# Crystalline assembly of metal-organic polyhedra driven by ionic interactions with polyoxometalates

Benjamin Le Ouay,<sup>a\*</sup> Haruka Yoshino,<sup>a</sup> Kenta Sasaki,<sup>a</sup> Yuta Ohtsubo,<sup>a</sup> Ryo Ohtani,<sup>a</sup> and Masaaki Ohba<sup>a\*</sup>

[a] Department of Chemistry, Faculty of Science, Kyushu University
744 Motooka, Nishi-ku, Fukuoka 819-0395
E-mails: leouay.benjamin@chem.kyushu-univ.jp; ohba@chem.kyushu-univ.jp

# Material and methods

<u>Synthesis of **SiM**<sub>12</sub>; 4 TBA<sup>+</sup> (M = Mo or W, TBA<sup>+</sup>: tetrabutylammonium)</u>

 $(TBA)_4SiMo_{12}O_{40}$  and  $(TBA)_4SiW_{12}O_{40}$  were prepared according to literature,<sup>1</sup> by treatment of solutions of commercial silicomolybdic acid  $(H_4SiW_{12}O_{40})$  or silicotungstic acid  $(H_4SiW_{12}O_{40})$  with saturated aqueous solutions of tetrabutylammonium bromide. The solids formed were filtered and washed abundantly with water, then recrystallized in acetonitrile.

# Synthesis of ZrBDC; 4 OTf

Formula: { $[Cp_3Zr_3(\mu_3-O)(\mu_2-OH)_3]_4(BDC)_6$ }<sup>4+</sup>; 4 OTf (Cp: = cyclopentadienyl; BDC: benzene-1,4-dicarboxylate; OTf: trifluoromethanesulfonate)

This synthesis was adapted from literature.<sup>2,3</sup> Zirconocene dichloride (5.10 g, 17.5 mmol) and terephthalic acid (1.45 g, 8.7 mmol) were dissolved in 150 ml N,N-dimethylformamide and 5 ml water, and kept at 65 °C for 16 h. After reaction, the solvent was filtered out, and the white crystals (**ZrBDC**; 4 Cl<sup>-</sup>) where washed with DMF and diethyl ether before being introduced in a round bottom flask of known mass and degassed (0.3 kPa) for 16 h at 120 °C. After degassing, the mass of **ZrBDC**; 4 Cl<sup>-</sup> was determined (ca. 3.3 g), and silver triflate (AgOTf, 4.4 equivalent per ZrBDC, 1.14 g in this case) and methanol (150 ml) were introduced in the flask, and the reaction was wrapped in aluminum foil and kept stirred at room temperature for 3 days. After reaction, the AgCl precipitate was removed by coarse filtration (pore size: 5 µm) then by centrifugation (14000 rpm) and filtration on a PTFE membrane  $(0.1 \,\mu\text{m})$ , until a clear solution was obtained. Toluene (about 100 ml) was then added to the solution, and methanol was removed selectively with a rotary evaporator (150 kPa, 40 °C), taking care of avoiding complete drying by adding more toluene if needed. Once most of the methanol was removed, a white precipitate appeared in the flask, then was filtered, washed abundantly with toluene then n-hexane, and degassed, yielding 3.5 g of **ZrBDC**; 4 OTf. Yield: 65%. <sup>1</sup>NMR (600 MHz, DMSO-d<sub>6</sub>): 10.43 ppm (s, 12 H,  $\mu_2$ -OH); 7.93 ppm (s, 24 H, BDC); 6.59 ppm (s, 60 H, Cp).

# Synthesis of ZrNDC; 4 OTF

Formula: { $[Cp_3Zr_3(\mu_3-0)(\mu_2-OH)_3]_4(NDC)_6$ }<sup>4+</sup>; 4 OTf (NDC: naphthalene-2,6-dicarboxylate)

This synthesis was adapted from literature.<sup>2,3</sup> Zirconocene dichloride (2.78 g, 9.5 mmol) and 2,6-naphthalenedicarboxylic acid (1.38 g, 4.8 mmol) were dissolved in 160 ml N,N-dimethylformamide and 24 ml water, and kept at 65 °C for 16 h. After reaction, the solvent was filtered out, and the white crystals (**ZrNDC**; 4 Cl<sup>-</sup>) where washed with DMF and diethyl

ether before being introduced in a round bottom flask of known mass and degassed (0.3 kPa) for 16 h at 120 °C. After degassing, the mass of **ZrNDC**; 4 Cl<sup>-</sup> was determined (ca. 1.5 g), and silver triflate (AgOTf, 4.4 equivalent per **ZrNDC**, 0.47 g in this case) and methanol (150 ml) were introduced in the flask, and the reaction was wrapped in aluminum foil and kept stirred at room temperature for 3 days. After reaction, the AgCl precipitate was removed by coarse filtration (pore size: 5  $\mu$ m) then by centrifugation (14000 rpm) and filtration on a PTFE membrane (0.1  $\mu$ m), until a clear solution was obtained. Toluene (about 100 ml) was then added to the solution, and methanol was removed selectively with a rotary evaporator (150 kPa, 40 °C), taking care of avoiding complete drying by adding more toluene if needed. Once most of the methanol was removed, a white precipitate appeared in the flask, then was filtered, washed abundantly with toluene then n-hexane, and degassed, yielding 1.40 g of **ZrNDC**; 4 OTf. Yield: 44%. <sup>1</sup>NMR (600 MHz, DMSO-d<sub>6</sub>): 10.25 ppm (s, 12 H,  $\mu$ <sub>2</sub>-OH); 8.53 ppm (s, 12 H, NDC); 8.02-7.96 ppm (m, 24 H, NDC); 6.70 ppm (s, 60 H, Cp).

#### Synthesis of ZrBDC-SiMo12

Formula: {[Cp<sub>3</sub>Zr<sub>3</sub>( $\mu_3$ -0)( $\mu_2$ -OH)<sub>3</sub>]<sub>4</sub>(BDC)<sub>6</sub>}<sup>4+</sup>; SiMo<sub>12</sub>O<sub>40</sub><sup>4-</sup>

300 mg **ZrBDC**; 40Tf (8.05 mmol) was introduced in a 50 ml vial, then dissolved in a mixture of methanol (5 ml) and acetonitrile (15 ml). **SiMo**<sub>12</sub>; 4TBA<sup>+</sup> (148 mg, 0.66 equivalent per MOP) was introduced in a 25 ml vial, then dissolved in a mixture of methanol (5 ml) and acetonitrile (15 ml), using ultrasonication. The **SiMo**<sub>12</sub> solution was then added dropwise to the **ZrBDC** solution under vigorous stirring, over the course of 15 minutes. A yellow precipitate formed instantly upon mixing. After addition, the suspension was kept 30 min under stirring, then let to rest for 24 h at room temperature. Precipitation is quantitative with regard to **SiMo**<sub>12</sub>, as manifested by the absence of color in the supernatant. The solid was then filtered, washed abundantly with a methanol/acetonitrile mixture (1:3 (w/w)) then dried with a nitrogen flow to produce ca. 290 mg of a yellow solid (solvated **ZrBDC**-**SiMo**<sub>12</sub>). **ZrBDC-SiMo**<sub>12</sub> was kept with residual solvent in the pores (ca. 10 w%) to prevent crystallinity loss.

# Synthesis of ZrBDC-SiW<sub>12</sub>

Formula: {[Cp<sub>3</sub>Zr<sub>3</sub>(µ<sub>3</sub>-O)(µ<sub>2</sub>-OH)<sub>3</sub>]<sub>4</sub>(BDC)<sub>6</sub>}<sup>4+</sup>; SiW<sub>12</sub>O<sub>40</sub><sup>4-</sup>

300 mg **ZrBDC**; 40Tf (8.05 mmol) was introduced in a 50 ml vial, then dissolved in a mixture of methanol (5 ml) and acetonitrile (15 ml). **SiW**<sub>12</sub>; 4TBA<sup>+</sup> (204 mg, 0.66 equivalent per MOP) was introduced in a 25 ml vial, then dissolved in a mixture of methanol (5 ml) and acetonitrile (15 ml), using ultrasonication. The **SiW**<sub>12</sub> solution was then added dropwise to the **ZrBDC** solution under vigorous stirring, over the course of 15 minutes. A white precipitate formed instantly upon mixing. After addition, the suspension was kept 30 min under stirring, then let to rest for 24 h at room temperature. The solid was then filtered, washed abundantly with a methanol/acetonitrile mixture (1:3 (w/w)) then dried with a nitrogen flow to produce ca. 350 mg of a white solid (solvated **ZrBDC-SiW**<sub>12</sub>). **ZrBDC-SiW**<sub>12</sub> was kept with residual solvent in the pores (ca. 10 w%) to prevent crystallinity loss.

# Synthesis of ZrNDC-SiMo<sub>12</sub>

Formula: {[Cp<sub>3</sub>Zr<sub>3</sub>(µ<sub>3</sub>-0)(µ<sub>2</sub>-0H)<sub>3</sub>]<sub>4</sub>(NDC)<sub>6</sub>}<sup>4+</sup>; SiMo<sub>12</sub>O<sub>40</sub><sup>4-</sup>

300 mg **ZrNDC**; 40Tf (7.45 mmol) was introduced in a 50 ml vial, then dissolved in a mixture of methanol (5 ml) and acetonitrile (15 ml). **SiMo**<sub>12</sub>; 4TBA<sup>+</sup> (137 mg, 0.66 equivalent per MOP) was introduced in a 25 ml vial, then dissolved in a mixture of methanol (5 ml) and acetonitrile (15 ml), using ultrasonication. The **SiMo**<sub>12</sub> solution was then added dropwise to the **ZrNDC** solution under vigorous stirring, over the course of 15 minutes. A yellow precipitate formed instantly upon mixing. After addition, the suspension was kept 30 min under stirring, then let to rest for 24 h at room temperature. Precipitation is quantitative with regard to **SiMo**<sub>12</sub>, as manifested by the absence of color in the supernatant. The solid was then filtered, washed abundantly with a methanol/acetonitrile mixture (1:3 (w/w)) then dried with a nitrogen flow to produce ca. 280 mg of a yellow solid (solvated **ZrNDC-SiMo**<sub>12</sub>). **ZrNDC-SiMo**<sub>12</sub> was kept with residual solvent in the pores (ca. 10 w%) to prevent crystallinity loss.

#### Synthesis of ZrNDC-SiW<sub>12</sub>

# Formula: {[Cp<sub>3</sub>Zr<sub>3</sub>(µ<sub>3</sub>-O)(µ<sub>2</sub>-OH)<sub>3</sub>]<sub>4</sub>(NDC)<sub>6</sub>}<sup>4+</sup>; SiW<sub>12</sub>O<sub>40</sub><sup>4-</sup>

300 mg **ZrNDC**; 40Tf (7.45 mmol) was introduced in a 50 ml vial, then dissolved in a mixture of methanol (5 ml) and acetonitrile (15 ml). **SiW**<sub>12</sub>; 4TBA<sup>+</sup> (189 mg, 0.66 equivalent per MOP) was introduced in a 25 ml vial, then dissolved in a mixture of methanol (5 ml) and acetonitrile (15 ml), using ultrasonication. The **SiW**<sub>12</sub> solution was then added dropwise to the **ZrNDC** solution under vigorous stirring, over the course of 15 minutes. A yellow precipitate formed instantly upon mixing. After addition, the suspension was kept 30 min under stirring, then let to rest for 24 h at room temperature. The solid was then filtered, washed abundantly with a methanol/acetonitrile mixture (1:3 (w/w)) then dried with a nitrogen flow to produce ca. 340 mg of a yellow solid (solvated **ZrNDC-SiMo**<sub>12</sub>). **ZrNDC-SiMo**<sub>12</sub> was kept with residual solvent in the pores (ca. 10 w%) to prevent crystallinity loss.

#### Reaction of ZrBDC-SiMo12 with hydrazine vapors

Freshly prepared **ZrBDC-SiMo**<sub>12</sub> (about 50 mg) and hydrazine monohydrate (about 1 ml) were placed in two separate vials and introduced together into a small vacuum desiccator. A third vial containing  $(TBA)_4SiMo_{12}$  was also introduced in the desiccator, in order to provide a comparison sample submitted to the same hydrazine partial pressure. Pressure was then reduced slowly until boiling of the hydrazine monohydrate was observed, after which the vacuum tap was closed. A progressive color change of **ZrBDC-SiMo**<sub>12</sub> from yellow to dark blue was observed as hydrazine vapors diffused in the chamber. Samples were then maintained under hydrazine pressure for a given time (for instance 90 s), before air was reintroduced in the desiccator. The hydrazine vial was then removed, and samples were submitted to 5 min of dynamic vacuum in order to remove the hydrazine condensed on the vial walls.

#### **Physical measurement**

Powder X-ray diffraction (PXRD) was carried out on a Rigaku Ultima IV diffractometer with graphite monochromated Cu K $\alpha$ . Thermogravimetric analysis were performed on a Rigaku TG8120 Thermoplus Evo, using platinum pan and a N<sub>2</sub> flow of 100 ml/min. N<sub>2</sub> adsorption isotherms were measured on a BELSORP-max, using a Dewar bottle filled with

liquid nitrogen. CO<sub>2</sub> adsorption isotherms were measured on the same machine, using a water circulation bath. Heat of adsorption was determined using the Clausius-Clapeyron equation with two temperatures (283 K and 298 K). For both gases, samples were activated at 60 °C for 16 h. Scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX) were performed on a Hitachi SU3500. Infrared spectra were performed on a Perkin Elmer Spectrum Two FT-IR equipped with an ATR accessory, at room temperature. Solid-state UV-visible spectra were collected on a JASCO V-750, using a diffuse reflectance accessory.

#### Single-crystal preparation

**ZrBDC-SiMo**<sub>12</sub> and **ZrBDC-SiW**<sub>12</sub> were first prepared as powders as previously mentioned, then dissolved in dimethylacetamide (DMA, 10 mg/ml). The solutions were filtered to remove any solid residues. Crystals were formed by carefully layering in a narrow glass tube 0.5 ml of POM-MOP solution, then 2 ml of DMA and 2 ml of methanol and waiting for solvent diffusion. Single crystals were obtained after 3 weeks, and kept in the crystallization solvent until analysis.

#### Single-crystal X-ray diffraction

All single-crystal X-ray diffraction were collected on a Bruker SMART APEX II Ultra CCDdetector diffractometer, with a rotating-anode (Bruker Turbo X-ray source) with graphite monochromated Mo K $\alpha$  radiation ( $\lambda = 0.71073$  Å). Single-crystals were mounted on a polymer film with liquid paraffin and the temperature kept constant under flowing N2 gas. Computations were carried out on APEX2 crystallographic software package and OLEX2 software.<sup>4</sup> All of the structures were solved by a standard direct method and expanded Fourier techniques (SHELXT and SHELXL). Disordered solvent in the pores were occluded using OLEX2 solvent mask procedure. Full-matrix least-squares refinements were carried out with isotropic thermal parameters for all non-disordered atoms. Relevant crystal data collection and refinement data for the crystal structures of **ZrBDC-SiMo**<sub>12</sub> and **ZrBDC-SiW**<sub>12</sub> are summarized in Table S2.



**Figure S1.** Thermogravimetric analysis profiles of the POM-MOP materials. Heating rate: 10 °C/min. The origin of each mass loss steps is indicated. Note that all samples had a strong tendency to graphitization and carbidization, so that mass loss are unreliable to determine composition.

**Table S1.** Elemental analysis data for the different POM-MOPs. The low nitrogen content confirms the replacement of TBA<sup>+</sup> by MOPs as counter-cations of the POMs. Note also that Mo, W (and to a lesser extent, Zr and Si) are known to form carbides when their oxides are heated in presence graphitic carbon.<sup>5</sup> The corrected expected values for C were calculated assuming WC and MoC were fully formed. The carbon depletion in the samples might thus be explained by a partial carbide formation during the analysis.

|                   | ZrBDC-SiMo <sub>12</sub> | ZrBDC-SiW <sub>12</sub> | ZrNDC-SiMo <sub>12</sub> | ZrNDC-SiW <sub>12</sub> |
|-------------------|--------------------------|-------------------------|--------------------------|-------------------------|
| C (%; Measured)   | 23.62                    | 19.55                   | 27.26                    | 23.46                   |
| C (%; Calculated) | 26.22                    | 21.61                   | 30.21                    | 25.15                   |
| C (%; Corrected)  | 23.30                    | 19.21                   | 27.46                    | 22.86                   |
| H (%; Measured)   | 1.76                     | 1.36                    | 1.88                     | 1.51                    |
| H (%; Calculated) | 1.96                     | 1.61                    | 2.07                     | 1.73                    |
| N (%; Measured)   | 0.02                     | 0.01                    | 0.03                     | 0.00                    |
| N (%; Calculated) | 0.00                     | 0.00                    | 0.00                     | 0.00                    |



**Figure S2.** Powder diffraction patterns of  $ZrBDC-SiW_{12}$  POM-MOPs prepared by mixing POMs and MOPs at different ratios. POM and MOP solutions were mixed all at once for this experiment.

|                        | ZrBDC-SiMo <sub>12</sub>                                                              | ZrBDC-SiW <sub>12</sub>                                                              |
|------------------------|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| CCDC deposition number | 2059549                                                                               | 2059557                                                                              |
| Formula                | C <sub>108</sub> O <sub>40</sub> Zr <sub>12</sub> ;SiMo <sub>12</sub> O <sub>40</sub> | C <sub>108</sub> O <sub>40</sub> Zr <sub>12</sub> ;SiW <sub>12</sub> O <sub>40</sub> |
| Temperature (K)        | 100                                                                                   | 100                                                                                  |
| Crystal system         | Triclinic                                                                             | Triclinic                                                                            |
| Space group            | P1 (2)                                                                                | P1 (2)                                                                               |
| a (Å)                  | 20.547(3)                                                                             | 23.393(6)                                                                            |
| <i>b</i> (Å)           | 24.403(3)                                                                             | 24.882(6)                                                                            |
| <i>c</i> (Å)           | 31.283(4)                                                                             | 29.501(7)                                                                            |
| α (°)                  | 99.271(2)                                                                             | 99.888(3)                                                                            |
| β (°)                  | 107.416(2)                                                                            | 102.172(3)                                                                           |
| γ (°)                  | 107.007(2)                                                                            | 107.063(3)                                                                           |
| V (Å <sup>3</sup> )    | 13770.3                                                                               | 15537.2                                                                              |
| Z                      | 2                                                                                     | 2                                                                                    |
| Reflections            | 30281                                                                                 | 28408                                                                                |
| GOF                    | 1.095                                                                                 | 1.092                                                                                |
| $R_1$                  | 8.11 %                                                                                | 13.6 %                                                                               |
| wR <sub>2</sub>        | 23.22 %                                                                               | 37.73 %                                                                              |

**Table S2.** Crystallographic data and refinement of  $ZrBDC-SiMo_{12}$  and  $ZrBDC-SiW_{12}$ .



**Figure S3.** Detail of the environment around a **SiMo**<sub>12</sub> POM in **ZrBDC-SiMo**<sub>12</sub> crystal structure. Five MOPs (identified by letters A to E) are located in the vicinity of the POM. Table S2 summarizes the distances between the POM and each cage. Note that POMs A, B and C have a "Vertex-on" configuration, while D and E have an "Edge-on" configuration.

**Table S3.** List of distances between a POM and the Zr-clusters of its surrounding MOPs in **ZrBDC-SiMo**<sub>12</sub>. Note that cage D and E have two Zr-clusters relatively close to the POM. Distances are considered either from center to center (*i.e.* from Si to  $\mu_3$ -O), or as the minimal distance between a Mo of the POM and a C in a cyclopentadienyl ligands. The sum of van der Waals radii for Mo and C is 3.79 Å.

| ZrBDC | Distance (Si to $\mu_3$ -O, Å) | Distance (Min(Mo-C), Å) |
|-------|--------------------------------|-------------------------|
| А     | 9.065                          | 4.369                   |
| В     | 9.186                          | 4.300                   |
| С     | 9.142                          | 4.115                   |
| D1    | 12.24                          | 6.233                   |
| D2    | 13.147                         | 7.045                   |
| E1    | 12.613                         | 6.349                   |
| E2    | 14.078                         | 7.85                    |



**Figure S4.** A: Crystal structure of **ZrBDC-SiW**<sub>12</sub>. B: Detail of the coordination environment around a **SiW**<sub>12</sub> POM. The structure of **ZrBDC-SiW**<sub>12</sub> is a bit different from that of **ZrBDC-SiMO**<sub>12</sub>, and six MOPs can be observed at the vicinity of the POM (identified by letter from A to F). A, B and C have a "Vertex-on" configuration with a cluster very close to the POM. D has an "Edge-on" configuration. E and F have a "Vertex-on" configuration but are at slightly higher distances.

**Table S4.** List of distances between a POM and the Zr-clusters of its surrounding MOPs in **ZrBDC-SiW**<sub>12</sub>. Note that cage D has two Zr-clusters relatively close to the POM. Distances are considered either from center to center (*i.e.* from Si to  $\mu_3$ -O), or as the minimal distance between a W of the POM and a C in a cyclopentadienyl ligands. The sum of van der Waals radii for W and C is 3.80 Å.

| ZrBDC | Distance (Si to $\mu_3$ -0, Å) | Distance (Min(W-C), Å) |
|-------|--------------------------------|------------------------|
| А     | 10.207                         | 4.522                  |
| В     | 9.201                          | 4.035                  |
| С     | 9.207                          | 4.16                   |
| D1    | 11.758                         | 7.179                  |
| D2    | 14.037                         | 8.331                  |
| E     | 14.727                         | 8.453                  |
| F     | 14.002                         | 7.67                   |



**Figure S5**. Comparison of crystals structures and discussion on their relationship with the experimental PXRD data. The crystal structures of **ZrBDC-SiMo**<sub>12</sub> and **ZrBDC-SiW**<sub>12</sub> (**A**) reveal overall similar assemblies of POM and MOPs. However, the third POM-MOP layers is "slided" differently in those two phases. The red dotted line is aligned with two POMs, and help visualizing the relative position of the third one. **B** shows experimental patterns for bulk-prepared samples, and patterns simulated from the cif-files of crystal structures. One consequence of the different packing in the crystal structures is that the simulated PXRD patterns of these phases (crystallized in DMA/MeOH) are not identical. There is a clear peak-to-peak correspondence between the simulated **ZrBDC-SiMo**<sub>12</sub> and the experimental patterns of both **ZrBDC-SiMo**<sub>12</sub> and **ZrBDC-SiW**<sub>12</sub> bulk samples (obtained in MeCN/MeOH), revealing that the configurations are most likely very close.

The key message here is that all these POM-MOP phases are structurally close, but their exact configuration depends on the precise solvation state and set of interactions.



Figure S6. SEM-EDX element maps of **ZrBDC-SiMo**<sub>12</sub>.



W M ⊣50um 200x kV:15.0 Tilt:0

ZrL ⊢--50um 200x kV:15.0 Tilt:0

Figure S7. SEM-EDX element maps of **ZrBDC-SiW**<sub>12</sub>.



Figure S8. SEM-EDX element maps of ZrNDC-SiMo<sub>12</sub>.



Figure S9. SEM-EDX element maps of ZrNDC-SiW<sub>12</sub>.



Figure S10. Typical EDX spectrum and composition analysis of ZrBDC-SiMo<sub>12</sub>.



Figure S11. Typical EDX spectrum and composition analysis of ZrBDC-SiW<sub>12</sub>.

![](_page_14_Picture_0.jpeg)

Figure S12. Typical EDX spectrum and composition analysis of ZrNDC-SiMo<sub>12</sub>.

![](_page_15_Figure_0.jpeg)

Figure S13. Typical EDX spectrum and composition analysis of ZrNDC-SiW<sub>12</sub>.

**Table S5.** Heavy element ratios in POM-MOPs, determined by SEM-EDX. The ratios involve either Mo or W, depending on the constitutive POM. While quantitativity can reasonably be trusted for **SiMo**<sub>12</sub>-based POM-MOPs, note however that some deviation might occur for **SiW**<sub>12</sub>-based ones, due to the proximity of Si K $\alpha$  (1.740 keV) and W M (1.774 keV).

| POM-MOP                  | EDX atomic ratio<br>Mo/Si or W/Si | EDX atomic ratio<br>Mo/Zr or W/Zr |
|--------------------------|-----------------------------------|-----------------------------------|
| ZrBDC-SiMo <sub>12</sub> | 11.5 (1.3)                        | 0.95 (0.01)                       |
| ZrBDC-SiW <sub>12</sub>  | 5.5 (0.6)                         | 1.33 (0.03)                       |
| ZrNDC-SiMo <sub>12</sub> | 10.4 (0.6)                        | 1.00 (0.01)                       |
| ZrNDC-SiW <sub>12</sub>  | 4.8 (0.6)                         | 1.32 (0.04)                       |

![](_page_16_Figure_0.jpeg)

**Figure S14.** FTIR spectra of **ZrBDC**-based POM-MOPs and selected compounds. By comparison, characteristic peaks of OTf<sup>-</sup> and TBA<sup>+</sup> can be identified. Notably: OTf<sup>-</sup>: 1315 to 1130 cm<sup>-1</sup> (multiple peaks); 1025 cm<sup>-</sup> (doublet). TBA<sup>+</sup>: 3000 to 2890 cm<sup>-1</sup> (multiple peaks); 2871 cm<sup>-1</sup> (sharp); 1500 to 1430 cm<sup>-1</sup> (multiple peaks).

Characteristic peaks of **ZrBDC** and the POM can then be identified and attributed to either of the components. For instance, **ZrBDC-SiMo**<sub>12</sub> exhibited characteristic peaks of **ZrBDC** at 1549 cm<sup>-1</sup>, 1392 cm<sup>-1</sup>, 744 cm<sup>-1</sup> and 550 cm<sup>-1</sup>, and also characteristic peaks of **SiMo**<sub>12</sub> at 952 cm<sup>-1</sup>, 898 cm<sup>-1</sup> and 787 cm<sup>-1</sup>. By comparison, **ZrBDC-SiW**<sub>12</sub> presented the same group of **ZrBDC**-related peaks, at the same positions, and also POM-peaks at 968 cm<sup>-1</sup>, 916 cm<sup>-1</sup> and 790 cm<sup>-1</sup>, slightly shifted due to the different metal in **SiW**<sub>12</sub>.

![](_page_17_Figure_0.jpeg)

**Figure S15.** FTIR spectra of **ZrNDC**-based POM-MOPs and selected compounds. Following the discussion of Figure S14, the characteristic peaks of **ZrNDC** can be identified at 1602 cm<sup>-1</sup>, 1544 cm<sup>-1</sup>, 1414 cm<sup>-1</sup>, 1359 cm<sup>-1</sup>, 614 cm<sup>-1</sup>. POM-related peaks can also be observed at their expected positions.

![](_page_18_Figure_0.jpeg)

**Figure S16.** N<sub>2</sub> adsorption isotherms (77 K) of POM-MOP materials (gravimetric scale). Closed symbols indicate adsorption, and open symbols, desorption.

![](_page_18_Figure_2.jpeg)

**Figure S17.**  $N_2$  adsorption isotherms (77 K) of POM-MOP materials (normalized in  $N_2$  per cage). Closed symbols indicate adsorption, and open symbols, desorption. The dashed line corresponds to the maximum capacity of **ZrBDC**; 4Cl<sup>-</sup>, as reported in the literature.<sup>6</sup>

![](_page_19_Figure_0.jpeg)

Figure S18. PXRD patterns of POM-MOPs materials measured after activation and  $N_{\rm 2}$  adsorption experiments.

![](_page_20_Figure_0.jpeg)

**Figure S19.** CO<sub>2</sub> adsorption isotherms of **ZrBDC**-based POM-MOP materials. Closed symbols indicate adsorption, and open symbols, desorption.

![](_page_20_Figure_2.jpeg)

**Figure S20.** CO<sub>2</sub> adsorption isotherms of **ZrNDC**-based POM-MOP materials. Closed symbols indicate adsorption, and open symbols, desorption.

![](_page_21_Figure_0.jpeg)

Figure S21. Heat of adsorption of CO<sub>2</sub> in POM-MOP materials.

![](_page_21_Figure_2.jpeg)

Figure S22. UV-Vis spectra of  $(TBA^+)_4$ SiMo<sub>12</sub> before and after 90 s exposure to hydrazine vapors. Photographs of the samples are shown in inset. Note that the absorbance band of the reduced specie at 700 nm is significantly lower than for **ZrBDC-SiMo**<sub>12</sub>. In consequence, the sample appeared green, instead of dark blue.

![](_page_22_Figure_0.jpeg)

**Figure S23.** (**A**, **B**) Infrared spectra of **ZrBDC-SiMo**<sub>12</sub> before and after 90 s exposure to hydrazine vapors. **A** presents the complete spectra, and **B** is a zoom in without offset, to better show peaks shifts. We refer to Figure S14 for the peak attribution. Characteristic peaks of **ZrBDC** (at 1549 cm<sup>-1</sup>, 1392 cm<sup>-1</sup>, 744 cm<sup>-1</sup> and 550 cm<sup>-1</sup> notably) did not change, while peaks originating from **SiMo**<sub>12</sub> shifted from 952 cm<sup>-1</sup>, 898 cm<sup>-1</sup> and 787 cm<sup>-1</sup> to 933 cm<sup>-1</sup>, 882 cm<sup>-1</sup> and 770 cm<sup>-1</sup> respectively. Peaks of guest solvents are also indicated. Protonated hydrazine (downshifted compared to hydrazine hydrate)<sup>7</sup> can be detected. The protons originate from the oxidation of hydrazine (formally, N<sub>2</sub>H<sub>4</sub>  $\rightarrow$  N<sub>2</sub> + 4 H<sup>+</sup> + 4 e<sup>-</sup>), and compensate the charge of the reduced POMs (SiMo<sub>12</sub>O<sub>40</sub><sup>5-</sup>).

#### References

- 1 C. Rocchiccioli-Deltcheff, M. Fournier, R. Franck and R. Thouvenot, *Inorg. Chem.*, 1983, **22**, 207–216.
- 2 E. J. Gosselin, G. E. Decker, A. M. Antonio, G. R. Lorzing, G. P. A. Yap and E. D. Bloch, *J. Am. Chem. Soc.*, 2020, **142**, 9594–9598.
- 3 E. J. Gosselin, G. E. Decker, B. W. McNichols, J. E. Baumann, G. P. A. Yap, A. Sellinger and E. D. Bloch, *Chem. Mater.*, 2020, **32**, 5872–5878.
- 40. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, *J. Appl. Crystallogr.*, 2009, **42**, 339–341.
- 5 R. Koc and S. K. Kodambaka, *J. Eur. Ceram. Soc.*, 2000, **20**, 1859–1869.
- 6 G. Liu, Z. Ju, D. Yuan and M. Hong, *Inorg. Chem.*, 2013, **52**, 13815–13817.
- 7 P. Glavič and D. Hadži, Spectrochim. Acta Part Mol. Spectrosc., 1972, 28, 1963–1967.