Electronic supplementary information

Self-supported mesoscopic tin oxide nanofilms for electrocatalytic reduction of carbon dioxide to formate

Juwon Jeong,^{‡ab} Jin Soo Kang,^{‡abc}, Heejong Shin,^{ab} Soo Hong Lee,^{ab} Junghwan Jang,^{ab} Taeghwan Hyeon,^{ab} Hyun S. Park^{*d} and Yung-Eun Sung^{*ab}

^aCenter for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.

^bSchool of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea.

^cDepartment of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

^dCenter for Hydrogen Fuel Cell Research, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea

[‡]These authors contributed equally to this work.

^{*}Corresponding authors. E-mail: hspark@kist.re.kr (H. S. Park), ysung@snu.ac.kr (Y.-E. Sung)

Experimental

Preparation and characterization of nanostructured SnO₂ electrodes

Anodization of Sn foil (Alfa Aesar, 0.25 mm-thick, 99.8%) was carried out in 0.5 M oxalic acid in a two-electrode system (with the assistance of ultrasonication), where a Pt wire was used as counter electrode. The distance between the two electrodes was 5 cm, and 10 V was applied for 10 min. As-anodized electrode was washed with distilled water and was dried in an oven, followed by theraml annealing in air at 500 °C for 3 h. The morphology of SnO₂ electrodes were examined by SEM using Carl Zeiss MERLIN Compact, and XRD patterns were collected by using Rigaku D-MAX2500-PC. XPS analyses were carried out using a synchrotron radiation source at 10A2 beamline of Pohang Accelerator Laboratory (PAL) or by using Thermo Sigma Probe equipped with an Al-K α source. XAFS measurements were performed at 10C beamline of PAL, and the data were processed by using Demeter software package. A potentiostat (Autolab PGSTAT302N) was used for the estimation of EDLCs.

Electrochemical reduction of CO₂

For CO₂RR, all electrochemical measurements were carried out in a three-electrode configuration using a homemade gas-tight H-type cell and Autolab PGSTAT302N, with a Ag/AgCl reference electrode (filled with saturated KCl solution) and a graphite rod counter electrode. The glass cell was comprised of anodic and cathodic compartments which were separated by cation exchange membrane (Nafion®117) to prevent any contamination by crossovers between cathode and anode. Ohmic resistance of solution was measured using electrochemical impedance spectroscopy (EIS) before the reaction and was used for iR correction for all of the measurements. CO₂-saturated 0.5 M KHCO₃ was used as electrolyte; CO₂ gas was delivered with specific rate (20 sccm) from at least 30 minutes before the reaction and was continuously purged throughout the measurements. In the case of steady-state CO₂RR, cathodic electrolyte was continuously stirred at 400 rpm. All potentials were converted to RHE scale by using the following equation:

$$E_{\rm RHE} = E_{\rm Ag/AgCl} + 0.197 \,\, \text{V} + 0.0592 \,\, \text{pH}$$
(1)

Analyses of products from CO₂RR

Gaseous products were analyzed by using a GC (Agilent 7890B) equipped with a flame ionization detector (FID) and a thermal conductivity detector (TCD) for detection of CO and H_2 , respectively. FE of each gaseous product was calculated from the obtained volume concentration using the following equation:

$$FE_{j} = \frac{i_{j}}{i_{total}} \times 100\% = \frac{2 \times F \times \frac{p_{0}Qv_{j}}{RT}}{i_{total}} \times 100\% (j = H_{2} \text{ or } CO)$$
(2) (2)

(where v_j = volume concentration measured from GC, Q = flow rate of delivering CO₂, F = 96485 C mol⁻¹, p₀ = 101325 Pa, R = 8.314 J mol⁻¹ K⁻¹, T = 298.15 K, and i_{total} = overall current measured at the moment of injection). The detailed derivation processes of the equation (2) is presented in the Supporting Information. Quantification of formate was performed by measuring 600 MHz NMR peak area using Bruker AVANCE 600. The sample for ¹H NMR was prepared by mixing 450 µL aliquot of electrolyte with 50 µL of 1% 3-(trimethylsilyl)-1-propanesulfonic acid (DSS) in D₂O (Sigma-Aldrich). The formate peak area on ¹H NMR (δ = 8.445) was converted to the amount of formate based on the calibration curve in Fig. S8. Then, formate selectivity was calculated by dividing this amount by the total charge consumed during the CO₂RR. All of the experiments related to product quantification were conducted at least three times to verify the reliability of our results by presenting the statistics.

Calculation of Faradaic efficiencies of gaseous products

In general, Faradaic efficiency (FE) is calculated by dividing the charges used for producing a specific product by the overall charges that flowed. For the CO_2RR in this study, GC signal collected at the moment of injection was used for the evaluation of FE, which can be summarized as the following equation:

$$FE_{j} = \frac{i_{j}}{i_{total}} \times 100\% (j = each \, product) \quad (1)$$
(3)

 i_{total} can be obtained from the experimental data, and i_j could be calculated from the equations written below. From the definition of current, i_j can be expressed as follows:

$$i_j = \frac{dC_j}{dt} \quad (2) \tag{4}$$

Then, using the product-charge relationship and ideal gas equation (pV = nRT), the charge C_j could be written as Eqn. 5.

$$C_j = mFn_j = mF\frac{p_0V_j}{RT} \quad (3)$$

Since the flow rate is a fixed value, V_j can be expressed by using the signal obtained from GC, as follows:

$$\frac{dV_j}{dt} = v_j Q \quad (4) \tag{6}$$

By combining the three equations (Eqns. 4-6) and substituting *m* with 2 for the cases of H₂ and CO productions, i_j can be rearranged as Eqn. 7.

$$i_j = 2 \times F \times \frac{p_0 v_j Q}{RT} \quad (5)$$

Finally, equation for FE can be derived by Eqns. 3 and 7. The following equation is also shown as Eqn. 2 above.

$$FE_{j} = \frac{2 \times F \times \frac{p_{0}Qv_{j}}{RT}}{i_{total}} \times 100\%$$
(8)

Abbreviations

 C_j = total charge used to produce the product j [=] C

m = the number of electrons used to produce a molecule j

 n_j = the total mole number of product j [=] mol

 V_j = the total volume of product j [=] m³

 v_j = the volume percentage of product j measured from GC signal

Q = total flow rate [=] $m^3 s^{-1}$

 $(j = H_2 \text{ or } CO)$

Electrodes		Lattice Oxygen	Non-Stoichiometric Oxygen	Adsorbed Species
	Peak Positions	530.34 eV	532.01 eV	533.39 eV
Sn foil				
	Areal Ratio	40.47 %	48.64%	10.89%
	Peak Positions	530.47 eV	531.79 eV	_
AN-SnO _x				
	Areal Ratio	50.77%	49.23%	-
	Peak Positions	530.75 eV	531.78 eV	-
TA-SnO ₂				
	Areal Ratio	54.77%	45.23%	-

Table S1. Summary of fitted results from XPS O 1s spectra displayed in Fig. 2b.

Electrode Materials	Electrolyte	Potential (V vs. RHE)	FE _{formate} (%)	<i>j</i> нсоо- (mA/cm ²)	Reference s (year)
TA-SnO ₂	0.5 M KHCO ₃	-0.80	60.11	33.66	This work
Surface-engineered Sn foil	0.1 M KHCO ₃	-1.09	77.4	3.7	S1 (2017)
Sn dendrite/Sn foil	0.1 M KHCO ₃	-1.36	71.6	~23	S2 (2015)
Sn-Cu alloy	0.1 M KHCO ₃	-0.50	95	31.4	S3 (2019)
Ag-Sn core-shell alloy	0.5 M NaHCO ₃	-0.90	87.2	~25	S4 (2017)
Sn quantum sheet/graphene	0.1 M NaHCO ₃	-1.13	89	18.7	S5 (2016)
Sn/SnO _x thin film	0.5 M NaHCO ₃	-0.7	~40	~1.6	S6 (2012)
SnS ₂ -derived Sn/ reduced graphene oxide	0.1 М КНСО ₃	-1.05	90	10.0	S7 (2017)
SnO ₂ nanoparticles/ carbon cloth	0.5 M NaHCO ₃	-1.07	85	45	S8 (2017)
Sn(S)/Au needle	0.1 M KHCO ₃	-0.75	95	51.2	S9 (2017)

Table S2. Comparisons on electrochemical CO_2RR performances of TA-SnO₂ and previously reported formate-producing Sn-based catalysts.

Fig. S1. (a) SEM image of AN-SnO_x and (b) corresponding EDS spectrum. (c) SEM image of TA-SnO₂ and (d) corresponding EDS spectrum. For assigning the EDS signals, Pt was included in addition to Sn and O due to the presence of thin layer of Pt deposited on the surface to improve the conductivity during the SEM analysis.

Fig. S2. (a,c) Scanning transmission electron microscopy (STEM) image of (a) $AN-SnO_x$ and (c) TA-SnO₂ and corresponding elemental maps of O and Sn. (b,d) EDS spectra (b) $AN-SnO_x$ and (d) TA-SnO₂ obtained from the regions marked in (a) and (c), respectively.

Fig. S3. High-magnification TEM images of (a) AN-SnO_x and (b) TA-SnO₂.

Fig. S4. (a-c) CV diagrams of (a) Sn foil, (b) $AN-SnO_x$, and (c) $TA-SnO_2$ measured in Arsaturated 0.5 M KHCO₃ electrolyte at various scan rates. The potential window of 0.17 to 0.37 V was selected to minimize possible interference from Sn-oxidation and SnO_x -reduction currents. (d-f) Capacitive currents respectively obtained from (a-c) at 0.3 V and their linear fits for calculations of EDLCs of (d) Sn foil, (e) $AN-SnO_x$, and (f) $TA-SnO_2$.

Fig. S5. XAFS spectra of Sn foil, $AN-SnO_x$, and $TA-SnO_2$.

Fig. S6. k^3 -weighted Fourier transform of EXAFS spectra of Sn foil, AN-SnO_x, and TA-SnO₂ obtained at Sn K-edge.

Fig. S7. (a-c) Steady-state CO_2RR measurements of (a) Sn foil, (b) AN-SnO_x, and (c) TA-SnO₂ under various applied potentials. (d-f) Faradaic efficiencies of products for (d) Sn foil, (e) AN-SnO_x, and (f) TA-SnO₂ obtained after the CO₂RR depicted in (a-c), respectively.

Fig. S8. The calibration curve for the evaluation of formate concentration. The peak area of formate ($\delta = 8.445$) was first modified with respect to reference DSS peak ($\delta = 0$), and the obtained value was calibrated again using the curve above.

Fig. S9. Comparison between the specific CO_2RR activities of AN-SnO_x and TA-SnO₂ toward formate production by j_{HCOO} - divided by EDLCs.

Fig. S10. Magnified version of the CO₂RR curve of bare Sn foil.

Fig. S11. Digital photograph images of commercial SnO and SnO₂ (from Sigma-Aldrich).

Fig. S12. Digital photograph images of TA-SnO₂ during CO₂RR under various applied potentials.

Fig. S13. (a) Bare and (b) surface-etched (1 min Ar-sputtered) XPS Sn 3d spectra before and after CO₂RR.

Fig. S14. XRD patterns of TA-SnO₂ before and after CO₂RR at -0.8 V and -1.0 V. The peaks assigned with asterisks are signals from gray Sn (JCPDS #05-0390).

References

- S1 R. Daiyan, X. Lu, Y.G. Ng and R. Amal, Catal. Sci. Technol., 2017, 7, 2542-2550.
- S2 D. H. Won, C. H. Choi, J. Chung, M. W. Chung, E. H. Kim and S. I. Woo, *ChemSusChem*, 2015, 8, 3092-3098.
- S3 X. Zheng, Y. Ji, J. Tang, J. Wang, B. Liu, H.-G. Steinrück, K. Lim, Y. Li, M. F. Toney, K. Chan and Y. Cui, *Nat. Catal.*, 2019, 2, 55-61.
- S4 W. Luc, C. Collins, S. Wang, H. Xin, K. He, Y. Kang and F. Jiao, J. Am. Chem. Soc., 2017, 139, 1885-1893.
- S5 F. Lei, W. Liu, Y. Sun, J. Xu, K. Liu, L. Liang, T. Yao, B. Pan, S. Wei and Y. Xie, *Nat. Commun.*, 2016, 7, 12697.
- S6 Y. Chen and M. K. Kanan, J. Am. Chem. Soc., 2012, 134, 1986-1989.
- S7 F. Li, L. Chen, M. Xue, T. Williams, Y. Zhang, D. Macfarlane and J. Zhang, *Nano Energy*, 2017, **31**, 270-277.
- S8 F. Li, L. Chen, G. P. Knowles, D. R. MacFarlane and L. Zhang, Angew. Chem. Int. Ed., 2017, 56, 505-509.
- S9 X. Zheng, P. D. Luna, F. P. D. Arquer, B. Zhang, N. Becknell, M. B. Ross, Y. Li, M. N. Banis, Y. Li, M. Liu, O. Voznyy, C.T. Dinh, T. Zhuang, P. Stadler, Y. Cui, X. Du, P. Yang and E. H. Sargent, *Joule*, 2017, 1, 794-805.