Supplemental Information

Reagents and chemicals

In the experiments, the related reagents are analytical reagents and can be used without further purifification, which are described as follows: acetone (CH₃COCH₃, Tianjin, FengChuan, 99.7%), isopropanol ((CH₃)₂CHOH, Tianjin, FengChuan, 99.7%), absolute ethanol (CH₃CH₂OH, Tianjin, FengChuan, 99.7%), zinc chloride hexahydrate (ZnCl₂·6H₂O, Tianjin, GuangFu, 99%), cupric chloride dihydrate (CuCl₂·2H₂O, Tianjin, GuangFu, 99%), indium chloride tetrahydrate (InCl₃·4H₂O, Tianjin, GuangFu, 99%), Thioacetamide (CH₃CSNH₂ Tianjin, GuangFu, 99%), absolute ethanol (C₂H₆O, Tianjin, GuangFu, 99%), sodium sulfate (Na₂SO₄, Tianjin, GuangFu, 99%). The specifications of fluorine-doped tin oxide (FTO) glass are described as follows: The manufacturer is South China Science and Technology Ltd. The production size and experimental size are 10 cm×10 cm×0.22 cm and 1 cm×1 cm×0.22 cm, respectively. The square resistance is less than 7 Ω . The film thickness is 500 nm. The transmittance is more than 80%.

Preparation of n-type ZnIn₂S₄ and p-type CnInS₂

The n-type $ZnIn_2S_4$ nanosheets were prepared on fluorine-doped tin oxide (FTO) substrate through hydrothermal method, and the precursor solution is composed of 0.01 M Zinc chloride (ZnCl₂), 0.02 M Indium chloride tetrahydrate (InCl₃·4H₂O) and 0.08 M Thioacetamide (CH₃CSNH₂). Subsequently, the solution was poured into the prepared Teflon-lined stainless steel and heated at 160 °C for 12 h. The p-type CnInS₂ nanosheets were fabricated via alcohothermal method, 0.04 M CuCl₂·2H₂O, 0.08 M InCl₃·4H₂O and 0.08 M CH₃CSNH₂ were dissolved in 12 mL absolute ethanol, stirring for 30 min to obtain precursor solution, which was poured into the Teflon lined stainless steel autoclave with FTO for 16 h at 180 °C.

Preparation of ZnIn₂S₄/CnInS₂ and CnInS₂/ZnIn₂S₄ photoelectrodes

Typically, the obtained $ZnIn_2S_4/FTO$ substrate is placed in a Teflon lined stainless steel autoclave and the $ZnIn_2S_4/CuInS_2$ heterojunction is prepared by the alcohothermal method as with the preparation of pure CuInS₂. Similarly, the as-obtained CuInS₂/FTO substrate is placed in a Teflon lined stainless steel autoclave with the conductive surface facing down at an angle of 45°, and the CuInS₂/ZnIn₂S₄ heterojunction was prepared by the hydrothermal method as with the preparation of pure ZnIn₂S₄.

Characterization

The crystalline structures of samples were characterized by the data from X-ray diffractometer (XRD, Rigaku-D/max-2500; Cu K α radiation; $\Box \lambda = 0.154059$ nm; working

voltage with 40 kV and working current with 150 mA). The morphology and microstructure of samples were carried out on Scanning electron microscopy (SEM, JEOL JSM-7800F) and JEOL JEM-2100 transmission electron microscopy (TEM). Incidentally, energy dispersive spectro-meter (EDS, AZtec from Oxford) element mapping was conducted to analyze the chemical composition and stoichiometry of obtained samples. The optical absorption performance of samples was examined via a DU-8B UV-Vis double-beam spectrophotometer (UV-visible absorption spectrometer). A series of PEC performances of the as-prepared samples were probed using a three-electrode device with the prepared films as working electrode, a platinum electrode as counter electrode and Ag/AgCl (saturated KCl) as reference electrode in 0.2 M Na₂SO₄ (pH=6.8) aqueous solution via an electrochemical workstation and irradiated with a Xenon lamp (AM 1.5 G, 100 mW·cm⁻²). The collected Ag/AgCl potential values were converted to the reversible hydrogen electrode (RHE) potential via using the equation: $E_{RHE} = E_{Ag/AgCl} + 0.059pH + 0.1976$ V. A 300 W Xenon lamp was used to generate simulated sun light irradiation (AM 1.5 G, 100 mW/cm²). The electrochemical impedance spectra (EIS) measurements were collected on a three-electrode configuration with AC amplitude of 5 mV and frequency range of 10-100 kHz. Moreover, the surface photovoltage (SPV) measurements can characterization of the separation of photoinduced charge in photoelectrodes through the surface photovoltage spectrometer (PL-SPS/IPCE1000) indirectly. More importantly, the band energy level of $ZnIn_2S_4$ and $CuInS_2$ can be calculated via Ultraviolet photoelectron spectroscopy (UPS). the calculation was according to the following equations:

 $VBM = hv - (E_{cutoff} - E_{onset})$

Where VBM is valence band maximum, hv (nonmonochromatized He-I α radiation, hv = 21.22 eV), the Ecutoff and Eonset is the secondary electron cut-off and binding energy onset, respectively.

Fig. S1 XRD pattern of ZnIn₂S₄ and CuInS₂. The bottom peaks are standard position of ZnIn₂S₄ (JCPDS 72-0773, pink solid), CuInS₂ (JCPDS 82-1702, blue solid) and SnO₂ (JCPDS 77-0452, black solid)

Fig. S2 Mott–Schottky plots of $ZnIn_2S_4$ and $CuInS_2$

Fig. S3 Schematic diagram of $ZnIn_2S_4$ and $CuInS_2$ before and after forming bidirectional p-n heterojunction ($ZnIn_2S_4/CuInS_2$ p-n heterojunction and $CuInS_2/ZnIn_2S_4$ p-n heterojunction)

Fig. S4 The SEM images of (a) $ZnIn_2S_4/CuInS_2$ p-n heterojunction and (b) $CuInS_2/ZnIn_2S_4$ p-n heterojunction, the EDS spectrum of (c) $ZnIn_2S_4/CuInS_2$ p-n heterojunction and (d) $CuInS_2/ZnIn_2S_4$ p-n heterojunction

Fig. S5 Element distribution mapping

Fig. S6 TEM image (a) and HRTEM image (b) of ZnIn₂S₄/CuInS₂ p-n heterojunction, TEM image (c) and HRTEM image (d) of CuInS₂/ZnIn₂S₄ p-n heterojunction

Fig. S7 UV-vis spectra of ZnIn₂S₄, CuInS₂, ZnIn₂S₄/CuInS₂ p-n heterojunction and CuInS₂/ZnIn₂S₄ p-n heterojunction

Fig. S8 Calculated applied bias photon-to-current efficiency (ABPE) curves of ZnIn₂S₄, CuInS₂, ZnIn₂S₄/CuInS₂ p-n heterojunction and CuInS₂/ZnIn₂S₄ p-n heterojunction

Fig. S9 (a) I–V curves of bidirectional p-n heterojunction photoelectrodes $(ZnIn_2S_4/CuInS_2$ photoanode and CuInS₂/ZnIn₂S₄ photocathode); (b) the I-T curve measured in unassisted tandem PEC cell device