tolyl)-5 λ^4 -benzo[f]indeno[1,2-d][1,2]thiazepine 5-oxide **3c**.

Yield 66%, 60.6 mg; red solid; mp: 267-269 °C.

Eluent: ethyl acetate/petroleum ether/ dichloromethane =1: 20:2.

¹**H NMR** (400 MHz, CDCl₃) δ 8.00 (d, J = 7.8 Hz, 1H), 7.63-7.50 (m, 3H), 7.40-7.36 (m, 1H), 7.33 (d, J = 7.4 Hz, 1H), 7.29-7.13 (m, 8H), 6.94 (t, J = 7.5 Hz, 1H), 6.68 (d, J = 8.0 Hz, 1H), 3.29 (s, 3H), 2.49-2.30 (m, 6H). ¹³**C NMR** (100 MHz, CDCl₃) δ 156.6, 140.5, 138.3, 137.8, 137.0, 136.4, 135.0, 134.4, 133.3, 132.9, 131.2, 130.6, 130.5, 130.2, 129.6, 127.2, 124.4, 124.2, 124.0, 122.1, 119.9, 36.5, 34.7, 21.4. **HRMS** (ESI) calculated for C₃₁H₂₆NOS [M+H]⁺: 460.1730, found: 460.1735.

7-(4-Methoxyphenyl)-5-methyl-12-(*p*-tolyl)- $5\lambda^4$ -benzo[*f*]indeno[1,2-*d*][1,2]thiazepine 5-oxide **3d**.

Yield 80%, 76.1 mg; red solid; mp: 267-269 °C.

Eluent: ethyl acetate/petroleum ether/ dichloromethane =1: 20:2.

¹**H NMR** (400 MHz, CDCl₃) δ 8.00 (d, J = 7.8 Hz, 1H), 7.82-7.68 (m, 2H), 7.51 (d, J = 7.8 Hz, 1H), 7.39-7.35 (m, 1H), 7.30-7.25 (m, 5H), 7.19-7.13 (m, 3H), 7.07 (s, 1H), 6.98-6.94 (m, 1H), 6.84 (d, J = 8.1 Hz, 1H), 3.89 (s, 3H), 3.25 (s, 3H), 2.40 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 161.9, 156.4, 138.0, 137.6, 137.5, 136.9, 136.4, 135.0, 134.4, 133.4, 132.9, 132.8, 130.5, 130.2, 129.5, 127.0, 124.3, 124.0, 123.8, 122.0, 119.8, 55.5, 36.6, 21.4. **HRMS (ESI)** calculated for C₃₁H₂₆NO₂S [M+H]⁺: 476.1679, found: 476.1679.

7-(4-Fluorophenyl)-5-methyl-12-(*p*-tolyl)-5 λ^4 -benzo[*f*]indeno[1,2-*d*][1,2]thiazepine 5-oxide **3e**.

Yield 67%, 62.7 mg; red solid; mp: 251-253 °C.

Eluent: ethyl acetate/petroleum ether/ dichloromethane =1: 20:2.

¹**H NMR** (400 MHz, CDCl₃) δ 7.82-7.73 (m, 1H), 7.82-7.73 (m, 2H), 7.51 (d, *J* = 7.8 Hz, 1H), 7.41-7.35 (m, 1H), 7. 29-7.25 (m, 4H), 7.20-7.14 (m, 4H), 7.03-6.95 (m, 2H), 6.70 (d, *J* = 8.1 Hz, 1H), 3.28 (s, 3H), 2.40 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 164.4 (d, ¹*J* = 251 Hz), 155.0, 139.8, 139.1, 138.6, 138.5, 137.9, 137.8, 137.1, 136.6, 136.2, 134.8, 134.4, 133.1, 133.0, 130.4, 130.2, 129.6, 127.2, 124.4, 124.2 (d, ²*J* = 27 Hz), 121.9, 120.4, 36.6, 21.4. **HRMS (ESI)** calculated for C₃₀H₂₃FNOS [M+H]⁺: 464.1479, found: 464.1484.

5-Methyl-12-(*p*-tolyl)-7-(4-(trifluoromethyl)phenyl)-5λ⁴-benzo[*f*]indeno[1,2-

d][1,2]thiazepine 5-oxide **3f**.

Yield 59%, 60.5 mg; red solid; mp: 260-262 °C.

Eluent: ethyl acetate/petroleum ether/ dichloromethane =1: 20:2.

¹**H NMR** (400 MHz, CDCl₃) δ 8.00 (d, J = 7.8 Hz, 1H), 7.90-7.88 (m, 2H), 7.71-7.62 (m, 1H), 7.50 (d, J = 7.8 Hz, 1H), 7.39-7.37 (m, 1H), 7.30-7.15 (m, 8H), 6.98-6.94 (m, 1H), 6.61 (d, J = 8.1 Hz, 1H), 3.32 (s, 3H), 2.40 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 153.9, 144.1, 139.5, 138.2, 137.7, 137.4, 135.9, 134.7, 134.4, 133.1, 132.9, 132.2, 131.9, 130.3, 130.1, 129.7, 127.4, 125.5, 124.8, 124.4 (q, ${}^{1}J_{C-F} = 271$ Hz), 122.8, 121.9, 120.5, 120.3, 36.6, 21.4. **HRMS (ESI)** calculated for C₃₁H₂₃F₃NOS [M+H]⁺: 514.1447, found: 514.1443. ¹⁹**F NMR** (376 MHz, CDCl₃) δ -62.43 (s).

7-(4-Chlorophenyl)-5-methyl-12-(p-tolyl)-5 λ^4 -benzo[f]indeno[1,2-d][1,2]thiazepine 5-oxide **3g**.

Yield 66%, 63.4 mg; red solid; mp: 255-257 °C.

Eluent: ethyl acetate/petroleum ether/ dichloromethane =1: 20:2.

¹**H NMR** (400 MHz, CDCl₃) δ 8.00 (d, J = 7.8 Hz, 1H), 7.75-7.71 (m, 2H), 7.50 (d, J = 7.8 Hz, 1H), 7.39-7.36 (m, 1H), 7.28-7.14 (m, 9H), 6.99-6.96 (m, 1H), 6.73 (d, J = 8.0 Hz, 1H), 3.28 (s, 3H), 2.40 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 154.6, 139.1, 138.9, 138.8, 138.6, 138.0, 137.7, 137.2, 136.6, 136.1, 134.8, 134.4, 133.0, 130.4, 130.2, 129.6, 127.3, 124.5, 124.4, 124.2, 121.9, 120.1, 36.6, 21.4. **HRMS (ESI)** calculated for C₃₀H₂₃ClNOS [M+H]⁺: 480.1183, found: 480.1180.

4-(5-Methyl-5-oxido-12-(p-tolyl)-5 λ^4 -benzo[f]indeno[1,2-d][1,2]thiazepin-7-yl)benzonitrile **3h**.

Yield 48%, 45.1 mg; red solid; mp: 220-222 °C.

Eluent: ethyl acetate/petroleum ether/ dichloromethane =1: 20:2.

¹**H NMR** (400 MHz, CDCl₃) δ 8.00 (d, *J* = 7.8 Hz, 1H), 7.89-7.85 (m, 2H), 7.50 (d, *J* = 7.7 Hz, 1H), 7.42-7.37 (m, 1H), 7.32-7.16 (m, 9H), 6.98-6.94 (m, 1H), 6.59 (d, *J* = 8.0 Hz, 1H), 3.32 (s, 3H), 2.41 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 153.0, 145.0, 139.9, 138.4, 137.6, 137.5, 135.7, 134.5, 134.4, 133.2, 132.8, 131.1, 130.2, 130.1, 129.7, 129.3, 127.5, 125.0, 124.5, 121.8, 120.4, 118.6, 113.7, 36.6, 21.4. **HRMS (ESI)** calculated for C₃₁H₂₃N₂OS [M+H]⁺: 471.1526, found: 471.1525.

5-Methyl-7-(4-nitrophenyl)-12-(*p*-tolyl)- $5\lambda^4$ -benzo[*f*]indeno[1,2-*d*][1,2]thiazepine 5-oxide **3i**.

Yield 55%, 53.9 mg; brownness solid; mp: 218-220 °C.

Eluent: ethyl acetate/petroleum ether/ dichloromethane =1: 20:2.

¹**H NMR** (400 MHz, CDCl₃) δ 8.39-8.21 (m, 2H), 8.02-7.96 (m, 3H), 7.50 (d, *J* = 7.7 Hz, 1H), 7.43-7.39 (m, 1H), 7.30-7.25 (m, 4H), 7.21-7.16 (m, 3H), 6.97-6.94 (m, 1H), 6.60 (d, *J* = 8.0 Hz, 1H), 3.34 (s, 3H), 2.41 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 152.4, 148.9, 146.8, 140.2, 138.4, 137.6, 135.7, 134.5, 134.4, 133.2, 132.7, 130.3, 130.2, 130.1, 129.7, 127.5, 125.1, 124.6, 124.5, 121.8, 121.2, 120.5, 36.7, 21.4. **HRMS (ESI)** calculated for C₃₀H₂₃N₂O₃S [M+H]⁺: 491.1424, found: 491.1420.

7-(4,5-Dihydrothiophen-3-yl)-5-methyl-12-(*p*-tolyl)- $5\lambda^4$ -benzo[*f*]indeno[1,2-

d][1,2]thiazepine 5-oxide **3**j.

Yield 32%, 28.8 mg; red solid; mp: 288-290 °C.

Eluent: ethyl acetate/petroleum ether/ dichloromethane =1: 20:2.

¹**H NMR** (400 MHz, CDCl₃) δ 7.99 (d, *J* = 7.8 Hz, 1H), 7.84 (s, 1H), 7.51 (d, *J* = 7.8 Hz, 1H), 7.43 (d, *J* = 4.5 Hz, 1H), 7.39-7.34 (m, 2H), 7.29-7.25 (m, 4H), 7.19-7.15 (m, 3H), 7.03 (d, *J* = 3.7 Hz, 2H), 3.26 (s, 3H), 2.40 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 142.2, 138.0, 137.7, 137.0, 136.0, 134.9, 134.4, 133.2, 132.9, 130.2, 130.0, 129.6, 127.1, 125.4, 124.3, 124.0, 121.9, 120.0, 36.6, 21.4. **HRMS (ESI)** calculated for C₂₈H₂₂NOS₂ [M+H]⁺: 452.1137, found: 452.1142.

7-Hexyl-5-methyl-12-(*p*-tolyl)- $5\lambda^4$ -benzo[*f*]indeno[1,2-*d*][1,2]thiazepine 5-oxide **3k**. Yield 64%, 58.4 mg; red solid; mp: 219-221 °C.

Eluent: ethyl acetate/petroleum ether/ dichloromethane =1: 20:2.

¹**H NMR** (400 MHz, CDCl₃) δ 7.96 (d, J = 7.7 Hz, 1H), 7.84 (d, J = 8.0 Hz, 1H), 7.57 (d, J = 7.7 Hz, 1H), 7.37-7.34 (m, 2H), 7.28 (d, J = 7.5 Hz, 1H), 7.21-7.16 (m, 6H), 3.27-3.20 (m, 1H), 3.17 (s, 3H), 2.95-2.88 (m, 1H), 2.39 (s, 3H), 1.95-1.89 (m, 2H), 1.57-1.50 (m, 2H), 1.40-1.37 (m, 4H), 0.91 (t, J = 6.9 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 160.9, 138.2, 138.1, 137.6, 136.9, 135.1, 134.9, 134.8, 133.5, 132.7, 130.4, 129.6, 128.8, 127.1, 124.8, 124.2, 124.1, 121.9, 120.5, 119.3, 39.4, 36.0, 31.8, 29.6, 28.1, 22.7, 21.4, 14.1. **HRMS (ESI)** calculated for C₃₀H₃₂NOS [M+H]⁺: 454.2199, found: 454.2199.

7-Cyclopropyl-5-methyl-12-(p-tolyl)-5 λ^4 -benzo[f]indeno[1,2-d][1,2]thiazepine 5-oxide **3**I.

Yield 80%, 65.4 mg; yellow solid; mp: 228-230 °C.

Eluent: ethyl acetate/petroleum ether/ dichloromethane =1: 20:2.

1H NMR (400 MHz, CDCl₃) δ 8.21 (d, J = 7.8 Hz, 1H), 7.94 (d, J = 7.7 Hz, 1H), 7.59 (d, J = 7.6 Hz, 1H), 7.35-7.31 (m, 2H), 7.28-7.26 (m, 1H), 7.24-7.18 (m, 6H), 3.07 (s, 3H), 2.75-2.73 (m, 1H), 2.39 (s, 3H), 1.76-1.75 (m, 1H), 1.34-1.29 (m, 1H), 0.95-0.92 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 162.4, 137.9, 137.6, 136.7, 136.1, 135.3, 135.0, 134.6, 133.7, 132.8, 130.4, 129.5, 129.4, 126.9, 124.3, 123.8, 122.1, 120.4, 119.3, 35.8, 21.4, 19.7, 11.4, 7.4. **HRMS (ESI)** calculated for C₂₇H₂₄NOS [M+H]⁺: 410.1573, found: 410.1579.

5,9,10-Trimethyl-7,12-diphenyl- $5\lambda^4$ -benzo[*f*]indeno[1,2-*d*][1,2]thiazepine 5-oxide **3m**. Yield 82%, 74.3 mg; red solid; mp: 308-310 °C.

Eluent: ethyl acetate/petroleum ether/ dichloromethane =1: 20:2.

¹**H NMR** (400 MHz, CDCl₃) δ 7.99 (d, J = 7.8 Hz, 1H), 7.76 (s, 2H), 7.54-7.52 (m, 2H), 7.38-7.25 (m, 6H), 7.24-7.23 (m, 4H), 6.38 (s, 1H), 3.28 (d, J = 4.0 Hz, 3H), 2.24 (s, 3H), 2.05-2.04 (m, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 155.3, 140.7, 138.6, 137.7, 136.6, 136.4, 134.9, 134.8, 134.7, 134.4, 133.3, 132.8, 130.3, 130.3, 130.1, 128.8, 127.3, 127.1, 124.4, 123.1, 120.4, 120.0, 36.4, 29.7, 20.5, 20.1. **HRMS (ESI)** calculated for C₃₁H₂₆NOS [M+H]⁺: 460.1730, found: 460.1739.

5-Methyl-7,12-diphenyl- $5\lambda^4$ -benzo[*f*]indeno[1,2-*d*][1,2]thiazepine 5-oxide **3n**. Yield 77%, 66.5 mg; red solid; mp: 230-232 °C.

Eluent: ethyl acetate/petroleum ether/ dichloromethane =1: 20:2.

¹**H NMR** (400 MHz, CDCl₃) δ 8.00 (d, *J* = 7.9 Hz, 1H), 7.78-7.73 (m, 2H), 7.54-7.49 (m, 3H), 7.37-7.34 (m, 7H), 7.27-7.23 (m, 2H), 7.16-7.13 (m, 1H), 6.95-6.91 (m, 1H), 6.65 (d, *J* = 8.1 Hz, 1H), 3.29 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 156.7, 140.5, 138.4, 138.3, 137.8, 137.8, 136.4, 136.3, 134.7, 134.5, 133.0, 130.8, 130.7, 130.5, 130.4, 128.9, 127.3, 124.4, 124.3, 124.1, 122.1, 119.9, 36.5. **HRMS (ESI)** calculated for C₂₉H₂₂NOS [M+H]⁺: 432.1417, found: 432.1420.

12-(4-Methoxyphenyl)-5-methyl-7-phenyl- $5\lambda^4$ -benzo[*f*]indeno[1,2-*d*][1,2]thiazepine 5-oxide **30**.

Yield 76%, 70.2 mg; red solid; mp: 215-217 °C.

Eluent: ethyl acetate/petroleum ether/ dichloromethane =1: 20:2.

¹**H NMR** (400 MHz, CDCl₃) δ 7.99 (d, J = 7.8 Hz, 1H), 7.79-7.70 (m, 2H), 7.53-7.49 (m, 3H), 7.38-7.23 (m, 6H), 7.16-7.13 (m, 1H), 6.95-6.91 (m, 3H), 6.64 (d, J = 8.1 Hz, 1H), 3.84 (s, 3H), 3.28 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 159.0, 156.1, 140.6, 138.1, 138.0, 137.8, 136.3, 135.0, 134.4, 133.0, 131.5, 130.4, 130.2, 128.5, 127.1, 124.4, 124.3, 124.1, 122.1, 119.9, 114.4, 55.3, 36.5. **HRMS (ESI)** calculated for C₃₀H₂₄NO₂S [M+H]⁺: 462.1522, found: 462.1528.

12-(3-Methoxyphenyl)-5-methyl-7-phenyl- $5\lambda^4$ -benzo[*f*]indeno[1,2-*d*][1,2]thiazepine 5-oxide **3p**.

Yield 48%, 44.3 mg; red solid; mp: 178-180 °C.

Eluent: ethyl acetate/petroleum ether/ dichloromethane =1: 20:2.

1H NMR (400 MHz, CDCl₃) δ 8.00 (d, J = 7.6 Hz, 1H), 7.82-7.67 (m, 2H), 7.54-7.52 (m, 3H), 7.40-7.37 (m, 1H), 7.31-7.23 (m, 4H), 7.17-7.13 (m, 1H), 6.99-6.83 (m, 4H), 6.65 (d, J = 8.0 Hz, 1H), 3.79 (s, 3H), 3.28 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 159.9, 156.8, 140.5, 138.0, 137.8, 137.7, 136.3, 136.2, 134.7, 134.4, 133.1, 133.0, 130.9, 130.5, 129.9, 127.4, 124.4, 124.3, 124.0, 122.9, 122.8, 122.1, 119.9, 116.0, 112.6, 55.3, 36.4. **HRMS (ESI)** calculated for C₃₀H₂₄NO₂S [M+H]⁺: 462.1522, found: 462.1521.

12-(4-Fluorophenyl)-5-methyl-7-phenyl- $5\lambda^4$ -benzo[*f*]indeno[1,2-*d*][1,2]thiazepine 5-oxide **3q**.

Yield 58%, 52.1 mg; red solid; mp: 240-242 °C.

Eluent: ethyl acetate/petroleum ether/ dichloromethane =1: 20:2.

¹**H NMR** (400 MHz, CDCl₃) δ 8.01 (d, J = 7.8 Hz, 1H), 7.79-7.72 (m, 2H), 7.55-7.51 (m, 2H), 7.47-7.45 (m, 1H), 7.42-7.38 (m, 2H), 7.34-7.28 (m, 3H), 7.25-7.23 (m, 1H), 7.18-7.14 (m, 1H), 7.11-7.07 (m, 2H), 6.96-6.92 (m, 1H), 6.66 (d, J = 8.1 Hz, 1H), 3.28 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 162.1 (d, ¹J = 246 Hz), 156.9, 140.4, 137.9, 137.6, 137.0, 136.2, 134.5, 134.3, 133.0, 132.3, 132.0, 131.9, 130.9, 130.6, 127.4, 124.5, 124.4, 124.2 (d, ²J = 21 Hz), 122.1, 119.6, 116.1, 115.8 (d, ²J = 21 Hz), 36.5. **HRMS (ESI)** calculated for C₂₉H₂₁FNOS [M+H]⁺: 450.1322, found: 450.1324. ¹⁹**F NMR** (376 MHz, CDCl₃) δ -114.4.

12-(4-Chlorophenyl)-5-methyl-7-phenyl- $5\lambda^4$ -benzo[*f*]indeno[1,2-*d*][1,2]thiazepine 5-oxide **3r**.

Yield 66%, 61.4 mg; red solid; mp: 216-218 °C.

Eluent: ethyl acetate/petroleum ether/ dichloromethane =1: 20:2.

¹**H NMR** (400 MHz, CDCl₃) δ 8.01 (d, J = 7.6 Hz, 1H), 7.73-7.59 (m, 2H), 7.54-7.51 (m, 2H), 7.47-7.35 (m, 5H), 7.32-7.29 (m, 3H), 7.24 (s, 1H), 7.17-7.14 (m, 1H), 6.96-6.93 (m, 1H), 6.66 (d, J = 8.1 Hz, 1H), 3.27 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 157.1, 140.3, 137.3, 136.6, 136.5, 136.2, 134.9, 134.8, 134.5, 134.4, 133.2, 133.1, 131.7, 131.6, 131.0, 130.7, 129.1, 127.5, 124.4, 124.2, 122.2, 119.5, 36.4. **HRMS** (**ESI**) calculated for C₂₉H₂₁CINOS [M+H]⁺: 466.1027, found: 466.1023.

12-Hexyl-5-methyl-7-phenyl- $5\lambda^4$ -benzo[*f*]indeno[1,2-*d*][1,2]thiazepine 5-oxide **3s**. Yield 78%, 68 mg; red solid; mp: 224-226 °C.

Eluent: ethyl acetate/petroleum ether/ dichloromethane =1: 20:2.

¹H NMR (400 MHz, CDCl₃) δ 8.05 (d, J = 7.8 Hz, 1H), 7.72-7.66 (m, 4H), 7.53-7.46 (m, 4H), 7.30 (s, 1H), 7.20-7.16 (m, 1H), 6.92-6.88 (m, 1H), 6.58 (d, J = 8.0 Hz, 1H), 3.06-3.04 (m, 3H), 3.03-2.98 (m, 1H), 2.94-2.87 (m, 1H), 1.90-1.82 (m, 1H), 1.74-1.67 (m, 1H), 1.48-1.42 (m, 2H), 1.34-1.30 (m, 4H), 0.89 (t, J = 6.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 154.3, 140.6, 138.7, 138.6, 138.2, 136.2, 135.0, 133.5, 132.4, 131.1, 130.2, 128.9, 127.9, 127.4, 124.7, 124.1, 123.9, 121.8, 120.2, 119.0, 36.9, 31.6, 30.5, 29.9, 26.9, 22.7, 14.2. HRMS (ESI) calculated for C₂₉H₃₀NOS [M+H]⁺: 440.2043, found: 440.2047.

12-Cyclopropyl-5-methyl-7-phenyl- $5\lambda^4$ -benzo[*f*]indeno[1,2-*d*][1,2]thiazepine 5-oxide **3t**.

Yield 61%,48.2 mg; red solid; mp: 230-232 °C.

Eluent: ethyl acetate/petroleum ether/ dichloromethane =1: 20:2.

¹**H NMR** (400 MHz, CDCl₃) δ 8.08-8.02 (m, 2H), 7.78-7.64 (m, 4H), 7.55-7.48 (m, 3H), 7.32 (s, 1H), 7.23-7.19 (m, 1H), 6.92 (t, *J* = 7.4 Hz, 1H), 6.57 (d, *J* = 8.0 Hz, 1H), 3.03 (s, 3H), 2.19-2.17 (m, 1H), 1.23-1.16 (m, 2H), 0.84-0.82 (m, 1H), 0.55-0.52 (m, 1H). ¹³**C NMR** (100 MHz, CDCl₃) δ 154.7, 140.6, 139.3, 139.1, 137.2, 135.8, 135.7, 134.4, 134.3, 133.8, 132.8, 132.7, 132.4, 130.2, 127.5, 124.2, 124.1, 123.9, 121.8, 119.4, 36.6, 9.5, 9.0, 7.8. **HRMS (ESI)** calculated for C₂₆H₂₂NOS [M+H]⁺: 396.1417, found: 396.1419.

7-(4-Fluorophenyl)-12-(4-methoxyphenyl)-5-methyl- $5\lambda^4$ -benzo[*f*]indeno[1,2-

d][1,2]thiazepine 5-oxide **3u**.

Yield 49%, 47.0 mg; red solid; mp: 287-289 °C.

Eluent: ethyl acetate/petroleum ether/ dichloromethane =1: 20:2.

¹**H NMR** (400 MHz, CDCl₃) δ 8.00 (d, J = 7.8 Hz, 1H), 7.83-7.71 (m, 2H), 7.51 (d, J = 7.8 Hz, 1H), 7.40-7.36 (m, 1H), 7.29-7.15 (m, 6H), 7.03-6.92 (m, 4H), 6.70 (d, J = 8.1 Hz, 1H), 3.86 (s, 3H), 3.28 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 164.3 (d, ¹J = 249 Hz), 159.0, 154.8, 138.2, 138.0, 137.9, 137.8, 136.6, 136.5, 136.2, 134.9, 134.3, 133.0, 131.4, 131.3, 130.1, 128.4, 127.2, 124.4, 124.3, 121. 0 (d, ²J = 19 Hz), 114.4, 55.3, 36.6. **HRMS (ESI)** calculated for C₃₀H₂₃FNO₂S [M+H]⁺: 480.1428, found: 480.1425. ¹⁹**F NMR** (376 MHz, CDCl₃) δ -110.0.

3. Two-component synthesis of medium-sized sulfoximine heterocycles.

To a screw capped schlenk tube equipped with a stir bar was charged with *ortho*alkynylphenylsulfoximine **1** (0.30 mmol) and 2-ethynyl iodobenzene **2** (0.36 mmol), Pd(MeCN)₂Cl₂ (7.5 mol%), Mephos (15 mol%), Cs₂CO₃ (1.2 equiv), CH₃OH (0.2 mL) and dry MeCN (2.0 mL). The reaction was purged with N₂ and stirred at 50°C for 4 hours. The reaction was monitored by TLC. Upon completion, the reaction was allowed to cool to room temperature, diluted with ethyl acetate (5.0 mL), then filtered through a short pad of silica. The solid residue was washed with ethyl acetate (~15 mL) unless otherwise noted. Concentration of the filtrate under reduced pressure provided the crude product, which was purified by silica gel column chromatography (ethyl acetate/petroleum ether/ dichloromethane =1: 20: 2, v/v/v.) to afford the desired compound **3**.

5-Methyl-7-phenyl-12-(p-tolyl)-5 λ^4 -benzo[f]indeno[1,2-d][1,2]thiazepine 5-oxide **3a**. Yield 89%, 118.8 mg; red solid; mp: 241-243 °C.

Eluent: ethyl acetate/petroleum ether/ dichloromethane =1: 20:2.

7-(4-Methoxyphenyl)-5-methyl-12-(*p*-tolyl)- $5\lambda^4$ -benzo[*f*]indeno[1,2-*d*][1,2]thiazepine 5-oxide **3d**.

Yield 90%, 126.8 mg; red solid; mp: 267-269 °C.

Eluent: ethyl acetate/petroleum ether/ dichloromethane =1: 20:2.

5-Methyl-12-(*p*-tolyl)-7-(4-(trifluoromethyl)phenyl)-5λ⁴-benzo[*f*]indeno[1,2-

d][1,2]thiazepine 5-oxide **3f**.

Yield 70%, 107.7 mg; red solid; mp: 260-262 °C.

Eluent: ethyl acetate/petroleum ether/ dichloromethane =1: 20:2.

5-Methyl-7-(4-nitrophenyl)-12-(*p*-tolyl)-5 λ^4 -benzo[*f*]indeno[1,2-*d*][1,2]thiazepine 5-oxide **3i**.

Yield 64%, 94 mg; brownness solid; mp: 218-220 °C.

Eluent: ethyl acetate/petroleum ether/ dichloromethane =1: 20:2.

7-Cyclopropyl-5-methyl-12-(p-tolyl)-5 λ^4 -benzo[f]indeno[1,2-d][1,2]thiazepine 5-oxide **3**I.

Yield 92%, 112.8 mg; yellow solid; mp: 228-230 °C.

Eluent: ethyl acetate/petroleum ether/ dichloromethane =1: 20:2.

5-Methyl-7,12-diphenyl- $5\lambda^4$ -benzo[*f*]indeno[1,2-*d*][1,2]thiazepine 5-oxide **3n**. Yield 95%, 122.8 mg; red solid; mp: 230-232 °C. Eluent: ethyl acetate/petroleum ether/ dichloromethane =1: 20:2.

12-Hexyl-5-methyl-7-phenyl- $5\lambda^4$ -benzo[*f*]indeno[1,2-*d*][1,2]thiazepine 5-oxide **3s**. Yield 93%, 122.4 mg; red solid; mp: 224-226 °C.

Eluent: ethyl acetate/petroleum ether/ dichloromethane =1: 20:2.

12-(4-Chlorophenyl)-5-methyl-7-(p-tolyl)-5 λ^4 -benzo[f]indeno[1,2-d][1,2]thiazepine 5-oxide **3**v.

Yield 50%, 71.8 mg; red solid; mp: 280-282 °C.

Eluent: ethyl acetate/petroleum ether/ dichloromethane =1: 20:2.

¹**H NMR** (400 MHz, CDCl₃) δ 8.00 (d, J = 7.7 Hz, 1H), 7.73-7.59 (m, 2H), 7.46 (d, J = 7.8 Hz, 1H), 7.42-7.22 (m, 8H), 7.15 (t, J = 7.4 Hz, 2H), 6.98-6.94 (m, 1H), 6.77 (d, J = 8.1 Hz, 1H), 3.25 (s, 3H), 2.45 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 157.6, 141.1, 137.9, 137.8, 137.4, 137.2, 136.3, 136.1, 135.0, 134.5, 134.4, 133.1, 133.0, 131.7, 131.6, 131.1, 129.1, 127.5, 124.5, 124.2, 124.0, 122.2, 119.5, 36.5, 21.7. **HRMS (ESI)** calculated for C₃₀H₂₃ClNOS [M+H]⁺: 480.1183, found: 480.1190.

7-(4-Chlorophenyl)-12-(4-fluorophenyl)-5-methyl- $5\lambda^4$ -benzo[*f*]indeno[1,2-

d][1,2]thiazepine 5-oxide **3w**.

Yield 60%, 86.9 mg; red solid; mp: 285-287 °C.

Eluent: ethyl acetate/petroleum ether/ dichloromethane =1: 20:2.

¹**H NMR** (400 MHz, CDCl₃) δ 8.00 (d, J = 7.7 Hz, 1H), 7.78-7.67 (m, 2H), 7.53-7.39 (m, 4H), 7.32.7.28 (m, 3H), 7.22-7.16 (m, 2H), 7.11-7.07 (m, 2H), 7.01-6.97 (m, 1H), 6.75 (d, J = 8.1 Hz, 1H), 3.27 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 162.2 (d, ¹J = 245 Hz), 155.3, 138.8, 137.9, 137.8, 137.7, 137.3, 137.2, 136.8, 135.9, 134.4, 134.3, 133.1, 132.2, 131.9, 130.7, 127.5, 127.6, 127.5, 124.4 (d, ²J = 26 Hz), 122.0, 119.8, 116.0 (d, ²J = 22 Hz), 36.5. **HRMS (ESI)** calculated for C₂₉H₂₀ClFNOS [M+H]⁺: 484.0933, found: 484.0929. ¹⁹**F NMR** (376 MHz, CDCl₃) δ -114.1.

7-(4-Methoxyphenyl)-5-methyl-12-phenyl- $5\lambda^4$ -benzo[*f*]indeno[1,2-*d*][1,2]thiazepine 5-oxide **3x**.

Yield 92%, 127.2 mg; red solid; mp: 255-257 °C.

Eluent: ethyl acetate/petroleum ether/ dichloromethane =1: 20:2.

¹**H NMR** (400 MHz, CDCl₃) δ 7.99 (d, *J* = 7.6 Hz, 1H), 7.77-7.74 (m, 2H), 7.52-7.50 (m, 1H), 7.37-7.22 (m, 8H), 7.17-7.12 (m, 1H), 7.06 (s, 1H), 6.99-6.95 (m, 1H), 6.86-6.84 (m, 2H), 3.88-3.87 (m, 3H), 3.24 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 161.9, 156.8, 138.0, 137.5, 137.4, 136.5, 136.4, 134.9, 134.5, 132.9, 132.8, 131.9, 130.8, 130.4, 128.8, 127.2, 124.4, 124.1, 123.8, 122.0, 119.8, 114.2, 113.3, 55.5, 36.6. **HRMS (ESI)** calculated for C₃₀H₂₄NO₂S [M+H]⁺: 462.1522, found: 462.1521.

5-Butyl-7-phenyl-12-(*p*-tolyl)- $5\lambda^4$ -benzo[*f*]indeno[1,2-*d*][1,2]thiazepine 5-oxide **3y**. Yield 75%, 73.1 mg; red solid; mp: 256-258 °C.

Eluent: ethyl acetate/petroleum ether/ dichloromethane =1: 20:2.

¹**H NMR** (400 MHz, CDCl₃) δ 7.99 (d, J = 7.7 Hz, 1H), 7.83-7.69 (m, 2H), 7.55-7.69 (m, 3H), 7.38-7.35 (m, 1H), 7.29-7.18 (m, 7H), 7.15-7.11 (m, 1H), 6.93-6.90 (m, 1H), 6.64 (d, J = 8.0 Hz, 1H), 3.64-3.57 (m, 1H), 3.37-3.29 (m, 1H), 2.39 (s, 3H), 1.87-1.72 (m, 2H), 1.41-1.32 (m, 2H), 0.79 (t, J = 7.3 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 156.5, 140.7, 137.8, 137.0, 136.3, 135.0, 134.4, 133.4, 132.9, 132.6, 130.5, 130.5, 130.2, 129.9, 129.6, 128.9, 128.0, 127.3, 125.4, 124.1, 123.9, 122.1, 119.9, 119.8, 46.8, 23.8, 21.7, 21.4, 13.6. **HRMS (ESI)** calculated for C₃₃H₂₉NOS [M+H]⁺: 488.2043, found: 488.2048.

4. Four-component synthesis of medium-sized sulfoximine heterocycles.

To a screw capped schlenk tube equipped with a stir bar was charged with orthobromophenylsulfoximine 4a (0.30 mmol), PdCl₂(PPh₃)₂ (7.0 mg, 5 mol%), CuI (2.9 mg, 5 mol%), Cs₂CO₃ (156.7 mg, 2.4 equiv), dry CH₃CN (2.0 mL), and 1-ethynyl-4methylbenzene 5a (0.20 mmol) was added dropwise slowly at 50°C, and the stirred kept for an additional 4 h. Upon completion of the reaction as indicated by TLC, the reaction was allowed to cool to room temperature, then 1,2-diiodobenzene 6 (0.3 mmol), Pd(MeCN)₂Cl₂ (7.5 mol%), Mephos (15 mol%), CH₃OH (0.20 mL) were added subsequently, followed by the addition of ethynylbenzene 5a' (0.3 mmol) drop wise slowly at 50°C. The reaction was stirred for 4 h under N₂. The reaction was monitored by TLC. Upon completion, the reaction was allowed to cool to room temperature, diluted with ethyl acetate (5.0 mL), then filtered through a short pad of silica. The solid residue was washed with ethyl acetate (~15 mL) unless otherwise noted. Concentration of the filtrate under reduced pressure provided the crude product, which was purified by silica gel column chromatography (ethyl acetate/petroleum ether/ dichloromethane =1: 20: 2, v/v/v.) to afford the desired compound **3a**, yield 31 mg, 35%.

6. ¹H and ¹³C NMR Spectra of all new compounds 3.

S25

S28

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

10 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

3i.

3m.

S37

3q.

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

S42

3s.

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

3w.

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

3y

7. X-ray crystal structure of compound 3n.

3n CCDC 2059008

Bond precision:	C-C = 0.0035 A	Wavelength=0.71073				
Cell:	a=11.6422(5)	b=10.9274(6)	c=35.290(2)			
	alpha=90	beta=94.919(5)	gamma=90			
Temperature:	293 K		-			
	Calculated	Reported	l			
Volume	4473.0(4)	4473.0(4	.)			
Space group	P 21/n	P 21/n				
Hall group	-P 2yn -P 2yn					
Moiety formula	C29 H21 N O S	?	?			
Sum formula	C29 H21 N O S	C58 H42	N2 O2 S2			
Mr	431.53	863.05				
Dx,g cm-3	1.282	1.282				
Z	8	4				
Mu (mm-1)	0.166	0.166				
F000	1808.0	1808.0				
F000'	1809.65					
h,k,lmax	13,12,41	13,12,41				
Nref	7854	7834				
Tmin, Tmax	0.951,0.956	0.522,1.	000			
Tmin'	0.951					
Correction method= # Reported T Limits: Tmin=0.522 Tmax=1.000 AbsCorr = NONE						
Data completenes	5s= 0.997	Theta(max) = 25.0	000			
R(reflections) = 0.0526(6448) wR2(reflections) = 0.1319(7834)						
S = 1.070 Npar= 577						