Supporting Information

Base Promoted gem-Difluoroolefination of Alkyl

Triflones

Ren-Yin Yang, Hui Wang, Bo Xu*

College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, P. R. China

Table of contents

1.	General	S2
2.	Synthesis of benzyl bromide	S2
3.	General procedure for the synthesis of S1	S3
4.	General procedure for the synthesis of 1	S3
5.	General procedure for the synthesis of gem-difluoroakenes	S5
6.	Gram scale synthesis of 2a	S5
7.	Procedure for the synthesis of gem-dichloroakene 3a	S5
8.	Procedure for the synthesis of 5a	S6
9.	Procedure for the synthesis of 6a	S6
10.	The characterization data of compounds:	S6
11.	References	S24
12.	Copies of NMR spectra	.S25

1. General

¹H NMR (400 MHz, 600 MHz), ¹³C NMR (100 MHz, 150 MHz) and ¹⁹F NMR (376 MHz, 564 MHz) spectra were recorded on a Bruker NMR apparatus. The chemical shifts are reported in δ (ppm) values (¹H and ¹³C NMR relative to CHCl₃, δ 7.26 ppm for ¹H NMR and δ 77.0 ppm for ¹³C NMR). Or alternatively, ¹H NMR chemical shifts were referenced to tetramethylsilane signal (0 ppm). Multiplicities are recorded by s (singlet), d (doublet), t (triplet), q (quartet), p (pentet), m (multiplet) and br (broad). Coupling constants (*J*) are reported in Hertz (Hz). TLC was developed on silica gel 60 F254 glassplates. The products were purified using a commercial flash chromatography system or a regular glass column. The High-Resolution Mass measurements were conducted using an Agilent 7250 GC/Q-TOF equipment.

Commercial reagents and solvents were obtained from the commercial providers and used without further purification. Work-ups and purifications were performed using commercial reagent-grade solvents. Most benzyl bromides were commercially available from Sigma-Aldrich, TCI and Bidepharm. Starting materials $2d^1$ and $1ac^2$, $2ac^2$ are known compounds.

2. Synthesis of benzyl bromide

Procedure for the synthesis of S1o-4:

Procedure for the synthesis of S1o-2:

Under nitrogen atmosphere, to a solution of 1*H*-indole-6-carbaldehyde (**S10-1**) (1.0 equiv) and TsCl (1.05 equiv) in dry DMF (0.2 M/L) was added NaH (1.2 equiv) slowly at 0 °C. After stirring at 0 °C to room temperature for 12 hours, the mixture was quenched by NH₄Cl (aq.) at 0 °C. The mixture was extracted with EtOAc, combined organic layers were dried over Na₂SO₄ and evaporated under reduced pressure to afford residue, which was further purified by silica-gel column chromatography eluting with a mixture of EA and PE to give methyl 1-tosyl-1*H*-indole-6-carbaldehyde (**S10-2**).

Procedure for the synthesis of S1o-3:

Under nitrogen atmosphere, to a solution of 1-tosyl-1*H*-indole-6-carbaldehyde (**S10-2**) (1.0 equiv) in MeOH (0.1 M/L) was added NaBH₄ (1.0 equiv) slowly at 0 °C. After stirring at room temperature for 1 h, water was added at 0 °C. The mixture was extracted with EtOAc, combined organic layers were dried over Na₂SO₄ and evaporated under reduced pressure to afford methyl 6-hydroxymethyl-1-tosylindole (**S10-3**), which was used in the next step without further purification.

Procedure for the synthesis of S1o-4:

Under nitrogen atmosphere, to a solution of 6-hydroxymethyl-1-tosylindole (**S10-3**) (1.0 equiv) in dry Et_2O (0.1 M/L) was added PBr₃ (1.0 equiv) slowly at 0 °C. After stirring at room temperature for 2 h, water and saturated NaHCO₃ (aq.) were added at 0 °C. The mixture was extracted with Et_2O , combined

organic layer were dried over Na_2SO_4 and evaporated under reduced pressure to afford methyl 6bromomethyl-1-tosylindole (S10-4), which was used without further purification.

Procedure for the synthesis of S1n-2

To a solution of methyl 5-methylthiophene-2-carboxylate (S1n-1) (1.0 equiv) in carbon tetrachloride (0.2 M/L) at room temperature was added NBS (1.2 equiv) and AIBN (10 mol%). The resulting mixture was heated to 80 °C and stirred at this temperature for 12 h under a nitrogen atmosphere. The mixture was filtered, and the filtrate was concentrated in a vacuum to give the crude product methyl 5-(bromomethyl)thiophene-2-carboxylate (S1n-2) as a yellow oil. The product was used in the next step without further purification.

3. General procedure for the synthesis of S1

$$Ar = Br + CF_3SO_2Na = \frac{80^\circ C}{CH_3CN} = Ar = SO_2CF_3$$

Under a nitrogen atmosphere, a mixture of benzyl bromide 1 (1.0 equiv.) and NaSO₂CF₃ 2 (2.0 equiv.) in acetonitrile (0.2 M/L) was heated at 80 °C for about 12 to 24 h. After completed the reaction was monitored by TLC and GC-MS, the reaction mixture was cooled down to room temperature; the reaction mixture was concentrated in a vacuum to give a residue. The residue was washed with dichloromethane and filtered through Celite to give the crude product. The crude product was purified by silica gel chromatography eluted with PE: EtOAc = 20:1 or recrystallization from a mixture of hexane and dichloromethane to give product S1.

Procedure for the synthesis of S1t

Under a nitrogen atmosphere, a mixture of (3-bromopropyl)benzene 1 (1.0 equiv.) and NaSO₂CF₃ 2 (2.0 equiv.) in DMA (0.2 M/L) was heated at 110 °C for 3 days. After completed the reaction was monitored by TLC and GC-MS, the reaction mixture was cooled down to room temperature; the reaction mixture was concentrated in a vacuum to give a residue. The residue was washed with dichloromethane and filtered through Celite to give the crude product. The crude product was purified recrystallization from a mixture of hexane and dichloromethane to give the product (3-((trifluoromethyl)sulfonyl)propyl)benzene S1t.

4. General procedure for the synthesis of 1

Ar
$$SO_2CF_3$$
 + E-X H THF, 0°C to r.t. Ar SO_2CF_3
S1 1

To a solution of S1 (1.0 equiv.) in THF (0.2 M/L) was added NaH (1.1 equiv.) under nitrogen atmosphere at 0 °C. The mixture was stirred at 0 °C for 10 minutes, and then benzyl bromide or alkyl iodide in THF was added via syringe. The mixture was stirred at 0 °C to room temperature for several hours. After completion of the reaction (monitored by TLC), the mixture was diluted with NH_4Cl (aq.), and extracted with ethyl acetate; combined organic layers were washed with brine, dried over anhydrous Na_2SO_4 , filtered, concentrated under vacuum to give a residue. The residue was purified by silica gel column chromatography eluting with a mixture of ethyl acetate and petroleum ether to give the 1.

Procedure for the synthesis of 1t

Under nitrogen atmosphere, to a solution of (3-((trifluoromethyl)sulfonyl)propyl)benzene **S1t** (1.0 equiv.) in THF (0.1 M/L) was added "BuLi (1.2 equiv., 1.6 M/L) at -78°C. The mixture was stirred at -78 °C for 30 minutes, and then 1-(bromomethyl)-4-methylbenzene in THF was added via syringe. The mixture was stirred at -78 °C to room temperature for 16 hours. After completion of the reaction (monitored by TLC), the mixture was diluted with NH₄Cl (aq.), and extracted with ethyl acetate; combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, filtered, concentrated under vacuum to give a residue. The residue was purified by silica gel column chromatography eluting with a mixture of ethyl acetate and petroleum ether ($V_{EA}/V_{PE} = 1/100$) to give 1-methyl-4-(4-phenyl-2-((trifluoromethyl)sulfonyl)butyl)benzene **1t**.

Procedure for the synthesis of 1ac:

Procedure for the synthesis of S1ac-2:

Under nitrogen atmosphere, to a solution of [1,1'-biphenyl]-4-yl(phenyl)methanone (**S1ac-1**) (1.0 equiv) in MeOH (0.1 M/L) was added NaBH₄ (1.0 equiv) slowly at 0 °C. After stirring at room temperature for 1 h, water was added at 0 °C. The mixture was extracted with EtOAc, combined organic layers were dried over Na₂SO₄ and evaporated under reduced pressure to afford [1,1'-biphenyl]-4-yl(phenyl)methanol (**S1ac-2**), which was used in the next step without further purification.

Procedure for the synthesis of 1ac:

A mixture of [1,1'-biphenyl]-4-yl(phenyl)methanol (**S1ac-2**) (1.0 equiv), NaSO₂CF₃ (1.5 equiv) and TsOH·H₂O (1.5 equiv) in DCM (0.4 M/L) was stirred at room temperature for 36 h. The mixture was directly filtered and purified by recrystallization from a mixture of DCM and PE to give pure product **1ac**.

5. General procedure for the synthesis of gem-difluoroakenes

To a Schlenk tube was added 1 (0.1 mmol, 1.0 equiv), NaO'Bu (0.3 mmol, 3.0 equiv, 28.0 mg) and LiI (5 mmol%, 1 mg) in the glove box. The tube was evacuated/backfilled with N₂ three times, THF (1.0 mL) was added. The reaction mixture was stirred at 0 °C for 30 minutes, and then TMSCF₂Br (0.2 mmol, 2.0 equiv, 40.0 mg) was added via syringe. Then the reaction mixture was allowed to warm to room temperature and stirred for 30-60 minutes. After completion of the reaction (monitored by TLC), the mixture was concentrated under vacuum to give a residue. The residue was purified by column chromatography on silica gel eluting with a mixture of ethyl acetate and petroleum ether (or 100 % petroleum ether) to give the desired product *gem*-difluoroakenes **2**.

6. Gram scale synthesis of 2a

To a Schlenk tube was added **1a** (2.5 mmol, 1.0 equiv, 1.01 g), NaO'Bu (7.5 mmol, 3.0 equiv, 0.72 g) in the glove box. The tube was evacuated/backfilled with N₂ three times, THF (25 mL) was added. The reaction mixture was stirred at 0 °C for 30 minutes, and then TMSCF₂Br (5.0 mmol, 2.0 equiv, 1.0 g) was added via syringe within 5 minutes. Then the reaction mixture was allowed to warm to room temperature and stirred for 3 hours. The mixture was concentrated under a vacuum to give a residue. The residue was purified by column chromatography on silica gel eluting with 100 % petroleum ether to give **2a** (0.675 g, 84%).

7. Procedure for the synthesis of gem-dichloroakene 3a

To a Schlenk tube was added **1a** (0.1 mmol, 1.0 equiv, 41.0 mg), NaO'Bu (0.5 mmol, 5.0 equiv, 48.0 mg) in the glove box. The tube was evacuated/backfilled with N₂ three times, THF (1.0 mL) was added. The reaction mixture was stirred at 0 °C for 30 minutes, and then CHCl₃ (0.2 mmol, 2.0 equiv, 24.0 mg) was added via syringe. Then the reaction mixture was allowed to warm to room temperature and stirred for 30 minutes. The mixture was concentrated under a vacuum to give a residue. The residue was purified by column chromatography on silica gel eluting with 100 % petroleum ether to give the desired product *gem*-dichloroakene **3a**.

8. Procedure for the synthesis of 5a

Procedure for the synthesis of 4a

Under nitrogen atmosphere, to a solution of 4-(((trifluoromethyl)sulfonyl)methyl)-1,1'-biphenyl **1ah** (1.0 equiv.) in THF (0.1 M/L) was added NaH (2.0 equiv.) at 0 °C. The mixture was stirred for 5-10 minutes, then *p*-tolchloride (1.0 equiv.) was added at 0 °C. The mixture was stirred at this temperature for 20 minutes. After completion of the reaction (monitored by TLC), the reaction mixture was quenched by water, extracted with ethyl acetate, and combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, filtered, concentrated under vacuum to give a residue. The residue was purified by silica gel column chromatography eluting with a mixture of ethyl acetate and petroleum ether (EA/PE = 1/3) to give **4a**.

Procedure for the synthesis of 5a

To a Schlenk tube was added **4a** (0.1 mmol, 1.0 equiv), NaO'Bu (0.2 mmol, 2.0 equiv, 19.0 mg) in the glove box. The tube was evacuated/backfilled with N₂ three times, CH₃CN (1.0 mL) was added. The reaction mixture was stirred at 0 °C for 10 minutes, and then TMSCF₂Br (0.2 mmol, 2.0 equiv, 40.0 mg) was added via syringe. Then the reaction mixture was allowed to warm to room temperature and stirred for 30 minutes. After completion of the reaction (monitored by TLC), the mixture was concentrated under vacuum to give a residue. The residue was purified by thin-layer chromatography on silica gel (EA/PE =1/10) to give the mixture isomer of **5a**. Note: one of the isomer **5a'** was obtained after purification by thin-layer chromatography on silica gel (EA/PE =1/10), again.

9. Procedure for the synthesis of 6a

Under nitrogen atmosphere, a mixture of **2a** (0.1 mmol, 1.0 equiv.) and tetrabutylammonium fluoride (2.0 equiv., 1.0 M/L in THF) was heated at 80 °C for 24 hours After completion of the reaction (monitored by TLC and GC-MS), the reaction mixture was cooled down to room temperature; the reaction mixture was concentrated in a vacuum to give a residue. The residue was purified by silica gel column chromatography eluting with a mixture of ethyl acetate and petroleum ether (EA/PE = 1/100) to give **6a**.

10. The characterization data of compounds:

1-Iodo-4-(((trifluoromethyl)sulfonyl)methyl)benzene (S1g)

SO₂CF₃

White solid, m.p. 159-161°C; ¹H NMR (400 MHz, Chloroform-*d*) δ : 7.80 – 7.78 (m, 2H), 7.17 – 7.15 (m, 2H), 4.41 (s, 2H). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ : -76.3. ¹³C NMR (150 MHz, Chloroform-*d*) δ : 138.5, 132.9, 122.7, 119.6 (q, *J* = 327.0 Hz), 96.6, 55.6. HRMS (ESI) calcd. for C₈H₅F₃O₂IS [M-H]⁻: 348.9013, found: 348.9014.

Methyl 5-(((trifluoromethyl)sulfonyl)methyl)thiophene-2-carboxylate (S1n)

 $\mathsf{MeO_2C} \underbrace{\mathsf{SO_2CF_3}}_{\mathsf{SO_2CF_3}}$

Yellow solid, m.p. 85-87°C; ¹H NMR (400 MHz, Chloroform-*d*) δ : 7.76 (d, J = 3.8 Hz, 1H), 7.23 (d, J = 3.8 Hz, 1H), 4.71 (s, 2H), 3.91 (s, 3H). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ : -75.5. ¹³C NMR (100 MHz, Chloroform-*d*) δ : 161.7, 136.9, 133.6, 132.2, 129.8, 119.6 (q, J = 326.0 Hz), 52.5, 51.2. HRMS (EI⁺) calcd. for C₈H₇F₃O₄S₂ [M]⁺: 287.9732, found: 287.9735.

4-(2-(*p*-tolyl)-1-((trifluoromethyl)sulfonyl)ethyl)-1,1'-biphenyl (1a)

White solid, m.p. 120-122°C; ¹H NMR (400 MHz, Chloroform-*d*) δ : 7.52 (dd, J = 8.0, 2.8 Hz, 4H), 7.39 – 7.30 (m, 5H), 6.92 (d, J = 7.8 Hz, 2H), 6.81 (d, J = 7.8 Hz, 2H), 4.50 (dd, J = 11.6, 3.2 Hz, 1H), 3.68 (dd, J = 13.8, 3.2 Hz, 1H), 3.33 (dd, J = 13.7, 11.6 Hz, 1H), 2.18 (s, 3H). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ : -73.2. ¹³C NMR (100 MHz, Chloroform-*d*) δ : 142.7, 139.8, 137.1, 131.9, 130.7, 129.5, 129.1, 129.0, 128.0, 127.6, 127.4, 127.1, 120.1 (q, J = 330.4 Hz), 68.8, 33.9, 21.1. HRMS (EI⁺) calcd. for C₂₂H₁₉F₃O₂S [M]⁺: 404.1052, found: 404.1048.

1-(tert-Butyl)-4-(2-(p-tolyl)-1-((trifluoromethyl)sulfonyl)ethyl)benzene (1b)

Viscous oil, ¹H NMR (400 MHz, Chloroform-*d*) δ : 7.25 (d, J = 8.2 Hz, 2H), 7.17 (d, J = 8.1 Hz, 2H), 6.85 (d, J = 7.8 Hz, 2H), 6.74 (d, J = 7.8 Hz, 2H), 4.44 (dd, J = 11.3, 3.2 Hz, 1H), 3.60 (dd, J = 13.8, 3.2 Hz, 1H), 3.27 (dd, J = 13.8, 11.4 Hz, 1H), 2.11 (s, 3H), 1.18 (s, 9H). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ : -73.3. ¹³C NMR (100 MHz, Chloroform-*d*) δ : 153.2, 136.9, 132.1, 129.9, 129.4, 129.0, 126.0, 125.3, 120.1 (q, J = 330.5 Hz), 68.8, 34.7, 33.8, 31.2, 21.0. HRMS (EI⁺) calcd. for C₂₀H₂₃F₃O₂S [M]⁺: 384.1365, found: 384.1362.

4,4'-(1-((Trifluoromethyl)sulfonyl)ethane-1,2-diyl)bis(methylbenzene) (1c)

SO₂CF₃

White solid, m.p. 60-62°C; ¹H NMR (400 MHz, Chloroform-*d*) δ : 7.22 (d, J = 7.8 Hz, 2H), 7.15 (d, J = 7.9 Hz, 2H), 6.97 (d, J = 7.6 Hz, 2H), 6.84 (d, J = 7.6 Hz, 2H), 4.49 (dd, J = 11.6, 3.1 Hz, 1H), 3.70 (dd, J = 13.7, 3.1 Hz, 1H), 3.35 (t, J = 12.6 Hz, 1H), 2.33 (s, 3H), 2.24 (s, 3H). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ : -73.3. ¹³C NMR (100 MHz, Chloroform-*d*) δ : 140.0, 136.9, 132.0, 130.0, 129.8, 129.4, 129.0, 125.3, 120.0 (q, J = 330.3 Hz), 68.8, 33.8, 21.3, 21.0. HRMS (FI⁺) calcd. for C₁₇H₁₇F₃O₂S [M]⁺: 342.0896, found: 342.0902.

1-Methyl-4-(2-phenyl-2-((trifluoromethyl)sulfonyl)ethyl)benzene (1d)

White solid, m.p. 61-63°C;¹H NMR (400 MHz, Chloroform-*d*) δ : 7.37 – 7.33 (m, 5H), 6.96 (d, J = 7.7 Hz, 2H), 6.83 (d, J = 7.7 Hz, 2H), 4.52 (dd, J = 11.6, 3.2 Hz, 1H), 3.73 (dd, J = 13.7, 3.2 Hz, 1H), 3.36 (dd, J = 13.6, 11.6 Hz, 1H), 2.23 (s, 3H). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ : -73.3. ¹³C NMR (100 MHz, Chloroform-*d*) δ : 137.0, 131.8, 130.2, 129.9, 129.4, 129.0, 129.0, 128.6, 120.0 (q, J = 330.2 Hz), 69.0, 33.8, 21.0. HRMS (EI⁺) calcd. for C₁₆H₁₅F₃O₂S [M]⁺: 328.0739, found: 328.0743.

2-(2-(p-Tolyl)-1-((trifluoromethyl)sulfonyl)ethyl)naphthalene (1e)

White solid, m.p. 98-100°C; ¹H NMR (400 MHz, Chloroform-*d*) δ : 7.87 – 7.76 (m, 4H), 7.55 – 7.49 (m, 3H), 6.93 (d, J = 7.8 Hz, 2H), 6.85 (d, J = 7.7 Hz, 2H), 4.70 (dd, J = 11.6, 3.1 Hz, 1H), 3.80 (dd, J = 13.8, 3.1 Hz, 1H), 3.50 (dd, J = 13.8, 11.6 Hz, 1H), 2.20 (s, 3H). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ : -73.2. ¹³C NMR (100 MHz, Chloroform-*d*) δ : 137.0, 133.7, 133.0, 131.8, 130.7, 129.4, 129.0, 128.9, 128.3, 127.8, 127.3, 126.7, 126.2, 125.9, 120.0 (q, J = 330.4 Hz), 69.2, 33.8, 21.0. HRMS (EI⁺) calcd. for C₂₀H₁₇F₃O₂S [M]⁺: 378.0896, found: 378.0903.

1-Bromo-4-(2-(p-tolyl)-1-((trifluoromethyl)sulfonyl)ethyl)benzene (1f)

White solid, m.p. 57-59°C; ¹H NMR (400 MHz, Chloroform-*d*) δ : 7.49 (d, J = 8.1 Hz, 2H), 7.20 (d, J = 8.1 Hz, 2H), 6.99 (d, J = 7.6 Hz, 2H), 6.82 (d, J = 7.6 Hz, 2H), 4.49 (dd, J = 11.8, 3.2 Hz, 1H), 3.72 (dd, J = 13.8, 3.1 Hz, 1H), 3.29 (dd, J = 13.7, 11.7 Hz, 1H), 2.25 (s, 3H). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ : -73.8. ¹³C NMR (100 MHz, Chloroform-*d*) δ : 136.9, 133.8, 132.4, 131.7, 130.6, 129.3, 129.2, 128.7, 127.9, 127.2, 126.0, 125.2, 124.5, 121.5, 120.1 (q, J = 330.2 Hz), 62.1, 35.3, 20.9. HRMS (EI⁺) calcd. for C₁₆H₁₄F₃O₂SBr [M]⁺: 405.9844, found: 405.9848.

1-Iodo-4-(2-(p-tolyl)-1-((trifluoromethyl)sulfonyl)ethyl)benzene (1g)

White solid, m.p. 65-67°C; ¹H NMR (400 MHz, Chloroform-*d*) δ : 7.69 (d, J = 7.9 Hz, 2H), 7.07 (d, J = 7.9 Hz, 2H), 6.99 (d, J = 7.6 Hz, 2H), 6.83 (d, J = 7.6 Hz, 2H), 4.46 (dd, J = 11.9, 3.2 Hz, 1H), 3.72 (dd, J = 13.9, 3.1 Hz, 1H), 3.29 (dd, J = 13.8, 11.6 Hz, 1H), 2.26 (s, 3H), 1.55 (s, 2H). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ : -73.2. ¹³C NMR (100 MHz, Chloroform-*d*) δ : 138.3, 137.2, 131.8, 131.4, 129.6, 128.9, 128.4, 119.9 (q, J = 330.1 Hz), 96.4, 68.4, 33.7, 21.1. HRMS (EI⁺) calcd. for C₁₆H₁₄F₃O₂SI [M]⁺: 453.9706, found: 453.9699.

4-(2-(p-Tolyl)-1-((trifluoromethyl)sulfonyl)ethyl)benzonitrile (1h)

White solid, m.p. 104-106°C; ¹H NMR (400 MHz, Chloroform-*d*) δ : 7.65 (d, J = 8.0 Hz, 2H), 7.45 (d, J = 8.0 Hz, 2H), 6.99 (d, J = 7.7 Hz, 2H), 6.80 (d, J = 7.7 Hz, 2H), 4.57 (dd, J = 11.8, 3.3 Hz, 1H), 3.78 (dd, J = 13.8, 3.3 Hz, 1H), 3.31 (dd, J = 13.7, 11.8 Hz, 1H), 2.25 (s, 3H). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ : -73.3. ¹³C NMR (100 MHz, Chloroform-*d*) δ : 137.5, 134.1, 132.6, 130.8, 130.7, 129.6, 128.8, 119.8 (d, J = 330.1 Hz), 117.8, 114.0, 68.2, 33.8, 21.0. HRMS (EI⁺) calcd. for C₁₇H₁₄F₃NO₂S [M]⁺: 353.0692, found: 353.0693.

Ethyl 4-(2-(p-tolyl)-1-((trifluoromethyl)sulfonyl)ethyl)benzoate (1i)

White solid, m.p. 97-99°C; ¹H NMR (400 MHz, Chloroform-*d*) δ : 8.02 (d, J = 7.9 Hz, 2H), 7.41 (d, J = 8.0 Hz, 2H), 6.97 (d, J = 7.7 Hz, 2H), 6.81 (d, J = 7.7 Hz, 2H), 4.57 (dd, J = 11.7, 3.2 Hz, 1H), 4.38 (q, J = 7.1 Hz, 2H), 3.76 (dd, J = 13.7, 3.2 Hz, 1H), 3.35 (dd, J = 13.7, 11.7 Hz, 1H), 2.24 (s, 3H), 1.39 (t, J = 7.1 Hz, 3H). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ : -73.3. ¹³C NMR (100 MHz, Chloroform-*d*) δ : 165.8, 137.2, 133.5, 131.9, 131.2, 130.1, 130.1, 129.5, 128.9, 119.8 (q, J = 330.2 Hz), 68.5, 61.3, 33.8, 21.0, 14.3. HRMS (EI⁺) calcd. for C₁₉H₁₉F₃O₄S [M]⁺: 400.0951, found: 400.0945.

Ethyl 4-(2-phenyl-1-((trifluoromethyl)sulfonyl)ethyl)benzoate (1j)

White solid, m.p. 96-98°C; ¹H NMR (400 MHz, Chloroform-*d*) δ: 8.02 (d, *J* = 7.9 Hz, 2H), 7.43 (d, *J* = 8.0 Hz, 2H), 7.17-7.13 (m, 3H), 6.96-6.93 (m, 2H), 4.67 (dd, *J* = 11.8, 3.2 Hz, 1H), 4.36 (q, *J* = 7.1 Hz, 2H), 3.80 (dd, *J* = 13.7, 3.2 Hz, 1H), 3.40 (dd, *J* = 13.6, 11.7 Hz, 1H), 1.36 (t, *J* = 7.1 Hz, 3H). ¹⁹F

NMR (376 MHz, Chloroform-*d*) δ : -73.3. ¹³C NMR (100 MHz, Chloroform-*d*) δ : 165.7, 134.4, 133.4, 131.9, 130.2, 130.1, 129.1, 128.8, 127.5, 119.9 (q, *J* = 330.1 Hz), 68.4, 61.3, 34.1, 14.2. HRMS (EI⁺) calcd. for C₁₈H₁₇F₃O₄S [M]⁺: 386.0794, found: 386.0796.

1-Methyl-4-(2-(4-(trifluoromethyl)phenyl)-2-((trifluoromethyl)sulfonyl)ethyl)benzene (1k)

White solid, m.p. 42-44°C; ¹H NMR (400 MHz, Chloroform-*d*) δ : 7.62 (d, J = 8.1 Hz, 2H), 7.47 (d, J = 8.0 Hz, 2H), 6.99 (d, J = 7.7 Hz, 2H), 6.82 (d, J = 7.6 Hz, 2H), 4.59 (dd, J = 11.7, 3.2 Hz, 1H), 3.77 (dd, J = 13.8, 3.2 Hz, 1H), 3.34 (dd, J = 13.7, 11.7 Hz, 1H), 2.25 (s, 3H). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ : -63.0, -73.3. ¹³C NMR (100 MHz, Chloroform-*d*) δ : 137.3, 132.9, 132.0 (q, J = 32.9 Hz), 131.1, 130.5, 129.6, 128.8, 126.0 (q, J = 3.8 Hz), 123.6 (q, J = 272.4 Hz), 119.8 (q, J = 330.0 Hz), 68.3, 33.8, 21.0. HRMS (EI⁺) calcd. for C₁₇H₁₄F₆O₂S [M]⁺: 396.0613, found: 396.0612.

1-Methyl-4-(2-(4-nitrophenyl)-2-((trifluoromethyl)sulfonyl)ethyl)benzene (11)

White solid, m.p. 100-102°C; ¹H NMR (400 MHz, Chloroform-*d*) δ : 8.22 – 8.19 (m, 2H), 7.55 – 7.52 (m, 2H), 6.98 (d, J = 7.8 Hz, 2H), 6.82 (d, J = 7.8 Hz, 2H), 4.67 (dd, J = 11.8, 3.4 Hz, 1H), 3.81 (dd, J = 13.7, 3.4 Hz, 1H), 3.35 (dd, J = 13.8, 11.8 Hz, 1H), 2.24 (s, 3H). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ : -73.2. ¹³C NMR (100 MHz, Chloroform-*d*) δ : 148.7, 137.5, 136.0, 131.1, 130.6, 129.7, 128.8, 124.1, 119.8 (q, J = 329.9 Hz), 67.9, 33.8, 21.0. HRMS (EI⁺) calcd. for C₁₆H₁₄F₃NO₄S [M]⁺: 373.0590, found: 373.0585.

1-Methoxy-4-(2-(*p*-tolyl)-1-((trifluoromethyl)sulfonyl)ethyl)benzene (1m)

White solid, m.p. 75-77°C; ¹H NMR (600 MHz, Chloroform-*d*) δ : 7.25 (d, J = 8.6 Hz, 2H), 6.96 (d, J = 7.8 Hz, 2H), 6.85 – 6.83 (m, 4H), 4.51 (dd, J = 11.7, 3.2 Hz, 1H), 3.74 (s, 3H), 3.68 (dd, J = 13.7, 3.2 Hz, 1H), 3.32 (dd, J = 13.7, 11.7 Hz, 1H), 2.22 (s, 3H). ¹⁹F NMR (564 MHz, Chloroform-*d*) δ : -73.2. ¹³C NMR (150 MHz, Chloroform-*d*) δ : 160.8, 136.9, 132.0, 131.5, 129.4, 129.0, 120.1 (q, J = 330.4 Hz), 120.0, 114.5, 68.6, 55.2, 33.7, 21.0. HRMS (EI⁺) calcd. for C₁₇H₁₇F₃O₃S [M]⁺: 358.0845, found: 358.0852.

Methyl 5-(2-(p-tolyl)-1-((trifluoromethyl)sulfonyl)ethyl)thiophene-2-carboxylate (1n)

White solid, m.p. 83-85°C; ¹H NMR (400 MHz, Chloroform-*d*) δ : 7.64 (d, J = 3.9 Hz, 1H), 7.09 (d, J = 3.9 Hz, 1H), 7.02 (d, J = 7.7 Hz, 2H), 6.92 (d, J = 7.7 Hz, 2H), 4.87 (dd, J = 11.8, 3.2 Hz, 1H), 3.89 – 3.75 (m, 4H), 3.28 (dd, J = 13.6, 11.7 Hz, 1H), 2.25 (s, 3H). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ : -72.7. ¹³C NMR (100 MHz, Chloroform-*d*) δ : 161.8, 137.5, 136.8, 136.2, 133.2, 131.2, 130.8, 129.6, 128.9, 119.9 (q, J = 330.5 Hz), 64.7, 52.4, 34.9, 21.0. HRMS (EI⁺) calcd. for C₁₆H₁₅F₃O₄S₂ [M]⁺: 392.0358, found: 392.0365.

6-(2-(p-Tolyl)-1-((trifluoromethyl)sulfonyl)ethyl)-1-tosyl-1H-indole (10)

Off-white solid, m.p. 131-133°C; ¹H NMR (400 MHz, Chloroform-*d*) δ : ¹H NMR (400 MHz, Chloroform-*d*) δ : 8.15 (s, 1H), 7.72 (d, J = 8.4 Hz, 2H), 7.56 (d, J = 3.7 Hz, 1H), 7.45 (d, J = 8.2 Hz, 1H), 7.16 (d, J = 8.4 Hz, 3H), 6.93 (d, J = 7.8 Hz, 2H), 6.85 (d, J = 7.9 Hz, 2H), 6.59 (d, J = 3.6 Hz, 1H), 4.73 (dd, J = 11.7, 3.3 Hz, 1H), 3.79 (dd, J = 13.8, 3.2 Hz, 1H), 3.48 (dd, J = 13.8, 11.7 Hz, 1H), 2.29 (s, 3H), 2.21 (s, 3H). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ : -73.2. ¹³C NMR (100 MHz, Chloroform-*d*) δ : 145.3, 136.9, 134.9, 134.7, 132.2, 131.7, 129.9, 129.4, 129.0, 128.1, 126. 9, 125.4, 124.4, 121.9, 120.0 (q, J = 330.5 Hz), 115.7, 109.1, 69.4, 33.9, 21.5, 21.0. HRMS (ESI⁺) calcd. for C₂₅H₂₆F₃N₂O₄S₂ [M+NH₄]⁺: 539.1281, found: 539.1285.

1,3-Dimethyl-5-(2-(p-tolyl)-1-((trifluoromethyl)sulfonyl)ethyl)benzene (1p)

White solid, m.p. 102-104°C; ¹H NMR (400 MHz, Chloroform-*d*) δ : 6.99 (d, J = 7.5 Hz, 3H), 6.94 (brs, 2H), 6.85 (d, J = 7.7 Hz, 2H), 4.44 (dd, J = 11.3, 3.2 Hz, 1H), 3.67 (dd, J = 13.8, 3.1 Hz, 1H), 3.36 (dd, J = 13.8, 11.3 Hz, 1H), 2.29 (s, 6H), 2.25 (s, 3H). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ : -73.3. ¹³C NMR (100 MHz, Chloroform-*d*) δ : 138.6, 136.9, 132.1, 131.7, 129.3, 128.9, 128.2, 127.9, 120.0 (d, J = 330.3 Hz), 69.0, 33.9, 21.3, 21.0. HRMS (EI⁺) calcd. for C₁₈H₁₉F₃O₂S [M]⁺: 356.1052, found: 356.1049.

3-(2-(*p*-Tolyl)-1-((trifluoromethyl)sulfonyl)ethyl)benzonitrile (1q)

White solid, m.p. 111-113°C; ¹H NMR (400 MHz, Chloroform-*d*) δ : 7.67 (dd, J = 7.7, 1.5 Hz, 1H), 7.62 – 7.59 (m, 2H), 7.50 (t, J = 7.8 Hz, 1H), 6.99 (d, J = 7.6 Hz, 2H), 6.81 (d, J = 7.6 Hz, 2H), 4.56 (dd, J = 11.8, 3.3 Hz, 1H), 3.78 (dd, J = 13.9, 3.3 Hz, 1H), 3.30 (dd, J = 13.8, 11.7 Hz, 1H), 2.25 (s, 3H). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ : -73.2. ¹³C NMR (100 MHz, Chloroform-*d*) δ : 137.5, 134.3, 133.5, 133.5, 130.7, 130. 7, 130.0, 129.7, 128.9, 119.8 (q, J = 330.1 Hz), 117.8, 113.4, 67.8, 33.7, 21.0. HRMS (FI⁺) calcd. for C₁₇H₁₄NF₃O₂S [M]⁺: 353.0692, found: 353.0699.

1-(2-(p-Tolyl)-1-((trifluoromethyl)sulfonyl)ethyl)naphthalene (1r)

White solid, m.p. 82-84°C; ¹H NMR (400 MHz, Chloroform-*d*) δ : 8.01 (d, J = 7.3 Hz, 1H), 7.89 (d, J = 8.2 Hz, 1H), 7.84 – 7.82 (m, 1H), 7.71 – 7.68 (m, 1H), 7.58 (t, J = 7.8 Hz, 1H), 7.47 – 7.44 (m, 2H), 6.86 (brs, 4H), 5.63 (dd, J = 11.2, 3.4 Hz, 1H), 3.89 (dd, J = 13.9, 3.4 Hz, 1H), 3.56 (dd, J = 13.8, 11.1 Hz, 1H), 2.14 (s, 3H). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ : -73.8. ¹³C NMR (100 MHz, Chloroform-*d*) δ : 136.9, 133.8, 132.4, 131.7, 130.6, 129.3, 129.2, 128.7, 127.9, 127.2, 126.0, 125.2, 124.5, 121.5, 120.1 (q, J = 330.2 Hz), 62.1, 35.3, 20.9. HRMS (EI⁺) calcd. for C₂₀H₁₇F₃O₂S [M]⁺: 378.0896, found: 378.0900.

1-Bromo-2-(2-(p-tolyl)-1-((trifluoromethyl)sulfonyl)ethyl)benzene (1s)

Colorless oil, ¹H NMR (400 MHz, Chloroform-*d*) δ : 7.77 (dd, J = 8.0, 1.6 Hz, 1H), 7.44 (dd, J = 8.1, 1.3 Hz, 1H), 7.37 (td, J = 7.7, 1.3 Hz, 1H), 7.15 (td, J = 7.8, 1.6 Hz, 1H), 6.96 (d, J = 7.9 Hz, 2H), 6.86 (d, J = 8.1 Hz, 2H), 5.52 (dd, J = 11.5, 3.7 Hz, 1H), 3.76 (dd, J = 13.8, 3.7 Hz, 1H), 3.30 (dd, J = 13.8, 11.5 Hz, 1H), 2.21 (s, 3H). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ : -74.5. ¹³C NMR (100 MHz, Chloroform-*d*) δ : 137.1, 133.4, 131.1, 130.8, 130.3, 129.4, 129.1, 128.8, 128.1, 127.0, 119.9 (q, J = 329.7 Hz), 65.8, 34.8, 21.1. HRMS (EI⁺) calcd. for C₁₆H₁₄F₃BrO₂S [M]⁺: 405.9844, found: 405.9846.

1-Methyl-4-(4-phenyl-2-((trifluoromethyl)sulfonyl)butyl)benzene (1t)

SO₂CF₃

Colorless oil, ¹H NMR (400 MHz, Chloroform-*d*) δ : 7.24 – 7.16 (m, 3H), 7.14 (d, *J* = 7.8 Hz, 2H), 7.03 (d, *J* = 8.0 Hz, 2H), 6.97 – 6.95 (m, 2H), 3.52-3.45 (m, 1H), 3.41 (dd, *J* = 14.0, 3.8 Hz, 1H), 2.91 (dd, *J* = 14.1, 10.5 Hz, 1H), 2.70-2.65 (m, 2H), 2.35 (s, 3H), 2.31 – 2.20 (m, 1H), 2.12 – 2.02 (m, 1H). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ : -74.4. ¹³C NMR (100 MHz, Chloroform-*d*) δ : 139.6, 137.4, 132.2, 129.8, 129.1, 128.7, 128.5, 126.6, 120.2 (q, *J* = 329.7 Hz), 61.8, 33.4, 32.5, 28.2, 21.1. HRMS (EI⁺) calcd. for C₁₈H₁₉F₃O₂S [M]⁺: 356.1052, found: 356.1057.

4-(2-(4-Methoxyphenyl)-1-((trifluoromethyl)sulfonyl)ethyl)-1,1'-biphenyl (1aa)

White solid, m.p. 117-119°C; ¹H NMR (400 MHz, Chloroform-*d*) δ : 7.60 – 7.57 (m, 4H), 7.46 – 7.35 (m, 5H), 6.91 – 6.88 (m, 2H), 6.72 – 6.70 (m, 2H), 4.56 – 4.52 (m, 1H), 3.76-3.71 (m, 4H), 3.38 (dd, *J* = 13.8, 11.5 Hz, 1H). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ : -73.2. ¹³C NMR (100 MHz, Chloroform-*d*) δ : 158.8, 142.6, 139.8, 130.6, 130.2, 128.9, 127.9, 127.6, 127.4, 127.1, 126.8, 120.0 (q, *J* = 330.4 Hz), 114.1, 68.8, 55.2, 33.5. HRMS (EI⁺) calcd. for C₂₂H₁₉F₃O₃S [M]⁺: 420.1002, found: 420.1005.

Ethyl 4-(2-([1,1'-biphenyl]-4-yl)-2-((trifluoromethyl)sulfonyl)ethyl)benzoate (1ab)

White solid, m.p. 95-97°C; ¹H NMR (400 MHz, Chloroform-*d*) δ : 7.88 – 7.85 (m, 2H), 7.59 – 7.55 (m, 4H), 7.45 – 7.34 (m, 5H), 7.09 – 7.07 (m, 2H), 4.62 (dd, J = 11.7, 3.3 Hz, 1H), 4.32 (q, J = 7.1 Hz, 2H), 3.83 (dd, J = 13.7, 3.3 Hz, 1H), 3.50 (dd, J = 13.7, 11.7 Hz, 1H), 1.34 (t, J = 7.1 Hz, 3H). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ : -73.1. ¹³C NMR (100 MHz, Chloroform-*d*) δ : 166.1, 142.9, 140.0, 139.6, 130.4, 130.0, 129.7, 129.2, 128.9, 128.0, 127.7, 127.1, 126.8, 120.0 (q, J = 330.2 Hz), 68.2, 61.1, 34.2, 14.3. HRMS (ESI⁺) calcd. for C₂₄H₂₂F₃O₂S [M+H]⁺: 463.1185, found: 463.1184.

4-(Phenyl((trifluoromethyl)sulfonyl)methyl)-1,1'-biphenyl (1ac)²

White solid, m.p. 121-123°C; ¹H NMR (400 MHz, Chloroform-*d*) δ : 7.72 – 7.62 (m, 6H), 7.56 – 7.55 (m, 2H), 7.46 – 7.33 (m, 6H), 5.68 (d, J = 2.2 Hz, 1H). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ : -72.8. ¹³C NMR (100 MHz, Chloroform-*d*) δ : 142.7, 139.9, 130.5, 130.0, 129.9, 129.6, 129.3, 129.0, 128.3, 128.0, 127.9, 127.2, 120.2 (q, J = 330.7 Hz), 71.8.

4-(1-((Trifluoromethyl)sulfonyl)but-3-en-1-yl)-1,1'-biphenyl (1ad)

SO₂CF₃

White solid, m.p. 136-138°C; ¹H NMR (400 MHz, Chloroform-*d*) δ : 7.61 (dd, J = 19.5, 7.7 Hz, 4H), 7.45 (dd, J = 13.8, 7.5 Hz, 4H), 7.36 (t, J = 7.3 Hz, 1H), 5.54 (dq, J = 16.7, 7.4 Hz, 1H), 5.11 (dd, J = 29.6, 13.6 Hz, 2H), 4.47 (dd, J = 11.4, 4.0 Hz, 1H), 3.17 (dt, J = 11.7, 4.9 Hz, 1H), 3.00 (td, J = 13.5, 12.8, 6.7 Hz, 1H). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ : -73.3. ¹³C NMR (100 MHz, Chloroform-*d*) δ : 142.9, 139.9, 131.1, 130.5, 129.0, 128.0, 127.8, 127.2, 120.1, 120.0 (q, J = 330.2 Hz), 66.8, 32.1. HRMS (EI⁺) calcd. for C₁₇H₁₅F₃O₂S [M]⁺: 340.0739, found: 340.0745.

4-(3-Methyl-1-((trifluoromethyl)sulfonyl)but-3-en-1-yl)-1,1'-biphenyl (1ae)

White solid, m.p. 117-119°C; ¹H NMR (600 MHz, Chloroform-*d*) δ : 7.63 (d, J = 7.9 Hz, 1H), 7.59 (d, J = 7.4 Hz, 1H), 7.49 – 7.43 (m, 4H), 7.36 (t, J = 7.4 Hz, 1H), 4.84 – 4.68 (m, 2H), 4.60 (dt, J = 11.9, 3.0 Hz, 1H), 3.14 – 3.11 (m, 1H), 2.99- 2.94 (m, 1H), 1.65 (s, 3H). ¹⁹F NMR (564 MHz, Chloroform-*d*) δ : -73.1. ¹³C NMR (150 MHz, Chloroform-*d*) δ : 142.8, 139.8, 138.2, 130.5, 128.9, 127.9, 127.6, 127.3, 127.1, 120.0 (q, J = 330.0 Hz), 115.9, 65.9, 35.5, 22.1. HRMS (EI⁺) calcd. for C₁₈H₁₇F₃O₂S [M]⁺: 354.0896, found: 354.0901.

4-(4-Phenyl-1-((trifluoromethyl)sulfonyl)but-3-yn-1-yl)-1,1'-biphenyl (1af)

White solid, m.p. 120-122°C; ¹H NMR (400 MHz, Chloroform-*d*) δ : 7.68 (d, J = 8.0 Hz, 2H), 7.64 – 7.55 (m, 4H), 7.47-7.44 (m, 2H), 7.38 (t, J = 7.2 Hz, 1H), 7.27 – 7.19 (m, 5H), 4.71 (dd, J = 10.4, 4.6 Hz, 1H), 3.53 (dd, J = 17.0, 4.6 Hz, 1H), 3.40 (dd, J = 16.9, 10.4 Hz, 1H). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ : -73.5. ¹³C NMR (100 MHz, Chloroform-*d*) δ : 143.1, 139.9, 131.6, 130.4, 129.0, 128.5, 128.3, 128.0, 127.8, 127.2, 127.1, 122.4, 119.9 (d, J = 329.7 Hz), 84.6, 82.5, 65.6, 20.6. HRMS (EI⁺) calcd. for C₂₃H₁₇F₃O₂S [M]⁺: 414.0896, found: 414.0893.

4-(3-Phenyl-1-((trifluoromethyl)sulfonyl)propyl)-1,1'-biphenyl (1ag)

SO₂CF

White solid, m.p. 81-83°C; ¹H NMR (400 MHz, Chloroform-*d*) δ : 7.67 – 7.65 (m, 2H), 7.62 – 7.59 (m, 2H), 7.46-7.42 (m, 4H), 7.39 – 7.34 (m, 1H), 7.31-7.27 (m, 2H), 7.24 – 7.19 (m, 1H), 7.08-7.06 (m, 2H), 4.35 (dd, J = 11.6, 3.0 Hz, 1H), 2.76 – 2.69 (m, 2H), 2.62 – 2.53 (m, 1H), 2.50 – 2.42 (m, 1H). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ : -73.2. ¹³C NMR (100 MHz, Chloroform-*d*) δ : 143.0, 139.9, 139.0, 130.6, 129.0, 128.9, 128.5, 128.04, 127.96, 127.3, 127.2, 126.9, 120.0 (d, J = 330.2 Hz), 66.2, 31.9, 29.0. HRMS (EI⁺) calcd. for C₂₂H₁₉F₃O₂S [M]⁺: 404.1052, found: 404.1055.

2-([1,1'-Biphenyl]-4-yl)-1-(p-tolyl)-2-((trifluoromethyl)sulfonyl)ethen-1-ol (4a)

White solid, m.p. 114-116°C; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.84 – 7.82 (m, 2H), 7.70 (d, J = 8.4 Hz, 2H), 7.65 (d, J = 8.5 Hz, 2H), 7.56 – 7.53 (m, 2H), 7.45 – 7.41 (m, 2H), 7.38 – 7.34 (m, 1H), 7.26 – 7.24 (m, 2H), 6.40 (s, 1H), 2.38 (s, 3H). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ : -73.1. ¹³C NMR (100 MHz, Chloroform-*d*) δ : 187.0, 146.2, 143.6, 139.6, 132.0, 131.1, 129.9, 129.2, 128.9, 128.3, 128.1, 127.2, 123.8, 119.9 (q, J = 330.5 Hz), 72.1, 21.8. HRMS (EI⁺) calcd. for C₂₂H₁₇F₃O₃S [M]⁺: 418.0845, found: 418.0843.

4-(1,1-Difluoro-3-(p-tolyl)prop-1-en-2-yl)-1,1'-biphenyl (2a)

White solid, 25.9 mg, 81%, m.p. 68-70°C; ¹H NMR (400 MHz, Chloroform-*d*) δ : 7.49 – 7.42 (m, 4H), 7.36-7.32 (m, 2H), 7.29 – 7.23 (m, 3H), 7.02 – 6.98 (m, 4H), 3.65 (t, *J* = 2.2 Hz, 2H), 2.22 (s, 3H). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ : -89.9 (dt, *J* = 39.9, 2.7 Hz), -90.4 (d, *J* = 39.6 Hz). ¹³C NMR (100 MHz, Chloroform-*d*) δ : 154.5 (dd, *J* = 292.4, 287.8 Hz), 140.5, 140.0, 136.0, 135.4 (t, *J* = 2.6 Hz), 132.6 (t, *J* = 4.0 Hz), 129.2, 128.8, 128.6 (t, *J* = 3.6 Hz), 128.1, 127.4, 127.03, 126.97, 91.5 (dd, *J* = 21.5, 13.0 Hz), 33.3, 21.0. HRMS (EI⁺) calcd. for C₂₂H₁₈F₂ [M]⁺: 320.1372, found: 320.1373.

1-(tert-Butyl)-4-(1,1-difluoro-3-(p-tolyl)prop-1-en-2-yl)benzene (2b)

Colorless oil, 24.8 mg, 83%, ¹H NMR (400 MHz, Chloroform-*d*) δ : 7.31 – 7.28 (m, 2H), 7.24 – 7.21 (m, 2H), 7.09 – 7.04 (m, 4H), 3.68 (t, J = 2.3 Hz, 2H), 2.29 (s, 3H), 1.28 (s, 9H). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ : -90.3 (dt, J = 41.0, 3.0 Hz), -90.9 (d, J = 39.6 Hz). ¹³C NMR (100 MHz, Chloroform-*d*) δ : 154.5 (dd, J = 292.1, 287.0 Hz), 150.1, 135.8, 135.6 (t, J = 2.6 Hz), 130.7 (t, J = 3.8 Hz), 129.2, 128.1, 127.7 (t, J = 3.6 Hz), 125.3, 91.3 (dd, J = 21.1, 13.0 Hz), 34.5, 33.3, 31.3, 21.0. HRMS (EI⁺) calcd. for C₂₀H₂₂F₂ [M]⁺: 300.1684, found: 300.1682.

4,4'-(3,3-Difluoroprop-2-ene-1,2-diyl)bis(methylbenzene) (2c)

Colorless oil, 20.6 mg, 80%, ¹H NMR (400 MHz, Chloroform-*d*) δ : 7.17 – 7.14 (m, 2H), 7.08 (d, J = 8.0 Hz, 2H), 7.04 (brs, 4H), 3.67 (t, J = 2.3 Hz, 2H), 2.29 (s, 3H), 2.27 (s, 3H). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ : -91.0 (dt, J = 41.6, 3.0 Hz), -91.4 (d, J = 41.6 Hz). ¹³C NMR (100 MHz, Chloroform-*d*) δ : 154.3 (dd, J = 290.0, 285.0 Hz), 137.0, 135.8, 135.5 (t, J = 2.7 Hz), 130.6 (t, J = 3.8 Hz), 129.2, 129.1, 128.2, 128.1 (t, J = 3.0 Hz), 91.6 (dd, J = 21.2, 13.5 Hz), 33.5, 21.1, 21.0. HRMS (EI⁺) calcd. for C₁₇H₁₆F₂ [M]⁺: 258.1215, found: 258.12171.

1-(3,3-Difluoro-2-phenylallyl)-4-methylbenzene (2d)

Colorless oil, 16.8 mg, 69%, ¹H NMR (400 MHz, Chloroform-*d*) δ : 7.30 – 7.19 (m, 5H), 7.04 (brs, 4H), 3.69 (t, J = 2.2 Hz, 2H), 2.28 (s, 3H). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ : -90.5 (dt, J = 40.5, 2.4 Hz), -91.1 (d, J = 40.5 Hz). ¹³C NMR (100 MHz, Chloroform-*d*) δ : 154.4 (dd, J = 290.0, 285.5 Hz), 135.9, 135.4 (t, J = 2.5 Hz), 133.7 (t, J = 3.8 Hz), 129.2, 128.4, 128.3 (t, J = 3.5 Hz), 128.2, 127.3, 91.8 (dd, J = 21.4, 13.2 Hz), 33.5, 21.0. (known)

2-(1,1-Difluoro-3-(*p*-tolyl)prop-1-en-2-yl)naphthalene (2e)

Colorless oil, 23.2 mg, 79%, ¹H NMR (400 MHz, Chloroform-*d*) δ : 7.78 – 7.72 (m, 4H), 7.45 – 7.38 (m, 3H), 7.08 – 7.01 (m, 4H), 3.79 (t, J = 2.2 Hz, 2H), 2.26 (s, 3H). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ : -90.0 (dt, J = 39.5, 3.0 Hz), -90.8 (d, J = 39.6 Hz). ¹³C NMR (100 MHz, Chloroform-*d*) δ : 154.6 (dd, J = 292.2, 287.8 Hz), 136.0, 135.4 (t, J = 2.5 Hz), 133.2, 132.4, 131.1 (t, J = 4.0 Hz), 129.2, 128.2, 128.0, 128.0, 127.6, 127.5 (t, J = 3.6 Hz), 126.2, 126.16 – 126.07 (m, 2C), 92.1 (dd, J = 21.5, 13.1 Hz), 33.6, 21.0. HRMS (EI⁺) calcd. for C₂₀H₁₆F₂ [M]⁺: 294.1221, found: 294.1215.

1-Bromo-4-(1,1-difluoro-3-(p-tolyl)prop-1-en-2-yl)benzene (2f)

Colorless oil, 24.6 mg, 76%, ¹H NMR (400 MHz, Chloroform-*d*) δ : 7.41 – 7.37 (m, 2H), 7.14 – 7.10 (m, 2H), 7.06-7.00 (m, 4H), 3.66 (t, J = 2.2 Hz, 2H), 2.28 (s, 3H). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ : - 89.7 (dt, J = 38.8, 2.7 Hz), -90.1 (d, J = 38.7 Hz). ¹³C NMR (100 MHz, Chloroform-*d*) δ : 154.3 (dd, J = 292.2, 288.2 Hz), 136.1, 134.9 (t, J = 2.6 Hz), 132.5 (t, J = 3.9 Hz), 131.5, 129.9 (t, J = 3.6 Hz), 129.3, 128.1, 121.3, 91.2 (dd, J = 22.0, 13.3 Hz), 33.3, 21.0. HRMS (EI⁺) calcd. for C₁₆H₁₃F₂Br [M]⁺: 322.0163, found: 322.0160.

1-(3,3-Difluoro-2-(4-iodophenyl)allyl)-4-methylbenzene (2g)

Colorless oil, 30.1 mg, 81%, ¹H NMR (400 MHz, Chloroform-*d*) δ : 7.61 – 7.57 (m, 2H), 7.06 – 6.98 (m, 6H), 3.65 (t, J = 2.2 Hz, 2H), 2.28 (s, 3H). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ : -89.5 (dt, J = 38.3, 2.8 Hz), -89.9 (d, J = 38.3 Hz). ¹³C NMR (100 MHz, Chloroform-*d*) δ : 154.3 (dd, J = 292.5, 288.3 Hz), 137.5, 136.1, 134.9 (t, J = 2.6 Hz), 133.2 (t, J = 3.9 Hz), 130.1 (t, J = 3.6 Hz), 129.3, 128.1, 92.8, 91.3 (dd, J = 22.0, 13.0 Hz), 33.2, 21.0. HRMS (EI⁺) calcd. for C₁₆H₁₃F₂I [M]⁺: 370.0025, found: 370.0022.

4-(1,1-Difluoro-3-(*p*-tolyl)prop-1-en-2-yl)benzonitrile (2h)

Colorless oil, 23.0 mg, 86%, ¹H NMR (400 MHz, Chloroform-*d*) δ : 7.57 – 7.54 (m, 2H), 7.39 – 7.36 (m, 2H), 7.06 (d, J = 7.9 Hz, 2H), 7.01 (d, J = 8.1 Hz, 2H), 3.71 (t, J = 2.1 Hz, 2H), 2.29 (s, 3H). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ : -87.1 (dt, J = 33.1, 2.7 Hz), -87.7 (d, J = 33.2 Hz). ¹³C NMR (100 MHz, Chloroform-*d*) δ : 154.8 (dd, J = 294.9, 290.0 Hz), 138.6 (t, J = 4.3 Hz), 136.4, 134.4 (t, J = 2.7 Hz), 132.1, 129.4, 128.9 (dd, J = 4.3, 3.4 Hz), 128.0, 118.6, 110.9, 91.3 (dd, J = 22.8, 12.2 Hz), 32.9, 21.0. HRMS (EI⁺) calcd. for C₁₇H₁₃F₂N [M]⁺: 269.1011, found: 269.1015.

Ethyl 4-(1,1-difluoro-3-(p-tolyl)prop-1-en-2-yl)benzoate (2i)

Colorless oil, 27.5 mg, 87%, ¹H NMR (400 MHz, Chloroform-*d*) δ : 7.95 (d, J = 8.0 Hz, 2H), 7.34 (d, J = 8.1 Hz, 2H), 7.03 (d, J = 1.9 Hz, 4H), 4.34 (q, J = 7.1 Hz, 2H), 3.71 (d, J = 2.5 Hz, 2H), 2.28 (s, 3H), 1.36 (t, J = 7.1 Hz, 3H). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ : -88.5 (d, J = 35.8 Hz), -88.9 (d, J = 35.6 Hz). ¹³C NMR (100 MHz, Chloroform-*d*) δ : 166.2, 154.6 (dd, J = 292.0, 287.0 Hz), 138.3 (t, J = 4.1 Hz), 136.1, 134.9 (t, J = 2.6 Hz), 129.6, 129.3, 129.2, 128.2 (t, J = 3.7 Hz), 128.1, 91.7 (dd, J = 22.0, 12.6 Hz), 61.0, 33.2, 21.0, 14.3. HRMS (EI⁺) calcd. for C₁₉H₁₈F₂O₂ [M]⁺: 316.1269, found: 316.1267.

Ethyl 4-(1,1-difluoro-3-phenylprop-1-en-2-yl)benzoate (2j)

Colorless oil, 26.5 mg, 88%, ¹H NMR (400 MHz, Chloroform-*d*) δ: 7.97 – 7.94 (m, 2H), 7.36 – 7.32 (m, 2H), 7.26 – 7.21 (m, 2H), 7.19 – 7.13 (m, 3H), 4.35 (q, *J* = 7.1 Hz, 2H), 3.76 (t, *J* = 2.3 Hz, 2H),

1.36 (t, J = 7.1 Hz, 3H). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ : -88.3 (dt, J = 35.5, 3.0 Hz), -88.8 (d, J = 35.4 Hz). ¹³C NMR (100 MHz, Chloroform-*d*) δ : 166.2, 154.6 (dd, J = 293.9, 288.9 Hz), 138.2 (t, J = 4.1 Hz), 138.0 (t, J = 2.6 Hz), 129.6, 129.3, 128.6, 128.2, 128.2 (t, J = 3.5 Hz), 126.6, 91.5 (dd, J = 22.0, 12.9 Hz), 61.0, 33.6, 14.3. HRMS (EI⁺) calcd. for C₁₈H₁₆F₂O₂ [M]⁺: 302.1113, found: 302.1108.

1-(3,3-Difluoro-2-(4-(trifluoromethyl)phenyl)allyl)-4-methylbenzene (2k)

Colorless oil, 26.3 mg, 84%, ¹H NMR (400 MHz, Chloroform-*d*) δ : 7.53 (d, J = 8.2 Hz, 2H), 7.37 (d, J = 8.2 Hz, 2H), 7.07 – 7.02 (m, 4H), 3.71 (t, J = 2.2 Hz, 2H), 2.29 (s, 3H). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ : -62.7 (s, 3F), -88.5 (dt, J = 35.8, 2.8 Hz), -89.2 (d, J = 36.2 Hz). ¹³C NMR (150 MHz, Chloroform-*d*) δ : 154.7 (dd, J = 293.5, 288.9 Hz), 137.4, 136.3, 134.7 (t, J = 2.7 Hz), 129.4, 129.2, 128. 6 (t, J = 3.6 Hz), 128.1, 125.3 (q, J = 3.8 Hz), 124.0 (q, J = 272.0 Hz), 91.3 (dd, J = 22.4, 12.5 Hz), 33.2, 21.0. HRMS (EI⁺) calcd. for C₁₇H₁₃F₅ [M]⁺: 312.0932, found: 312.0933.

1-(3,3-Difluoro-2-(4-nitrophenyl)allyl)-4-methylbenzene (2l)

Pale yellow oil, 22.0 mg, 76%, m.p. 120-122°C; ¹H NMR (400 MHz, Chloroform-*d*) δ : 8.15 – 8.11 (m, 2H), 7.45 – 7.43 (m, 2H), 7.07-7.01 (m, 4H), 3.74 (t, J = 2.2 Hz, 2H), 2.29 (s, 3H). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ : -86.6 (dt, J = 31.8, 2.8 Hz), -87.2 (d, J = 31.5 Hz). ¹³C NMR (100 MHz, Chloroform-*d*) δ : 154.8 (dd, J = 293.0, 288.0 Hz), 146.7, 140.6 (t, J = 4.5 Hz), 136.5, 134.5 (t, J = 2.6 Hz), 129.5, 129.0 (dd, J = 5.0, 4.0 Hz), 128.0, 123.6, 91.2 (dd, J = 23.0, 12.0 Hz), 33.0, 21.0. HRMS (EI⁺) calcd. for C₁₆H₁₃ONF₂ [M]⁺: 289.0909, found: 289.0905.

1-(3,3-Difluoro-2-(4-methoxyphenyl)allyl)-4-methylbenzene (2m)

Colorless oil, 26.0 mg, 95%, ¹H NMR (400 MHz, Chloroform-*d*) δ : 7.19 – 7.17 (m, 2H), 7.04 (brs, 4H), 6.82-6.80 (m, 2H), 3.76 (s, 3H), 3.65 (t, J = 2.3 Hz, 2H), 2.28 (s, 3H). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ : -91.7 (dt, J = 43.1, 2.9 Hz), -92.1 (d, J = 43.3 Hz). ¹³C NMR (100 MHz, Chloroform-*d*) δ : 158.6, 154.2 (dd, J = 290.5, 286.7 Hz), 135.9, 135.5 (t, J = 2.6 Hz), 129.41 (t, J = 3.6 Hz), 129.2, 128.2, 125. 8 (t, J = 3.6 Hz), 113.8, 91.3 (dd, J = 21.3, 13.6 Hz), 55.2, 33.6, 21.0. HRMS (EI⁺) calcd. for C₁₇H₁₆F₂O [M]⁺: 374.1164, found: 274.1171.

Methyl 5-(1,1-difluoro-3-(p-tolyl)prop-1-en-2-yl)thiophene-2-carboxylate (2n)

White solid, 22.3 mg, 72%, m.p. 29-31°C; ¹H NMR (400 MHz, Chloroform-*d*) δ : 7.61 (dd, J = 4.0, 1.1 Hz, 1H), 7.13 – 7.08 (m, 4H), 6.97 (d, J = 4.0 Hz, 1H), 3.85 (s, 3H), 3.73 (t, J = 2.2 Hz, 2H), 2.30 (s, 3H). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ : -81.0 (d, J = 24.0 Hz), -87.4 (dt, J = 23.9, 2.5 Hz). ¹³C NMR (100 MHz, Chloroform-*d*) δ : 162.5, 155.0 (dd, J = 297.0, 289.4 Hz), 142.8 (dd, J = 7.7, 3.8 Hz), 136.5, 134.2 (t, J = 2.6 Hz), 133.5, 132.1 – 131.9 (m), 129.4, 128.0, 126.3 (t, J = 5.5 Hz), 88.3 (dd, J = 26.2, 12.4 Hz), 52.2 32.9, 21.0. HRMS (EI⁺) calcd. for C₁₆H₁₄F₂O₂S [M]⁺: 308.0677, found: 308.0684.

6-(1,1-Difluoro-3-(p-tolyl)prop-1-en-2-yl)-1-tosyl-1H-indole (20)

White solid, 39.8 mg, 91%, m.p. 109-111°C; ¹H NMR (400 MHz, Chloroform-*d*) δ : 7.93 (dd, J = 1.6, 0.9 Hz, 1H), 7.59 – 7.56 (m, 2H), 7.51 (d, J = 3.6 Hz, 1H), 7.40 (d, J = 8.4 Hz, 1H), 7.17 (dt, J = 8.3, 1.6 Hz, 1H), 7.13 – 7.05 (m, 6H), 6.56 (dd, J = 3.7, 0.8 Hz, 1H), 3.77 (t, J = 2.2 Hz, 2H), 2.31 (d, J = 4.7 Hz, 6H). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ : -90.2 (dt, J = 40.5, 2.7 Hz), -90.8 (d, J = 40.2 Hz). ¹³C NMR (100 MHz, Chloroform-*d*) δ : 154.5 (dd, J = 290.0, 285.5 Hz), 144.9, 135.9, 135.4 (t, J = 2.6 Hz), 135.0, 134.8, 130.0 (t, J = 4.0 Hz), 129.8, 129.3, 128.2, 126.9, 126.8, 123.6 (dd, J = 4.7, 2.8 Hz), 121.1, 113.4 (t, J = 3.7 Hz), 108.8, 92.1 (dd, J = 21.7, 12.8 Hz), 33.8, 21.6, 21.1. HRMS (EI⁺) calcd. for C₂₅H₂₁O₂NF₂S [M]⁺: 437.1256, found: 437.1263.

1-(1,1-Difluoro-3-(*p*-tolyl)prop-1-en-2-yl)-3,5-dimethylbenzene (2p)

Colorless oil, 21.2 mg, 78%, ¹H NMR (400 MHz, Chloroform-*d*) δ : 7.04 (brs, 4H), 6.88 – 6.85 (m, 3H), 3.66 (t, J = 2.3 Hz, 2H), 2.28 (s, 3H), 2.25 (s, 6H). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ : -90.8 (dt, J = 41.0, 2.7 Hz), -91.2 (d, J = 41.1 Hz). ¹³C NMR (100 MHz, Chloroform-*d*) δ : 154.3 (dd, J = 289.4, 285.2 Hz), 137.8, 135.8, 135.6 (t, J = 2.8 Hz), 133.5 (t, J = 3.5 Hz), 129.1, 129.0, 128.2, 126.1 (t, J = 3.3 Hz), 91.9 (dd, J = 20.8, 13.4 Hz), 33.5, 21.4, 21.0. HRMS (EI⁺) calcd. for C₁₈H₁₈F₂ [M]⁺: 272.1371, found: 272.1378.

3-(1,1-Difluoro-3-(p-tolyl)prop-1-en-2-yl)benzonitrile (2q)

Colorless oil, 25.6 mg, 95%, ¹H NMR (400 MHz, Chloroform-*d*) δ : 7.54 (q, J = 1.4 Hz, 1H), 7.49 (tt, J = 7.0, 1.5 Hz, 2H), 7.38 (t, J = 7.8 Hz, 1H), 7.06 (d, J = 7.9 Hz, 2H), 7.01 (d, J = 8.0 Hz, 2H), 3.69 (t, J = 2.2 Hz, 2H), 2.29 (s, 3H). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ : -88.4 (dt, J = 35.8, 2.7 Hz), -89.1 (d, J = 35.9 Hz). ¹³C NMR (100 MHz, Chloroform-*d*) δ : 154.7 (dd, J = 293.4, 289.3 Hz), 136.4, 135.0 (t, J = 4.1 Hz), 134.3 (t, J = 2.7 Hz), 132.7 (t, J = 3.5 Hz), 131.8 (t, J = 3.7 Hz), 130.8, 129.4, 129.3, 128.1, 118.6, 112.7, 90.8 (dd, J = 22.9, 12.7 Hz), 33.1, 21.0. HRMS (EI⁺) calcd. for C₁₇H₁₃F₂N [M]⁺: 269.1011, found: 269.1017.

1-(1,1-Difluoro-3-(p-tolyl)prop-1-en-2-yl)naphthalene (2r)

Colorless oil, 6.5 mg, 22%, ¹H NMR (400 MHz, Chloroform-*d*) δ : 7.86 – 7.81 (m, 2H), 7.78 (dt, J = 8.3, 1.0 Hz, 1H), 7.50-7.46 (m, 2H), 7.34 (dd, J = 8.3, 7.1 Hz, 1H), 7.04 (dd, J = 7.1, 1.2 Hz, 1H), 6.99 (d, J = 7.8 Hz, 2H), 6.92 (d, J = 8.0 Hz, 2H), 3.67 (brs, 2H), 2.27 (s, 3H). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ : -89.3 (d, J = 42.1 Hz), -92.9 (dt, J = 41.7, 2.7 Hz). ¹³C NMR (150 MHz, Chloroform-*d*) δ : 153.6 (dd, J = 288.0, 286.5 Hz), 136.0, 135.2 (t, J = 2.8 Hz), 133.7, 131.5 (d, J = 3.0 Hz), 130.9 (d, J = 4.4 Hz), 129.0, 128.7, 128.5, 128.3, 127.8 (d, J = 3.4 Hz), 126.3, 125.8, 125.2, 124.9, 90.6 (dd, J = 22.0, 17.7 Hz), 35.3, 21.0. HRMS (EI⁺) calcd. for C₂₀H₁₆F₂ [M]⁺: 294.1215, found: 294.1218.

1-Bromo-2-(1,1-difluoro-3-(p-tolyl)prop-1-en-2-yl)benzene (2s)

Colorless oil, 9.7 mg, 30%, ¹H NMR (400 MHz, Chloroform-*d*) δ : 7.58 – 7.56 (m, 1H), 7.16 – 7.09 (m, 2H), 7.02 (d, *J* = 7.8 Hz, 2H), 6.95 (d, *J* = 8.0 Hz, 2H), 6.85 – 6.83 (m, 1H), 3.61 (s, 2H), 2.29 (s, 3H). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ : -88.6 (d, *J* = 39.5 Hz), -93.9 (dt, *J* = 40.3, 2.7 Hz). ¹³C NMR (150 MHz, Chloroform-*d*) δ : 153.5 (t, *J* = 286.5 Hz), 136.0, 134.7 (t, *J* = 2.6 Hz), 134.1 (dd, *J* = 6.0, 1.5 Hz), 132.8, 132.4 – 131.8 (m), 129.4, 129.0, 128.8, 127.1, 124.3 (dd, *J* = 3.3, 1.3 Hz), 92.5 (dd, *J* = 24.2, 16.7 Hz), 34.1, 21.1. HRMS (EI⁺) calcd. for C₁₆H₁₃F₂Br [M]⁺: 322.0163, found: 322.0162.

1-(2-(Difluoromethylene)-4-phenylbutyl)-4-methylbenzene (2t)

Colorless oil, 11.7 mg, 43%, ¹H NMR (400 MHz, Chloroform-*d*) δ : 7.28 – 7.23 (m, 3H), 7.20 – 7.16 (m, 1H), 7.12 – 7.05 (m, 6H), 3.26 (t, *J* = 2.0 Hz, 2H), 2.64 – 2.60 (m, 2H), 2.32 (s, 3H), 2.20 – 2.16 (m, 2H). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ : -95.5 (dt, *J* = 53.2, 2.0 Hz), -95.8 (dt, *J* = 53.5, 2.6 Hz). ¹³C NMR (100 MHz, Chloroform-*d*) δ : 153.9 (t, *J* = 282.0 Hz), 141.2, 136.1, 135.4 (t, *J* = 2.6 Hz), 129.2, 128.6, 128.4, 128.3, 126.0, 88. 6 (t, *J* = 17.1 Hz), 33.8 (t, *J* = 2.7 Hz), 32.0 (dd, *J* = 2.7, 1.1 Hz), 27.7 (d, *J* = 2.1 Hz), 21.1 HRMS (EI⁺) calcd. for C₁₈H₁₈F₂ [M]⁺: 272.1371, found: 272.1372.

4-(1,1-Difluoro-3-(4-methoxyphenyl)prop-1-en-2-yl)-1,1'-biphenyl (2aa)

White solid, 30.8 mg, 92%, m.p. 65-67°C; ¹H NMR (400 MHz, Chloroform-*d*) δ : 7.57 – 7.50 (m, 4H), 7.43-7.39 (m, 2H), 7.35 – 7.30 (m, 3H), 7.12 – 7.08 (m, 2H), 6.85 – 6.73 (m, 2H), 3.75 (s, 3H), 3.70 (t, J = 2.3 Hz, 2H). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ : -90.1 (dt, J = 39.9, 2.7 Hz), -90.5 (d, J = 39.9 Hz). ¹³C NMR (100 MHz, Chloroform-*d*) δ : 158.2, 154.5 (dd, J = 292.2, 287.7 Hz), 140.5, 140.0, 132.6 (t, J = 3.8 Hz), 130.5 (t, J = 2.0 Hz), 129.3, 128.8, 128.6 (t, J = 3.6 Hz), 127.4, 127.0, 127.0, 114.0, 91.7 (dd, J = 21.3, 12.9 Hz), 55.2, 33.0. HRMS (EI⁺) calcd. for C₂₂H₁₈F₂O [M]⁺: 336.1320, found: 336.1318.

Ethyl 4-(2-([1,1'-biphenyl]-4-yl)-3,3-difluoroallyl)benzoate (2ab)

Colorless oil, 29.9 mg, 79%, ¹H NMR (400 MHz, Chloroform-*d*) δ : 7.96 – 7.92 (m, 2H), 7.56 – 7.50 (m, 4H), 7.44 – 7.39 (m, 2H), 7.35-7.31 (m, 3H), 7.27 – 7.24 (m, 2H), 4.34 (q, *J* = 7.1 Hz, 2H), 3.82 (t, *J* = 2.2 Hz, 2H), 1.36 (t, *J* = 7.1 Hz, 3H). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ : -89.2 (dt, *J* = 38.0, 2.5 Hz), -89.7 (d, *J* = 38.1 Hz). ¹³C NMR (100 MHz, Chloroform-*d*) δ : 166.5, 154.6 (dd, *J* = 290.0, 286.3 Hz), 143.7 (t, *J* = 2.7 Hz), 140.4, 140.2, 132.0 (t, *J* = 3.8 Hz), 129.9, 128.9, 128.8, 128.5 (t, *J* = 3.6 Hz), 128.3, 127.5, 127.2, 127.0, 91.0 (dd, *J* = 21.3, 14.0 Hz), 60.9, 33.8, 14.4. HRMS (EI⁺) calcd. for C₂₄H₂₀F₂O₂ [M]⁺: 378.1426, found: 378.1422.

4-(2,2-Difluoro-1-phenylvinyl)-1,1'-biphenyl (2ac)²

White solid, 19.0 mg, 65%, m.p. 69-71°C; ¹H NMR (400 MHz, Chloroform-*d*) δ : 7.61 – 7.56 (m, 4H), 7.46 – 7.42 (m, 2H), 7.40 – 7.30 (m, 8H). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ : -87.3 (d, *J* = 31.9 Hz),

-87.5 (d, *J* = 31.6 Hz). ¹³C NMR (150 MHz, Chloroform-*d*) δ: 153.8 (t, *J* = 293.6 Hz), 140.5, 140.4, 134.2 (t, *J* = 3.5 Hz), 133.3 (t, *J* = 3.7 Hz), 130.0 (t, *J* = 3.5 Hz), 129.8 (t, *J* = 3.3 Hz), 128.9, 128.5, 127.7, 127.5, 127.1, 127.1, 96.0 (t, *J* = 18.1 Hz).

4-(1,1-Difluoropenta-1,4-dien-2-yl)-1,1'-biphenyl (2ad)

Colorless oil, 16.4 mg, 64%, ¹H NMR (400 MHz, Chloroform-*d*) δ : 7.53 – 7.49 (m, 4H), 7.39 – 7.33 (m, 4H), 7.29 – 7.25 (m, 1H), 5.81-5.71 (m, 1H), 5.09 – 4.92 (m, 2H), 3.12-3.09 (m, 2H). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ : -89.44 (dt, *J* = 39.5, 2.9 Hz), -90.07 (d, *J* = 39.3 Hz). ¹³C NMR (100 MHz, Chloroform-*d*) δ : 153.0 (dd, *J* = 290.9, 286.4 Hz), 139.5, 138.9, 133.5 (t, *J* = 2.7 Hz), 131. 5 (t, *J* = 4.1 Hz), 127.8, 127.3 (t, *J* = 3.7 Hz), 126.3, 126.0, 126.0, 115.4, 89.1 (dd, *J* = 21.6, 15.5 Hz), 30.9. HRMS (FI⁺) calcd. for C₁₇H₁₄F₂ [M]⁺: 256.1058, found: 256.1062.

4-(1,1-Difluoro-4-methylpenta-1,4-dien-2-yl)-1,1'-biphenyl (2ae)

White solid, 18.9 mg, 70%, m.p. 34-36°C; ¹H NMR (600 MHz, Chloroform-*d*) δ : 7.60 – 7.55 (m, 4H), 7.45 – 7.41 (m, 4H), 7.35 – 7.33 (m, 1H), 4.79 (d, J = 17.7 Hz, 2H), 3.12 (s, 2H), 1.75 (s, 3H). ¹⁹F NMR (564 MHz, Chloroform-*d*) δ : -89.2 (d, J = 38.9 Hz), -89.9 (d, J = 38.7 Hz). ¹³C NMR (100 MHz, Chloroform-*d*) δ : 154.4 (dd, J = 292.7, 287.8 Hz), 141.9 (t, J = 3.0 Hz), 140.6, 139.9, 132.8 (t, J = 4.0 Hz), 128.8, 128.4 (t, J = 3.7 Hz), 127.4, 127.0 (2C), 112.2, 90.0 (dd, J = 21.6, 12.7 Hz), 36.0, 22.3. HRMS (EI⁺) calcd. for C₁₈H₁₆F₂ [M]⁺: 270.1215, found: 270.1220.

4-(1,1-Difluoro-5-phenylpent-1-en-4-yn-2-yl)-1,1'-biphenyl (2af)

Viscous oil, 12.2 mg, 37%, ¹H NMR (400 MHz, Chloroform-*d*) δ : 7.64 – 7.56 (m, 6H), 7.46-7.43 (m, 2H), 7.37 – 7.33 (m, 3H), 7.27 – 7.24 (m, 4H), 3.54 (t, J = 2.1 Hz, 2H). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ : -88.0 (dt, J = 37.5, 3.0 Hz), -88.9 (d, J = 37.0 Hz). ¹³C NMR (100 MHz, Chloroform-*d*) δ : 154.0 (dd, J = 290.8, 287.4 Hz), 140.5, 140.4, 131.8 (t, J = 3.8 Hz), 131.6, 128.8, 128.5 (t, J = 3.8 Hz), 128.2, 128.0, 127.5, 127.1, 127.1, 123.3, 89.0 (dd, J = 20.8, 15.3 Hz), 85.9 (t, J = 3.8 Hz), 81.8, 19.0. HRMS (EI⁺) calcd. for C₂₃H₁₆F₂ [M]⁺: 330.1215, found: 330.1213.

4-(1,1-Difluoro-4-phenylbut-1-en-2-yl)-1,1'-biphenyl (2ag)

Colorless oil, 16.1 mg, 50%, ¹H NMR (400 MHz, Chloroform-*d*) δ : 7.63 – 7.59 (m, 4H), 7.48 – 7.43 (m, 2H), 7.42 – 7.34 (m, 3H), 7.31 – 7.26 (m, 3H), 7.22 – 7.14 (m, 3H), 2.77 – 2.69 (m, 4H). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ : -90.4 (dd, *J* = 41.9, 2.0 Hz), -90.9 (d, *J* = 41.6 Hz). ¹³C NMR (100 MHz, Chloroform-*d*) δ : 153.8 (dd, *J* = 289.5, 285.5 Hz), 141.0, 140.6, 140.1, 132.4 (t, *J* = 3.8 Hz), 128.8, 128.6 (t, *J* = 3.4 Hz), 128.4, 128.4, 127.4, 127.2, 127.0, 126.1, 91.6 (dd, *J* = 21.8, 13.1 Hz), 34.1 (t, *J* = 2.6 Hz), 29.6 (d, *J* = 1.6 Hz). HRMS (EI⁺) calcd. for C₂₂H₁₈F₂ [M]⁺: 320.1371, found: 320.1374.

4-(2,2-Difluorovinyl)-1,1'-biphenyl (2ah)¹

White solid, 6.3 mg, 29%, ¹H NMR (400 MHz, Chloroform-*d*) δ : 7.61 – 7.57 (m, 4H), 7.46 – 7.40 (m, 4H), 7.37 – 7.33 (m, 1H), 5.32 (dd, J = 26.3, 3.8 Hz, 1H). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ : -81.9 (dd, J = 30.7, 26.1 Hz), -83.8 (dd, J = 30.7, 3.9 Hz). ¹³C NMR (150 MHz, Chloroform-*d*) δ : 156.4 (dd, J = 298.5, 288.6 Hz), 140.5, 139.8, 129.4 (t, J = 6.5 Hz), 128.9, 128.1 (dd, J = 6.4, 3.5 Hz), 127.5, 127.4, 127.0, 82.0 (dd, J = 29.2, 13.5 Hz).

4-(1,1-Dichloro-3-(p-tolyl)prop-1-en-2-yl)-1,1'-biphenyl (3a),

White solid, 11.3 mg, 32%, m.p. 74-76°C; ¹H NMR (400 MHz, Chloroform-*d*) δ : 7.60 – 7.56 (m, 2H), 7.54 – 7.50 (m, 2H), 7.46 – 7.40 (m, 2H), 7.36 – 7.31 (m, 1H), 7.18 – 7.15 (m, 2H), 7.06-7.04 (m, 2H), 7.02-7.00 (m, 2H), 3.93 (s, 2H), 2.30 (s, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ : 140.5, 140.4, 138.9, 137.7, 136.2, 133.9, 129.2, 128.8, 128.8, 128.6, 127.5, 127.0, 126.9, 118.8, 41.9, 21.1. HRMS (EI⁺) calcd. for C₂₂H₁₈Cl₂ [M]⁺: 352.0780, found: 352.0777.

(E)-4-(2-(Difluoromethoxy)-2-(p-tolyl)-1-((trifluoromethyl)sulfonyl)vinyl)-1,1'-biphenyl (5a')

White solid, 33.2 mg, 70%, m.p. 139-141°C; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.55 – 7.53 (m, 2H), 7.50 – 7.48 (m, 2H), 7.43-7.40 (m, 2H), 7.36-7.32 (m, 1H), 7.25 (d, J = 2.9 Hz, 2H), 7.19 (d, J = 8.0 Hz, 2H), 7.08 (d, J = 8.1 Hz, 2H), 6.35 (t, J = 71.9 Hz, 1H), 2.30 (s, 3H). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ : -75.1, -83.1 (d, J = 71.8 Hz). ¹³C NMR (100 MHz, Chloroform-*d*) δ : 162. 8 (t, J = 3.5 Hz), 142.8, 142.0, 139.8, 132.6, 129.9, 129.6, 128.9, 128.5, 127.9, 127.2, 127.0, 126.9, 123.1, 120.4 (q, J = 328.9 Hz), 115.3 (t, J = 264.6 Hz), 21.5. HRMS (EI⁺) calcd. for C₂₃H₁₇F₅O₃S [M]⁺: 468.0813, found: 468.0813.

4-(1,1,1-Trifluoro-3-(p-tolyl)propan-2-yl)-1,1'-biphenyl (6a)

Viscous oil, 17.2 mg, 51%, ¹H NMR (400 MHz, Chloroform-*d*) δ : 7.60 – 7.56 (m, 2H), 7.54 – 7.50 (m, 2H), 7.42 (dd, J = 8.4, 6.8 Hz, 2H), 7.36 – 7.31 (m, 1H), 7.29 (d, J = 8.0 Hz, 2H), 6.98 (d, J = 7.8 Hz, 2H), 6.89 (d, J = 8.0 Hz, 2H), 3.61 – 3.47 (m, 1H), 3.36 (dd, J = 14.0, 4.0 Hz, 1H), 3.11 (dd, J = 13.9, 10.9 Hz, 1H), 2.25 (s, 3H). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ : -69.3 (d, J = 9.0 Hz). ¹³C NMR (100 MHz, Chloroform-*d*) δ : 140.8, 140.4, 136.1, 134.5, 133.4, 129.6, 129.1, 128.8, 128.8, 127.5, 127.2, 127.1, 126.8 (q, J = 280.5 Hz), 51.9 (q, J = 26.1 Hz), 35.1 (d, J = 2.6 Hz), 21.0. HRMS (EI⁺) calcd. for C₂₂H₁₉F₃ [M]⁺: 340.1433, found: 340.1430.

11. References

1. M. Tomoya, I. Yoshiteru, M. Masahiro, Chem. Lett. 2008, 37, 1006-1007.

2. Y. Maekawa, M. Nambo, D. Yokogawa, C. M. Crudden, J. Am. Chem. Soc. 2020, 142, 15667-15672.

M. Nambo, J. C. Yim, L. B. O. Freitas, Y. Tahara, Z. T. Ariki, Y. Maekawa, D. Yokogawa, C. M. Crudden, *Nat. Commun.* 2019, 10, 4528-4535.

12. Copies of NMR spectra

Figure S 2

Figure S 14

Figure S 32

S42

Figure S 38

S44

Figure S 50

Figure S 60

Figure S 62

Figure S 80

S66

S67

-90.259 -90.267 -90.267 -90.367 -90.367 -90.375 -90.353

Figure S 116

10 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 Figure S 122

Figure S 124

-86.51 -86.52 -86.52 -86.53 -86.61 -86.61 -87.15 -87.15

Figure S 126

Figure S 128

000.0----

-90.118 -90.125 -90.131 -90.224 -90.239 -90.239 -90.764

Figure S 134

-90.692 -90.699 -90.707 -90.801 -90.801 -90.815 -91.157 -91.157

Figure S 142

Figure S 146

Figure S 148

Figure S 150

Figure S 152

Figure S 158

155.781 155.781 155.885 155.885 1440.532 1440.532 1440.532 1440.532 1440.532 1423.345 1133.250 1133.250 1133.250 1129.985 1129.985 1129.779 1129.779 1129.779 1127.490 1127.490 1127.490 1127.4000 1127.4000 1127.4000 1127.4000 1127.4000 1127.4000 1

Figure S 164

Figure S 170

¹⁹F NMR (376 MHz, Chloroform-d)

Figure S 174

000.0-

Figure S 176

Figure S 178

000.0----

-2.296

-69.296

