Supporting Information

Divergent Functionalization of α , β -Enones: Catalyst-free Access to

$\beta\text{-}Azido$ Ketones and $\beta\text{-}Amino$ $\alpha\text{-}Diazo$ Ketones

Youshao Tu^a, Honglin Dong^a, Huamin Wang^{b*}, Yuhui Ao,^a Yu Liu^{a*}

^aJilin Provincial Key Laboratory of Carbon Fiber Development and Application, College of Chemistry and Life Science, Changchun University of Technology, Changchun 130012, China

^bCollege of Chemistry and Chemical Engineering, University of South China 28 N Changsheng West Road, Hengyang 421001, China

Table of Contents

1. General information	S2
2. Optimization of the reaction conditions	S3
3. General experimental procedure	S4
4. X-ray Crystal Structure for 2s	S5
5. References	S6
6. Characterization data of products	S6
7. ¹ H, ¹³ C, and ¹⁹ F NMR Spectra	
-	

1.General information:

Unless otherwise noted, all reactions were carried out under an air atmosphere; materials obtained from commercial suppliers were used directly without further purification. ¹H NMR spectra, ¹³C NMR spectra and ¹⁹F NMR spectra were recorded on a Bruker 400 (or 300, 500) MHz spectrometer in chloroform-d₃. Chemical shifts (in ppm) were referenced to tetramethylsilane ($\delta = 0$ ppm) in CDCl₃ as an internal standard. ¹³C NMR spectra were obtained by using the same NMR spectrometers and were calibrated with CDCl₃ ($\delta = 77.00$ ppm). The data is being reported as (s = singlet, d = doublet, dd = doublet of doublet, t = triplet, m = multiplet or unresolved, br = broad signal, coupling constant(s) in Hz, integration).

Reactions were monitored by thin layer chromatography (TLC) using silicycle pre-coated silica gel plates. Flash column chromatography was performed on silica gel 60 (particle size 200-400 mesh ASTM, purchased from Yantai, China) and eluted with petroleum ether/ethyl acetate. The Substrates 1 were synthesized according to the reported methods¹. All reagents and solvents were used as received from commercial sources (*Energy Chemical, J&K*[®], *Adamas-beta*[®]) without further purification.

2.Optimization of the reaction conditions.^[a]

CF ₃ +	TMSN ₃ Solvent, Temp., 12 h	F_3 + CF_3
1a	2a	3a

Entry	Temp./°C	Solvent	2a /Yield(%) ^[b]	3a /Yield(%) ^[b]
1	r.t	DMF	23	67
2	r.t	DMSO	15	77
3	r.t	THF	86	N.D.
4	r.t	Et ₂ O	87	N.D.
5	r.t	1,4-dioxane	trace	N.D.
6	r.t	toluene	8	N.D.
7	r.t	DCM	76	N.D.
8	r.t	MeCN	92	N.D.
9	r.t	acetone	99	N.D.
10	0	acetone	92	N.D.
11	40	acetone	90	N.D.
12	50	acetone	80	6
13	60	acetone	76	7
14	70	acetone	N.D.	10
15	70	toluene	N.D.	trace
16	70	ethylene goycol	N.D.	trace
17	70	1,4-dioxane	N.D.	trace
18	70	cyclohexane	N.D.	trace
19	70	THF	N.D.	N.D.
20	70	n-hexane	N.D.	N.D.
21	70	tert-Butyl methyl ether	N.D.	N.D.
22	70	MeCN	10	58
23	70	DMF	7	81
24	70	DMSO	34	64
25	80	DMF	N.D.	49
26	60	DMF	11	89(81)

[a]: Reactions conducted on 0.1 mmol scale of 1a, TMSN₃ (2.0 equiv) in 1 mL of solvent for overnight; [b]: ¹⁹F NMR yield with PhCF₃ as an internal standard, The isolated yield in the brackets; N.D. = not detected.

3. General experimental procedure

To a solution of 1 (0.2 mmol) in 1 mL acetone was added $TMSN_3$ (0.4 mmol, 46.1 mg), and the reaction mixture was stirred at room temperature overnight and monitored by TLC. After the completion of the reaction, the mixture was directly applied to column chromatography on silica gel (hexane/ethyl acetate as eluent) to give product 2.

$$R^{1} \xrightarrow{R^{3}} R^{2} + TMSN_{3} \xrightarrow{DMF,60 \circ C} R^{3} \xrightarrow{N_{3}} R^{2}$$

$$R^{1} \xrightarrow{N_{2}} R^{2}$$

$$R^{2} = CF_{3}, CO_{2}Et$$

$$R^{3} = H, CH_{3}$$

To a solution of 1 (0.2 mmol) in 1 mL DMF was added $TMSN_3$ (0.4 mmol, 46.1 mg), and the reaction mixture was stirred at 60 °C and monitored by TLC. After the completion of the reaction, the mixture was directly applied to column chromatography on silica gel (hexane/ethyl acetate as eluent) to give product **3**.

4. Single Crystal X-ray Crystallography of 2s.

	O CF ₃	₃ ≡	F2	F3 F1 N1 N2 N3
Bond precis	sion:	C-C = 0.0031 A		Wavelength=1.54184
Cell:	a=7.6547(1)	b=8.3977(2) c=21.073	38 (4)
	alpha=90	beta=90	gamma=9()
Temperature	e: 293 K			
		Calculated		Reported
Volume		1354.66(4)		1354.66(4)
Space group	0	P 21 21 21		P 21 21 21
Hall group		P 2ac 2ab		P 2ac 2ab
Moiety form	nula	C14 H10 F3 N3 0		C14 H10 F3 N3 0
Sum formula	1	C14 H10 F3 N3 0		C14 H10 F3 N3 0
Mr		293.25		293.25
Dx,g cm-3		1.438		1.438
Z		4		4
Mu (mm-1)		1.058		1.058
F000		600.0		600. 0
F000'		602.34		
h, k, lmax		9, 10, 25		9, 10, 25
Nref		2411[1421]		2394
Tmin, Tmax		0.699, 0.760		0. 590, 1. 000
Tmin'		0.585		
Correction SCAN	method= # Rep	orted T Limits: Tmir	n=0.590 Tmax=1.000 A	AbsCorr = MULTI-
Data comple	eteness= 1.68/	0.99 Th	eta(max)= 67.073	
R(reflections)= 0.0302(2283)		2283)	wR2(reflections) = 0.0842(2394)	

Figure S1 Crystallographic data for the structures provided

Npar= 191

S = 1.082

5. References

[1] (a) H. Wang, L. Zhang, Y. Tu, R. Xiang, Y.-L. Guo, J. Zhang. Angew. Chem. Int. Ed., 2018, 57, 15787; (b) X. Su, W. Zhou, Y. Li, J. Zhang, Angew. Chem. Int. Ed. 2015, 54, 6874; Angew. Chem. 2015, 127, 6978; (c) W. Zhou, X. Su. M. Tao, C. Zhu, Q. Zhao, J. Zhang, Angew. Chem. Int. Ed. 2015, 54, 14853; Angew. Chem. 2015, 127, 15066; (d) W. Zhou, P. Chen, M. Tao, X. Su, Q. Zhao, J. Zhang, Chem. Commun. 2016, 52, 7612; (e) P. Chen, X. Su, W. Zhou, Y. Xiao, J. Zhang, Tetrahedron 2016, 72, 2700; (f)T. Yamazaki, T. Kawasaki-Takasuka, A. Furuta, S. Sakamoto, Tetrahedron, 2009, 65, 5945.

6.Characterization data of products.

(2a) 3-azido-4,4,4-trifluoro-1-phenylbutan-1-one

The reaction of (*E*)-4,4,4-trifluoro-1-phenylbut-2-en-1-one (*E*-1a,0.2 mmol, 40.0 mg) and TMSN₃ (0.4 mmol, 46.1 mg) in acetone (1 mL) at room temperate give 2a as colorless oil (eluent: petroleum ether/ethyl acetate = 15:1); 44.3 mg, 91% yield.

The reaction of (*Z*)-4,4,4-trifluoro-1-phenylbut-2-en-1-one (*Z*-1a,0.2 mmol, 40.0 mg) and TMSN₃ (0.4 mmol, 46.1 mg) in acetone (1 mL) at room temperate to give 2a as colorless oil (silica gel, petroleum ether/ethyl acetate = 15:1); 29.7 mg, yield 61%. ¹H NMR (400 MHz, CDCl₃) δ 8.00-7.93 (m, 2H), 7.63 (dd, J = 10.6, 4.2 Hz, 1H), 7.50 (t, J = 7.6 Hz, 2H), 4.74-4.54 (m, 1H), 3.31 (ddd, J = 20.2, 17.9, 6.1 Hz, 2H); ¹⁹F NMR (376 MHz, CDCl₃) δ -75.38; ¹³C NMR (101 MHz, CDCl₃) δ 194.30, 135.87, 134.10, 128.93, 128.22, 124.87 (q, J = 280.8 Hz), 58.26 (q, J = 31.0 Hz), 37.29; HRMS (EI): Exact mass calcd for C₁₀H₇F₃NO [M-N₂-H]⁺ = 214.0480, Found 214.0482.

(2b) 3-azido-4,4,4-trifluoro-1-(p-tolyl)butan-1-one

The reaction of (*E*)-4,4,4-trifluoro-1-(p-tolyl)but-2-en-1-one (**1b**, 0.2 mmol, 42.8 mg), and TMSN₃ (0.4 mmol, 46.1 mg) in acetone (1 mL) at 0 °C to give **2b** as colorless oil(silica gel, petroleum ether/ethyl acetate = 15:1); 47.5 mg, 92% yield ¹H NMR (400 MHz, CDCl₃) δ 7.86 (d, J = 8.0 Hz, 1H), 7.29 (d, J = 8.0 Hz, 1H), 4.71-4.53 (m, 1H), 3.28 (ddd, J = 19.6, 17.8, 5.9 Hz, 2H), 2.43 (s, 3H); ¹⁹F NMR (376 MHz, CDCl₃) δ -75.34; ¹³C NMR (101 MHz, CDCl₃) δ 193.80, 145.11, 133.36, 129.67, 129.53, 128.93, 128.27, 124.83 (q, J = 280.7 Hz), 58.21 (q, J = 31.0 Hz), 37.04, 21.62; HRMS (EI): Exact mass calcd for C₁₁H₉F₃NO [M-N₂-H]⁺ = 228.0636,

Found 228.0638.

(2c) 3-azido-4,4,4-trifluoro-1-(4-methoxyphenyl)butan-1-one

The reaction of (*E*)-4,4,4-trifluoro-1-(4-methoxyphenyl)but-2-en-1-one (**1c**, 0.2 mmol, 46.1 mg), and TMSN₃ (0.4 mmol, 46.1 mg). in acetone (1 mL) at 0 °C to give **2c** (silica gel, petroleum ether/ethyl acetate = 15:1) as yellow oil; 54.0 mg, 99% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.94 (d, J = 8.8 Hz, 2H), 6.96 (d, J = 8.8 Hz, 2H), 4.77-4.49 (m, 1H), 3.88 (s, 3H), 3.26 (ddd, J = 19.8, 17.7, 6.1 Hz, 2H); ¹⁹F NMR (376 MHz, CDCl₃) δ -75.34; ¹³C NMR (101 MHz, CDCl₃) δ 192.59, 164.27, 131.24, 130.50, 128.86, 124.85 (q, J = 280.7 Hz), 114.03, 77.32, 77.00, 76.68, 58.25 (q, J = 30.9 Hz), 55.49, 36.76; HRMS (ESI): Exact mass calcd for C₁₁H₁₀F₃N₃NaO₂ [M+Na]⁺ = 296.0617, found 296.0619.

(2d)3-azido-4,4,4-trifluoro-1-(4-(trifluoromethoxy)phenyl)butan-1-one

The reaction of(*E*)-4,4,4-trifluoro-1-(4-(trifluoromethoxy)phenyl)but-2-en-1-one (1d, 0.2 mmol, 56.9 mg), and TMSN₃ (0.4 mmol, 46.1 mg) in acetone (1 mL) at room temperate to give 2d (silica gel, petroleum ether/ethyl acetate = 15:1) as yellow oil; 58.5 mg, 89% yield.

¹H NMR (400 MHz, CDCl₃) δ 8.05–8.01 (m, 2H), 7.33 (d, J = 8.1 Hz, 2H), 4.69–4.60 (m, 1H), 3.29 (ddd, J = 20.4, 17.9, 6.2 Hz, 2H); ¹⁹F NMR (376 MHz, CDCl₃) δ -57.71, -75.46; ¹³C NMR (126 MHz, CDCl₃) δ 192.86, 153.34 (d, J = 1.7 Hz), 133.86, 130.28, 124.70 (q, J = 280.7 Hz), 120.24 (q, J = 259.3 Hz), 120.57 (d, J = 0.6 Hz), 58.10 (q, J = 31.1 Hz), 37.28; HRMS (EI): Exact mass calcd for C₁₁H₆F₆N₂O₂ [M-N₂-H]⁺ = 298.0303, Found 298.0305.

(2e) 1-([1,1'-biphenyl]-4-yl)-3-azido-4,4,4-trifluorobutan-1-one

The reaction of (*E*)-1-([1,1'-biphenyl]-4-yl)-4,4,4-trifluorobut-2-en-1-one (1e, 0.2 mmol, 55.3 mg), and TMSN₃ (0.4 mmol, 46.1 mg) in acetone (1 mL) at 0 °C to give **2e** (silica gel, petroleum ether/ethyl acetate = 15:1) as white powder; 57.0 mg, 97% yield.

¹H NMR (400 MHz, CDCl₃) δ 8.03 (d, J = 8.4 Hz, 2H), 7.75-7.66 (m, 2H), 7.64-7.61 (m, 2H), 7.44 (dt, J = 25.4, 7.2 Hz, 3H), 4.75-4.56 (m, 1H), 3.33 (ddd, J = 20.2, 17.8, 6.1 Hz, 2H); ¹⁹F NMR (376 MHz, CDCl₃) δ -75.29; ¹³C NMR (101 MHz, CDCl₃) δ 193.80, 146.81, 139.51, 134.44, 129.41, 129.01, 128.77, 128.50, 127.57, 127.46,

127.27,124.82 (q, J = 280.7 Hz) ,58.23 (q, J = 31.0 Hz), 37.24; HRMS (ESI) : Exact mass calcd for $C_{16}H_{12}F_3N_3NaO$ [M+Na]⁺ = 342.0825, found 342.0823.

(2f) 3-azido-4,4,4-trifluoro-1-(4-fluorophenyl)butan-1-one

The reaction of (E)-4,4,4-trifluoro-1-(4-fluorophenyl)but-2-en-1-one (**1f**, 0.2 mmol, 43.7 mg) and TMSN₃ (0.4 mmol, 46.1 mg) in acetone (1 mL) at room temperate to give **2f** (silica gel, petroleum ether/ethyl acetate = 15:1) as yellow oil; 39 mg, 89% yield.

¹H NMR (400 MHz, CDCl₃) δ 8.08-7.93 (m, 2H), 7.18 (t, J = 8.5 Hz, 2H), 4.75-4.57 (m, 1H), 3.28 (ddd, J = 20.1, 17.8, 6.1 Hz, 2H); ¹⁹F NMR (376 MHz, CDCl₃) δ -75.39, -103.16; ¹³C NMR (101 MHz, CDCl₃) δ 192.69, 167.61, 165.06, 132.27, 130.96, 130.86, 124.76 (q, J = 280.7 Hz), 116.21, 115.99, 58.19 (q, J = 31.0 Hz), 37.17; HRMS (EI): Exact mass calcd for C₁₀H₆F₄NO [M-N₂-H]⁺ = 232.0386, Found 232.0384.

(2g) 3-azido-1-(4-chlorophenyl)-4,4,4-trifluorobutan-1-one

The reaction of (*E*)-1-(4-chlorophenyl)-4,4,4-trifluorobut-2-en-1-one (**1g**, 0.2 mmol, 44.7 mg) and TMSN₃ (0.4 mmol, 46.1 mg) in acetone (1 mL) at room temperate to give **2g** (silica gel, petroleum ether/ethyl acetate = 15:1) as yellow oil; 44.6 mg, 88.6% yield.

¹H NMR (400 MHz, CDCl₃) δ 7.91 (d, J = 8.5 Hz, 2H), 7.48 (d, J = 8.5 Hz, 2H), 4.65-4.62 (m, 1H), 3.27 (ddd, J = 20.2, 17.8, 6.1 Hz, 2H); ¹⁹F NMR (376 MHz, CDCl₃) δ -75.38; ¹³C NMR (101 MHz, CDCl₃) δ 193.11, 140.73, 134.11, 130.14, 129.55, 129.26, 124.73 (q, J = 280.7 Hz), 58.15 (q, J = 31.1 Hz), 37.23; HRMS (EI): Exact mass calcd for C₁₀H₇ClF₃N₃O[M]⁺ = 277.0230, Found 277.0232.

(2h) 3-azido-1-(4-bromophenyl)-4,4,4-trifluorobutan-1-one

The reaction of (*E*)-1-(4-bromophenyl)-4,4,4-trifluorobut-2-en-1-one (**1h**, 0.2 mmol, 55.8 mg) and TMSN₃ (0.4 mmol, 46.1 mg) in acetone (1 mL) at room temperate to give **2h** (silica gel, petroleum ether/ethyl acetate = 15:1) as yellow oil; 54.9 mg, 92.7% yield.

¹H NMR (400 MHz, CDCl₃) δ 7.83 (d, J = 8.6 Hz, 2H), 7.65 (d, J = 8.6 Hz, 2H), 4.64 (ddd, J = 9.6, 7.1, 2.4 Hz, 1H), 3.27 (ddd, J = 20.4, 17.9, 6.2 Hz, 2H); ¹⁹F NMR (376 MHz, CDCl₃) δ -75.36; ¹³C NMR (101 MHz, CDCl₃) δ 193.32, 134.48, 132.26, 129.60, 129.46, 124.71 (d, J = 280.7 Hz), 58.12 (q, J = 31.1 Hz), 37.21; HRMS (EI): Exact mass calcd for C₁₀H₆BrF₃NO [M-N₂-H]⁺ = 291.9585, Found 291.9583.

(2i) 3-azido-4,4,4-trifluoro-1-(4-nitrophenyl)butan-1-one

The reaction of (*E*)-4,4,4-trifluoro-1-(4-nitrophenyl)but-2-en-1-one (**1i**, 0.2 mmol, 49.0 mg) and TMSN₃ (0.4 mmol, 46.1 mg) in acetone (1 mL) at room temperate to give **2i** (silica gel, petroleum ether/ethyl acetate = 15:1) as yellow oil; 21.7 mg, 41% yield.

¹H NMR (400 MHz, CDCl₃) δ 8.36 (d, J = 8.7 Hz, 2H), 8.15 (d, J = 8.7 Hz, 2H), 4.66 (ddd, J = 9.4, 7.0, 2.4 Hz, 1H), 3.36 (qd, J = 18.0, 6.1 Hz, 2H); ¹⁹F NMR (376 MHz, CDCl₃) δ -75.35; ¹³C NMR (101 MHz, CDCl₃) δ 193.03, 150.93, 139.98, 129.28, 124.12, 124.60 (q, J = 280.7 Hz), 77.32, 77.00, 76.68, 58.05 (q, J = 31.3 Hz), 37.86; HRMS (EI): Exact mass calcd for $C_{10}H_6F_3N_2O_3$ [M-N₂-H]⁺ = 259.0331, Found 259.0333.

The reaction of (*E*)-4-(4,4,4-trifluorobut-2-enoyl)benzonitrile (**1j**, 0.2 mmol, 45.0 mg) and TMSN₃ (0.4 mmol, 46.1 mg) in acetone (1 mL) at room temperate to give **2j** (silica gel, petroleum ether/ethyl acetate = 15:1) as yellow oil; 21.5 mg, 44% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.11-8.04 (m,2H), 7.90-7.80 (m, 2H), 4.65 (ddd, J = 9.6, 7.0, 2.6 Hz, 1H), 3.32 (ddd, J = 20.7, 18.0, 6.2 Hz, 1H); ¹⁹F NMR (376 MHz, CDCl₃) δ -75.42; ¹³C NMR (126 MHz, CDCl₃) δ 193.21, 138.45, 132.73, 128.58, 127.78, 124.56 (q, J = 280.8 Hz), 57.96 (q, J = 31.3 Hz), 37.60; HRMS (EI): Exact mass calcd for C₁₁H₆F₃N₂O [M-N₂-H]⁺ = 239.0432, Found 239.0434.

(21) 3-azido-4,4,4-trifluoro-1-(2-methoxyphenyl)butan-1-one

The reaction of (*E*)-4,4,4-trifluoro-1-(2-methoxyphenyl)but-2-en-1-one (**11**, 0.2 mmol, 46.1 mg) and TMSN₃ (0.4 mmol, 46.1 mg) in acetone (1 mL) at room temperate to give **21** (silica gel, petroleum ether/ethyl acetate = 15:1) as yellow oil; 48.9 mg, 99% yield.

¹H NMR (400 MHz, CDCl₃) δ 7.84 (dd, J = 7.7, 1.6 Hz, 1H), 7.59-7.44 (m, 1H), 7.02 (dd, J = 18.1, 8.0 Hz, 2H), 4.60 (td, J = 7.4, 4.9 Hz, 1H), 3.93 (s, 3H), 3.47-3.27 (m, 2H); ¹⁹F NMR (376 MHz, CDCl₃) δ -75.35; ¹³C NMR (101 MHz, CDCl₃) δ 195.45, 159.18, 134.80, 130.82, 126.19, 124.88 (q, J = 280.7 Hz), 120.87, 111.69, 58.20 (q, J = 30.7 Hz), 55.48, 42.31; HRMS (EI): Exact mass calcd for C₁₀H₉F₃NO₂ [M-N₂-H]⁺ = 244.0662, Found 244.0660.

(2m) 3-azido-1-(2-bromophenyl)-4,4,4-trifluorobutan-1-one

The reaction of (E)-1-(2-bromophenyl)-4,4,4-trifluorobut-2-en-1-one (1m, 0.2 mmol, 55.8 mg) and TMSN₃ (0.4 mmol, 46.1 mg) in acetone (1 mL) at room temperate to give **2m** (silica gel, petroleum ether/ethyl acetate = 15:1) as yellow oil; 53.1 mg, 82%yield.

¹H NMR (400 MHz, CDCl₃) δ 7.65 (dd, J = 7.9, 1.0 Hz, 1H), 7.48 (dd, J = 7.6, 1.8 Hz, 1H), 7.38 (dtd, J = 17.1, 7.4, 1.5 Hz, 2H), 4.90–4.22 (m, 1H), 3.32–3.27 (m, 2H); ¹⁹F NMR (376 MHz, CDCl₃) δ -75.31;¹³C NMR (101 MHz, CDCl₃) δ 197.74, 139.67, 134.12, 132.61, 129.03, 127.66, 124.57 (d, J = 281.0 Hz), 119.01, 58.13 (q, J = 31.2 Hz), 40.94; HRMS (EI): Exact mass calcd for C₁₀H₆BrF₃NO [M-N₂-H]⁺ = 291.9672, Found 291.9674.

(2n) 3-azido-4,4,4-trifluoro-1-(2-nitrophenyl)butan-1-one

The reaction of (*E*)-4,4,4-trifluoro-1-(2-nitrophenyl)but-2-en-1-one (**1n**, 0.2 mmol, 49.0 mg) and TMSN₃ (0.4 mmol, 46.1 mg) in acetone (1 mL) at room temperate to give **2n** (silica gel, petroleum ether/ethyl acetate = 10:1) as yellow oil; 50.5 mg, 96% yield.

¹H NMR (400 MHz, CDCl₃) δ 8.17 (d, J = 8.2 Hz, 1H), 7.79 (t, J = 7.4 Hz, 1H), 7.69 (dd, J = 11.5, 4.1 Hz, 1H), 7.45 (d, J = 7.5 Hz, 1H), 4.64 (ddd, J = 9.4, 6.9, 2.3 Hz, 1H), 3.18 (ddd, J = 28.0, 18.0, 6.1 Hz, 2H); ¹⁹F NMR (376 MHz, CDCl₃) δ -75.38; ¹³C NMR (101 MHz, CDCl₃) δ 196.93, 145.52, 136.43, 134.55, 131.29, 128.63, 127.22, 124.66, 124.44 (q, J = 281.0 Hz), 57.85 (q, J = 31.3 Hz), 41.23; HRMS (EI): Exact mass calcd for C₁₀H₆F₃N₂O₃ [M-N₂-H]⁺ = 259.0331, Found 259.0333.

(20) 3-azido-4,4,4-trifluoro-1-(3-fluorophenyl)butan-1-one

The reaction of (*E*)-4,4,4-trifluoro-1-(3-fluorophenyl)but-2-en-1-one (**10**, 0.2 mmol, 43.7 mg) and TMSN₃ (0.4 mmol, 46.1 mg) in acetone (1 mL) at room temperate to give **20** (silica gel, petroleum ether/ethyl acetate = 15:1) as yellow oil; 34.1 mg,

72.5% yield.

¹H NMR (400 MHz, CDCl₃) δ 7.75 (d, J = 7.7 Hz, 1H), 7.66 (d, J = 9.1 Hz, 1H), 7.50 (td, J = 7.9, 5.7 Hz, 1H), 7.33 (td, J = 8.1, 2.2 Hz, 1H), 4.65 (dd, J = 11.8, 4.7 Hz, 1H), 3.29 (qd, J = 17.9, 6.1 Hz, 2H); ¹⁹F NMR (376 MHz, CDCl₃) δ -75.40, -111.00; ¹³C NMR (101 MHz, CDCl₃) δ 193.18, 193.16, 164.19, 161.71, 137.77 (d, J = 6.3 Hz), 130.64 (d, J = 7.7 Hz), 124.71 (q, J = 280.7 Hz), 123.94 (d, J = 3.0 Hz), 121.16 (d, J = 21.5 Hz), 120.54, 114.94 (d, J = 22.6 Hz), 58.12 (q, J = 31.1 Hz), 37.46; HRMS (EI): Exact mass calcd for C₁₀H₆F₃NO [M-N₂-H]⁺ = 232.0386, Found 232.0385.

(2p) 3-amino-4,4,4-trifluoro-1-(3-nitrophenyl)butan-1-one

The reaction of (*E*)-4,4,4-trifluoro-1-(3-nitrophenyl)but-2-en-1-one (**1p**, 0.2 mmol, 49.0 mg) and TMSN₃ (0.4 mmol, 46.1 mg) in acetone (1 mL) at room temperate to give **2p** (silica gel, petroleum ether/ethyl acetate = 15:1) as yellow oil; 40.6 mg, 70% yield.

¹H NMR (400 MHz, CDCl₃) δ 8.79 (t, J = 1.9 Hz, 1H), 8.50 (ddd, J = 8.2, 2.2, 1.0 Hz, 1H), 8.33-8.31 (m, 1H), 7.76 (t, J = 8.0 Hz, 1H), 4.72-4.64 (m, 1H), 3.38 (ddd, J = 20.6, 18.0, 6.2 Hz, 2H); ¹⁹F NMR (376 MHz, CDCl₃) δ -75.33; ¹³C NMR (126 MHz, CDCl₃) δ 192.39, 148.46, 136.76, 133.54, 130.21, 128.20, 124.48 (q, J = 280.9 Hz), 122.97, 57.90 (q, J = 31.2 Hz), 37.54; HRMS (EI): Exact mass calcd for C₁₀H₆F₃N₂O₃ [M-N₂-H]⁺ = 259.0331, Found 259.0330.

(2q) 3-amino-1-(3,5-bis(trifluoromethyl)phenyl)-4,4,4-trifluorobutan-1-one

The reaction of (*E*)-1-(3,5-bis(trifluoromethyl)phenyl)-4,4,4-trifluorobut-2-en-1-one (**1q**, 0.2 mmol, 67.2 mg) and TMSN₃ (0.4 mmol, 46.1 mg) in acetone (1 mL) at room temperate to give **2q** (silica gel, petroleum ether/ethyl acetate = 15:1) as yellow oil; 53.8 mg, 62.6% yield.

¹H NMR (400 MHz, CDCl3) δ 8.40 (s, 2H), 8.15 (s, 1H), 4.86–4.54 (m, 1H), 3.36 (ddd, J = 20.6, 18.0, 6.2 Hz, 2H); ¹⁹F NMR (376 MHz, CDCl3) δ -63.06, -75.36; 13C NMR (126 MHz, CDCl3) δ 191.98, 137.10, 132.85 (q, J = 34.3 Hz), 128.18 (d, J = 3.0 Hz), 127.26 (dd, J = 7.2, 3.6 Hz), 125.94, 124.54 (q, J = 280.9 Hz), 122.69 (q, J = 273.4 Hz), 121.60, 57.97 (q, J = 31.4 Hz), 37.65; HRMS (EI): Exact mass calcd for C12H5F3NO3 [M-N2-H]+ = 350.0301, Found 350.0229.

(2r) 3-amino-1-(3,4-dichlorophenyl)-4,4,4-trifluorobutan-1-one

The reaction of ethyl (*E*)-1-(3,4-dichlorophenyl)-4,4,4-trifluorobut-2-en-1-one (1r, 0.2 mmol, 53.8 mg), and TMSN₃ (0.4 mmol, 46.1 mg) in acetone (1 mL) at room temperate to give 2r (silica gel, petroleum ether/ethyl acetate = 15:1) as yellow oil; 27.7 mg, 48% yield.

¹H NMR (400 MHz, CDCl₃) δ 8.05 (dd, J = 4.4, 2.1 Hz, 1H), 7.79 (ddd, J = 8.4, 4.4, 2.1 Hz, 1H), 7.61 (t, J = 8.4 Hz, 1H), 4.63 (ddd, J = 9.7, 7.0, 2.6 Hz, 1H), 3.26 (ddd, J = 20.5, 17.9, 6.2 Hz, 2H); ¹⁹F NMR (376 MHz, CDCl₃) δ -75.35; ¹³C NMR (126 MHz, CDCl₃) δ 192.29, 138.89, 135.14, 133.78, 131.04, 130.14, 127.10, 124.60 (q, J = 280.8 Hz), 58.01 (d, J = 31.2 Hz), 37.33; HRMS (ESI): Exact mass calcd. for C₁₀H₆Cl₂F₃N₃NaO [M+Na]⁺ = 333.9732, found 333.9729.

(2s) 3-amino-4,4,4-trifluoro-1-(naphthalen-2-yl)butan-1-one

The reaction of (*E*)-4,4,4-trifluoro-1-(naphthalen-2-yl)but-2-en-1-one (**1s**, 0.2 mmol, 50.1 mg) and TMSN₃ (0.4 mmol, 46.1 mg) in acetone (1 mL) at room temperate to give **2s** (silica gel, petroleum ether/ethyl acetate = 15:1) as white powder; 53.4 mg, 99% yield.

¹H NMR (400 MHz, CDCl₃) δ 8.42 (s, 1H), 8.07-7.77 (m, 2H), 7.59 (dt, J = 14.7, 7.0 Hz, 1H), 4.84-4.59 (m, 1H), 3.42 (ddd, J = 19.9, 17.8, 6.1 Hz, 1H); ¹⁹F NMR (376 MHz, CDCl₃) δ -75.25; ¹³C NMR (101 MHz, CDCl₃) δ 194.13, 135.95, 133.08, 132.37, 130.17, 129.63, 129.02, 128.80, 127.83, 127.10, 124.86 (q, J = 280.8 Hz), 123.39, 58.28 (q, J = 30.9 Hz), 37.24; HRMS (ESI): Exact mass calcd. for C₁₄H₁₀F₃N₃NaO [M+Na]⁺ = 316.0668, found 316.0661.

(2t) 3-azido-4,4,5,5,5-pentafluoro-1-phenylpentan-1-one

The reaction of ethyl (*E*)-4,4,5,5,5-pentafluoro-1-phenylpent-2-en-1-one (**1t**, 0.2 mmol, 50.0 mg) and TMSN₃ (0.4 mmol, 46.1 mg) in acetone (1 mL) at room temperate to give **2t** (silica gel, petroleum ether/ethyl acetate = 15:1) as yellow oil; 20.9 mg, 39% yield.

¹H NMR (400 MHz, CDCl₃) δ 8.05-7.94 (m, 2H), 7.67-7.60 (m, 1H), 7.51 (dd, J = 10.6, 4.8 Hz, 2H), 4.74 (dt, J = 16.4, 8.1 Hz, 1H), 3.38 (ddd, J = 20.2, 17.9, 6.1 Hz, 2H); ¹⁹F NMR (376 MHz, CDCl₃) δ -81.39, -121.85 (dd, J = 2130.5, 274.7 Hz); ¹³C NMR (126 MHz, CDCl₃) δ 194.41, 135.69, 134.15, 129.02, 128.91, 128.84, 128.19, 119.86 (t, J = 35.6 Hz), 117.59 (t, J = 35.3 Hz), 56.93 (dd, J = 26.8, 22.5 Hz), 36.59; HRMS (ESI): Exact mass calcd. for C₁₁H₈F₅N₃NaO [M+Na]⁺ = 316.0480, found 316.0480.

(2v) 3-azido-1-(4-bromophenyl)-4,4,4-trifluoro-3-methylbutan-1-one

The reaction of (*E*)-1-(4-chlorophenyl)-4,4,5,5,5-pentafluoropent-2-en-1-one (1v, 0.2 mmol, 58.6 mg) and TMSN₃ (0.4 mmol, 46.1 mg) in acetone (1 mL) at room temperate to give 2v (silica gel, petroleum ether/ethyl acetate = 15:1) as yellow oil; 20.9 mg, 39% yield.

¹H NMR (400 MHz, CDCl₃) δ 7.81 (d, J = 8.6 Hz, 2H), 7.63 (d, J = 8.6 Hz, 2H), 3.42 (d, J = 16.3 Hz, 1H), 3.10 (d, J = 16.3 Hz, 1H), 1.75 (s,3H); ¹⁹F NMR (376 MHz, CDCl₃) δ -80.79; ¹³C NMR (126 MHz, CDCl₃) δ 193.79, 135.49, 132.08, 129.70, 125.45 (q, J = 284.6 Hz), 63.21 (q, J = 27.8 Hz), 39.84, 16.12; HRMS (ESI): Exact mass calcd. for C₁₁H₉BrF₃N₃NaO [M+Na]⁺ = 357.9773, found 357.9775.

(2x) ethyl 2-amino-4-oxo-4-phenylbutanoate

The reaction of ethyl (*E*)-4-oxo-4-phenylbut-2-enoate (**1x**, 0.2 mmol, 50.1 mg) and TMSN₃ (0.4 mmol, 46.1 mg) in acetone (1 mL) at room temperate to give **2x** (silica gel, petroleum ether/ethyl acetate = 15:1) as yellow oil; 34.5 mg, 80% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.96 (d, J = 7.4 Hz, 2H), 7.60 (t, J = 7.4 Hz, 1H), 7.48 (t, J = 7.6 Hz, 2H), 4.63-4.60 (m, 1H), 4.29 (q, J = 6.9 Hz, 2H), 3.46 (ddd, J = 24.8, 17.7, 6.3 Hz, 2H), 1.33 (t, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 195.66, 169.70, 136.08, 133.67, 128.73, 128.10, 62.16, 58.03, 39.98, 14.08; HRMS (ESI): Exact mass calcd. for C₁₂H₁₃N₃NaO₃ [M+Na]⁺ = 270.0849, found 270.0845.

(2y) 3-azido-1-cyclohexyl-4,4,4-trifluorobutan-1-one

The reaction of ethyl (*E*)-1-cyclohexyl-4,4,4-trifluorobut-2-en-1-one (**1y**, 0.2 mmol, 41.2 mg) and TMSN₃ (0.4 mmol, 46.1 mg) in acetone (1 mL) at room temperate to give 2x (silica gel, petroleum ether/ethyl acetate = 15:1) as yellow oil; 40.4 mg, 81% yield.

¹H NMR (400 MHz, CDCl₃) δ 4.52–4.32 (m, 1H), 2.78 (qd, J = 17.9, 6.2 Hz, 2H), 2.47–2.26 (m, 1H), 2.04–1.74 (m, 4H), 1.69 (d, J = 10.8 Hz, 1H), 1.48–1.09 (m, 5H). ¹⁹F NMR (376 MHz, CDCl₃) δ -75.59. ¹³C NMR (101 MHz, CDCl₃) δ 208.13, 124.68 (q, J = 280.6 Hz), 120.50, 57.76 (q, J = 31.0 Hz), 57.29, 50.98, 38.67, 28.14, 28.08, 25.63, 25.41, 25.38. HRMS (ESI): Exact mass calcd. for $C_{10}H_{14}NNaO_3 [M-N_2-H]^+ = 22.1106$, found 222.1104.

(3a)3-amino-2-diazo-4,4,4-trifluoro-1-phenylbutan-1-one

The reaction of (E)-4,4,4-trifluoro-1-phenylbut-2-en-1-one (E-1a,0.2 mmol, 40.0 mg) and TMSN₃ (0.4 mmol, 46.1 mg) in DMF (1 mL) at 60 °C to give **3a** (silica gel, petroleum ether/ethyl acetate = 4:1) as yellow oil; 39.4 mg, 81% yield.

The reaction of (*Z*)-4,4,4-trifluoro-1-phenylbut-2-en-1-one (*Z*-1**a**,0.2 mmol, 40.0 mg) and TMSN₃ (0.4 mmol, 46.1 mg) in DMF (1 mL) at 60 °C to give **3a** (silica gel, petroleum ether/ethyl acetate = 4:1) as yellow oil; 35.7 mg, 74% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.64-7.57 (m, 2H), 7.54 (t, *J* = 7.4 Hz, 1H), 7.46 (t, *J* = 7.4 Hz, 2H), 4.75 (q, *J* = 6.8 Hz, 1H), 1.80 (s, 1H); ¹⁹F NMR (376 MHz, CDCl₃) δ - 77.02; ¹³C NMR (101 MHz, CDCl₃) δ 187.29, 136.71, 132.07, 128.75, 127.14, 126.89, (q, *J* = 281.9 Hz), 67.84, 49.77 (q, *J* = 32.3 Hz); HRMS (ESI): Exact mass calcd. for

(3b) 3-amino-2-diazo-4,4,4-trifluoro-1-(p-tolyl)butan-1-one

 $C_{10}H_8F_3N_3NaO [M+Na]^+ = 266.0512$, found 266.0512.

The reaction of (*E*)-4,4,4-trifluoro-1-(p-tolyl)but-2-en-1-one (**1b**, 0.2 mmol, 42.8 mg) and TMSN₃ (0.4 mmol, 46.1 mg) in DMF (1 mL) at 60 °C to give **3b** (silica gel, petroleum ether/ethyl acetate = 4:1) as yellow oil; 39.3 mg, 76% yield. ¹H NMR (400 MHz, CDCl₃) ¹H NMR (400 MHz, CDCl₃) δ 7.52 (d, *J* = 8.1 Hz, 2H), 7.33–7.20 (m, 2H), 4.75 (d, *J* = 6.5 Hz, 1H), 2.41 (s, 3H), 1.78 (s, 2H); ¹⁹F NMR (376 MHz, CDCl₃) δ -76.98; ¹³C NMR (101 MHz, CDCl₃) δ 187.11, 142.81, 134.04, 129.38, 127.30, 125.53 (q, *J* = 282.0 Hz), 67.22, 49.84 (q, *J* = 32.1 Hz), 21.53; HRMS (ESI): Exact mass calcd. for C₁₁H₁₀F₃N₃NaO [M+Na]⁺ = 280.0668, found 280.0664.

(3c) 3-amino-2-diazo-4,4,4-trifluoro-1-(4-methoxyphenyl)butan-1-one

The reaction of (*E*)-4,4,4-trifluoro-1-(4-methoxyphenyl)but-2-en-1-one (1c, 0.2 mmol, 46.0 mg) and TMSN₃ (0.4 mmol, 46.1 mg) in DMF (1 mL) at 60 °C to give 3c (silica gel, petroleum ether/ethyl acetate = 4:1) as yellow oil; 43.5 mg, 80% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.61 (d, *J* = 8.6 Hz, 2H), 6.94 (d, *J* = 8.6 Hz, 2H), 4.75 (dd, *J* = 13.4, 6.6 Hz, 1H), 3.86 (s, 3H), 1.79 (s, 1H); ¹⁹F NMR (376 MHz, CDCl₃) δ -

(dd, *J* = 15.4, 0.0 Hz, HI), 5.80 (3, 5H), 1.77 (3, HI), 1 HURE (570 WHz, CDCI₃) 0 = 76.94; ¹³C NMR (101 MHz, CDCI₃) δ 186.12, 162.74, 129.41, 129.30, 126.95, 125.55 (q, *J* = 282.0 Hz), 66.69, 55.45, 49.93 (q, *J* = 32.2 Hz); HRMS (ESI): Exact mass calcd. for C₁₁H₁₀F₃N₃NaO₂ [M+Na]⁺ = 296.0617, found 296.0620.

(3d)3-amino-2-diazo-4,4,4-trifluoro-1-(4-(trifluoromethoxy)phenyl)butan-1-one

The reaction of (*E*)-4,4,4-trifluoro-1-(4-(trifluoromethyl)phenyl)but-2-en-1-one (**1d**, 0.2 mmol, 56.8 mg) and TMSN₃ (0.4 mmol, 46.1 mg) in DMF (1 mL) at 60 °C to give **3d** (silica gel, petroleum ether/ethyl acetate = 4:1) as yellow oil; 54.0 mg, 83% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.67 (d, *J* = 8.7 Hz, 2H), 7.30 (d, *J* = 8.1 Hz, 2H), 4.73 (d, *J* = 6.6 Hz, 1H), 1.81 (s, 2H); ¹⁹F NMR (376 MHz, CDCl₃) δ -57.79, -77.12; ¹³C NMR (101 MHz, CDCl₃) δ 185.58, 151.76, 135.01, 129.18, 126.84, 124.04, 120.83, 120.31 (q, *J* = 258.8 Hz), 67.87, 49.82 (q, *J* = 31.8 Hz); HRMS (ESI): Exact mass calcd. for C₁₁H₁₀F₃N₃NaO₂ [M+Na]⁺ = 328.0515, found 328.0511.

(3e)1-([1,1'-biphenyl]-4-yl)-3-amino-2-diazo-4,4,4-trifluorobutan-1-one The reaction of (*E*)-1-([1,1'-biphenyl]-4-yl)-4,4,4-trifluorobut-2-en-1-one (1e, 0.2 mmol, 55.3 mg) and TMSN₃ (0.4 mmol, 46.1 mg) in DMF (1 mL) at 60 °C to give 3e (silica gel, petroleum ether/ethyl acetate = 4:1) as yellow solid; 53.8 mg, 84% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.67 (d, *J* = 8.8 Hz, 4H), 7.60 (d, *J* = 7.8 Hz, 2H), 7.46 (t, *J* = 7.4 Hz, 2H), 7.41-7.37 (m, 1H), 4.77 (d, *J* = 6.6 Hz, 1H), 1.81 (s, 2H); ¹⁹F NMR (376 MHz, CDCl₃) δ -76.95; ¹³C NMR (101 MHz, CDCl₃) δ 186.78, 145.03, 139.75, 135.40, 128.95, 128.21, 127.80, 127.39, 127.20, 125.52 (q, *J* = 282.1 Hz), 67.53, 49.87 (q, *J* = 32.2 Hz); HRMS (ESI): Exact mass calcd. for C₁₆H₁₂F₃N₃NaO [M+Na]⁺ = 342.0825, found 342.0822.

(3f)3-amino-2-diazo-4,4,4-trifluoro-1-(4-fluorophenyl)butan-1-one

The reaction of (*E*)-4,4,4-trifluoro-1-(4-fluorophenyl)but-2-en-1-one (**1f**, 0.2 mmol, 43.7 mg) and TMSN₃ (0.4 mmol, 46.1 mg) in DMF (1 mL) 60 °C to give **3f** (silica gel, petroleum ether/ethyl acetate = 4:1) as yellow oil; 38.8 mg, 83% yield.

¹H NMR (400 MHz, CDCl₃) δ 7.66-7.63 (m, 2H), 7.15 (t, J = 8.6 Hz, 2H), 4.74 (q, J = 6.9 Hz, 1H), 1.79 (s, 2H); ¹⁹F NMR (376 MHz, CDCl₃) δ -77.05, -106.06; ¹³C NMR (101 MHz, CDCl₃) δ 185.81, 166.12, 163.60, 132.92, 132.88, 129.71 (d, J = 9.0 Hz), 125.46 (q, J = 281.9 Hz), 115.99 (d, J = 22.0 Hz), 67.50, 49.82 (q, J = 32.4 Hz), 29.67; HRMS (ESI): Exact mass calcd. for C₁₀H₈F₄N₃O [M+H]⁺ = 262.0600, found 262.0598.

(3g)3-amino-1-(4-chlorophenyl)-2-diazo-4,4,4-trifluorobutan-1-one

The reaction of (*E*)-1-(4-chlorophenyl)-4,4,4-trifluorobut-2-en-1-one (**1g**, 0.2 mmol, 46.8 mg) and TMSN₃ (0.4 mmol, 46.1 mg) in DMF (1 mL) 60 °C to give **3g**(silica gel, petroleum ether/ethyl acetate = 4:1) as yellow oil; 41.2 mg, 74% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.56 (d, *J* = 8.4 Hz, 2H), 7.44 (d, *J* = 8.4 Hz, 2H), 4.73 (dd, *J* = 13.6, 6.7 Hz, 1H), 1.81 (s, 2H); ¹⁹F NMR (376 MHz, CDCl₃) δ -77.04; ¹³C NMR (101 MHz, CDCl₃) δ 185.90, 138.40, 134.98, 129.13, 128.63, 125.42 (q, *J* = 281.9 Hz), 67.74, 49.78 (q, *J* = 32.4 Hz); HRMS (ESI): Exact mass calcd. for C₁₀H₈ClF₃N₃O [M+H]⁺ = 278.0303, found 278.0301.

(3h)3-amino-1-(4-bromophenyl)-2-diazo-4,4,4-trifluorobutan-1-one

The reaction of(*E*)-1-(4-bromophenyl)-4,4,4-trifluorobut-2-en-1-one (**1h**, 0.2 mmol, 55.9 mg) and TMSN₃ (0.4 mmol, 46.1 mg) in DMF (1 mL) 60 °C to give **3h** (silica gel, petroleum ether/ethyl acetate = 4:1) as yellow oil; 43.4 mg, 67% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.61 (d, *J* = 8.5 Hz, 2H), 7.48 (d, *J* = 8.5 Hz, 2H), 4.72 (dd, *J* = 13.5, 6.7 Hz, 1H), 1.81 (s, 2H); ¹⁹F NMR (376 MHz, CDCl₃) δ -77.04; ¹³C NMR (101 MHz, CDCl₃) δ 185.99, 135.46, 132.11, 128.75, 125.43 (q, *J* = 281.6 Hz), 67.76, 49.82 (q, *J* = 32.3 Hz); HRMS (ESI): Exact mass calcd. for C₁₀H₈BrF₃N₃O [M+H]⁺ = 321.9797, found 321.9790.

(3i)3-amino-2-diazo-4,4,4-trifluoro-1-(4-nitrophenyl)butan-1-one

The reaction of (*E*)-4,4,4-trifluoro-1-(4-nitrophenyl)but-2-en-1-one (**1i**, 0.2 mmol, 49.1 mg) and TMSN₃ (0.4 mmol, 46.1 mg) in DMF (1 mL) at 60 °C to give **3g** (silica gel, petroleum ether/ethyl acetate = 4:1) as yellow oil; 13.1 mg, 23% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.34 (d, *J* = 8.7 Hz, 2H), 7.78 (d, *J* = 8.7 Hz, 2H), 4.74

(s, 1H), 1.76 (s, 2H); ¹⁹F NMR (376 MHz, CDCl₃) δ -77.10; ¹³C NMR (101 MHz,

CDCl₃) δ 185.24, 149.84, 141.90, 128.30, 125.31 (q, J = 282.8 Hz). 124.15, 69.05, 49.72 (q, J = 32.2 Hz); HRMS (ESI): Exact mass calcd. for C₁₀H₈F₃N₄O₃ [M+H]⁺ = 289.0539, found 289.0537.

(3j)4-(3-amino-2-diazo-4,4,4-trifluorobutanoyl)benzonitrile

The reaction of (*E*)-4-(4,4,4-trifluorobut-2-enoyl)benzonitrile (**1**j, 0.2 mmol, 45.0 mg) and TMSN₃ (0.4 mmol, 46.1 mg) in DMF(1 mL) at 60 °C to give **3**j (silica gel, petroleum ether/ethyl acetate = 4:1) as yellow oil; 19.1 mg, 36% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.78 (d, *J* = 7.9 Hz, 2H), 7.71 (d, *J* = 7.7 Hz,2H), 4.73 (s, 1H), 1.79 (s, 2H); ¹⁹F NMR (376 MHz, CDCl₃) δ -77.10; ¹³C NMR (101 MHz, CDCl₃) δ 185.25, 140.24, 132.70, 127.80, , 125.31 (q, *J* = 282.0 Hz), 117.61, 115.70, 68.60, 49.70 (q, *J* = 32.3 Hz); HRMS (ESI): Exact mass calcd. for C₁₁H₈F₃N₄O [M+H]⁺ = 269.0626, found 269.0624.

(3k)3-amino-2-diazo-4,4,4-trifluoro-1-(4-(trifluoromethyl)phenyl)butan-1-one

The reaction of (*E*)-4,4,4-trifluoro-1-(4-(trifluoromethyl)phenyl)but-2-en-1-one (**1k**, 0.2 mmol, 53.7 mg) and TMSN₃ (0.4 mmol, 46.1 mg) in DMF(1 mL) at 60 °C to give **3k** (silica gel, petroleum ether/ethyl acetate = 4:1) as yellow oil; 30.1 mg, 48% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.95 -7.57 (m, 4H), 4.74 (d, *J* = 5.6 Hz, 1H), 1.81 (s, 2H); ¹⁹F NMR (376 MHz, CDCl₃) δ -63.15, -77.12; ¹³C NMR (101 MHz, CDCl₃) δ 185.87, 139.75, 133.73 (q, *J* = 33.0 Hz), 127.59, 125.39 (q, *J* = 282.8 Hz),125.93 (q, *J* = 3.7 Hz), 124.80, 122.09, 68.40, 49.73 (q, *J* = 32.4 Hz); HRMS (ESI) m/z calcd. for C₁₁H₈F₆N₃O [M+H]⁺ = 312.0566, found 312.0569.

(31)3-amino-2-diazo-4,4,4-trifluoro-1-(2-methoxyphenyl)butan-1-one

The reaction of (*E*)-4,4,4-trifluoro-1-(2-methoxyphenyl)but-2-en-1-one (**11**, 0.2 mmol, 46.1 mg) and TMSN₃ (0.4 mmol, 46.1 mg) in DMF (1 mL) at 60°C to give **31** (silica gel, petroleum ether/ethyl acetate = 4:1) as yellow oil; 48.2mg, 88% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.46-7.38 (m, 2H), 7.02 (t, *J* = 7.5 Hz, 1H), 6.94 (d, *J* = 8.4 Hz, 1H), 4.74 (s, 1H), 3.87 (s, 3H), 1.80 (s, 2H); ¹⁹F NMR (376 MHz, CDCl₃) δ -77.10; ¹³C NMR (101 MHz, CDCl₃) δ 186.68, 156.17, 132.53, 129.40, 125.46 (q, *J* = 282.8 Hz), 121.14, 111.26, 77.32, 77.00, 76.68, 70.16, 55.80, 49.55 (q, *J* = 20.2 Hz); HRMS (ESI): Exact mass calcd. for C₁₁H₁₀F₃N₃NaO₂ [M+Na]⁺ = 296.0617, found 296.0612.

(3m)3-amino-1-(2-bromophenyl)-2-diazo-4,4,4-trifluorobutan-1-one

The reaction of (*E*)-1-(2-bromophenyl)-4,4,4-trifluorobut-2-en-1-one (**1m**, 0.2 mmol, 55.8 mg), and TMSN₃ (0.4 mmol, 46.1 mg) in DMF (1 mL) at 60°C to give **3m** (silica gel, petroleum ether/ethyl acetate = 4:1) as yellow oil; 42.2mg, 67 yield %. ¹H NMR (400 MHz, CDCl₃) δ 7.61 (d, *J* = 7.9 Hz, 1H), 7.47-7.23 (m, 4H), 4.75 (d, *J*

= 6.2 Hz, 1H), 1.80 (s, 2H); ¹⁹F NMR (376 MHz, CDCl₃) δ -76.94; ¹³C NMR (101 MHz, CDCl₃) δ 186.66, 138.49, 133.26, 131.80, 128.31, 127.89, 125.27 (q, *J* = 280.8 Hz), 118.76, 70.43, 49.12 (q, *J* = 30.9 Hz); HRMS (ESI): Exact mass calcd. for C₁₀H₈BrF₃N₃O [M+H]⁺ = 321.9797, found 321.9800.

(3n)3-amino-2-diazo-4,4,4-trifluoro-1-(2-nitrophenyl)butan-1-one

The reaction of (*E*)-4,4,4-trifluoro-1-(2-nitrophenyl)but-2-en-1-one (**1n**, 0.2 mmol, 49.0 mg) and TMSN₃ (0.4 mmol, 46.1 mg) in DMF (1 mL) at 60°C to give **3n** (silica gel, petroleum ether/ethyl acetate = 4:1) as yellow oil; 24.3 mg, 42% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.20 (d, *J* = 8.1 Hz, 1H), 7.78 (t, *J* = 7.3 Hz, 1H), 7.67 (t, *J* = 7.6 Hz, 1H), 7.50 (d, *J* = 7.2 Hz, 1H), 4.77 (d, *J* = 6.7 Hz, 1H), 1.85 (s, 2H); ¹⁹F NMR (376 MHz, CDCl₃) δ -76.96; ¹³C NMR (101 MHz, CDCl₃) δ 184.80, 145.96,

134.50, 133.24, 131.28, 128.15, 125.24 (q, J = 283.7 Hz),125.05, 69.78, 49.14 (q, J = 33.2 Hz); HRMS (ESI): Exact mass calcd. for C₁₀H₇F₃N₄NaO₃ [M+Na]⁺ = 311.0362, found 311.0355.

(30)3-amino-2-diazo-4,4,4-trifluoro-1-(3-fluorophenyl)butan-1-one

The reaction of (*E*)-4,4,4-trifluoro-1-(3-fluorophenyl)but-2-en-1-one (**10**, 0.2 mmol, 43.7 mg), and TMSN₃ (0.4 mmol, 46.1 mg) in DMF (1 mL) at 60 °C to give **30** (silica gel, petroleum ether/ethyl acetate = 5:1) as yellow oil; 27.2 mg, 52% yield.

¹H NMR (400 MHz, CDCl₃) δ 7.50-7.37 (m, 2H), 7.31 (d, J = 8.8 Hz, 1H), 7.28-7.19 (m, 1H), 4.74 (d, J = 6.6 Hz, 1H), 1.80 (s, 2H); ¹⁹F NMR (376 MHz, CDCl₃) δ -77.08, -110.73; ¹³C NMR (101 MHz, CDCl₃) δ 185.66, 163.93, 161.45, 138.61 (d, J = 6.5 Hz), 130.57 (d, J = 7.9 Hz), 125.41 (q, J = 282.0 Hz), 122.73, 122.70, 119.13 (d, J = 21.3 Hz), 114.48 (d, J = 22.9 Hz), 68.03, 49.75 (q, J = 32.4 Hz); HRMS (ESI): Exact mass calcd. for C₁₀H₇F₄N₃NaO [M+Na]⁺ = 284.0417, found 284.0411.

(3p)3-amino-2-diazo-4,4,4-trifluoro-1-(3-nitrophenyl)butan-1-one

The reaction of (*E*)-4,4,4-trifluoro-1-(3-nitrophenyl)but-2-en-1-one (**1p**, 0.2 mmol, 49.0 mg) and TMSN₃ (0.4 mmol, 46.1 mg) in DMF (1 mL) at 60 °C to give **3p** (silica gel, petroleum ether/ethyl acetate = 5:1) as yellow oil; 27.8 mg, 48% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.47 (s, 1H), 8.40 (d, *J* = 8.2 Hz, 1H), 7.95 (d, *J* = 7.6 Hz, 1H), 7.70 (t, *J* = 7.9 Hz, 1H), 4.75 (d, *J* = 5.8 Hz, 1H), 1.84 (s, 1H); ¹⁹F NMR (376 MHz, CDCl₃) δ -77.07; ¹³C NMR (101 MHz, CDCl₃) δ 184.40, 148.33, 137.99, 132.80, 130.18, 126.47, 125.31 (q, *J* = 282.1 Hz), 122.29, 68.62, 49.76 (q, *J* = 32.1 Hz); HRMS (ESI): Exact mass calcd. for C₁₀H₈F₃N₄O₃ [M+H]⁺ = 289.0543, found 289.0541.

(3q)3-amino-1-(3,5-bis(trifluoromethyl)phenyl)-2-diazo-4,4,4-trifluorobutan-1-one

The reaction of (*E*)-1-(3,5-bis(trifluoromethyl)phenyl)-4,4,4-trifluorobut-2-en-1-one (**1q**, 0.2 mmol, 67.2 mg) and TMSN₃ (0.4 mmol, 46.1 mg) in DMF (1 mL) at 60 °C to give **3q** (silica gel, petroleum ether/ethyl acetate = 5:1) as yellow oil; 39.8 mg, 53% yield.

¹H NMR (400 MHz, CDCl₃) δ 8.06 (s, 3H), 4.73 (s, 1H), 1.82 (s, 2H); ¹⁹F NMR (376 MHz, CDCl₃) δ -63.07, -77.10; ¹³C NMR (101 MHz, CDCl₃) δ 183.76, 138.31, 132.67 (q, *J* = 34.3 Hz), 129.47, 127.45 (d, *J* = 2.7 Hz), 126.71 (d, *J* = 8.2 Hz), 125.46 (d, *J* = 3.6 Hz), 123.95 (d, *J* = 17.0 Hz), 121.32, 68.89, 49.78 (q, *J* = 32.3 Hz); HRMS (ESI): Exact mass calcd. for C₁₂H₉F₆N₃NaO₃ [M+Na]⁺ = 380.0440, found 380.0438.

(**3r**)3-amino-2-diazo-1-(3,4-dichlorophenyl)-4,4,4-trifluorobutan-1-one

The reaction of ethyl (*E*)-1-(3,4-dichlorophenyl)-4,4,4-trifluorobut-2-en-1-one (**1r**, 0.2 mmol, 53.8 mg) and TMSN₃ (0.4 mmol, 46.1 mg) in DMF(1 mL) at 60 °C to give **2r** (silica gel, petroleum ether/ethyl acetate = 4:1) as yellow oil; 28.8 mg, 46% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.71 (d, *J* = 1.9 Hz, 1H), 7.55 (d, *J* = 8.3 Hz, 1H), 7.44 (dd, *J* = 8.3, 1.9 Hz, 1H), 4.71 (d, *J* = 6.6 Hz, 1H), 1.79 (s, 2H); ¹⁹F NMR (376 MHz, CDCl₃) δ -77.06; ¹³C NMR (101 MHz, CDCl₃) δ 184.44, 136.64, 136.20, 133.63, 130.88, 129.39, 126.14, 125.35 (q, *J* = 282.0 Hz), 68.13, 49.76 (q, *J* = 32.4 Hz); HRMS (ESI): Exact mass calcd. for C₁₀H₇C₁₂F₃N₃O [M+H]⁺ = 311.9913, found 311.9913.

(3s)3-amino-2-diazo-4,4,4-trifluoro-1-(naphthalen-2-yl)butan-1-one

The reaction of (*E*)-4,4,4-trifluoro-1-(naphthalen-2-yl)but-2-en-1-one (**1s**, 0.2 mmol, 50.0 mg) and TMSN₃ (0.4 mmol, 46.1 mg) in DMF (1 mL) at 60 °C to give **3s** (silica gel, petroleum ether/ethyl acetate = 4:1) as yellow powder; 38.2 mg, 65% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.11 (s, 1H), 7.89 (dd, *J* = 14.9, 8.2 Hz, 3H), 7.67 (d, *J* = 8.4 Hz, 1H), 7.61-7.54 (m, 2H), 4.81 (q, *J* = 6.8 Hz, 1H), 1.82 (s, 2H); ¹⁹F NMR (376 MHz, CDCl₃) δ -76.90; ¹³C NMR (101 MHz, CDCl₃) δ 187.18, 134.90, 133.99, 132.36, 130.07, 128.96, 128.85, 128.15, 127.86, 127.76, 125.54 (q, *J* = 281.9 Hz), 123.64, 67.84, 49.88 (q, *J* = 31.9 Hz); HRMS (ESI): Exact mass calcd. for C₁₄H₁₀F₃N₃NaO [M+Na]⁺ = 316.0668, found 316.0673.

(3t)3-amino-2-diazo-4,4,5,5,5-pentafluoro-1-phenylpentan-1-one

The reaction of ethyl (*E*)-4,4,5,5,5-pentafluoro-1-phenylpent-2-en-1-one (**1t**, 0.2 mmol, 50.0 mg) and TMSN₃ (0.4 mmol, 46.1 mg) in DMF (1 mL) at 60 °C to give **3t** (silica gel, petroleum ether/ethyl acetate = 4:1) as yellow oil; 44.4 mg, 76% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.59 (d, *J* = 7.2 Hz, 2H), 7.54 (t, *J* = 7.4 Hz, 1H), 7.46 (t, *J* = 7.4 Hz, 2H), 4.85 (t, *J* = 13.0 Hz, 1H), 1.80 (s, 2H); ¹⁹F NMR (376 MHz, CDCl₃) δ -81.67, -123.67, -123.69 (d, *J* = 11.9 Hz); ¹³C NMR (101 MHz, CDCl₃) δ 187.16, 136.63, 132.11, 128.78, 127.11, 120.32 (t, *J* = 35.7 Hz), 118.23-116.66 (m), 114.41 (t, *J* = 36.1 Hz), 112.03 (d, *J* = 36.2 Hz), 67.60, 48.19 (t, *J* = 23.9 Hz); HRMS (ESI): Exact mass calcd. for C₁₁H₈F₅N₃NaO [M+Na]⁺ = 316.0480, found 316.0487.

(3u)3-amino-1-(4-chlorophenyl)-2-diazo-4,4,5,5,5-pentafluoropentan-1-one

The reaction of (*E*)-1-(4-chlorophenyl)-4,4,5,5,5-pentafluoropent-2-en-1-one (**1u**, 0.2 mmol, 49.7 mg), and TMSN₃ (0.4 mmol, 46.1 mg) in DMF (1 mL) at 60 °C to give **3u** (silica gel, petroleum ether/ethyl acetate = 4:1) as yellow oil; 48.4 mg, 74% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.55 (d, *J* = 8.5 Hz, 2H), 7.45 (d, *J* = 8.5 Hz, 2H), 4.83 (t, *J* = 12.9 Hz, 1H), 1.80 (s, 2H); ¹⁹F NMR (376 MHz, CDCl₃) δ -81.65, -123.68 (d, *J* = 46.9 Hz); ¹³C NMR (101 MHz, CDCl₃) δ 185.79, 138.45, 134.88, 129.15, 128.59, 120.64, 120.28 (t, *J* = 35.7 Hz), 117.52 (d, *J* = 53.3 Hz), 117.43, 116.99 (d, *J* = 18.4 Hz), 114.51 (q, *J* = 36.2 Hz), 111.95 (q, *J* = 35.9 Hz), 67.73, 48.20 (t, *J* = 23.9 Hz); HRMS (ESI): Exact mass calcd. for C₁₁H₈ClF₅N₃O [M+H]⁺ = 328.0271, found 328.0269.

(3v)3-amino-1-(4-bromophenyl)-2-diazo-4,4,4-trifluoro-3-methylbutan-1-one

The reaction of (*E*)-1-(4-chlorophenyl)-4,4,5,5,5-pentafluoropent-2-en-1-one (**1v**, 0.2 mmol, 58.6 mg) and TMSN₃ (0.4 mmol, 46.1 mg) in DMF (1 mL) at 60 °C to give **3v** (silica gel, petroleum ether/ethyl acetate = 4:1) as yellow oil; 32.2 mg, 48% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.59 (d, *J* = 8.5 Hz, 2H), 7.45 (d, *J* = 8.5 Hz, 2H), 2.56 (s, 2H), 1.60 (s, 3H); ¹⁹F NMR (376 MHz, CDCl₃) δ -81.11; ¹³C NMR (101 MHz, CDCl₃) δ 187.89, 136.19, 132.02, 128.73, 126.82 (q, *J* = 286.5 Hz), 126.56, , 68.95, 56.82 (q, *J* = 29.8 Hz), 21.25; HRMS (ESI): Exact mass calcd. for C₁₁H₉BrF₃N₃NaO [M+Na]⁺ = 357.9773, found 357.9777.

(3w)ethyl 3-amino-2-diazo-4,4,4-trifluorobutanoate

The reaction of ethyl (*E*)-4,4,4-trifluorobut-2-enoate (**1w**, 0.2 mmol, 34 mg) and TMSN₃ (0.4 mmol, 46.1 mg) in DMF (1 mL) at 60 °C to give **3w** (silica gel, petroleum ether/ethyl acetate = 5:1) as yellow oil; 21.5 mg, 51% yield. ¹H NMR (400 MHz, CDCl₃) δ 4.36 (q, *J* = 6.8 Hz, 1H), 4.26 (q, *J* = 7.0 Hz, 2H), 1.73 (s, 2H), 1.30 (t, *J* = 7.1 Hz, 3H); ¹⁹F NMR (376 MHz, CDCl₃) δ -77.65; ¹³C NMR (101 MHz, CDCl₃) δ 164.92, 129.58, 125.38 (q, *J* = 281.9 Hz), 61.40, 50.10 (q, *J* = 32.5 Hz), 14.36; HRMS (ESI): Exact mass calcd. for C₆H₉F₃N₃O₂ [M+H]⁺ = 212.0641, found 212.0635.

(4x)ethyl 4-oxo-4-phenyl-2-(4-phenyl-1H-1,2,3-triazol-1-yl)butanoate

2x (0.3 mmol, 1.0 equiv.), Phenylacetylene (2 equiv.),L-ascorbate (16 mg), CuSO₄ (10mg),were dissolved in a mixture of ^tBuOH (1 mL) and water (1mL) under the atmosphere of nitrogen. The mixture was then stirred at ambient temperature for 12 hours. After completion, the reaction mixture was extracted with DCM and brine. The combined organic layers were dried over anhydrous Na₂SO₄, filtered, and concentrated at a reduced pressure. The residue was purified by flash chromatography with eluent (petroleum ether/ethyl acetate = 4/1) to yield the desired product **4x** as yellow solid, yield 50%.

¹H NMR (400 MHz, CDCl₃) δ 8.02 (s, 1H), 7.87 (d, *J* = 7.3 Hz, 2H), 7.76 (d, *J* = 7.3 Hz, 2H), 7.50 (t, *J* = 7.4 Hz, 1H), 7.34 (dt, *J* = 15.0, 7.8 Hz, 4H), 7.23 (t, *J* = 7.4 Hz, 1H), 5.84 (t, *J* = 6.0 Hz, 1H), 4.23-4.10 (m, 2H), 4.01 (qd, *J* = 18.2, 6.1 Hz, 2H), 1.15 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 195.34, 167.75, 147.46, 135.44, 133.91, 130.15, 128.72, 128.15, 128.11, 125.67, 121.23, 62.60, 58.35, 40.64, 13.85. HRMS (ESI): Exact mass calcd. for C₂₀H₁₉N₃NaO₃ [M+Na]⁺ = 372.1319, found 372.1315.

(5x)3-azido-1-phenylbutane-1,4-diol

To a flame-dried Schlenk tube were added 2x (0.2 mmol, 1.0 equiv.), NaBH₄ (2.0 equiv.) and MeOH (1 mL) at 0 °C under the atmosphere of nitrogen. The mixture was stirred at 0 °C for 10 mins. Then the mixture was stirred for 12 h at ambient temperature under the atmosphere of nitrogen. The reaction was quenched with brine and extracted with DCM. The combined organic layers were dried over anhydrous Na₂SO₄, filtered, and concentrated at a reduced pressure. The residue was purified by flash chromatography with eluent (petroleum ether/ethyl acetate = 3/1) to obtain the product **5x** as Colorless oil yield 99%.

¹H NMR (400 MHz, CDCl₃) δ 7.56–7.18 (m, 5H), 4.81–4.77 (m, 1H), 3.73–3.44 (m, 3H), 2.86 (s, 2H), 2.12–1.46 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 144.02, 143.38, 128.68, 128.62, 127.96, 127.82, 125.78, 125.48, 77.32, 77.00, 76.68, 71.46, 71.06, 65.46, 64.69, 61.22, 61.14, 40.07, 39.60. HRMS (ESI): Exact mass calcd. for C₁₀H₁₃N₃NaO₂ [M+Na]⁺ = 230.0900, found 230.0890.

7. ¹H, ¹³C and ¹⁹F NMR Spectra

--75.34

---0.00

7.84 7.69 7.67 7.67 7.60 7.26

---0.00

-80 -90 f1 (ppm) 0 -10 -20 -30 -40 -50 -60 -70 -100 -110 -120 -130 -140 -150 -160 -170

---0.00

-0.00

---0.00

¹H NMR (400 MHz, CDCl₃)

-0.00

O N₃ CF₃ ¹H NMR (400 MHz, CDCl₃)

-7.27

II (PPIII)

-80 -90 f1 (ppm) 0 -10 -20 -30 -40 -50 -60 -70 -100 -110 -120 -130 -140 -150 -160 -170

