Supporting Information

Contents

Experimental section

Fig. S1. The schematic diagram of the proposed mechanism for the photo-induced production of

9-AC molecular.

Fig. S2. The PXRD plots of triclinic 9-Ac molecule before and after light irradiation.

Fig. S3. The color changes of triclinic 9-Ac after Xe lamp light irradiation.

Fig. S4. IR spectra of triclinic 9-AC in the KBr matrix: before and after irradiation.

Fig. S5. Temperature-dependent susceptibilities of triclinic **9-AC** under a dc magnetic field of 1000 Oe.

Fig. S6. The calculated spatial distributions of the HOMO (left) and LUMO (right) the of triclinic

9-AC calculated at the B3LYP/6-311G(d) level.

Fig. S7. The ESR spectrum of triclinic **9-AC**[•] radicals upon standing in dark for 5 weeks at solid state.

Fig. S8. IR spectra of monoclinic 9-AC in the KBr matrix: before and after irradiation.

Fig. S9. The H-bonding and π - π stacking interactions of **9-AC** for monoclinic form.

Fig. S10. The H-bonding and π - π stacking interactions of **9-AC** for triclinic form.

Fig. S11. IR spectra of **9-AC** (crystallized in methanol and water) in the KBr matrix: before and after irradiation.

Fig. S12. The PXRD plots of compound 1 before and after light irradiation.

Fig. S13. The TG plot of compound 1 under N₂ atmosphere.

Fig. S14. The color changes of compound 1 after Xe lamp light irradiation.

Fig. S15. IR spectra of compound 1 in the KBr matrix: before and after irradiation.

Fig. S16. Isothermal magnetization curve of 1 at 2 K before and after light irradiation.

Table S1. Mülliken charges of triclinic 9-AC.

Table S2. Crystal data for 1 at 293 K.

Table S3. Selected bond lengths (Å) and angles (°) for 1 at 293K.

Table S4. The H-bond lengths (Å) for 1 at 293K.

Experimental Section

Materials and methods

9-anthracene carboxylic acid was purchased from Chemsoon (97%).

Synthesis of crystalline 9-AC:

The triclinic **9-AC** sample was prepared by recrystallization from methanol;¹ Elemental analysis (%): calcd for $C_{15}H_{10}O_2$ (222.24): C, 81.07; H, 4.54; O, 14.40. Found: C, 80.96; H, 4.44; O, 14.61. IR (KBr pellets, cm⁻¹): 3406(w), 3028(w), 2964(m), 2586(w), 1681(s), 1413(m), 1319(s), 1258(s), 1214(m), 1239(m), 954(s), 867(m), 780(w), 716(s), 621(m), 501(w). The monoclinic **9-AC** sample was prepared by recrystallization from ethyl acetate according to literature procedure;² Elemental analysis (%): calcd for $C_{15}H_{10}O_2$ (222.24): C, 81.07; H, 4.54; O, 14.40. Found: C, 81.35; H, 4.42; O, 14.52. IR (KBr pellets, cm⁻¹): 3406(w), 3028(w), 2964(m), 2586(w), 1681(s), 1413(m), 1319(s), 1258(s), 1214(m), 1239(m), 954(s), 867(m), 780(w), 716(s), 621(m), 501(w). Monoclinic and triclinic mixtures were obtained by dissolving the 9-Ac in a solution of methanol and water (2:1) and evaporation at room temperature. Elemental analysis (%): calcd for $C_{15}H_{10}O_2$ (222.24): C, 81.07; H, 4.54; O, 14.40. Found: C, 81.19; H, 4.36; O, 14.69. IR (KBr pellets, cm⁻¹): 3406(w), 3028(w), 2964(m), 2586(w), 1681(s), 1413(m), 1319(s), 1258(s), 1214(m), 1239(m), 954(s), 867(m), 780(w), 716(s), 621(m), 501(w).

Synthesis of 1:

A mixture of Ni(NO₃)₂·6H₂O (0.3 mmol, 0.087 g), 9-anthracene carboxylic acid (9-AC, 0.2 mmol, 0.044 g) and Triethanolamine (TEA, 0.1 mL) were dissolved in 3 mL of CH₃OH and 3 mL of H₂O. The resultant solution was sealed in a glass vial and heated to 110 °C for 4 days. Blue X-ray-quality crystals were formed and dried in air. Yield: 45% based on Ni(NO₃)₂·6H₂O. Elemental analysis (%): calcd for C₄₂H₄₈N₂NiO₁₀ (799.53): C, 63.09; H, 6.05; O, 20.01; N, 3.50. Found: C, 64.32; H, 5.98; O, 19.98; N, 3.34. IR (KBr pellet, cm⁻¹): 3260(w), 2610(w), 2586(w), 1941(w), 1790(w), 1554(s), 1430(s), 1385(m), 1308(s), 1148(m), 1067(s), 876(m), 743(s), 730(s), 650(w), 595(w), 514(w), 421(w).

Elemental analyses (C, H, O and N) were measured on a Perkin-Elmer 240C analyzer (Perkin-Elmer, USA). IR spectra were performed on a MAGNA-560 (Nicolet) FT-IR spectrometer with KBr pellets. The luminescence data were recorded on an F-4700 Fluorescence

spectrometer. The solid-state UV-Vis spectra were measured using BaSO₄ as a reference on a PerkinElmer Lamda-950 spectrophotometer. Electron spin resonance (ESR) spectroscopy was recorded on a Bruker E500 spectrometer. Thermogravimetric (TG) analyses were measured using a powder sample under N₂ atmosphere on a TG-DTA 8121 analyzer. Magnetic measurements of the polycrystalline samples of **9-Ac** after light irradiation was carried out on a Quantum Design SQUID (PPMS) magnetometer. Molecular orbital calculations were performed using the Gaussian 09 program and the basis set B3LYP/6-311G(d) method and adapted from the crystal X-ray data. Powder X-ray diffraction (PXRD) spectroscopy was performed on a Rigaku diffractometer with a Cu-target tube and a graphite monochromator. Simulation of the PXRD curve was carried out by the single-crystal data and diffraction-crystal module of the Mercury (Hg) program available free of charge *via* the Internet at <u>http://www.iucr.org</u>. For the light irradiation experiments, a Perfect Light PLS-SXE 300 Xe lamp (320–780 nm, 250 W, at least 180 min) was equipped to prepare the colored samples of UV-vis, PXRD, ESR and magnetic studies.

X-ray Crystallography.

The single-crystal X-ray diffraction data of **1** was collected on a Rigaku SCX-mini diffractometer at 293(2) K with Mo-K α radiation ($\lambda = 0.71073$ Å). Then using the SHELX-2016 software to solve the structure. Detailed crystallographic data for **1** was summarized in Table S2, and the selected bond lengths and angles were listed in Table S3. Full crystallographic data for **1** has been deposited with the CCDC (2063584).

References

[S1] Heller, E.; Schmidt, G. M. J. Topochemistry. Part XXXIII.[†] The Solid-State Photochemistry of Some Anthracene Derivatives, *Isr. J. Chem.* **1971**, *9*, 449–462.

[S2] Fitzgerald, L. J.; Gerkin, R. E. Anthracene-9-carboxylic Acid, Acta Crystallogr. 1997, C53, 71–73.

Fig. S1. The schematic diagram of the proposed mechanism for the photo-induced production of **9-AC** molecular.

Fig. S2. The PXRD plots of triclinic 9-Ac molecule before and after light irradiation.

Fig. S3. The color changes of triclinic **9-Ac** after Xe lamp light irradiation.

Fig. S4. IR spectra of triclinic 9-AC in the KBr matrix: before and after irradiation.

Fig. S5. Temperature-dependent susceptibilities of triclinic **9-AC** under a dc magnetic field of 1000 Oe.

Fig. S6. The calculated spatial distributions of the HOMO (left) and LUMO (right) the of triclinic **9-AC** calculated at the B3LYP/6-311G(d) level.

Fig. S7. The ESR spectrum of triclinic **9-AC**[•] radicals upon standing in dark for 5 weeks at solid state.

Fig. S8. IR spectra of monoclinic 9-AC in the KBr matrix: before and after irradiation.

Fig. S9. The H-bonding and π - π stacking interactions of **9-AC** for monoclinic form.

Fig. S10. The H-bonding and π - π stacking interactions of **9-AC** for triclinic form.

Fig. S11. IR spectra of **9-AC** (crystallized in methanol and water) in the KBr matrix: before and after irradiation.

Fig. S12. The PXRD plots of compound 1 before and after light irradiation.

Fig. S13. The TG plot of compound 1 under N_2 atmosphere.

Fig. S14. The color changes of compound **1** after Xe lamp light irradiation.

Fig. S15. IR spectra of compound 1 in the KBr matrix: before and after irradiation.

Fig. S16. Isothermal magnetization curve of 1 at 2 K before and after light irradiation.

Table S1. Mülliken charges of triclinic 9-AC.

Na	Flomonto	Ground state	
INO.	Elements	Mulliken charges	
1	С	-0.234781	
2	С	-0.188473	
3	С	-0.094446	
4	С	-0.078039	
5	С	-0.240316	
6	С	-0.23826	
7	С	-0.142346	
8	С	-0.175722	
9	С	-0.053526	
10	С	-0.095552	
11	С	-0.1845	
12	Н	0.240135	
13	С	-0.237917	
14	С	-0.22949	
15	С	-0.241024	
16	Н	0.252849	
17	Н	0.237381	
18	Н	0.237786	
19	Н	0.384511	
20	Н	0.235856	
21	Н	0.240696	
22	Н	0.245327	
23	Н	0.328721	
24	С	0.985015	
25	0	-0.634494	
26	0	-0.747666	
27	Н	0.428275	

1			
Formula	C42H48N2NiO10		
$Mr (g \cdot mol^{-1})$	799.53		
Crystal system	Monoclinic		
Space group	$P2_1/n$		
$a/\mathrm{\AA}$	9.2120(15)		
b/Å	16.537(2)		
$c/{ m \AA}$	13.109(3)		
$\alpha/^{\circ}$	90		
$eta / ^{\circ}$	106.649(18)		
$\gamma/^{\circ}$	90		
$V/Å^3$	1913.3(6)		
Ζ	2		
$D_{\rm c}/{ m g~cm^{-3}}$	1.388		
μ/mm^{-1}	0.569		
F(000)	844.0		
<i>R</i> _{int} 0.0381			
	-10≤h≤10,		
limiting indices	-19 <k<19,< td=""></k<19,<>		
C	-5≤l≤15		
Total reflections	6541		
Unique reflections	3364		
$R_1, wR_2 [I > 2\sigma(I)]$	0.0455 0.1238		
R_1 , wR_2 [all data]	0.0613 0.1352		
GOF on F^2	on <i>F</i> ² 1.048		

Table S2. Crystal data for 1 at 293 K.

Table S3. Selected bond lengths (Å) and angles (°) for $1 \mbox{at 293K}.$

1				
Ni(1)-O(3)#1	2.046(2)	C(7)-C(12)	1.432(4)	
Ni(1)-O(3)	2.046(2)	C(8)-C(9)	1.350(5)	
Ni(1)-O(2)#1	2.0584(19)	C(9)-C(10)	1.410(5)	
Ni(1)-O(2)	2.0584(19)	C(10)-C(11)	1.337(5)	
Ni(1)-N(1)#1	2.085(2)	C(11)-C(12)	1.417(5)	
Ni(1)-N(1)	2.085(2)	C(12)-C(13)	1.386(5)	
C(1)-N(1)	1.485(3)	C(13)-C(14)	1.379(5)	
C(1)-C(2)	1.521(4)	C(14)-C(15)	1.424(4)	
C(2)-O(1)	1.391(4)	C(14)-C(19)	1.439(4)	
C(3)-C(4)	1.475(6)	C(15)-C(16)	1.339(5)	
C(3)-N(1)	1.500(4)	C(16)-C(17)	1.407(5)	
C(4)-O(2)	1.437(4)	C(17)-C(18)	1.368(4)	
C(5)-N(1)	1.463(5)	C(18)-C(19)	1.414(4)	
C(5)-C(6)	1.514(4)	C(19)-C(20)	1.405(4)	
C(6)-O(3)	1.436(4)	C(20)-C(21)	1.522(3)	

C(7)-C(20)	1.386(4)	C(21)-O(5)	1.243(3)	
C(7)-C(8)	1.425(4)	C(21)-O(4)	1.251(3)	
O(3)#1-Ni(1)-O(3)	180	O(1)-C(2)-C(1)	110.0(3)	
O(3)#1-Ni(1)-O(2)#1	92.06(8)	C(4)-C(3)-N(1)	110.5(3)	
O(3)-Ni(1)-O(2)#1	87.94(8)	O(2)-C(4)-C(3)	109.5(3)	
O(3)#1-Ni(1)-O(2)	87.94(8)	N(1)-C(5)-C(6)	112.2(3)	
O(3)-Ni(1)-O(2)	92.06(8)	O(3)-C(6)-C(5)	108.1(3)	
O(2)#1-Ni(1)-O(2)	180.00(8)	O(5)-C(21)-O(4)	124.4(2)	
O(3)#1-Ni(1)-N(1)#1	82.83(9)	O(5)-C(21)-C(20)	119.0(2)	
O(3)-Ni(1)-N(1)#1	97.17(9)	O(4)-C(21)-C(20)	116.6(2)	
O(2)#1-Ni(1)-N(1)#1	83.93(10)	C(5)-N(1)-C(1)	109.4(3)	
O(2)-Ni(1)-N(1)#1	96.07(10)	C(5)-N(1)-C(3)	112.0(3)	
O(3)#1-Ni(1)-N(1)	97.17(9)	C(1)-N(1)-C(3)	113.2(2)	
O(3)-Ni(1)-N(1)	82.83(9)	C(5)-N(1)-Ni(1)	103.31(18)	
O(2)#1-Ni(1)-N(1)	96.07(10)	C(1)-N(1)-Ni(1)	111.85(17)	
O(2)-Ni(1)-N(1)	83.93(10)	C(3)-N(1)-Ni(1)	106.7(2)	
N(1)#1-Ni(1)-N(1)	180	C(4)-O(2)-Ni(1)	105.61(19)	
N(1)-C(1)-C(2)	118.0(2)	C(6)-O(3)-Ni(1)	113.24(18)	
Symmetry codes: #1 -x+1,-y+2,-z+2				

Table S4. The H-bond lengths (\AA) for 1 at 293K.

D−H…A	d (D–H) (Å)	$d(\mathbf{H}\cdots\mathbf{A})(\mathbf{\mathring{A}})$	$d(\mathbf{D}\cdots\mathbf{A})(\mathbf{\mathring{A}})$	∠(DHA) (deg)
O(1)−H(1)···O(4)	0.82	1.90	2.679(3)	159
O(2)−H(2)···O(4)	0.85(4)	1.75(4)	2.594(3)	169(4)
O(3)-H(3)····O(5)	0.75(4)	1.88(4)	2.621(3)	171(3)