Supporting Information

Expedient Synthesis of Highly Functionalized 1,3-Dienes by Employing Cyclopropenes as \boldsymbol{C}_{4} Units

Chengzhou Jiang, ${ }^{a}$ Jiamin Wu, ${ }^{a}$ Jiabin Han, ${ }^{a}$ Kai Chen, ${ }^{b}$ Yang Qian, ${ }^{a}$ Zhengyu Zhang, ${ }^{a}$ Yaojia Jiang ${ }^{*}{ }^{a b}$
${ }^{a}$ Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, College of Food Science and LightIndustry, Nanjing Tech University, Nanjing 211816, P. R. China
${ }^{b}$ Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China

Table of Contents

General methods and optimization of reaction conditions 2
General procedure for enaminones and their spectra data 4
General procedure for cyclopropenes and their spectra data 5
General procedure for 1,3-dienes and their spectra data 12
General procedure for mechanistic studies and their spectral data 28
General procedure for applications and their spectral data 30
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of cyclopropenes 33
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 1,3 -dienes 50
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of mechanistic investigations 86
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of application products 88

General methods:

All reactions were carried out in flame or oven-dried glassware under nitrogen atmosphere with freshly distilled dry solvents under anhydrous conditions unless otherwise indicated.Flash column chromatography was performed with silica gel (200 - 300 mesh). Chromatograms were visualized by fluorescence quenching with UV light at 254 nm or by staining with base solution of potassium permanganate and molybdate. NMR spectra were recorded at room temperature on 400 MHz Bruker spectrometers and 400 MHz JEOL spectrometers. The residual solvent signals were taken as the reference (0.00 ppm for ${ }^{1} \mathrm{H}$ NMR spectra and 77.0 ppm for ${ }^{13} \mathrm{C}$ NMR spectra in CDCl_{3}). Chemical shift (δ) is reported in ppm, coupling constants (J) are given in Hz . The following abbreviations classify the multiplicity: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{m}=$ multiplet, $\mathrm{dd}=$ doublet of doublet. HRMS (ESI) spectra were recorded on a Waters Q-Tof premier TM mass spectrometer.

Table S1 Optimization of reaction conditions ${ }^{a}$

entry	catalyst	solvent	yield ${ }^{\text {b }}$ (\%)
1	$\mathrm{AgNO}_{3}{ }^{\text {c }}$	DCM	10
2	$\mathrm{Cu}(\mathrm{OH}) 2^{c}$	DCM	0
3	$\mathrm{Rh}_{2}(\mathrm{OAc})_{4}$	DCM	15
4	$\mathrm{Rh}_{2}(\mathrm{OAc})_{4}$	DCE	7
5	$\mathrm{Rh}_{2}(\mathrm{OAc})_{4}$	Tol.	10
6	$\mathrm{Rh}_{2}(\mathrm{OAc})_{4}$	THF	21
7	$\mathrm{Rh}_{2}(\mathrm{OAc})_{4}$	$\mathrm{Et}_{2} \mathrm{O}$	27
8	$\mathrm{Rh}_{2}(\mathrm{OAc})_{4}$	$\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{OH}$	29
9	$\mathrm{Rh}_{2}(\mathrm{OAc})_{4}$	HFIP	68
10	$\mathbf{R h}_{2}(\mathrm{OAc})_{4}$	HFIP:DCE $=9: 1$	84
11	$\mathrm{Rh}_{2}(\mathrm{TFA})_{4}$	HFIP:DCE $=9: 1$	8
12	$\mathrm{Rh}_{2}(\mathrm{Oct})_{4}$	HFIP:DCE $=9: 1$	27
13	$\mathrm{Rh}_{2}(\mathrm{esp})_{2}$	HFIP:DCE $=9: 1$	70

${ }^{a}$ Reaction conditions are as follows if no otherwise noted: $\mathbf{1 a}(0.20 \mathrm{mmol}), \mathbf{2 a}(0.40 \mathrm{mmol})$ and catalyst $(1.0 \mathrm{~mol} \%)$ were stirred in 2.00 mL solution at room temperature under nitrogen atmosphere until 1a was consumed completely. ${ }^{b}$ Isolated yield. ${ }^{c} 10 \mathrm{~mol} \% \mathrm{DCM}=$ dichloromethane, $\mathrm{DCE}=1,2$-dichloroethane, $\mathrm{Tol} .=$ toluene, $\mathrm{THF}=$ tetrahydrofuran, $\mathrm{HFIP}=$ hexafluoroisopropan.

Table S2 Optimization of the leaving groups ${ }^{a}$

${ }^{a}$ Conditions: 1a $(0.20 \mathrm{mmol}), \mathbf{2}(0.40 \mathrm{mmol})$ and $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}(1.0 \mathrm{~mol} \%)$ were stirred in 2.00 mL solution (HFIP:DCE $\left.=9: 1\right)$ under nitrogen atmosphere. ${ }^{b}$ Isolated yields.

General procedure for enaminones and their spectra data:

General procedure $\mathbf{A}^{\mathbf{1}}$:

To a stirred solution of ketone ($5.0 \mathrm{mmol}, 1.0$ equiv.) in toluene (5.0 mL), 1,1-dimethoxy- N, N-dimethylmethanamine ($7.0 \mathrm{mmol}, 1.4$ equiv.) was added and stirred at $110{ }^{\circ} \mathrm{C}$. After completion of the reaction (monitored by TLC), it was quenched with water, extracted with ethyl acetate and dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Then the reaction mixture was concentrated under reduced pressure and purified by column chromatography (hexane : ethyl acetate $=1: 1$) to give the desired product.

General procedure $\mathbf{B}^{\mathbf{2}}$:

To a stirred solution of acetylenic ketone ($3.0 \mathrm{mmol}, 1.0$ equiv.) and potassium carbonate ($2.0 \mathrm{mmol}, ~ 2.0$ equiv.) in 10 mL of THF, amine ($3.0 \mathrm{mmol}, 1.0$ equiv.) was added dropwise and stirred at $80^{\circ} \mathrm{C}$. After completion of the reaction (monitored by TLC), the reaction mixture is concentrated under reduced pressure and purified by column chromatography to give the desired product.

The spectroscopic properties of these compounds were consistent with literature data: $\mathbf{1 a}, \mathbf{1 b}, \mathbf{1 e}-\mathbf{1 g}, \mathbf{1 i}, \mathbf{1 k}, \mathbf{1 m}, 1 \mathrm{n}, 1 \mathrm{p}, 1 \mathrm{r}-1 \mathrm{t} ;^{3} \mathbf{1 c} \boldsymbol{}^{4} \mathbf{1 h}, \mathbf{1 j}$,

[^0]
General procedure for the synthesis of cyclopropenes ${ }^{10}$:

Compounds 2A were prepared according to literature procedures.To a stirred at $-78^{\circ} \mathrm{C}$ solution of ester 2A ($25 \mathrm{mmol}, 1.0$ equiv.) in dry ether, DIBAL-H (1.0 M solution in hexane, $50 \mathrm{mmol}, 2.0$ equiv.) was added dropwise. The mixture was stirred for 1 hour at $-78{ }^{\circ} \mathrm{C}$, then additionally for 1 hour at room temperature. Then, the mixture was quenched (saturated $\mathrm{NH}_{4} \mathrm{Cl}$), acidified (aqueous HCl), and extracted (ether). Combined organic phases were washed $\left(\mathrm{NaHCO}_{3}\right.$, brine), dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated. The residue was purified by preparative column chromatography on Silica gel, eluent hexane-EtOAc 3:1 to give alcohol 2B.

To a stirred solution of alcohol 2B ($5.0 \mathrm{mmol}, 1.0$ equiv.), 4-(dimethylamino)pyridine (DMAP, $0.5 \mathrm{mmol}, 10 \mathrm{~mol} \%$), and triethylamine ($\mathrm{Et}_{3} \mathrm{~N}, 7.5 \mathrm{mmol}, 1.5$ equiv.) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added acyl chloride (1.5equiv.). The mixture was stirred at room temperature. After completion of the reaction (monitored by TLC), the solution was quenched (water) and extracted $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. Combined organic phases were washed (diluted aqueous HCl , saturated NaHCO_{3}, brine), dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated in vacuo. The residue was purified by preparative column chromatography on silica gel, eluent Petroleum ether-EtOAc to give product 2.

(1-Phenylcycloprop-2-en-1-yl)methyl acetate (2a):

The title compound was prepared according to the general procedure (EA/PE $=1 / 20$, $\left.R_{f}=0.28\right)$. The product was obtained as colorless liquid in 86% yield $(809.4 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.31-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.18(\mathrm{~m}$, 3H), $4.52(\mathrm{~s}, 2 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 171.2, 145.5, 128.1,

[^1]126.2, 125.8, 112.0, 71.2, 25.9, 21.0;HRMS (ESI) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]$: Calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{O}_{2}$: 189.0916. Found: 189.0913.

(1-Phenylcycloprop-2-en-1-yl)methanol (2aa):

The title compound was prepared according to the general procedure $\left(\mathrm{EA} / \mathrm{PE}=1 / 5, \mathrm{R}_{\mathrm{f}}\right.$ $=0.21$). The product was obtained as white solid in 72% yield (2647.4 mg), Mp. $58-$ $59^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.27(\mathrm{~s}, 2 \mathrm{H}), 7.25-7.21(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.17$ $-7.15(\mathrm{~m}, 2 \mathrm{H}), 7.13-7.10(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{~s}, 2 \mathrm{H}), 1.39(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 145.7,128.1,126.2,125.7,112.9,67.8,28.9 ;$ HRMS (ESI) m/z $[\mathrm{M}+\mathrm{H}]:$ Calcd for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{O}: 147.0810$. Found: 147.0811.

(1-Phenylcycloprop-2-en-1-yl)methyl 2,2,2-trifluoroacetate (2ab):

The title compound was prepared according to the general procedure ($\mathrm{EA} / \mathrm{PE}=1 / 20$, $\mathrm{R}_{\mathrm{f}}=0.31$). The product was obtained as colorless liquid in 78% yield $(947.8 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.33$ - $7.29(\mathrm{~m}, 2 \mathrm{H}), 7.27(\mathrm{~s}, 2 \mathrm{H}), 7.23-7.21(\mathrm{~m}, 1 \mathrm{H})$, 7.19 - $7.16(\mathrm{~m}, 2 \mathrm{H}), 4.77(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.6(\mathrm{q}, J=41.9$ $\mathrm{Hz}), 144.1,128.4,126.3,126.1,114.6(\mathrm{q}, J=284.3 \mathrm{~Hz}), 111.7,75.0,25.7 ;{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-74.86$; HRMS (ESI) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]$: Calcd for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~F}_{3} \mathrm{O}_{2}$: 243.0633. Found: 243.0635.

(1-Phenylcycloprop-2-en-1-yl)methyl pivalate (2ac):

The title compound was prepared according to the general procedure (EA/PE $=1 / 20$, $\mathrm{R}_{\mathrm{f}}=0.35$). The product was obtained as colorless liquid in 86% yield (993.8 mg). ${ }^{1} \mathrm{H}$

NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.35-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.26(\mathrm{~m}, 3 \mathrm{H}), 7.24-7.19(\mathrm{~m}, 2 \mathrm{H})$, $4.55(\mathrm{~s}, 2 \mathrm{H}), 1.21(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 178.3,145.5,127.9,126.1$, 125.6, 111.9, 70.4, 38.7, 27.1, 25.9; HRMS (ESI) m/z [M+H]: Calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{O}_{2}$: 231.1385. Found: 231.1382.

(1-Phenylcycloprop-2-en-1-yl)methyl benzoate (2ad):

The title compound was prepared according to the general procedure (EA/PE $=1 / 20$, $\mathrm{R}_{\mathrm{f}}=0.40$). The product was obtained as colorless liquid in 75% yield $(941.6 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.11-8.09(\mathrm{~m}, 2 \mathrm{H}), 7.60-7.56(\mathrm{~m}, 1 \mathrm{H}), 7.48-7.44(\mathrm{~m}$, 2H), $7.40-7.33$ (m, 6H), 7.28 - 7.24 (m, 1H), 4.84 (s, 2H).; ${ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 166.5,145.5,132.8,130.3,129.5,128.2,128.1,126.1,125.7,111.8,71.6$, 26.0; HRMS (ESI) m/z [M+H]: Calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{O}_{2}$: 251.1072. Found: 251.1066.

(1-Phenylcycloprop-2-en-1-yl)methyl picolinate (2ae):

The title compound was prepared according to the general procedure (EA/PE $=1 / 4, \mathrm{R}_{\mathrm{f}}$ $=0.33$). The product was obtained as white solid in 74% yield $(932.7 \mathrm{mg}), \mathrm{Mp} .47-$ $48{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.72$ - $8.70(\mathrm{~m}, 1 \mathrm{H}), 8.03-8.01(\mathrm{~m}, 1 \mathrm{H}), 7.76-$ $7.72(\mathrm{~m}, 1 \mathrm{H}), 7.40-7.37(\mathrm{~m}, 1 \mathrm{H}), 7.29-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.26-7.24(\mathrm{~m}, 5 \mathrm{H}), 7.17-$ 7.13 (m, 1 H), 4.85 ($\mathrm{s}, 2 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.7,149.7,147.8,145.1$, 136.7, 127.9, 126.5, 126.0, 125.6, 124.9, 111.5, 71.6, 25.8; HRMS (ESI) m/z [M+H]: Calcd for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{NO}_{2}: 252.1025$. Found: 252.1029 .

(1-(Methoxymethyl)cycloprop-2-en-1-yl)benzene (2af):

The title compound was prepared according to the general procedure (EA/PE $=1 / 20$, $\left.\mathrm{R}_{\mathrm{f}}=0.35\right)$. The product was obtained as colorless liquid in 80% yield $(644.0 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.35-7.31(\mathrm{~m}, 4 \mathrm{H}), 7.29-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.19(\mathrm{~m}$, $1 \mathrm{H}), 3.89(\mathrm{~s}, 2 \mathrm{H}), 3.43(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 146.4,127.9,126.2$, 125.5, 112.5, 79.7, 58.4, 26.5; HRMS (ESI) m/z [M+H]: Calcd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{O}: 161.0966$. Found: 161.0969.

(1-(4-Fluorophenyl)cycloprop-2-en-1-yl)methyl acetate (2b):

The title compound was prepared according to the general procedure ($\mathrm{EA} / \mathrm{PE}=1 / 19$, $\mathrm{R}_{\mathrm{f}}=0.30$). The product was obtained as yellow liquid in 83% yield (859.3 mg). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.24(\mathrm{~s}, 2 \mathrm{H}), 7.17-7.13(\mathrm{~m}, 2 \mathrm{H}), 6.98-6.94(\mathrm{~m}, 2 \mathrm{H})$, $4.47(\mathrm{~s}, 2 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.9,161.0(\mathrm{~d}, J=242.1$ $\mathrm{Hz}), 141.1(\mathrm{~d}, J=3.3 \mathrm{~Hz}), 127.6(\mathrm{~d}, J=7.9 \mathrm{~Hz}), 114.7(\mathrm{~d}, J=21.0 \mathrm{~Hz}), 112.2,71.0$, 25.3, 20.8; ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-117.36; HRMS (ESI) m/z [M+H]: Calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{FO}_{2}: 207.0821$. Found: 207.0820 .

(1-(2-Chlorophenyl)cycloprop-2-en-1-yl)methyl acetate (2c):

The title compound was prepared according to the general procedure (EA/PE $=1 / 20$, $\mathrm{R}_{\mathrm{f}}=0.31$). The product was obtained as yellow liquid in 71% yield $(791.7 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.46(\mathrm{~s}, 2 \mathrm{H}), 7.24-7.22(\mathrm{~m}, 1 \mathrm{H}), 7.19-7.17(\mathrm{~m}, 1 \mathrm{H}), 7.13$ $-7.07(\mathrm{~m}, 2 \mathrm{H}), 4.23(\mathrm{~s}, 2 \mathrm{H}), 1.92(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.9,142.0$, 134.1, 130.7, 129.6, 128.1, 127.0, 116.1, 70.7, 26.9, 20.9; HRMS (ESI) m/z [M+H]: Calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{ClO}_{2}$: 223.0526 . Found: 223.0530 .

(1-(3-Chlorophenyl)cycloprop-2-en-1-yl)methyl acetate (2d):

The title compound was prepared according to the general procedure ($\mathrm{EA} / \mathrm{PE}=1 / 20$, $\mathrm{R}_{\mathrm{f}}=0.29$). The product was obtained as yellow liquid in 73% yield $(813.9 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.13-7.10(\mathrm{~m}, 3 \mathrm{H}), 7.06-7.04(\mathrm{~m}, 2 \mathrm{H}), 7.01-6.99(\mathrm{~m}$, $1 \mathrm{H}), 4.38(\mathrm{~s}, 2 \mathrm{H}), 1.95(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.9,147.7,134.0$, 129.2, 126.4, 125.8, 124.3, 111.5, 70.7, 25.6, 20.8; HRMS (ESI) m/z [M+H]: Calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{ClO}_{2}: 223.0526$. Found: 223.0536.

(1-(4-Chlorophenyl)cycloprop-2-en-1-yl)methyl acetate (2e):

The title compound was prepared according to the general procedure ($\mathrm{EA} / \mathrm{PE}=1 / 20$, $\mathrm{R}_{\mathrm{f}}=0.33$). The product was obtained as yellow liquid in 82% yield (914.3 mg). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.26-7.23(\mathrm{~m}, 1 \mathrm{H}), 7.23-7.22(\mathrm{~m}, 3 \mathrm{H}), 7.13-7.11(\mathrm{~m}$, $1 \mathrm{H}), 7.10-7.09(\mathrm{~m}, 1 \mathrm{H}), 4.47(\mathrm{~s}, 2 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.0,143.9,131.4,128.0,127.5,111.8,70.9,25.4,20.9 ;$ HRMS (ESI) m/z [M+H]: Calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{ClO}_{2}$: 223.0526. Found: 223.0525.

(1-(4-Bromophenyl)cycloprop-2-en-1-yl)methyl acetate (2f):

The title compound was prepared according to the general procedure (EA/PE $=1 / 20$, $R_{f}=0.31$). The product was obtained as yellow liquid in 76% yield (1014.5 mg). ${ }^{1} \mathrm{H}$

NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.38-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.20(\mathrm{~s}, 2 \mathrm{H}), 7.05-7.03(\mathrm{~m}, 2 \mathrm{H})$, $4.46(\mathrm{~s}, 2 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.7,144.4,130.8,127.8$, 119.4, 111.6, 70.6, 25.3, 20.7; HRMS (ESI) m/z [M+H]: Calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{BrO}_{2}$: 267.0021. Found: 267.0024.

(1-(p-Tolyl)cycloprop-2-en-1-yl)methyl acetate (2g):

The title compound was prepared according to the general procedure ($\mathrm{EA} / \mathrm{PE}=1 / 20$, $\mathrm{R}_{\mathrm{f}}=0.34$). The product was obtained as yellow liquid in 79% yield (802.1 mg). ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}) $\delta 7.28$ ($\mathrm{s}, 2 \mathrm{H}$), $7.20-7.17$ (m, 4H), 4.58 (s, 2H), 2.38 (s, 3 H), $2.10(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.0,142.3,135.1,128.7,125.9$, 112.0, 71.1, 25.4, 20.8, 20.7; HRMS (ESI) m/z [M+H]: Calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{O}_{2}$: 203.1072. Found: 203.1075.

(1-(Benzo[d][1,3]dioxol-5-yl)cycloprop-2-en-1-yl)methyl acetate (2h):

The title compound was prepared according to the general procedure ($\mathrm{EA} / \mathrm{PE}=1 / 20$, $R_{f}=0.32$). The product was obtained as yellow liquid in 82% yield (914.3 mg). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.23(\mathrm{~s}, 2 \mathrm{H}), 6.75-6.73(\mathrm{~m}, 1 \mathrm{H}), 6.69(\mathrm{~m}, 1 \mathrm{H}), 6.67-$ $6.64(\mathrm{~m}, 1 \mathrm{H}), 5.91(\mathrm{~s}, 2 \mathrm{H}), 4.44(\mathrm{~s}, 2 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.1,147.5,145.6,139.7,119.2,112.5,107.8,106.9,100.8,71.3,25.7,20.9 ;$ HRMS (ESI) m/z [M+H]: Calcd for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{O}_{4}$: 233.0814. Found: 233.0813.

(1-(4-Nitrophenyl)cycloprop-2-en-1-yl)methyl acetate (2i):

The title compound was prepared according to the general procedure (EA/PE $=1 / 20$, $\mathrm{R}_{\mathrm{f}}=0.23$). The product was obtained as yellow liquid in 77% yield (900.9 mg). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.13-8.11(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.26(\mathrm{~m}$, 2 H), 4.53 ($\mathrm{s}, 2 \mathrm{H}$), $2.06(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.9,153.5,145.7$, 126.8, 123.1, 110.8, 70.4, 26.0, 20.8; HRMS (ESI) m/z [M+H]: Calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{NO}_{4}$: 234.0766. Found: 234.0767.

(1-(Naphthalen-1-yl)cycloprop-2-en-1-yl)methyl acetate (2j):

The title compound was prepared according to the general procedure ($\mathrm{EA} / \mathrm{PE}=1 / 20$, $\mathrm{R}_{\mathrm{f}}=0.33$). The product was obtained as yellow liquid in 85% yield (1015.7 mg). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.43$ - $8.41(\mathrm{~m}, 1 \mathrm{H}), 7.90-7.88(\mathrm{~m}, 1 \mathrm{H}), 7.78-7.76(\mathrm{~m}$, $1 \mathrm{H}), 7.72-7.71(\mathrm{~m}, 2 \mathrm{H}), 7.62-7.58(\mathrm{~m}, 1 \mathrm{H}), 7.54-7.50(\mathrm{~m}, 1 \mathrm{H}), 7.46-7.45(\mathrm{~m}$, $1 \mathrm{H}), 7.44(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{~s}, 2 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.9,141.3,133.9,131.4,128.8,127.4,126.0,125.9,125.8,125.6,124.3,116.4$, 70.7, 26.2, 20.9; HRMS (ESI) m/z [M+H]: Calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{O}_{2}$: 239.1072. Found: 239.1066.

General procedure for 1,3-dienes and their spectra data:

A mixture of $\mathbf{1}$ ($0.20 \mathrm{mmol}, 1.0$ equiv.), $2\left(0.40 \mathrm{mmol}, 2.0\right.$ equiv.) and $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}$ ($0.002 \mathrm{mmol}, 1.0 \mathrm{~mol} \%$) was dissolved in 2.00 mL solution (HFIP:DCE $=9: 1$) under nitrogen atmosphere, and the reaction was stirred at room temperature until the starting material 1a was consumed completely. Then the mixture was diluted with ethyl acetate, washed with water and brine. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated to give the crude product, which was purified through a flash column chromatography $(\mathrm{EA} / \mathrm{PE}=1 / 20)$ to give the desired product 3.

When the reaction was scaled up to 6.0 mmol , the Schlenk tube was replaced by Schlenk flask. A mixture of $\mathbf{1 a}$ ($6.0 \mathrm{mmol}, 1.0$ equiv.), 2a ($12.0 \mathrm{mmol}, 2.0$ equiv.) and $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}(0.06 \mathrm{mmol}, 1 \mathrm{~mol} \%)$ was dissolved in 60 mL solution $($ HFIP:DCE $=9: 1)$ under nitrogen atmosphere in a Schlenk flask and the mixture was stirred at room temperature until the starting material 1a was consumed completely. Then the mixture was diluted with ethyl acetate, washed with water and brine. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated to give the crude product, which was purified through a flash column chromatography $(\mathrm{EA} / \mathrm{PE}=1 / 20)$ to give the desired product 3aa in 71% yield (1171.4 mg).

(E)-2-(2-Oxo-2-phenylethyl)-4-phenylpenta-2,4-dienal (3aa):

The title compound was prepared according to the general procedure (EA/PE $=1 / 9, \mathrm{R}_{\mathrm{f}}$ $=0.31$). The product was obtained as yellow oil in 84% yield $(46.5 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.66(\mathrm{~s}, 1 \mathrm{H}), 7.81(\mathrm{~m}, 1 \mathrm{H}), 7.80(\mathrm{~m}, 1 \mathrm{H}), 7.56-7.52(\mathrm{~m}, 1 \mathrm{H})$,
$7.43-7.39(\mathrm{~m}, 3 \mathrm{H}), 7.32-7.27(\mathrm{~m}, 4 \mathrm{H}), 7.26-7.23(\mathrm{~m}, 1 \mathrm{H}), 5.69(\mathrm{~d}, J=1.2 \mathrm{~Hz}$, $1 \mathrm{H}), 5.53-5.52(\mathrm{t}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 195.9, 194.2, 151.8, 144.0, 138.8, 138.3, 136.4, 133.1, 128.6, 128.4, 128.3, 128.1, 126.9, 121.0, 35.4; HRMS (ESI) m/z [M+H]: Calcd for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{O}_{2}$: 277.1229. Found: 277.1231.

5-Methoxy-2-(2-oxo-2-phenylethyl)-4-phenylpent-3-enal (3aa'):

The title compound was prepared according to the general procedure (EA/PE $=1 / 9, \mathrm{R}_{\mathrm{f}}$ $=0.33$). The product was obtained as yellow oil in 61% yield $(37.6 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.80 \& 9.53(\mathrm{~s}, 1 \mathrm{H}), 8.00-7.98 \& 7.96-7.93(\mathrm{~m}, 2 \mathrm{H}), 7.61-$ 7.55 (m, 2H), 7.50 (m, 2H), $7.48-7.45$ (m, 2H), $7.43-7.41$ (m, 1H), $7.40-7.39$ (m, $1 \mathrm{H}), 7.36-7.35(\mathrm{~m}, 1 \mathrm{H}), 7.34-7.33(\mathrm{~m}, 1 \mathrm{H}), 7.32-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.28(\mathrm{~m}$, $2 \mathrm{H}), 7.24(\mathrm{~m}, 1 \mathrm{H}), 7.22-7.21(\mathrm{~m}, 1 \mathrm{H}), 7.02-7.00(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.74(\mathrm{~d}, J=$ $10.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.51-4.42(\mathrm{~m}, 2 \mathrm{H}), 4.32-4.26(\mathrm{~m}, 1 \mathrm{H}), 4.08-4.00(\mathrm{~m}, 2 \mathrm{H}), 3.93-$ $3.89(\mathrm{~m}, 1 \mathrm{H}), 3.76-3.70(\mathrm{~m}, 3 \mathrm{H}), 3.41 \& 3.34(\mathrm{~s}, 3 \mathrm{H}), 3.29-3.24(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ 199.6, 197.3, 195.6, 193.8, 156.6, 142.2, 140.7, 139.1, $138.0,136.4,136.3,133.4,133.2,128.9,128.7,128.5,128.4,128.3,128.1,127.8$, 127.8, 127.3, 126.3, 126.3.75.8, 70.3, 59.0, 58.4, 47.7, 45.7, 39.0, 34.3; HRMS (ESI) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]$: Calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{O}_{3}$: 309.1491. Found: 309.1490.
(E)-2-(2-(4-Fluorophenyl)-2-oxoethyl)-4-phenylpenta-2,4-dienal (3ba):

The title compound was prepared according to the general procedure (EA/PE $=1 / 9, \mathrm{R}_{\mathrm{f}}$ $=0.31$). The product was obtained as yellow oil in 79% yield $(46.6 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.66(\mathrm{~s}, 1 \mathrm{H}), 7.84-7.81(\mathrm{~m}, 2 \mathrm{H}), 7.42(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.29$

- 7.26 (m, 4H), $7.25-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.09-7.05(\mathrm{~m}, 2 \mathrm{H}), 5.69(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H})$, $5.54(\mathrm{t}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 194.3$, 194.2, 165.7 (d, $J=253.7 \mathrm{~Hz}$), 151.9, 144.0, 138.7, 138.0, 132.8 (d, $J=3.3 \mathrm{~Hz}), 130.7$ (d, J $=9.3 \mathrm{~Hz}), 128.6,128.3,127.0,121.3,115.5(\mathrm{~d}, J=21.6 \mathrm{~Hz}), 35.2,{ }^{19} \mathrm{~F}$ NMR (376 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-105.56; $\mathrm{HRMS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]:$ Calcd for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{FO}_{2}: 295.1134$. Found: 295.1135.

(E)-2-(2-(2-Chlorophenyl)-2-oxoethyl)-4-phenylpenta-2,4-dienal (3ca):

The title compound was prepared according to the general procedure $\left(\mathrm{EA} / \mathrm{PE}=1 / 9, \mathrm{R}_{\mathrm{f}}\right.$ $=0.32$). The product was obtained as yellow oil in 36% yield $(22.3 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.62(\mathrm{~s}, 1 \mathrm{H}), 7.48-7.46(\mathrm{~m}, 1 \mathrm{H}), 7.41(\mathrm{~s}, 1 \mathrm{H}), 7.37(\mathrm{~m}, 1 \mathrm{H})$, $7.36-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.33(\mathrm{~m}, 4 \mathrm{H}), 7.31-7.28(\mathrm{~m}, 1 \mathrm{H}), 5.76(\mathrm{~d}, J=1.2 \mathrm{~Hz}$, $1 \mathrm{H}), 5.61(\mathrm{~m}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 198.6,194.0,152.0$, $143.8,138.7$, 138.0, 131.8, 130.9, 130.4, 129.5, 128.7, 128.4, 126.9, 126.8, 125.9, 121.1, 39.6; HRMS (ESI) m/z [M+H]: Calcd for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{ClO}_{2}$: 311.0839. Found: 311.0844.

(E)-2-(2-(3-Chlorophenyl)-2-oxoethyl)-4-phenylpenta-2,4-dienal (3da):

The title compound was prepared according to the general procedure $\left(\mathrm{EA} / \mathrm{PE}=1 / 9, \mathrm{R}_{\mathrm{f}}\right.$ $=0.35$). The product was obtained as yellow oil in 45% yield (27.9 mg). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.66(\mathrm{~s}, 1 \mathrm{H}), 7.75-7.74(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.68-7.66(\mathrm{~m}, 1 \mathrm{H})$, $7.52-7.50(\mathrm{~m}, 1 \mathrm{H}), 7.43(\mathrm{~s}, 1 \mathrm{H}), 7.37-7.33(\mathrm{~m}, 1 \mathrm{H}), 7.30-7.27(\mathrm{~m}, 4 \mathrm{H}), 7.26-$ $7.25(\mathrm{~m}, 1 \mathrm{H}), 5.70(\mathrm{~m}, 1 \mathrm{H}), 5.54(\mathrm{~m}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
$\delta 194.7,194.1,151.9,144.1,138.7,137.9,137.7,134.7,133.0,129.8,128.7,128.4$, 128.2, 127.0, 126.1, 121.5, 35.4; HRMS (ESI) m/z [M+H]: Calcd for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{ClO}_{2}$: 311.0839. Found: 311.0842.

(E)-2-(2-(4-Chlorophenyl)-2-oxoethyl)-4-phenylpenta-2,4-dienal (3ea):

The title compound was prepared according to the general procedure ($\mathrm{EA} / \mathrm{PE}=1 / 9$, $\mathrm{R}_{\mathrm{f}}=0.33$). The product was obtained as yellow oil in 81% yield (50.2 mg). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.65(\mathrm{~s}, 1 \mathrm{H}), 7.74-7.72(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.41(\mathrm{~m}, 1 \mathrm{H}), 7.39-$ $7.36(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.26(\mathrm{~m}, 4 \mathrm{H}), 7.25(\mathrm{~m}, 1 \mathrm{H}), 5.69(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.54(\mathrm{t}, J=$ $1.2 \mathrm{~Hz}, 1 \mathrm{H}$), $3.82(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 194.7$, 194.2, 151.9, 144.0, 139.5, 138.7, 137.8, 134.7, 129.4, 128.7, 128.6, 128.3, 127.0, 121.5, 35.2; HRMS (ESI) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]$: Calcd for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{ClO}_{2}$: 311.0839. Found: 311.0838.

(E)-2-(2-(4-Bromophenyl)-2-oxoethyl)-4-phenylpenta-2,4-dienal (3fa):

The title compound was prepared according to the general procedure (EA/PE $=1 / 9, \mathrm{R}_{\mathrm{f}}$ $=0.35$). The product was obtained as yellow oil in 75% yield (53.1 mg). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.65(\mathrm{~s}, 1 \mathrm{H}), 7.69-7.64(\mathrm{~m}, 2 \mathrm{H}), 7.57-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.44-7.42$ (m, 1H), 7.31-7.26 (m, 5H), $5.69(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.54(\mathrm{t}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}$, $2 \mathrm{H})$.; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 194.9,194.1,151.9,144.1,138.7,137.8,135.1$, 131.7, 129.5, 128.6, 128.3, 128.3, 127.0, 121.5, 35.2; HRMS (ESI) m/z [M+H]: Calcd for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{BrO}_{2}: 355.0334$. Found: 355.0333 .

(E)-2-(2-(4-Iodophenyl)-2-oxoethyl)-4-phenylpenta-2,4-dienal (3ga):

The title compound was prepared according to the general procedure $\left(\mathrm{EA} / \mathrm{PE}=1 / 9, \mathrm{R}_{\mathrm{f}}\right.$ $=0.32$). The product was obtained as yellow oil in 77% yield $(61.9 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.65(\mathrm{~s}, 1 \mathrm{H}), 7.78-7.75(\mathrm{~m}, 2 \mathrm{H}), 7.51-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.41(\mathrm{~m}$, $1 \mathrm{H}), 7.30-7.26(\mathrm{~m}, 4 \mathrm{H}), 7.25(\mathrm{~m}, 1 \mathrm{H}), 5.69(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.54-5.53(\mathrm{t}, J=1.2$ $\mathrm{Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 195.2,194.1,151.9,144.0$, $138.7,137.8,137.7,135.7,129.4,128.6,128.3,127.0,121.5,101.1,35.2 ;$ HRMS (ESI) m/z [M+H]: Calcd for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{IO}_{2}$: 403.0195. Found: 403.0201.

(E)-2-(2-Oxo-2-(p-tolyl)ethyl)-4-phenylpenta-2,4-dienal (3ha):

The title compound was prepared according to the general procedure $\left(\mathrm{EA} / \mathrm{PE}=1 / 9, \mathrm{R}_{\mathrm{f}}\right.$ $=0.33)$. The product was obtained as yellow oil in 80% yield $(46.6 \mathrm{mg}) .{ }^{1} \mathrm{H} \mathrm{NMR}$ $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.66(\mathrm{~s}, 1 \mathrm{H}), 7.74-7.72(\mathrm{~m}, 2 \mathrm{H}), 7.40(\mathrm{~m}, 1 \mathrm{H}), 7.31-7.28(\mathrm{~m}$, 4H), $7.26(\mathrm{~m}, 1 \mathrm{H}), 7.22-7.20(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.69(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.51(\mathrm{t}, J$ $=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 2 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 195.5,194.3$, $151.7,143.9,143.9,138.8,138.4,134.0,129.1,128.6,128.3,128.2,126.9,120.7$, 35.3, 21.6; HRMS (ESI) m/z [M+H]: Calcd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{O}_{2}$: 291.1385. Found: 291.1389.

(E)-2-(2-(4-Methoxyphenyl)-2-oxoethyl)-4-phenylpenta-2,4-dienal (3ia):

The title compound was prepared according to the general procedure $\left(\mathrm{EA} / \mathrm{PE}=1 / 9, \mathrm{R}_{\mathrm{f}}\right.$
$=0.35)$. The product was obtained as yellow oil in 71% yield $(43.5 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.66(\mathrm{~s}, 1 \mathrm{H}), 7.83-7.79(\mathrm{~m}, 2 \mathrm{H}), 7.40(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.31$ - $7.26(\mathrm{~m}, 4 \mathrm{H}), 6.89(\mathrm{~m}, 1 \mathrm{H}), 6.87(\mathrm{~m}, 1 \mathrm{H}), 5.69(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.52(\mathrm{t}, J=1.2$ $\mathrm{Hz}, 1 \mathrm{H}$), $3.86(\mathrm{~s}, 2 \mathrm{H}), 3.86,(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 194.4,194.3$, $163.5,151.6,143.9,138.8,138.5,130.4,129.5,128.6,128.3,126.9,120.7,113.5$, 55.4, 35.0; HRMS (ESI) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]$: Calcd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{O}_{3}$: 307.1334. Found: 307.1341 .

(()-2-(2-Oxo-2-(4-(trifluoromethyl)phenyl)ethyl)-4-phenylpenta-2,4-dienal (3ja):

The title compound was prepared according to the general procedure (EA/PE $=1 / 9, \mathrm{R}_{\mathrm{f}}$ $=0.32$). The product was obtained as colorless oil in 51% yield (35.1mg). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.66(\mathrm{~s}, 1 \mathrm{H}), 7.88(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.67(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, $7.44(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.25-7.22(\mathrm{~m}, 2 \mathrm{H}), 5.70(\mathrm{~m}, 1 \mathrm{H}), 5.56$ $(\mathrm{t}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 195.0,194.1,152.1$, 144.1, 139.1, 138.7, 137.6, 128.7, 128.4, 128.3, 127.0, 125.5 (q, $J=3.8 \mathrm{~Hz}$), 125.4, 124.7, 121.8, $35.6{ }^{19}{ }^{19}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-62.62; HRMS (ESI) m/z $[\mathrm{M}+\mathrm{H}]:$ Calcd for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{~F}_{3} \mathrm{O}_{2}: 345.1102$. Found: 345.1108.

(E)-2-(2-(Naphthalen-2-yl)-2-oxoethyl)-4-phenylpenta-2,4-dienal (3ka):

The title compound was prepared according to the general procedure (EA/PE $=1 / 9, \mathrm{R}_{\mathrm{f}}$ $=0.28)$. The product was obtained as yellow oil in 65% yield $(42.4 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.70(\mathrm{~s}, 1 \mathrm{H}), 8.29(\mathrm{~s}, 1 \mathrm{H}), 7.91-7.89(\mathrm{~m}, 2 \mathrm{H}), 7.87-7.84(\mathrm{~m}$, 2H), 7.62-7.57(m, 1H), 7.56-7.52(m, 1H), 7.44(s, 1H), 7.35-7.31(m, 2H), 7.28-
$7.25(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.17(\mathrm{~m}, 1 \mathrm{H}), 5.70(\mathrm{~m}, 1 \mathrm{H}), 5.56(\mathrm{~m}, 1 \mathrm{H}), 4.04(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 195.8,194.3,151.8,144.0,138.8,138.3,135.5,133.7,132.3$, 129.7, 129.5, 128.6, 128.4, 128.3, 128.3, 127.7, 126.9, 126.7, 123.8, 121.1, 35.4 ; HRMS (ESI) m/z [M+H]: Calcd for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{O}_{2}$: 327.1385. Found: 327.1389.

(E)-2-(2-Oxo-2-(phenanthren-3-yl)ethyl)-4-phenylpenta-2,4-dienal (3la):

The title compound was prepared according to the general procedure (EA/PE $=1 / 9, \mathrm{R}_{\mathrm{f}}$ $=0.25$). The product was obtained as yellow oil in 67% yield $(50.4 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.71(\mathrm{~s}, 1 \mathrm{H}), 9.13(\mathrm{~s}, 1 \mathrm{H}), 8.68(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.99-7.96(\mathrm{~m}$, $1 \mathrm{H}), 7.92-7.90(\mathrm{~m}, 1 \mathrm{H}), 7.88(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.75-7.70$ $(\mathrm{m}, 1 \mathrm{H}), 7.68(\mathrm{~m}, 1 \mathrm{H}), 7.66-7.64(\mathrm{~m}, 1 \mathrm{H}), 7.45(\mathrm{~s}, 1 \mathrm{H}), 7.34(\mathrm{~m}, 1 \mathrm{H}), 7.33-7.32(\mathrm{~m}$, $1 \mathrm{H}), 7.25-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.17-7.15(\mathrm{~m}, 1 \mathrm{H}), 5.71(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.59(\mathrm{~m}, 1 \mathrm{H})$, 4.09 (s, 2H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 196.0,194.3,151.9,144.1,138.8,138.3$, 135.0, 134.1, 132.1, 130.6, 129.7, 129.6, 128.8, 128.7, 128.6, 128.3, 127.2, 127.2, 127.0, 126.2, 125.2, 123.6, 122.7, 121.4, 35.6;HRMS (ESI) m/z [M+H]: Calcd for $\mathrm{C}_{27} \mathrm{H}_{21} \mathrm{O}_{2}$: 377.1542. Found: 377.1543.

(E)-2-(2-Oxo-2-(thiophen-2-yl)ethyl)-4-phenylpenta-2,4-dienal (3ma):

The title compound was prepared according to the general procedure (EA/PE $=1 / 9, \mathrm{R}_{\mathrm{f}}$ $=0.33$). The product was obtained as yellow oil in 71% yield $(40.1 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.65(\mathrm{~s}, 1 \mathrm{H}), 7.61-7.60(\mathrm{~m}, 1 \mathrm{H}), 7.58-7.56(\mathrm{~m}, 1 \mathrm{H}), 7.41(\mathrm{~m}$, $1 \mathrm{H}), 7.33-7.27(\mathrm{~m}, 4 \mathrm{H}), 7.26-7.25(\mathrm{~m}, 1 \mathrm{H}), 7.08-7.06(\mathrm{~m}, 1 \mathrm{H}), 5.71(\mathrm{~d}, J=1.2 \mathrm{~Hz}$, $1 \mathrm{H}), 5.58(\mathrm{t}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 194.1$,
188.6, 152.1, 143.8, 143.3, 138.6, 137.5, 133.6, 132.0, 128.6, 128.3, 127.9, 126.9, 121.2, 35.7; HRMS (ESI) m/z [M+H]: Calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{O}_{2} \mathrm{~S}$: 283.0793. Found: 283.0790 .

(E)-2-(2-(Furan-2-yl)-2-oxoethyl)-4-phenylpenta-2,4-dienal (3na):

The title compound was prepared according to the general procedure (EA/PE $=1 / 9, \mathrm{R}_{\mathrm{f}}$ $=0.35$). The product was obtained as yellow oil in 77% yield $(40.9 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.64(\mathrm{~s}, 1 \mathrm{H}), 7.53(\mathrm{~m}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.27$ $(\mathrm{m}, 5 \mathrm{H}), 7.11-7.10(\mathrm{~m}, 1 \mathrm{H}), 6.50-6.49(\mathrm{~m}, 1 \mathrm{H}), 5.71(\mathrm{~m}, 1 \mathrm{H}), 5.57(\mathrm{t}, J=1.2 \mathrm{~Hz}$, $1 \mathrm{H}), 3.78(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 194.1,184.9,152.2,152.0,146.2$, 143.7, 138.6, 137.4, 128.6, 128.3, 126.9, 121.0, 117.1, 112.2, 34.9; HRMS (ESI) m/z $[\mathrm{M}+\mathrm{H}]$: Calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{O}_{3}$: 267.1021. Found: 267.1020

(2E,5E)-4-Oxo-2-(2-phenylallylidene)-6-(p-tolyl)hex-5-enal (20a):

The title compound was prepared according to the general procedure (EA/PE $=1 / 9, \mathrm{R}_{\mathrm{f}}$ $=0.28$). The product was obtained as yellow oil in 51% yield (32.2 mg). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.64(\mathrm{~s}, 1 \mathrm{H}), 7.44-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.31$ $(\mathrm{m}, 4 \mathrm{H}), 7.25(\mathrm{~m}, 1 \mathrm{H}), 7.20-7.18(\mathrm{~m}, 2 \mathrm{H}), 6.62-6.57(\mathrm{~m}, 1 \mathrm{H}), 5.72(\mathrm{~m}, 1 \mathrm{H}), 5.56$ $(\mathrm{m}, 1 \mathrm{H}), 3.60(\mathrm{~s}, 2 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 195.7,194.3,151.8$, $143.8,143.1,141.0,138.8,138.2,131.6,129.6,128.7,128.3,126.9,124.5,121.0$, 37.2, 21.5; HRMS (ESI) m/z $[\mathrm{M}+\mathrm{H}]$: Calcd for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{O}_{2}$: 317.1542. Found: 317.1537.

(E)-2-(2-Oxopropyl)-4-phenylpenta-2,4-dienal (3pa):

The title compound was prepared according to the general procedure (EA/PE $=1 / 9, \mathrm{R}_{\mathrm{f}}$ $=0.32$). The product was obtained as yellow oil in 68% yield (29.1 mg). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.57$ (s, 1H), 7.37-7.32 (m, 3H), 7.32 - $7.30(\mathrm{~m}, 1 \mathrm{H}), 7.30-$ $7.28(\mathrm{~m}, 2 \mathrm{H}), 5.70(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.54-5.53(\mathrm{~m}, 1 \mathrm{H}), 3.30(\mathrm{~s}, 2 \mathrm{H}), 2.01(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 204.4,194.3,151.8,144.0,138.8,137.7,128.6,128.4$, 127.0, 121.5, 39.7, 29.9; HRMS (ESI) m/z [M+H]: Calcd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{O}_{2}$: 215.1072. Found: 215.1070.

(E)-4-oxo-2-(2-Phenylallylidene)octanal (3qa):

The title compound was prepared according to the general procedure (EA/PE $=1 / 9, \mathrm{R}_{\mathrm{f}}$ $=0.34$). The product was obtained as yellow oil in 65% yield (33.3 mg). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.57(\mathrm{~s}, 1 \mathrm{H}), 7.37-7.33(\mathrm{~m}, 3 \mathrm{H}), 7.32-7.26(\mathrm{~m}, 3 \mathrm{H}), 5.69(\mathrm{~d}, \mathrm{~J}$ $=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.53(\mathrm{t}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.29(\mathrm{~s}, 2 \mathrm{H}), 2.30-2.23(\mathrm{~m}, 2 \mathrm{H}), 1.51-1.43$ $(\mathrm{m}, 2 \mathrm{H}), 1.28-1.23(\mathrm{~m}, 2 \mathrm{H}), 0.87(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 206.6,194.3,151.6,144.0,138.9,138.0,128.6,128.3,127.0,121.1,42.5,38.9,25.7$, 22.2, 13.8; HRMS (ESI) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]$: Calcd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{O}_{2}$: 257.1542. Found: 257.1543.
(E)-5-Methyl-4-oxo-2-(2-phenylallylidene)hexanal (3ra):

The title compound was prepared according to the general procedure (EA/PE $=1 / 9, \mathrm{R}_{\mathrm{f}}$
$=0.32$). The product was obtained as yellow oil in 50% yield $(24.2 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.56(\mathrm{~s}, 1 \mathrm{H}), 7.36-7.29(\mathrm{~m}, 6 \mathrm{H}), 5.68(\mathrm{~m}, 1 \mathrm{H}), 5.50(\mathrm{~d}, J=1.2$ $\mathrm{Hz}, 1 \mathrm{H}), 3.35(\mathrm{~s}, 2 \mathrm{H}), 2.50-2.47(\mathrm{~m}, 1 \mathrm{H}), 1.02(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 210.2,194.3,151.7,143.9,138.8,138.2,128.6,128.3,127.0,120.9$, 41.0, 36.8, 18.2; HRMS (ESI) m/z [M+H]: Calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{O}_{2}$: 243.1385. Found: 243.1388.

(\boldsymbol{E})-5,5-Dimethyl-4-oxo-2-(2-phenylallylidene)hexanal (3sa):

The title compound was prepared according to the general procedure (EA/PE $=1 / 9, \mathrm{R}_{\mathrm{f}}$ $=0.35$). The product was obtained as yellow oil in 42% yield $(21.5 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.55(\mathrm{~s}, 1 \mathrm{H}), 7.35-7.30(\mathrm{~m}, 6 \mathrm{H}), 5.67(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.47(\mathrm{t}$, $J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.39(\mathrm{~s}, 2 \mathrm{H}), 1.06(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 211.5$, 194.3, 151.6, 144.1, 138.9, 138.6, 128.6, 128.3, 127.0, 120.8, 44.3, 33.7, 26.6; HRMS (ESI) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]$: Calcd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{O}_{2}$: 257.1542. Found: 257.1546.

(E)-2-(2-Cyclopropyl-2-oxoethyl)-4-phenylpenta-2,4-dienal (3ta):

The title compound was prepared according to the general procedure $\left(\mathrm{EA} / \mathrm{PE}=1 / 9, \mathrm{R}_{\mathrm{f}}\right.$ $=0.33$). The product was obtained as yellow oil in 59% yield $(28.3 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.58(\mathrm{~s}, 1 \mathrm{H}), 7.38-7.29(\mathrm{~m}, 6 \mathrm{H}), 5.71(\mathrm{~m}, 1 \mathrm{H}), 5.51(\mathrm{~m}, 1 \mathrm{H})$, $3.47(\mathrm{~s}, 2 \mathrm{H}), 1.83-1.77(\mathrm{~m}, 1 \mathrm{H}), 0.98-0.97(\mathrm{~m}, 2 \mathrm{H}), 0.85-0.80(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 206.3,194.3,151.7,143.8,138.9,137.9,128.6,128.3,126.9$, 121.0, 39.5, 20.5, 11.0; HRMS (ESI) m/z [M+H]: Calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{O}_{2}$: 241.1229 . Found: 241.1233.

(E)-2-(2-Cyclohexyl-2-oxoethyl)-4-phenylpenta-2,4-dienal (3ua):

The title compound was prepared according to the general procedure $\left(\mathrm{EA} / \mathrm{PE}=1 / 9, \mathrm{R}_{\mathrm{f}}\right.$ $=0.32$). The product was obtained as yellow oil in 69% yield (38.9 mg). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.49(\mathrm{~s}, 1 \mathrm{H}), 7.29-7.26(\mathrm{~m}, 3 \mathrm{H}), 7.25-7.22(\mathrm{~m}, 3 \mathrm{H}), 5.61(\mathrm{~d}, J=$ $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.42(\mathrm{t}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.28(\mathrm{~s}, 2 \mathrm{H}), 2.19-2.12(\mathrm{~m}, 1 \mathrm{H}), 1.72-1.68(\mathrm{~m}$, $2 \mathrm{H}), 1.67-1.64(\mathrm{~m}, 2 \mathrm{H}), 1.23-1.08(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 209.5$, 194.3, 151.6, 143.9, 138.8, 138.3, 128.6, 128.3, 127.0, 120.8, 50.8, 37.1, 28.4, 25.7, 25.5; HRMS (ESI) m/z [M+H]: Calcd for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{O}_{2}$: 283.1698. Found: 283.1702.

Methyl (E)-3-formyl-5-phenylhexa-3,5-dienoate (3va):

The title compound was prepared according to the general procedure $\left(\mathrm{EA} / \mathrm{PE}=1 / 9, \mathrm{R}_{\mathrm{f}}\right.$ $=0.30$). The product was obtained as yellow oil in 52% yield $(23.9 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.60(\mathrm{~s}, 1 \mathrm{H}), 7.38-7.31(\mathrm{~m}, 6 \mathrm{H}), 5.78(\mathrm{~m}, 1 \mathrm{H}), 5.54(\mathrm{t}, J=1.2$ $\mathrm{Hz}, 1 \mathrm{H}), 3.62(\mathrm{~s}, 3 \mathrm{H}), 3.26(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 194.1,170.6,151.6$, 143.5, 138.5, 137.2, 128.6, 128.5, 126.8, 121.0, 52.1, 30.6; HRMS (ESI) m/z [M+H]: Calcd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{O}_{3}$: 231.1021. Found: 231.1023.

tert-Butyl (E)-3-formyl-5-phenylhexa-3,5-dienoate (3wa):

The title compound was prepared according to the general procedure $\left(\mathrm{EA} / \mathrm{PE}=1 / 9, \mathrm{R}_{\mathrm{f}}\right.$ $=0.31$). The product was obtained as yellow oil in 41% yield (22.3 mg). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.60(\mathrm{~s}, 1 \mathrm{H}), 7.36-7.35(\mathrm{~m}, 5 \mathrm{H}), 7.27-7.26(\mathrm{~m}, 1 \mathrm{H}), 5.78(\mathrm{~m}$,
$1 \mathrm{H}), 5.53(\mathrm{~m}, 1 \mathrm{H}), 3.20(\mathrm{~s}, 2 \mathrm{H}), 1.40(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 194.2$, 169.3, 151.0, 143.5, 138.7, 138.0, 128.7, 128.4, 126.8, 120.4, 81.1, 32.1, 27.9; HRMS (ESI) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]$: Calcd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{O}_{3}$: 273.1491. Found: 273.1494.

(E)-4-(4-Fluorophenyl)-2-(2-oxo-2-phenylethyl)penta-2,4-dienal (3ab):

The title compound was prepared according to the general procedure $\left(\mathrm{EA} / \mathrm{PE}=1 / 9, \mathrm{R}_{\mathrm{f}}\right.$ $=0.34)$. The product was obtained as yellow oil in 72% yield $(42.3 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.59(\mathrm{~s}, 1 \mathrm{H}), 7.78-7.76(\mathrm{~m}, 2 \mathrm{H}), 7.49-7.47(\mathrm{~m}, 1 \mathrm{H}), 7.38-$ $7.34(\mathrm{~m}, 2 \mathrm{H}), 7.31(\mathrm{~s}, 1 \mathrm{H}), 7.23-7.21(\mathrm{~m}, 2 \mathrm{H}), 6.89(\mathrm{t}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.58(\mathrm{~m}, 1 \mathrm{H})$, $5.44(\mathrm{~m}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 195.8,194.1,162.7(\mathrm{~d}, J=$ $246.9 \mathrm{~Hz}), 151.5,142.9,138.4,136.3,134.8(\mathrm{~d}, J=3.3 \mathrm{~Hz}), 133.3,128.7(\mathrm{~d}, J=8.2$ Hz), 128.3 (d, $J=47.0 \mathrm{~Hz}$), 120.8, 115.6, 115.4, 35.3; ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-113.19;HRMS (ESI) m/z [M+H]: Calcd for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{FO}_{2}$: 295.1134. Found: 295.1143.

(E)-4-(2-Chlorophenyl)-2-(2-oxo-2-phenylethyl)penta-2,4-dienal (3ac):

The title compound was prepared according to the general procedure (EA/PE $=1 / 9, \mathrm{R}_{\mathrm{f}}$ $=0.32$). The product was obtained as yellow oil in 63% yield (39.1 mg). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.60(\mathrm{~s}, 1 \mathrm{H}), 7.68-7.66(\mathrm{~m}, 2 \mathrm{H}), 7.51-7.49(\mathrm{~m}, 1 \mathrm{H}), 7.38-$ $7.33(\mathrm{~m}, 3 \mathrm{H}), 7.28-7.26(\mathrm{~m}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.03-6.97(\mathrm{~m}, 2 \mathrm{H}), 5.91$ $(\mathrm{m}, 1 \mathrm{H}), 5.56(\mathrm{~m}, 1 \mathrm{H}), 3.66(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 195.3,194.5$, $151.2,143.4,138.3,136.2,136.1,133.0,132.5,130.9,129.4,129.3,128.4,128.2$,
127.9, 127.0, 34.1; HRMS (ESI) m/z [M+H]: Calcd for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{ClO}_{2}: 311.0839$. Found: 311.0834 .
(E)-4-(3-Chlorophenyl)-2-(2-oxo-2-phenylethyl)penta-2,4-dienal (3ad):

The title compound was prepared according to the general procedure (EA/PE $=1 / 9, \mathrm{R}_{\mathrm{f}}$ $=0.31$). The product was obtained as yellow oil in 56% yield (34.7 mg). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.67(\mathrm{~s}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{~m}, 1 \mathrm{H}), 7.42(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.36$ (s, 1H), 7.29 (s, 1H), 7.20 (s, 3H), 5.70 (m, 1H), 5.56 (m, 1H), 3.92 (s, 2H); ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta 196.6,195.5,151.4,142.2,140.9,139.2$, 136.5, 134.0, 134.0, 131.0, 129.2, 128.7, 128.5, 126.9, 125.7, 121.7, 35.8; HRMS (ESI) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]$: Calcd for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{ClO}_{2}$: 311.0839. Found: 311.0841.
(E)-4-(4-Chlorophenyl)-2-(2-oxo-2-phenylethyl)penta-2,4-dienal (3ae):

The title compound was prepared according to the general procedure (EA/PE $=1 / 9, \mathrm{R}_{\mathrm{f}}$ $=0.33$). The product was obtained as yellow oil in 82% yield $(50.8 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.66(\mathrm{~s}, 1 \mathrm{H}), 7.84-7.81(\mathrm{~m}, 2 \mathrm{H}), 7.56-7.54(\mathrm{~m}, 1 \mathrm{H}), 7.45-$ 7.41 (m, 2H), 7.37 - $7.26(\mathrm{~m}, 1 \mathrm{H}), 7.23(\mathrm{~s}, 4 \mathrm{H}), 5.67(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.53(\mathrm{t}, J=$ $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 195.8,194.0,151.0,142.8$, 138.5, 137.1, 136.3, 134.4, 133.3, 128.8, 128.5, 128.3, 128.0, 121.2, 35.3; HRMS (ESI) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]$: Calcd for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{ClO}_{2}$: 311.0839. Found: 311.0840.

(E)-4-(4-Bromophenyl)-2-(2-oxo-2-phenylethyl)penta-2,4-dienal (3af):

The title compound was prepared according to the general procedure $\left(\mathrm{EA} / \mathrm{PE}=1 / 9, \mathrm{R}_{\mathrm{f}}\right.$ $=0.35$). The product was obtained as yellow oil in 73% yield $(51.7 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.66(\mathrm{~s}, 1 \mathrm{H}), 7.83-7.81(\mathrm{~m}, 2 \mathrm{H}), 7.56-7.54(\mathrm{~m}, 1 \mathrm{H}), 7.45-$ 7.43 (m, 2H), $7.41-7.36$ (m, 3H), $7.18-7.16$ (m, 2H), $5.68(\mathrm{~m}, 1 \mathrm{H}), 5.54(\mathrm{~m}, 1 \mathrm{H})$, $3.90(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 195.8, 194.0, 151.0, 142.9, 138.5, 137.6, 136.2, 133.3, 131.7, 128.6, 128.5, 128.0, 122.5, 121.3, 35.2; HRMS (ESI) m/z [M+H]: Calcd for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{BrO}_{2}: 355.0334$. Found: 355.0330 .

(E)-2-(2-Oxo-2-phenylethyl)-4-(p-tolyl)penta-2,4-dienal (3ag):

The title compound was prepared according to the general procedure (EA/PE $=1 / 9, \mathrm{R}_{\mathrm{f}}$ $=0.32$). The product was obtained as yellow oil in 77% yield $(44.7 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.66(\mathrm{~s}, 1 \mathrm{H}), 7.82-7.80(\mathrm{~m}, 2 \mathrm{H}), 7.54-7.52(\mathrm{~m}, 1 \mathrm{H}), 7.43-$ 7.39 (m, 3H), 7.19 - 7.17 (m, 2H), $7.07-7.05$ (m, 2H), 5.65 (d, $J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.48$ $(\mathrm{t}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{~s}, 2 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 195.9$, 194.3, 152.1, 143.8, 138.2, 138.1, 136.4, 135.8, 133.1, 129.3, 128.4, 128.0, 126.8, 120.4, 35.3, 21.0; HRMS (ESI) m/z [M+H]: Calcd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{O}_{2}$: 291.1385. Found: 291.1388.
(E)-4-(Benzo[d][1,3]dioxol-5-yl)-2-(2-oxo-2-phenylethyl)penta-2,4-dienal (3ah):

The title compound was prepared according to the general procedure $\left(\mathrm{EA} / \mathrm{PE}=1 / 9, \mathrm{R}_{\mathrm{f}}\right.$ $=0.31$). The product was obtained as yellow oil in 70% yield $(44.8 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 9.66(\mathrm{~s}, 1 \mathrm{H}), 7.85(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.57-7.54(\mathrm{~m}, 1 \mathrm{H}), 7.45$ - 7.41 (m, 2H), $7.36(\mathrm{~s}, 1 \mathrm{H}), 6.77-6.75(\mathrm{~m}, 2 \mathrm{H}), 6.72-6.69(\mathrm{~m}, 1 \mathrm{H}), 5.81(\mathrm{~m}, 2 \mathrm{H})$, $5.60(\mathrm{~m}, 1 \mathrm{H}), 5.45(\mathrm{~m}, 1 \mathrm{H}), 3.91(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 195.8,194.2$, $151.8,147.8,147.6,143.5,138.1,136.4,133.1,132.8,128.4,128.1,120.8,120.2$, 108.2, 107.4, 101.1, 35.3; HRMS (ESI) m/z [M+H]: Calcd for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{O}_{4}$: 321.1127. Found: 321.1132.

(E)-4-(4-Nitrophenyl)-2-(2-oxo-2-phenylethyl)penta-2,4-dienal (3ai):

The title compound was prepared according to the general procedure (EA/PE $=1 / 9, \mathrm{R}_{\mathrm{f}}$ $=0.21$). The product was obtained as red oil in 43% yield (27.6 mg). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.69-9.67(\mathrm{~m}, 1 \mathrm{H}), 8.13-8.09(\mathrm{~m}, 2 \mathrm{H}), 7.81-7.80(\mathrm{~m}, 2 \mathrm{H}), 7.55-$ $7.54(\mathrm{~m}, 1 \mathrm{H}), 7.50-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.37(\mathrm{~m}, 3 \mathrm{H}), 5.80(\mathrm{~m}, 1 \mathrm{H}), 5.69(\mathrm{~m}, 1 \mathrm{H})$, $3.92-3.90(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 195.5,193.7,149.7,147.5,145.0$, 142.2, 139.1, 136.0, 133.5, 128.6, 128.0, 127.9, 123.9, 123.4, 35.2; HRMS (ESI) m/z $[\mathrm{M}+\mathrm{H}]$: Calcd for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{NO}_{4}$: 322.1079.Found: 322.1085.

(E)-4-(Naphthalen-1-yl)-2-(2-oxo-2-phenylethyl)penta-2,4-dienal (3aj):

The title compound was prepared according to the general procedure $\left(\mathrm{EA} / \mathrm{PE}=1 / 9, \mathrm{R}_{\mathrm{f}}\right.$ $=0.28$). The product was obtained as yellow oil in 62% yield $(40.4 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.62(\mathrm{~s}, 1 \mathrm{H}), 7.75(\mathrm{~m}, 1 \mathrm{H}), 7.66(\mathrm{~m}, 1 \mathrm{H}), 7.54-7.42(\mathrm{~m}, 6 \mathrm{H})$, $7.21(\mathrm{~m}, 5 \mathrm{H}), 6.09-6.08(\mathrm{~m}, 1 \mathrm{H}), 5.66(\mathrm{~m}, 1 \mathrm{H}), 3.27(\mathrm{~s}, 2 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 195.1,194.7,152.3,144.5,137.1,136.2,135.8,133.3,132.7,131.0,129.4$, 128.3, 128.2, 127.9, 127.6, 126.6, 126.5, 126.2, 125.3, 99.9, 34.0; HRMS (ESI) m/z $[\mathrm{M}+\mathrm{H}]:$ Calcd for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{O}_{2}$: 327.1385. Found: 327.1389.

(E)-4-(4-Bromophenyl)-2-(2-oxo-2-(phenanthren-3-yl)ethyl)penta-2,4-dienal

 (3ak):

The title compound was prepared according to the general procedure $\left(\mathrm{EA} / \mathrm{PE}=1 / 9, \mathrm{R}_{\mathrm{f}}\right.$ $=0.25)$. The product was obtained as yellow solid in 71% yield $(64.5 \mathrm{mg}), \mathrm{Mp} .163-$ $164{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.72(\mathrm{~s}, 1 \mathrm{H}), 9.18(\mathrm{~s}, 1 \mathrm{H}), 8.71(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 8.01-7.98(\mathrm{~m}, 1 \mathrm{H}), 7.94-7.91(\mathrm{~m}, 2 \mathrm{H}), 7.88-7.86(\mathrm{~m}, 1 \mathrm{H}), 7.77-7.75(\mathrm{~m}$, $1 \mathrm{H}), 7.74-7.67$ (m, 1H), 7.65 (t, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}$), 7.41 (s, 1H), 7.36 (d, $J=8.4 \mathrm{~Hz}$, $2 \mathrm{H}), 7.21-7.19(\mathrm{~m}, 2 \mathrm{H}), 5.71(\mathrm{~s}, 1 \mathrm{H}), 5.60(\mathrm{~s}, 1 \mathrm{H}), 4.13(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 195.9,194.1,151.1,142.9,138.7,137.6,135.1,134.0,132.1,131.8,130.6$, $129.8,129.7,128.9,128.8,128.6,127.3,127.2,126.2,125.1,123.6,122.7,122.6$, 121.4, 35.5; HRMS (ESI) m/z [M+Na]: Calcd for $\mathrm{C}_{27} \mathrm{H}_{19} \mathrm{BrO}_{2} \mathrm{Na}$: 477.0466. Found: 477.0457.

Spectral data of mechanistic investigations:

3aa-I:

The title compound was prepared under standard conditions with $\left(\mathrm{CF}_{3}\right)_{2} \mathrm{CDOD}$ instead of $\operatorname{HFIP}\left(E A / P E=1 / 9, \mathrm{R}_{\mathrm{f}}=0.31\right)$. The product was obtained as yellow oil in 81% yield (44.6 mg). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.67(\mathrm{~s}, 1 \mathrm{H}), 7.83-7.81(\mathrm{~m}, 2 \mathrm{H})$, $7.56-7.52(\mathrm{~m}, 1 \mathrm{H}), 7.43-7.39(\mathrm{~m}, 3 \mathrm{H}), 7.32-7.27(\mathrm{~m}, 4 \mathrm{H}), 7.26-7.22(\mathrm{~m}, 1 \mathrm{H})$, $5.69(\mathrm{~m}, 1 \mathrm{H}), 5.53(\mathrm{~s}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 0.32 \mathrm{H}), 3.87(\mathrm{~s}, 0.40 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 196.0,195.9,195.9,194.3,151.9,143.8,138.7,138.2,138.1,138.1,136.3$, 133.1, 128.6, 128.4, 128.3, 128.0, 126.9, 121.0, 35.4, 35.3, 35.1, 34.9; HRMS (ESI) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]$: Calcd for $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{D}_{2} \mathrm{O}_{2}$: 279.1354. Found: 279.1360.

3aa-II:

The title compound was prepared under standard conditions with $\mathrm{H}_{2}{ }^{18} \mathrm{O}$ (2.0 equiv.) $\left(E A / P E=1 / 9, \mathrm{R}_{\mathrm{f}}=0.30\right)$. The product was obtained as yellow oil in 72% yield (39.8 mg). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.66(\mathrm{~s}, 1 \mathrm{H}), 7.83-7.82(\mathrm{~m}, 1 \mathrm{H}), 7.80(\mathrm{~m}, 1 \mathrm{H})$, $7.56-7.52(\mathrm{~m}, 1 \mathrm{H}), 7.43-7.39(\mathrm{~m}, 3 \mathrm{H}), 7.32-7.26(\mathrm{~m}, 4 \mathrm{H}), 7.26-7.23(\mathrm{~m}, 1 \mathrm{H})$, $5.69(\mathrm{~m}, 1 \mathrm{H}), 5.53-5.52(\mathrm{t}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 195.9,194.3,194.2,151.8,143.8,138.7,138.2,136.3,133.1,128.6,128.4$, 128.3, 128.0, 126.9, 121.0, 35.3; HRMS (ESI) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]$: Calcd for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{O}^{18} \mathrm{O}$: 279.1271. Found: 279.1264.

General procedure for applications and their spectral data:

(E)-1-Phenyl-3-(2-phenylallylidene)butane-1,4-diol (4aa) ${ }^{11}$:

A mixture of 3aa ($0.10 \mathrm{mmol}, 27.7 \mathrm{mg}$) in $\mathrm{MeOH}(2.00 \mathrm{~mL})$ was cooled to $0^{\circ} \mathrm{C}$, $\mathrm{NaBH}_{4}(0.4 \mathrm{mmol}, 16 \mathrm{mg})$ was added and the reaction mixture was stirred at the same temperature for 30 min under nitrogen atmosphere. The mixture was poured into $\mathrm{H}_{2} \mathrm{O}$ $(5 \mathrm{~mL})$ and extracted with EtOAc $(10 \mathrm{~mL})$. The organic layer was washed with brine $(10 \mathrm{~mL})$ and dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent, the residue was subjected to column chromatography $\left(\mathrm{EA} / \mathrm{PE}=1 / 3, \mathrm{R}_{\mathrm{f}}=0.24\right)$ to give 4aa as white solid in 92% yield (25.8 mg), Mp. $106-107{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.39-$ $7.33(\mathrm{~m}, 3 \mathrm{H}), 7.32-7.31(\mathrm{~m}, 1 \mathrm{H}), 7.30-7.26(\mathrm{~m}, 3 \mathrm{H}), 7.25(\mathrm{~m}, 1 \mathrm{H}), 7.23-7.19(\mathrm{~m}$, $3 \mathrm{H}), 6.36(\mathrm{~s}, 1 \mathrm{H}), 5.58(\mathrm{~s}, 1 \mathrm{H}), 5.17(\mathrm{t}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.78-4.75(\mathrm{~m}, 1 \mathrm{H}), 4.23(\mathrm{~s}$, $2 \mathrm{H}), 3.37(\mathrm{~s}, 2 \mathrm{H}), 2.76-2.72(\mathrm{~m}, 1 \mathrm{H}), 2.51-2.45(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 144.3,144.3,140.1,139.9,130.3,128.4,127.8,127.5,126.5,125.5,115.5$, 74.0, 68.5, 40.1; HRMS (ESI) m/z [M+H]: Calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{O}_{2}$: 281.1542. Found: 281.1538.

2-Diazo-1-phenyl-2-(5-phenylpyridin-3-yl)ethan-1-one (5aa) ${ }^{12}$:

To a solution of 3aa ($0.10 \mathrm{mmol}, 27.7 \mathrm{mg}$) and p-acetamidobenzenesulfonyl azide ($0.12 \mathrm{mmol}, 57.7 \mathrm{mg}$) in $\mathrm{CH}_{3} \mathrm{CN}$ at $0{ }^{\circ} \mathrm{C}$ was added DBU ($0.15 \mathrm{mmol}, 22.9 \mathrm{mg}$)

[^2]dropwise slowly. The reaction mixture was allowed to warm to room temperature and monitored by TLC. After completion of the reaction, the solvent was removed in vacuo. The crude residue was purified by flash chromatography (EA/PE $=1 / 20, \mathrm{R}_{\mathrm{f}}=$ 0.22) to afford product $\mathbf{5 a a}$ as yellow oil in 67% yield (20.1 mg). ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 8.97(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.17-8.15(\mathrm{~m}, 1 \mathrm{H}), 8.12(\mathrm{~m}, 1 \mathrm{H}), 8.11-8.08(\mathrm{~m}$, 2H), $7.68-7.67(\mathrm{~m}, 1 \mathrm{H}), 7.66-7.65(\mathrm{~m}, 1 \mathrm{H}), 7.63-7.59(\mathrm{~m}, 1 \mathrm{H}), 7.56-7.53(\mathrm{~m}$, 2H), 7.52 - $7.45(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 193.7, 153.4, 147.0, 139.0, $136.8,136.4,135.2,132.9,130.9,129.3,128.9,128.2,127.3,124.9,77.2$; HRMS (ESI) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]$: Calcd for $\mathrm{C}_{19} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{ONa}$: 322.0956. Found: 322.0958.

Possible reaction pathway for $\mathbf{5 a} \mathbf{a}^{\mathbf{1 3}}$:
Under basic conditions, 3aa was initially going through a well known diazo transfer process led to diazo III. The imine intermediate IV could be generated by condensation of III with tosyl amine B. Finally, the product 5aa might be obtained by the tramolecular 6π-electrocyclization.

$N, 1,5-T r i p h e n y l-3-(2-p h e n y l a l l y l)-1 H-p y r r o l-2-a m i n e ~(6 a a){ }^{14}$:

[^3]Acetic acid ($12.0 \mathrm{mg}, 0.2 \mathrm{mmol}$) was added to the mixture of $\mathbf{3 a a}(27.7 \mathrm{mg}, 0.1$ $\mathrm{mmol})$, aniline ($18.7 \mathrm{mg}, 0.2 \mathrm{mmol}$) in $\mathrm{MeOH}(1 \mathrm{~mL})$. Then the reaction mixture was stirred at room temperature and monitored by TLC. After completion of the reaction, brine (2 mL) was added, and extracted with $\mathrm{DCM}(5 \mathrm{ml} \times 3)$. The combined organic layer were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was purified by flash column chromatography $\left(\mathrm{EA} / \mathrm{PE}=1 / 20, \mathrm{R}_{\mathrm{f}}=0.22\right.$) on silica gel give the desired product 6aa as red solid in 72% yield (30.7 mg), Mp. $115-116{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.43-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.32(\mathrm{~m}, 3 \mathrm{H}), 7.25(\mathrm{~m}, 1 \mathrm{H}), 7.24-7.23$ $(\mathrm{m}, 1 \mathrm{H}), 7.23-7.21(\mathrm{~m}, 1 \mathrm{H}), 7.20-7.16(\mathrm{~m}, 2 \mathrm{H}), 7.13-7.12(\mathrm{~m}, 1 \mathrm{H}), 7.12-7.10$ (m, 2H), $7.01-6.98(\mathrm{~m}, 2 \mathrm{H}), 6.92-6.90(\mathrm{~m}, 2 \mathrm{H}), 6.72-6.68(\mathrm{~m}, 3 \mathrm{H}), 6.56,(\mathrm{~s}, 1 \mathrm{H})$, $6.54(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.72(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{~s}, 2 \mathrm{H}), 3.99(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 148.1,140.7,139.9,135.2,133.5,132.4,129.2,128.9,128.8$, 128.7, 128.1, 127.9, 127.4, 126.5, 126.3, 125.3, 124.5, 121.5, 120.1, 117.3, 113.1, 110.6, 52.2;HRMS (ESI) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]$: Calcd for $\mathrm{C}_{31} \mathrm{H}_{27} \mathrm{~N}_{2}$: 427.2174. Found: 427.2167.

2-Methyl-2,6-diphenyl-2H-pyran-4-carbaldehyde (7aa) ${ }^{15}$:

Triethylamine ($20.3 \mathrm{mg}, 0.2 \mathrm{mmol}$) was added to the mixture of 3aa $(27.7 \mathrm{mg}, 0.1$ mmol) in THF (1 mL). Then the reaction mixture was stirred at room temperature and monitored by TLC. After completion of the reaction, the combined organic layer were concentrated in vacuo. The residue was purified by flash column chromatography $\left(\mathrm{EA} / \mathrm{PE}=1 / 20, \mathrm{R}_{\mathrm{f}}=0.21\right)$ on silica gel give the desired product 7aa as yellow oil in 79% yield (21.8 mg). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.55(\mathrm{~s}, 1 \mathrm{H}), 7.79-7.77(\mathrm{~m}, 2 \mathrm{H})$, $7.51-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.36(\mathrm{~m}, 6 \mathrm{H}), 7.33-7.30(\mathrm{~m}, 1 \mathrm{H}), 6.38(\mathrm{~d}, J=1.2 \mathrm{~Hz}$,

[^4]$1 \mathrm{H}), 6.33(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.89(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 189.9,153.1$, 144.0, 138.9, 134.5, 133.7, 129.4, 128.5, 128.4, 127.9, 125.3, 124.8, 91.1, 79.9, 27.7; HRMS (ESI) m/z [M+H]: Calcd for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{O}_{2}$: 277.1229. Found: 277.1228.

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of Cyclopropenes:

Por
2aa

$\stackrel{\Gamma}{\mathbf{-}}$

8
0
i

		NㅠㅇN

$\stackrel{\stackrel{N}{\gtrless}}{\stackrel{\circ}{2}}$

$\stackrel{\stackrel{0}{N}}{\stackrel{+}{\mathrm{i}}}$

2c

2c

2d

:

-

N-

$\stackrel{\sim}{\infty} \underset{\sim}{\infty} \underset{\sim}{\infty} \underbrace{\sim N}_{\substack{\infty \\ \sim}}$

$\begin{aligned} & \stackrel{\otimes}{\infty} \\ & \stackrel{\sim}{\sim} \\ & \stackrel{\Gamma}{1} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{6} \\ & \stackrel{\sim}{n} \\ & \underset{\sim}{n} \end{aligned}$	$\begin{aligned} & \text { N} \\ & \underset{\sim}{\mathrm{j}} \end{aligned}$		\circ ∞ $\stackrel{0}{\circ}$ $\stackrel{\circ}{1}$	응우웅下N융

2j

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{1 , 3}$-dienes:

¢ Mo mo		®
¢べが心		$\stackrel{\text { ¢ }}{\sim}$
－¢\％		¢

$\stackrel{\sim}{N}$		이융	\＆
守守		べべ¢	灾
－		－	＋

$\stackrel{\infty}{\infty}$
$\begin{array}{ll}\stackrel{+}{\circ} \\ \stackrel{\circ}{\circ} & \stackrel{\circ}{\circ} \\ i\end{array}$

 	$\underset{\substack{\underset{\infty}{\infty}}}{\substack{0}}$	$\stackrel{\text { O}}{\stackrel{0}{0}} \stackrel{\stackrel{N}{\sim}}{\underset{1}{\mid}}$

®in ©

$\stackrel{\circ}{\infty} \quad \stackrel{\sim}{\infty} \stackrel{\sim}{\sim}$

\circ
0
i
i

3ga

+o ल゙
$\stackrel{+}{\circ}$

8

Nos	N		$\bigcirc{ }^{\circ}$	\％	F
ずす	$\stackrel{0}{6}$		mo	\checkmark	－
\％	$\stackrel{-}{+}$		Nぺ	$\stackrel{\sim}{0}$	\％

$\stackrel{N}{\infty}$
$\stackrel{\sim}{\stackrel{n}{\Gamma}}$

n
0
\vdots
$\dot{1}$
$\stackrel{\sim}{\infty} \stackrel{\sim}{\infty}$ 8
0
0
1

ஸ゙す

$\stackrel{\stackrel{\leftrightarrow}{6}}{\substack{0 \\ 0}}$

3la

 $\stackrel{\text { Non }}{\substack{1}}$

\qquad
ข~Nviviv

-

$\stackrel{\sim}{\sim}$	$\stackrel{N}{\text { ¢ }}$		
\bigcirc	¢	둔	$\stackrel{\sim}{\sim} \stackrel{\sim}{\sim} \stackrel{\sim}{\sim}$
	\|	1 -	V

$\underset{\sim}{\underset{\sim}{\circ}} \stackrel{\sim}{\sim}$

ナ 	N్ర్ర
	\cdots

 $\stackrel{\curvearrowleft}{\stackrel{\circ}{1}}$

$\stackrel{\otimes}{\square}$	©	80さずす	앵웅융융	¢ ${ }_{6}{ }^{\circ} \mathrm{O} \bar{\circ}$	깡
－	$\stackrel{9}{6}$	is \％¢ ¢	ヘั内	－	\cdots
T	$\stackrel{\square}{1}$	\bigcirc	－5\％	$\underbrace{}_{\text {min }}$	Nへ

$\stackrel{\substack{\infty \\ \infty}}{\substack{0}}$
$\stackrel{N}{\sim} \stackrel{\infty}{\sim}$

\circ

100	60	20	-20	-60	-100 ppm	-140	-180	-220	-260	-30 c

| 220 | 200 | 180 | 160 | 140 | 120 | 100 | 80 | 60 | 40 | 20 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

n
鬲受
$\stackrel{\circ}{\circ}$

$\stackrel{\odot}{\circ} \stackrel{N}{\top}$ | 8 |
| :--- |
| 0 |
| i |

220	200	180	160	140	120	100	80	60	40	20	0

 $\stackrel{m}{\square}$
 $\begin{array}{ll}\circ & \circ \\ \stackrel{\circ}{\circ} & 0 \\ \stackrel{\circ}{1} & 1\end{array}$

$\stackrel{n}{\infty}$
$\stackrel{N}{\stackrel{N}{\circ}}$

8

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of mechanistic investigations:

肉芯
$\stackrel{\infty}{\infty}$
$\stackrel{\text { N̈ }}{\underset{\sim}{1}}$

		へ8®	융ำ
ஸூ ஸூ யூ	¢	$\begin{array}{r} \text { no oio } \\ \end{array}$	
		$\xrightarrow{\text { N }}$	

| 220 | 200 | 180 | 160 | 140 | 120 | 100 | 80 | 60 | 40 | 20 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$\stackrel{\circ}{\infty}$
$\stackrel{\circ}{\circ} \stackrel{\circ}{\stackrel{\circ}{0}} \stackrel{0}{\stackrel{\circ}{4}}$

3aa-II

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of applications:

5aa

,											1		1									T
220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0
											ppm											

$\circ 08$
$\circ 8$
-
1

6 aa

[^0]: ${ }^{1}$ Y. Jiang, V. Y. K. Zhong, L. Emmanuvel and C.-M. Park, Chem. Commun., 2012,48, 3133-3135.
 ${ }^{2}$ L. Šenica, U. Grošelj, M. Kasunič, D. Kočar, B. Stanovnik and J. Svete, Eur. J. Org. Chem., 2014, 15, 3067-3071.
 ${ }^{3}$ M. Ni, J. Zhang, X. Liang, Y. Jiang and T.-P. Loh, Chem. Commun., 2017,53, 12286-12289.
 ${ }^{4}$ Y. Tang, Y. Chen, H. Liu and M. Guo, Tetrahedron, 2018,59, 3703-3705.
 ${ }^{5}$ X. Liang, P. Guo, W. Yang, M. Li, C. Jiang, W. Sun, T.-P. Loh and Y. Jiang, Chem. Commun., 2020,56, 2043-2046.
 ${ }^{6}$ J. Chen, P. Guo, J. Zhang, J. Rong, W. Sun, Y. Jiang and T.-P. Loh, Angew. Chem., Int. Ed., 2019,58, 12674-12679.
 ${ }^{7}$ S. Zhou, J. Wang, L. Wang, C. Song, K. Chen and J. Zhu, Angew. Chem., Int. Ed., 2016, 55, 9384-9388.
 ${ }^{8}$ G. Liang, J. Rong, W. Sun, G. Chen, Y. Jiang and T.-P. Loh, Org. Lett., 2018, 20, 7326-7331.
 ${ }^{9}$ B. Qi, S. Guo, W. Zhang, X. Yu, C. Song and J. Zhu, Org. Lett., 2018, 20, 3996-3999.

[^1]: ${ }^{10}$ M. Rubina, M. Rubin and V. Gevorgyan, J. Am. Chem. Soc., 2004, 126, 3688-3689.

[^2]: ${ }^{11}$ H. Suzuki, S. Yoshioka, A. Igesaka, H. Nishioka and Y. Takeuchi, Tetrahedron, 2013, 69, 6399-6403.
 ${ }^{12}$ J. Sarabia, Q. Li and M. Ferreira, Angew. Chem. Int. Ed., 2018, 57, 11015-11019.

[^3]: ${ }^{13}$ Y. Jiang and C.-M Park, Chem. Sci., 2014, 5, 2347-2351.
 ${ }^{14}$ C. Zhu, R. Zhu, H. Zeng, F. Chen, C. Liu, W. Wu and H. Jiang, Angew. Chem. Int. Ed. 2017, 56, 13324-13328.

[^4]: ${ }^{15}$ T.-L. Shie, C.-H. Lin, S.-L. Lin and D.-Y. Yang, Eur. J. Org. Chem., 2007, 29, 4831-4836.

