Supporting information for

VCD spectroscopy reveals that a water molecule determines the conformation of azithromycin in solution

Daniel P. Demarque,^a Michael Kemper,^a Christian Merten^{a,*}

 ^{a)} Ruhr Universität Bochum Lehrstuhl für Organische Chemie II Universitätsstraße 150 44801 Bochum, Germany christian.merten@ruhr-uni-bochum.de www.mertenlab.de

Table of Contents

1.	Experimental and computational details	2
2.	Additional spectra	3
3.	Conformational analysis	4
4.	Additional references	6

1. Experimental and computational details

Materials. Azithromycin-dihydrate and chloroform- d_1 were purchased from Sigma Aldrich (Germany) and used without further purification.

IR and VCD spectroscopy. The IR and VCD spectra were recorded on a Bruker Vertex 70/ PMA 50 VCD spectrometer. A solution of azithromycin in CDCl3 at a concentration of 0.185 M was held in a transmission cell with BaF_2 windows with 50 µm path length. Both IR and VCD spectra were recorded at 4 cm⁻¹ spectral resolution by accumulating 32 respectively at least ~32000 scans (minimum of 8 hours accumulation time for VCD). Baseline correction of the VCD spectra was done by subtraction of the solvent recorded under identical conditions.

Computational details. Monte-Carlo (MC) based conformational search was done at force field level (MMFF)¹ using Spartan 14.² Intermediate geometry optimization on the conformer ensembles from Spartan were done on semi-empirical level using Grimme's extended tight-binding (XTB) toolbox.³ Removal of duplicates was done based on comparison of distances matrices using own scripts. Final geometry optimizations and frequency calculations were performed at the B3LYP/6-31G(2d,p) level of theory using the Gaussian 09 E.01 software package with tight convergence criteria and ultrafine integration grids.⁴ Solvent effects were taken into account implicitly by using the integral equation formalism of the polarizable continuum model (IEFPCM)⁵ for chloroform. Vibrational line broadening was simulated by assigning a Lorentzian band shape with half-width at half-height of 8 cm⁻¹ to the calculated dipole and rotational strength. The calculated frequencies were scaled by a factor of σ =0.982. The theoretical spectra shown in the main text are simulated according to the Boltzmann weights for the relative zero-point corrected energies ΔE_{ZPC} . Figures are prepared using CylView.⁶

2. Additional spectra

Figure S1. Comparison of experimental and computed spectra of 1 obtained from a single MC search run.

Figure S2. Comparison of experimental and computed spectra of 1, $1 \cdot H_2O$ and $1 \cdot (H_2O)_2$ for different frequency scaling factors σ . The scaling factor used on the right was determined following the approach presented in Reference 7.

3. Conformational analysis

Table S1. Absolute and relative zero-point corrected and Gibbs free energies, E_{ZPC} and G_{298K} , for the lowest energy conformers of **1** which together make up for pop(ΔE)>99% as obtained at the B3LYP/6-31G(2d,p)/IEFPCM(CDCl₃) level of DFT.

id	Ezpc	G298K	DE _{ZPC}	DG298K	pop(DE)	pop(DG)
	hartree	hartree	[kcal/mol]	[kcal/mol]	[%]	[%]
azi-c1	-2502.620705	-2502.709936	0.00	0.00	46.8	35.8
azi-c2	-2502.619714	-2502.709814	0.62	0.08	16.4	31.5
azi-c3	-2502.619250	-2502.708755	0.91	0.74	10.0	10.2
azi-c4	-2502.619209	-2502.707638	0.94	1.44	9.6	3.1
azi-c5	-2502.618371	-2502.707695	1.46	1.41	3.9	3.3
azi-c6	-2502.617759	-2502.706680	1.85	2.04	2.1	1.1
azi-c7	-2502.617685	-2502.706565	1.90	2.12	1.9	1.0
azi-c8	-2502.617509	-2502.707280	2.01	1.67	1.6	2.1
azi- <i>c9</i>	-2502.617478	-2502.707588	2.02	1.47	1.5	3.0
azi- <i>c10</i>	-2502.617256	-2502.706329	2.16	2.26	1.2	0.8
azi- <i>c11</i>	-2502.616720	-2502.706464	2.50	2.18	0.7	0.9
azi- <i>c12</i>	-2502.616653	-2502.706455	2.54	2.18	0.6	0.9
azi- <i>c13</i>	-2502.616521	-2502.705075	2.63	3.05	0.6	0.2
azi- <i>c14</i>	-2502.616518	-2502.707239	2.63	1.69	0.6	2.1
azi- <i>c15</i>	-2502.616331	-2502.706442	2.74	2.19	0.5	0.9
azi- <i>c16</i>	-2502.615846	-2502.705228	3.05	2.95	0.3	0.2
azi- <i>c17</i>	-2502.615776	-2502.706350	3.09	2.25	0.3	0.8
azi- <i>c18</i>	-2502.615693	-2502.704714	3.15	3.28	0.2	0.1
azi- <i>c19</i>	-2502.615604	-2502.704682	3.20	3.30	0.2	0.1
azi-c20	-2502.615453	-2502.705480	3.30	2.80	0.2	0.3
	$\Sigma = 99.1$			99.1	98.6	

id	E _{ZPC} [hartree]	G _{298K} [hartree]	DE _{ZPC} [kcal/mol]	DG _{298K} [kcal/mol]	pop(DE) [%]	pop(DG) [%]
azi-H ₂ O-c1	-2579.053294	-2579.143764	0.00	0.00	53.4	36.6
azi-H ₂ O-c2	-2579.052657	-2579.143658	0.40	0.07	27.2	32.7
azi-H ₂ O-c3	-2579.051216	-2579.142228	1.30	0.96	5.9	7.2
azi-H ₂ O-c4	-2579.050677	-2579.142051	1.64	1.07	3.3	6.0
azi-H ₂ O-c5	-2579.050455	-2579.141052	1.78	1.70	2.6	2.1
azi-H ₂ O- <i>c6</i>	-2579.049762	-2579.141208	2.22	1.60	1.3	2.4
azi-H ₂ O-c7	-2579.049612	-2579.140889	2.31	1.80	1.1	1.7
azi-H ₂ O-c8	-2579.049544	-2579.140559	2.35	2.01	1.0	1.2
azi-H ₂ O-c9	-2579.049464	-2579.140675	2.40	1.94	0.9	1.4
azi-H ₂ O-c10	-2579.049380	-2579.140080	2.46	2.31	0.8	0.7
azi-H ₂ O- <i>c11</i>	-2579.048942	-2579.140813	2.73	1.85	0.5	1.6
azi-H ₂ O-c12	-2579.048702	-2579.139773	2.88	2.50	0.4	0.5
azi-H ₂ O-c13	-2579.048379	-2579.140137	3.08	2.28	0.3	0.8
azi-H ₂ O- <i>c14</i>	-2579.048104	-2579.139093	3.26	2.93	0.2	0.3
				$\Sigma =$	99.1	95.2

Table S2. Absolute and relative zero-point corrected and Gibbs free energies, E_{ZPC} and G_{298K} , for the lowest energy conformers of $1 \cdot H_2O$ which together make up for pop(ΔE)>99% as obtained at the B3LYP/6-31G(2d,p)/IEFPCM(CDCl₃) level of DFT

Table S3. Absolute and relative zero-point corrected and Gibbs free energies, E_{ZPC} and G_{298K} , for the lowest energy conformers of $1 \cdot (H_2O)_2$ which together make up for pop(ΔE)>95% as obtained at the B3LYP/6-31G(2d,p)/IEFPCM(CDCl₃) level of DFT

id	E _{ZPC} [hartree]	G298K [hartree]	DE _{ZPC} [kcal/mol]	DG _{298K} [kcal/mol]	pop(DE) [%]	pop(DG) [%]
azi-(H ₂ O) ₂ -c1	-2655.482072	-2655.574119	0.00	0.00	71.98	59.83
azi-(H ₂ O) ₂ -c2	-2655.47996	-2655.572385	1.33	1.09	7.68	9.53
azi-(H ₂ O) ₂ -c3	-2655.479877	-2655.572316	1.38	1.13	7.03	8.85
azi-(H ₂ O) ₂ -c4	-2655.479133	-2655.571176	1.84	1.85	3.20	2.65
azi-(H ₂ O) ₂ -c5	-2655.478811	-2655.571367	2.05	1.73	2.27	3.24
azi-(H ₂ O) ₂ -c6	-2655.478793	-2655.571856	2.06	1.42	2.23	5.44
azi-(H ₂ O) ₂ -c7	-2655.478372	-2655.571488	2.32	1.65	1.43	3.68
				$\Sigma =$	95.82	93.22

4. Additional references

- 1. Halgren, T. A., Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94. *J. Comput. Chem.* **1996**, *17* (5-6), 490-519.
- 2. Spartan 14, Wavefunction Inc., Irvine, CA, USA, Spartan 14, Wavefunction Inc., Irvine, CA, USA: 2014.
- 3. Bannwarth, C.; Ehlert, S.; Grimme, S., GFN2-xTB—An Accurate and Broadly Parametrized Self-Consistent Tight-Binding Quantum Chemical Method with Multipole Electrostatics and Density-Dependent Dispersion Contributions. *J. Chem. Theo. Comp.* **2019**, *15* (3), 1652-1671.
- Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; J. A. Montgomery, J.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. *Gaussian 09, Rev E.01*, Gaussian, Inc.: Wallingford CT, USA, 2013.
- Mennucci, B.; Tomasi, J.; Cammi, R.; Cheeseman, J. R.; Frisch, M. J.; Devlin, F. J.; Gabriel, S.; Stephens, P. J., Polarizable Continuum Model (PCM) Calculations of Solvent Effects on Optical Rotations of Chiral Molecules. J. Phys. Chem. A 2002, 106 (25), 6102-6113.
- 6. Legault, C. Y. *CYLview 1.0b*, Université de Sherbrooke: Université de Sherbrooke, 2009.
- 7. Weirich, L.; Magalhaes de Oliveira, J.; Merten, C., How many solvent molecules are required to solvate chiral 1,2-diols with hydrogen bonding solvents? A VCD spectroscopic study. *Phys. Chem. Chem. Phys.* **2020**, *22* (3), 1525-1533.