Supplementary Information

Chiral induction in boron imidazolate frameworks: the construction

of cage-based absolute helices

Ming-Yue Bi,^a Qin-Long Hong,^a Meng Liu,^b Fei Wang,^a Hai-Xia Zhang^{*a}, Jian Zhang^{*a}

^aState Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, R. China. E-mail: <u>zhanghaixia@fjirsm.ac.cn</u>, <u>zhj@fjirsm.ac.cn</u>

^bKey Lab for Sport Shoes Upper Materials of Fujian Province, Fujian Huafeng New Material Co., Ltd., Putian, China, 351164

Contents

- Section 1. Experiment and Characterization
- Section 2. Structure description
- Section 3. CD, PXRD, TGA, UV spectra characterization
- Section 4. Gas sorption and separation studies
- Section 5. Chemical Stability
- Section 6. FT-IR Spectra
- Section 7. Enantioselective separation experiments
- Section 8. Crystal pictures and unit cell parameters

Section 1. Experiment and Characterization

1.1 Chemicals

KBH (bim)₃ was synthesized according to the reported literature.^[1-3] Unless otherwise specified, other reagents were purchased from commercial channels and used without further purification.

1.2 Physical characteristics

Powder X-ray diffraction (PXRD) data were collected on a Rigaku Dmax2500 diffractometer with Cu K α radiation ($\lambda = 1.54056$ Å) with a step size of 0.02° over the 2θ range of 5-40° at room temperature. Thermogravimetric analyses (TGA) were carried out with a NETSCHZ STA-449C thermoanalyzer with a heating rate of 10 K/min under a N₂ atmosphere. Fourier transform infrared (FT-IR) spectra (KBr pellets) were taken on an ABB Bomem MB102 spectrometer over a range 400-4000 cm⁻¹. The UV-vis diffuse reflection data was recorded on a Perkin Elmer Lamda-950 UV spectrophotometer at room temperature by using a powder sample with BaSO₄ as a standard (100 % reflectance), which is scanned at 200-600 nm. Degassed the sample at 100°C under vacuum and then gas adsorption was measured on the Micromeritics ASAP 2020 surface area at 195 K, and the CO₂ adsorption isotherm was measured at 273 and 298 K using Micrometrics ASAP 2010. The CD spectrum was recorded on a JASCO J-815 spectrometer using a solid tablet method with KBr as the background.

1.3 Experimental part

Synthesis of **BIF-109-Zn**:

A mixture of KBH(bim)₃ (0.060 g, 0.15 mmol), 4,4'-diphenyl ether dicarboxylic acid (0.020g, 0.08mmol), $Zn(NO_3)_2 \cdot 6H2O$ (0.029g, 0.10 mmol), DMF (1 mL), ethanol (2 mL), and 3-amino-1-propanol (1 mL) was sealed in a 25 mL vial, then heated at 80 °C for 3 days, and then cooled to room temperature. The colorless block crystals were collected and air-dried (69% yield based on $Zn(NO_3)_2 \cdot 6H_2O$).

The synthesis of compounds **BIF-109-Zn** (**P**) using D-alanine, **BIF-109-Zn** (**M**) using L-alanine was similar with that of **BIF-109-Zn**, except that D-alanine (0.022 g, 0.024 mmol) or L-alanine (0.019 g, 0.021 mmol) was added as chiral inducing agents. In addition, we also selected different types of inducers in the same ratio, such as (+)-Cinchonine, L-leucine, L-malic acid, L-leucine, L-serine, etc. However, only (+)-Cinchonine induced very small powdery crystals, and none of the others grew crystals.

Synthesis of BIF-110-Zn:

A mixture of KBH(bim)₃ (0.060 g, 0.15 mmol), 4,4'-carbonyldibenzoic acid (0.036g, 0.13mmol), Zn(NO₃)₂·6H₂O (0.029g, 0.10 mmol), DMF (1 mL), methanol (2 mL),

and 3-amino-1-propanol (1 mL) was sealed in a 25 mL vial, then heated at 80 °C for 3 days, and then cooled to room temperature. The colorless block crystals were collected and air-dried (45% yield based on $Zn(NO_3)_2 \cdot 6H_2O$).

Determination of the standard curve of the CD spectrum:

The solutions of R-1- and S-1-phenylethanol in ethanol solvent with same concentrations $(3 \times 10^{-3} \text{mol/L})$ and same volume (5mL) were placed in the cell, respectively, and the CD signals were recorded in Fig.S5.

Section 2. Structure description

Fig. S1 The enantiomeric building blocks of BIF-109-Zn.

Fig. S2 The packing of helices in BIF-109-Zn in *ab* plane.

Fig. S3 Views of **BIF-110-Zn** (a) the building blocks of cubic cage BIF-26-Zn and 4,4'-carbonyldibenzoic acid linker in **BIF-110-Zn**; (b) the helical channel along c axis; (c) big right-handed helix.

Section 3. CD, PXRD, TGA, UV spectra characterization

Fig. S4 Solid-state CD spectra of BIF-109-Zn.

Fig. S5 CD spectra of mixed *R*-1- and *S*-1-phenylethanol solution in different volume ratio.

Fig. S6 Experimental and calculated Powder X-ray diffraction (PXRD) patterns for BIF-109-Zn.

Fig. S7 Experimental and calculated Powder X-ray diffraction (PXRD) patterns for BIF-110-Zn.

Fig. S8 Experimental and calculated Powder X-ray diffraction (PXRD) patterns for **BIF-109-Zn**, **BIF-109-Zn(M)** and **BIF-109-Zn(P)**, indicating the phase purity of the as-synthesized sample.

Fig. S9 PXRD patterns of simulated and after enantioselective separation of BIF-109-Zn(M).

Fig. S10 TGA curves of the as-synthesized and activated (MeOH exchanged) samples for BIF-109-Zn.

Fig. S11 UV spectra of BIF-109-Zn.

Fig. S12 CO₂ sorption isotherms of **BIF-109-Zn** at 195K. Adsorption: closed symbols; desorption: open symbols, respectively.

Fig. S13 CO₂ sorption isotherms of BIF-109-Zn at 195K,273K and 298K.

Section 5. Chemical Stability

Experimental procedure for the chemical stability of BIF-109-Zn powder: Suspend 20 mg of BIF-109-Zn in different pH solutions for 1 day. Then the sample powder was collected by natural drying and compared with PRXD.

Fig. S14 The acid-base stability of BIF-109-Zn in different pH.

Section 6. FT-IR Spectra

Fig. S15 IR spectra of BIF-109-Zn.

Fig. S16 IR spectra of BIF-110-Zn.

Section 7. Enantioselective separation experiments

Fig. S17 The cycling curves of BIF-110-Zn for enantioselective separation of racemic mixtures of 1-phenylethanol in ethanol solutions.

Section 8. Crystal pictures and unit cell parameters

Fig. S18 The picture of BIF-109-Zn.

Fig. S19 The picture of BIF-109-Zn(M).

Table S1. Crystal data and structure refinement for BIF-109-Zn, BIF-109-Zn(M) and BIF-110-Zn.

Parameter	BIF-109-Zn(M)	BIF-109-Zn	BIF-110-Zn
Empirical		C IL D N O $T_{\rm m}$ 2(NO)	C II D N O Zn
formula	$C_{98}H_{76}B_{4}N_{24}O_{7}Zn_{4}$	$C_{588}\Pi_{456}B_{24}\Pi_{144}O_{42}Z\Pi_{24}, S(INO_3)$	C99A76D4IN24O7ZA
Formula	2006.62	12225.78	2018.63
mass			
Crystal	Trigonal	Trigonal	Trigonal
system	Ingonal	Ingonal	Ingona
a [Å]	22.9548(3)	23.1589(2)	23.2991(12)
<i>b</i> [Å]	22.9548(3)	23.1589(2)	23.2991(12)
<i>c</i> [Å]	43.2545(7)	43.2658(4)	42.6801(18)

α [°]	90	90	90
β [°]	90	90	90
γ [°]	120	120	120
Volume [Å ³]	19738.3(6)	20096.1(4)	20065.0(2)
Space group	<i>P</i> 3 ₁ 21	P3 ₂ 21	<i>P</i> 3 ₂ 21
Ζ	6	1	6
No. of reflections measured	22439	27190	26379
independent reflections	13475	16041	13225
R _{int}	0.0338	0.0296	0.0575
Final R_I values ($I > 2\sigma(I)$)	0.0779	0.0794	0.0815
Final $wR_2(F^2)$ values (I > $2\sigma(I)$)	0.2498	0.2676	0.2788
GOF	1.037	1.031	1.026
Flack	0.008	0.011	0.022

References

- 1. Hamilton, B. H.; Kelly, K. A.; Malasi, W.; Ziegler, C. J., Inorg. Chem. 2003, 42, 3067-3073.
- 2. Trofimenko, S., J. Am. Chem. Soc. 1967, 89, 3170-3177.
- 3. Trofimenko, S., J. Coord. Chem. 1972, 2, 75-77.