Contents

I. Physical measurements

II. Synthesis

III. Computational details

IV. Supporting figures

I. Physical measurements

Shimadzu UV-2550 Spectrophotometer was used for the measurements. Spectra were typically measured in the range of 250-900 nm. NMR spectra were recorded on a Bruker Advance II spectrometer that operates at 400 MHz while recording ¹H, 61.4 MHz for ²H, and 161.6 MHz for ³¹P NMR. ¹H NMR spectra was referenced to TMS as an external standard, and ³¹P chemical shifts were referenced to external 85% H₃PO₄ and were determined by the deuterium lock signal. Mass spectra were recorded on a high-resolution Fourier transform ICR spectrometer with an electrospray ionization source in positive mode.

X-ray Crystallography. Intensity data of **Cus-H** were collected on an Agilent SuperNova Dual system (Cu K α) at 173K. Absorption corrections were applied by using the program CrysAlis (multi-scan). The structure of **Cus-H** was solved by direct methods, and non-hydrogen atoms except CH₂Cl₂ solvent molecules were refined anisotropically by least-squares on F^2 using the SHELXTL program. The hydride atoms (H, Ha, Hb, Hc, Hd, He) were also located and isotropically refined.

II. Synthesis

Materials and reagents.

Copper(II) trifluoromethanesulfonate [Cu(OTf)₂, 98%], Sodium borodeuteride (NaBD₄, 98.0%) were purchased from J&K; Diphenyl-2-pyridylphosphine (dppy, 97%) was purchased from Bokachem; sodium borohydride (NaBH₄, 98%) and other reagents employed were purchased from Sinopharm Chemical Reagent Co. Ltd. (Shanghai, China). Cu(CH₃CN)₄OTf was prepared by refluxing of Cu(OTf)₂ and Cu powder in the presence of CH₃CN. All reagents were used as received.

[Cu8H6dppy6](OTf)2 (Cu8-H)

Under ambient conditions, 2 mL dichloromethane was added to 0.1 mmol $Cu(CH_3CN)_4OTf$ (the anion can be changed to ClO_4^- , PF_6^- , BF_4^- , etc.) and 0.08 mmol Diphenyl-2-pyridylphosphine (dppy), and a nearly colorless solution was formed after stirred for 20 minutes. Then, 1 mL freshly prepared ethanol solution of NaBH₄ (0.12 mmol) was added dropwise under vigorous stirring, the color changed to deep red in 2 min. After stirred at room temperature for 1 h, the reaction mixture was evaporated to 0.5 mL to give a red microcrystal and yellow supernatant. The crude red solid was washed with ether (2 x 3 mL) and collected by centrifugation. This red solid was dissolved in 3 mL CH₂Cl₂. After filtration, the filtrate was subject to the diffusion with ether at 4 °C to afford red block crystals after 5 days (yield ~80% based on Cu). Following the aforementioned procedures, the deuteride clusters [Cu₈D₆dppy₆](OTf)₂

(Cu₈-D) can be obtained by using NaBD₄ instead of NaBH₄ for reduction.

Anal. UV-Vis (λ , nm): 321; 449; Eg = 2.54 eV. ESI-TOF-MS (CH₂Cl₂): 918.47 ([Cu₈D₆(dppy)₅]²⁺), 1050.02 ([Cu₈D₆(dppy)₆]²⁺) and 1380.02 ([Cu₅D₄H(dppy)₄]⁺). ¹H NMR (400MHz, CD₂Cl₂, δ , ppm): 2.53 (br, 6H, hydride), 6.4-7.4 (m, 84 H, Ph and py). ³¹P NMR (162 MHz, CD₂Cl₂, δ , ppm): 0.47.

Stoichiometric reaction with Cu₈-H

Under ambient conditions, 3 mL dichloromethane was added to 28 mg **Cus-H** (8 x 10^{-3} mmol), PhC=CH 5.5 µL (0.05 mmol) and H₂O 2 µL in 25 mL round-bottom flask, the mixture was encapsulated well and stirred for 4 h. After reaction, the mixture was evaporated and extracted with 0.5 mL CD₂Cl₂. The conversion and selectivity were determined by NMR analysis. Similarly, other organic substrates (0.05 mmol) were used instead of PhC=CH.

Selectivity catalytic reduction by Cu₈-H

Under ambient conditions, 2 mL ethanol was added to 1 mg **Cus-H** (3 x 10⁻⁴ mmol), *trans*-Benzalacetone 14 μ L (0.1 mmol) and Ph₂SiH₂ 36 μ L (0.2 mmol) in 25 mL round-bottom flask, the mixture was encapsulated well and stirred for 12 h at 30 °C. After reaction, the mixture was evaporated and extracted with 0.5 mL CDCl₃. The conversion and selectivity were determined by NMR analysis. Similarly, other organic substrates (0.1 mmol) were used instead of *trans*-Benzalacetone.

IV. Supporting figures

Figure S1. ³¹P NMR spectrum of the obtained red microcrystals in CD₂Cl₂.

Figure S2. The photographs of Cu_8 -H red crystals under ambient light (left) and under the microscope (right).

Figure S3. Optical absorption spectra of Cu₈-H in CH₂Cl₂.

Figure S4. GC Analysis of 33 mg **Cu₈-H** dissolved in 5 mL CH₂Cl₂ and in the presence of 0.1 mL 2 mol/L HCl for 1 h.

Figure S5. Mass spectra and the analysis of the four dominating peaks of Cu_8 -D in CH_2Cl_2 .

Figure S6. Mass spectra of **Cu₈-D** in CH₂Cl₂. The experimental (black trace) and simulated (red trace) isotopic patterns of molecular ion peak $[Cu_8D_6(dppy)_6]^{2+}$.

Figure S7. Structural comparison of Cu_6H_6 in Cu_6H_6 (PPh₃)₆ cluster and Cu_8H_6 in **Cu**₈-H with selected bonds distance.

• **Figure S8.** ¹H NMR spectrum of **Cu₈-H** in CD₂Cl₂. The broad peak at 2.46 ppm is signal of six hydrides.

Figure S9. ²H NMR spectrum of Cu₈-D in CH₂Cl₂ with 0.2 μ l CD₂Cl₂.

Figure S10. ¹H NMR spectrum of Cu₈-H in CD₂Cl₂ at different temperatures. ^{*}CH₃CH₂OH signals and $^{\triangle}$ H₂O signal.

Cu8(H) P CD2Cl2

Figure S11. ³¹P NMR spectrum of Cu₈-H in CD₂Cl₂.

Figure S12. Time-dependent ³¹P NMR spectrum of **Cu**₈-**H** in CD₂Cl₂ for monitoring stability.

Figure S13. ¹H NMR spectra of the crude products of after phenylacetylene stoichiometric reaction with Cu_8 -H in CH_2Cl_2 .