Supplementary Material (ESI) For Chemical Communications This Journal is © The Royal society of Chemistry 2020

Mesoporous knitted Inverse Vulcanised Polymers

Samuel Petcher*, Bowen Zhang, Thomas Hasell*

Department of Chemistry, University of Liverpool, Crown Street, Liverpool, United Kingdom

Supporting Information: Figures S1-SX

Method 1	Synthesis of poly[s-(<i>ran</i>)-styrene]		
Method 2	Post-synthetic 'knitting' of poly[s-(ran)-styrene] to produce SHCP-01		
Method 3	'One pot' synthesis of SHCP-01		
Figure S1	Summary report of N2 Isotherm as generated by Micrometrics Software		
Figure S2	N2 Uptake isotherm of generated porous polymer		
Figure S3	Micrographs of generated porous polymer powder (3.68 μ m FOV)		
Figure S4	Micrograph of generated porous polymer (500 μ m FOV)		
Figure S5	Micrograph of generated porous polymer (250 μ m FOV)		
Figure S6	Micrograph of generated porous polymer (50 µm FOV)		
Figure S7	Micrograph of generated porous polymer (10		
Figure S8	Powder X-Ray diffraction of SHCP-01 (pXRD)		
Figure S9	Fourier transform infra-red spectroscopy of SHCP-01.		
Figure S10	Thermogravimetric analysis of SHCP-01		
Figure S11	¹ H NMR of S-Styrene		
Figure S12	Elemental Analysis of SHCP-01		
Figure S13	Thermogram of SHCP-01 (DSC)		
Figure S14	S-Styrene thermogram (DSC)		
Table S1	Solubility study of SHCP-01		
Figure S15	EDS Spectra of SHCP-01		
Figure S16	EDS Spectra of SHCP-01		

Method 1 Synthesis of poly[s-(*ran*)-styrene]

Sulfur (S₈, 14.000 g, 0.05458 mol) and Styrene (C₆H₅CH=CH₂, 6 g, 0.057609 mol) were placed in a 250 mL round bottom flask with a cross shaped magnetic stirrer bar. The round bottom flask was equipped with a rubber septum and placed under nitrogen flow. The round bottom flask was then placed into a aluminium heating block thermostatted at 100 °C for 20 minutes. After the 20 minutes had passed the temperature was increased to 130 °C for 8 hours. Affording a viscous, insoluble yellow fluid. The sample was then allowed to cool and stored.

Method 2 Post-synthetic 'knitting' of poly[s-(*ran*)-styrene] to produce SHCP-01

poly[s-(*ran*)-styrene] (2 g) was placed into a dry 250 mL round bottom flask and 50 mL of dry chloroform was added (an excess). The solution was heated to 50 °C to soften the poly[s-(*ran*)-styrene] and was stirred using a magnetic stirrer. After a suspension had formed AlCl₃ (2 g, 0.01499 mol) was added. Immediately a colour change was observed to a deep orange, which darkened with time. After 2 hours had passed the remaining AlCl₃ was quenched with MeOH and stirring. The resultant black powder was filtered and washed with MeOH once, then CHCl₃ once.

The resultant dark powder was then Soxhlet extracted with MeOH, and then $CHCl_3$ to afford a brown powder. Yield was 56.4 %

Method 3 'One pot' synthesis of SHCP-01

Sulfur (S₈, 3.500 g, 0.01372 mol) and Styrene (C₆H₅CH=CH₂, 1.500 g, 0.01440 mol) were placed in a 100 mL round bottom flask with a cross shaped magnetic stirrer bar. The round bottom flask was equipped with a rubber septum and placed under nitrogen flow. The round bottom flask was then placed into a aluminium heating block thermostatted at 100 °C for 20 minutes. After the 20 minutes had passed the temperature was increased to 130 °C for 8 hours. The solution was cooled to 50 °C. To the round bottom flask 50 mL of CHCl₃ was added and stirred until a suspension formed. The solution was then chilled in an ice bath, with stirring. To the round bottom flask AlCl₃ (20 g, 0.1499 mol) was added. Immediately the suspension turned a deep orange, and darkened over time. After 2 hours had passed the remaining AlCl₃ was quenched with MeOH and stirring. The resultant black powder was filtered and washed with MeOH once, then CHCl₃ once. Yield was 45.6 %

Safety note: Reaction is highly exothermic, and heat generated can boil the CHCl₃. To prevent this ensure mixture is cool before addition of AlCl₃. Reaction was performed in a lab of temperature 11 °C.

Summary Report

Su	face Area	
Single point surface area at P/Po = 0.290707079:	161.1134 m²/g	
BET Surface Are	ea: 236.0425 m²/g	
t-Plot external surface area	a: 353.5279 m²/g	
BJH Adsorption cumulative surface area of pores between 0.8500 nm and 150.0000 nm radius:	219.1382 m²/g	
BJH Desorption cumulative surface area of pores		
between 0.8500 nm and 150.0000 nm radius:	228.0329 m²/g	
Po	re Volume	
Single point adsorption total pore volume of pores		
less than 101.4713 nm radius at P/Po = 0.990473218:	0.472236 cm ³ /g	
t-Plot micropore volume	e: -0.094615 cm³/g	
B IH Adsorption cumulative volume of pores		
between 0.8500 nm and 150.0000 nm radius:	0.478265 cm ³ /g	
BJH Desorption cumulative volume of pores between 0.8500 nm and 150.0000 nm radius:	0.479740 cm³/g	
F	Pore Size	
BJH Adsorption average pore radius (2V/A):	4.3650 nm	
BJH Desorption average pore radius (2V/A):	4.2076 nm	
DET	Pore Size	
Volume in Pores	1 666 nm	0 00000 cm ³ /a
Total Volume in Pores	= 38 734 nm	0.26536 cm ³ /g
Area in Pores	38.734 nm	39.352 m²/a
Total Area in Pores >	= 1.666 nm	142.937 m ² /g
Horva	th-Kawazoe	
Maximum pore volume at P/Po = 0.179967880:	0.054802 cm ³ /g	
Median pore widt	h: 1.1486 nm	

Figure S1 Summary report generated for the N_2 isotherm. BET specific surface area was calculated to be 236.04 m² g⁻¹.

Figure S2 The nitrogen absorption isotherm for sample SHC1. The shape of the curve is indicative of a type V isotherm,¹ with the convex curve, and hysteresis that results from the capillary filling of the mesopores.

Figure S3 Micrograph with a field of view of 3.62 μ m. Imaging was performed with a beam current of 28 pA and 2 keV acceleration voltage.

Figure S4 Micrograph of the polymer with a field of view of 500 μ m. Imaging was performed at a working distance of 6.38 mm with an acceleration voltage of 2 keV and a beam current of 28 pA.

Figure S5 Micrograph of the polymer with a field of view of 250 μ m. Imaging was performed at a working distance of 6.38 mm with an acceleration voltage of 2 keV and a beam current of 28 pA.

Figure S6 Micrograph of the polymer with a field of view of 50 μ m. Imaging was performed at a working distance of 6.38 mm with an acceleration voltage of 2 keV and a beam current of 28 pA.

Figure S7 Micrograph of the polymer with a field of view of 10 μ m. Imaging was performed at a working distance of 6.38 mm with an acceleration voltage of 2 keV and a beam current of 28 pA.

Figure S8 pXRD of SHC1, demonstrating the lack of crystallinity, and hence elemental sulfur. The amorphous nature of the produced samples is also good evidence that the polymer is a crosslinked material.

Figure S9 The FTIR of SHCP-01 prodcued the spectrum shown above. There were several peaks that unveiled characteristics of the produced material. Firstly, the strong and broad band present at ~600-830 cm⁻¹⁻ is characteristic of a C-Cl stretch. This is likely to be result of the formed bridges between styrenics, which will have a remaining Cl. (green) There is also the aromatic C-H stretch highlighted. (purple)

Figure S10 Thermogravimetric analysis (TGA) demonstrated the thermal stability of the material. The thermogram demonstrated that the material had a sharp decomposition at around 200 °C. This type of decomposition is characteristic of polymer with high sulfur content

Figure S11 1H NMR of the sample of S-Styrene, in deuterated chloroform. The NMR experiment confirmed the consumption of alkene within the polymer, indicating a successful synthesis. (~ 5.6 ppm) Previous work has indicated that the polymerisation mechanism of S-Styrene is complex, and likely proceeds via several different mechanism.

Sample Name	Concentration (ppm)
Blank	0.02
SHCP-01 Filtered	0.02
Control	11.45

Table S12 demonstrates the concentrations of mercury resulting from the dissolution of methylmercury chloride in solution (Control) vs a blank solution of distilled water (Blank), and the control filtered by SHCP-01.

Figure S13 is the thermogram obtained when SHCP-01 is analysed *via* differential scanning calorimetry. The resultant thermogram is featureless. This is common for highly crosslinked materials, and it may be that a 'theoretical' glass transition exists beyond the decomposition temperature of the sample. The absence of melting peak ~120 °C indicates the absence of crystalline S₈. Ran under nitrogen at 10 °C per minute. The separate colours allow the heat/cool/heat cycles to be differentiated. Green = first heating step. Orange = first cooling step. Blue = second heating step.

Figure S14 – DSC of poly[S-(*ran*)-styrene] demonstrating a T_g of -25.6 °C that is not present in the hypercrosslinked sample SHCP-01. Ran under nitrogen at 10 °C per minute. The separate colours allow the heat/cool/heat cycles to be differentiated. Green = first heating step. Orange = first cooling step. Blue = second heating step.

Solvent	Solubility
Chloroform	Insoluble
Toluene	Insoluble
Dichloromethane	Insoluble
Tetrahydrofuran	Insoluble
DMSO	Insoluble
Water	Insoluble
Methanol	Insoluble
Ethanol	Insoluble

 Table S1 – Results of a solubility study for SHCP-01.

Figure S15 – EDS Spectra of SHCP-01, not quantitative but demonstrates the inclusion of Cl, and complete removal of Al from the polymer produced. The Ag is an artefact from sample preparation.

Figure S16 – EDS Spectra of SHCP-01, not quantitative but demonstrates the inclusion of Cl, and complete removal of Al from the polymer produced. The Ag is an artefact from sample preparation.

References:

1. Michal Kruk and Mietek Jaroniec, Chem. Mater. 2001, 13, 10, 3169–3183