Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2021

Supporting Information

Sulfur...Oxygen Interaction Controlled (Z)-Selective anti-Markovnikov Vinyl Sulfides

Content

General Information	S2
Synthesis and Optimization of Reaction	S2-S4
Condition	
EPR Experiment and Crystallographic Data	S5-S9
Theoretical Calculation	S9-S13
NMR analysis and Compound characterization	S14-S35
data	
References	S36
NMR spectra and analysis	S37-S118

EXPERIMENTAL SECTION

General Aspects. All the chemicals were purchased from commercial sources and used as received. All the reactions were generally carried out under an open atmosphere unless otherwise noted. The reactions were monitored by TLC on aluminum sheets pre-coated with silica gel. Chromatographic purifications of the compounds were performed using silica gel (Mess 230-400) and ethyl acetate/hexane as eluent. ¹H and ¹³C spectra of the compounds were recorded on Bruker 400 and 700 MHz instruments at 25 °C. The chemical shift value (δ , ppm) was reported to the residual chloroform (7.26 for ¹H and 77.16 ppm for ¹³C) and DMSO-d₆ (2.50 for ¹H and 39.52 ppm for ¹³C). Mass spectra were recorded as ESI-TOF (HRMS). Infrared spectra were recorded on neat solids using KBr pellets and described in wavenumber (cm⁻¹). Digital melting point apparatus was used to record the Melting Point of the compound in degree centigrade (°C) and are uncorrected.

SYNTHESIS

General procedures for the synthesis of N-phenylpropiolamide derivatives. In a roundbottomed flask, a solution of propiolic acid (3.54 mmol, 1.1 equiv) in 10 mL CH₂Cl₂ (DCM) was allowed to stir at -20 °C and 4-dimethylaminopyridine (0.32 mmol, 0.1 equiv), dicyclohexylcarbodiimide (3.54 mmol, 1.1 equiv) in 5 mL CH₂Cl₂ were added dropwise. Then a solution of aniline (3.22 mmol, 1.0 equiv) in 5 mL CH₂Cl₂ was then injected dropwise. Afterward, the reaction mixture was stirred at room temperature (rt) for another 12 h. After completion of the reaction, the crude mixture was diluted in DCM and the following organic content was washed by 0.5 M aq. HCl, dried over Na₂SO₄, and concentrated under reduced pressure. The crude residue was purified by column chromatography to give the desired starting materials N-phenylpropiolamide derivatives as yellow solid.

General procedure for the synthesis of 3aa. In a round bottom flask, the thiophenol (**2a**) (54 mg, 0.0.495 mmol) was dissolved in 1 mL EtOH and Lithium *tert*-butoxide (0.33 mg, 0.00413 mmol) was added to the solution. After that, compound (**1a**) (60 mg, 0.413 mmol) was immediately added and the reaction mixture was allowed to stir in the open air for 10 min, and reaction progress was monitored by TLC. After completion of the reaction, excess EtOH was removed under reduced pressure and column chromatography was done in EtOAC/Hexane to isolate the desired product **3aa**.

2	CCl ₄	^t BuOLi (5.0)	30 min	78	80:20
3	H_2O	^t BuOLi (5.0)	2 h	73	80:20
4	CHCl ₃	^t BuOLi (5.0)	30 min	85	86:14
5	МеОН	^t BuOLi (5.0)	30 min	81	90:10
6	EtOH	^t BuOLi (5.0)	30 min	95	97:3
7	EtOH	^t BuOK (5.0)	30 min	94	97:3
8	EtOH	^t BuOLi (1.0)	30 min	95	97:3
9	EtOH	^t BuOLi (1.0)	10 min	95	97:3
10	EtOH	-	16 h	76	82:18
11	EtOH	-	24 h	0 ^c	-
12	-	^t BuOLi (1.0)	30 min	90	97:3
13	^t BuOH:H ₂ O	-	12 h	77 ^d	84:16
14	^t BuOH:H ₂ O	^t BuOLi (1.0)	4 h	76 ^e	84:16
15	EtOH	^t BuOLi (1.0)	10 min	92 ^f	97:3
16	EtOH	^t BuOLi (1.0)	10 min	93 ^g	97:3
17	EtOH	-	30 min	0^h	-

^{*a*}Isolated yields after column chromatography, ^{*b*}mixture of Z/E isomers determined by crude ¹H NMR analysis; Reaction conditions: **1a** (60 mg, 0.413 mmol), **2a** (54 mg, 0.495 mmol) and ^tBuOLi (0.33mg, 0.00413 mmol) in 1 mL EtOH under open air at room temperature. ^{*c*}Reaction was performed under an inert atmosphere in absence of ^tBuOLi. ^{*d*}*tert*-BuOH:H₂O (1:1) at pH 4.8. ^{*e*}*tert*-BuOH:H₂O (1:1) at pH 7.4. ^{*f*}at inert. ^{*g*}under dark at inert. ^{*h*}Visible light (14W white LEDs) at inert atmosphere.

EPR Experiment. EPR spectra were recorded at 298 K using an EPR spectrometer derived at 9.4335 GHz. Typical spectrometer parameters are shown as follows, scan range: 100 G; center fieldset: 3480.00 G; time constant: 0.16 ms; scan time: 122.88 s; modulation amplitude: 20.0 G; modulation frequency: 100 kHz; receiver gain: 2.00×10^2 ; microwave power: 7.14e⁻⁰⁰¹ mW.

Spin-trapping experiment in the presence of DMPO.¹ A mixture of thiophenol **2a** (0.495 mmol), *N*-phenylpropiolamide **1a** (0.413 mmol), 'BuOLi (0.00413 mmol, 1 mol %), and DMPO (20 μ L) were stirred in 1.0 mL CH₃CN for 2 min. Following, 20 μ L solutions were quickly transferred into an EPR tube and toluene (200 μ L) was added to analyze EPR. A similar experiment was performed without thiophenol **2a**. A sharp signal was observed for the first case but no signal was found when the experiment was carried out in absence of thiophenol.

Fig. S1. a) EPR experiment with DMPO; g = 2.00752 b) under standard condition; c) in absence of thiophenol

Crystallographic Investigation

Good quality crystals of compounds **3ga** and **6** were obtained after slow evaporation of ethanol and water mixture (ca. 50%). The crystals data were collected with Bruker SMART D8 goniometer equipped with an APEX CCD detector and with an INCOATEC micro source (Cu-K α radiation, $\lambda = 0.71073$ Å). SAINT+² and SADABS³ were used to integrate the intensities and to correct the absorption respectively The structure was resolved by direct methods and refined on F² with SHELXL-97.² ORTEP Drawing of the compounds show ellipsoid contour at the 50% probability level

Compound (3ga) (CCDC 2044667)

Fig. S2. Crystal structure of (3ga) (CCDC 2044667).

Crystallographic Data for (3ga)

Empirical formula	$\mathrm{C}_{17}\mathrm{H}_{17}\mathrm{NO}_{2}\mathrm{S}$
Formula weight	299.37
Temperature/K	100.00(10)

Crystal system	Monoclinic
Space group	$P2_1/n$
a/Å	9.77820(12)
b/Å	17.7960(2)
c/Å	18.3352(2)
α/°	90
β/°	101.9230(12)
γ/°	90
Volume/Å ³	3121.73(7)
Z	8
pcalcg/cm ³	1.274
µ/mm ⁻¹	1.868
F(000)	1264.0
Crystal size/mm ³	$0.2\times0.18\times0.18$
Radiation	$CuK\alpha \ (\lambda = 1.54184)$
Reflections collected	47713
Independent reflections	6378 [Rint = 0.0731, Rsigma = 0.0307]
Goodness-of-fit on F2	1.029
Final R indexes [I>= 2σ (I)]	R1 = 0.0416, wR2 = 0.1117
Final R indexes [all data]	R1 = 0.0430, wR2 = 0.1128
Largest diff. peak/hole / e Å ⁻³	0.36/-0.38

Compound 6 (CCDC 2044669)

Fig. S3. Crystal structure of 6 (CCDC 2044669).

Crystallographic Data for 6

Empirical formula	$C_{16}H_{12}F_3NO_2S$
Formula weight	339.33
Temperature/K	298.9(2)
Crystal system	Monoclinic
Space group	$P2_1/c$
a/Å	14.97283(16)
b/Å	5.15517(5)
c/Å	20.2206(3)
α'°	90

β/°	90.3507(11)
γ/°	90
Volume/Å ³	1560.74(3)
Z	4
pcalcg/cm ³	1.444
μ/mm^{-1}	2.227
F(000)	696.0
Crystal size/mm ³	$0.2\times0.18\times0.17$
Radiation	$CuK\alpha$ ($\lambda = 1.54184$)
Reflections collected	24037
Independent reflections	3304 [Rint = 0.0375, Rsigma = 0.0194
Goodness-of-fit on F2	1.129
Final R indexes [I>= 2σ (I)]	R1 = 0.0566, wR2 = 0.1674
Final R indexes [all data]	R1 = 0.0596, wR2 = 0.1708
Largest diff. peak/hole / e Å ⁻³	0.56/-0.40

Theoretical Investigations

All calculations were performed using software package Gaussian 09 ver. D01.⁴ The geometry of Z- and E-vinyl sulfides (**3ga**) was optimized by density functional theory (DFT) at RB3LYP/6-31+G (d, p) level.

Fig. S4. Pictorial representation of different HOMOs and LUMOs from NBO analysis.

XYZ Coordinates and Thermochemical Data of Z-isomer (3ga) (Energies in Hartree)

Total energy = -1261.488992 hartree

Total electronic and zero-point Energies = -1261.152523 hartree

Total electronic and thermal Energies = -1261.132736 hartree

Total electronic and thermal Enthalpies = -1261.131792 hartree

Total electronic and thermal Free Energies = -1261.204451 hartree

С	8.29787100	-1.52696000	-0.27131100
Н	8.67833200	-0.92546900	-1.10148900
Н	8.71409300	-1.13140300	0.65929400
Н	8.64758300	-2.55595700	-0.39876100
С	6.78038300	-1.49124600	-0.23631600
Н	6.39392000	-2.09890800	0.59440700
Н	6.35813600	-1.89292900	-1.16855000
0	6.38564000	-0.13099900	-0.06938100
С	5.05091300	0.15876900	-0.00785700
С	4.01926900	-0.78086300	-0.09637100
С	4.72628300	1.51267800	0.15709900
С	2.68188800	-0.38286800	-0.02227300
Н	4.23660800	-1.83444400	-0.22426700
С	3.39999100	1.90865600	0.23118500
Н	5.53039900	2.23764600	0.22513700

С	2.35782400	0.96900600	0.14304100
Н	1.88797600	-1.11252600	-0.09152400
Н	3.16658600	2.96352900	0.35980400
Ν	1.03523600	1.45250300	0.22727200
Н	0.95464600	2.45255600	0.33906100
С	-0.15038600	0.75049900	0.17945300
0	-0.21699700	-0.47388100	0.04396500
С	-1.35678900	1.58585600	0.30318200
Н	-1.25390100	2.65811100	0.45125200
С	-2.60209000	1.07272600	0.24782400
Н	-3.45677400	1.73407500	0.35242200
S	-3.02312300	-0.61823900	0.03051300
С	-4.81658700	-0.47921800	-0.05302100
С	-5.45500200	0.36555400	-0.97113800
С	-5.58463900	-1.30683800	0.77496600
С	-6.84794600	0.40138600	-1.03546000
Н	-4.86361800	0.98386100	-1.63956000
С	-6.97738300	-1.28196400	0.69073400
Н	-5.09043200	-1.95990100	1.48757200
С	-7.61225800	-0.42376900	-0.20807100
Н	-7.33551200	1.06301600	-1.74565100
Н	-7.56567700	-1.92570900	1.33810600
Н	-8.69624800	-0.40063100	-0.26703700

Second Order Perturbation Theory Analysis of Fock Matrix in NBO Basis

Threshold for printing: 0.50 kcal/mol

Fig. S5. Optimized stucture of Z-isomer (3ga)

Donor NBO (i) Acceptor NBO (j) E(2)kcal/mol

LP (1) O 22	RY*(1) C 21	14.19
LP (1) O 22	BD*(1) C 12 - H 17	1.38
LP (1) O 22	BD*(1) N 19 - C 21	1.34
LP (1) O 22	BD*(1) C 21 - C 23	2.75
LP (1) O 22	BD*(1) S 27 - C 28	0.88
LP (1) O 22	RY*(2) C 21	0.66
LP (2) O 22	RY*(4) C 21	1.96
LP (2) O 22	BD*(1) C 12 - H 17	1.71
LP (2) O 22	BD*(1) N 19 - C 21	25.94
LP (2) O 22	BD*(1) C 21 - C 23	16.83
LP (2) O 22	BD*(1) S 27 - C 28	2.65

XYZ Coordinates and Thermochemical Data of E-isomer (3ga) (Energies in Hartree)

Total energy = -1261.490697 hartree

Total electronic and zero-point Energies = -1261.187517 hartree

Total electronic and thermal Energies = -1261.167480 hartree

Total electronic and thermal Enthalpies = -1261.166536 hartree

Total electronic and thermal Free Energies = -1261.240174 hartree

Fig. S6. Optimized stucture of E-isomer (3ga)

C -3.41677 -1.72667 0.45836

С	-2.43538 -0.77813 0.11426
С	-2.84263 0.51243 -0.24504
С	-4.20287 0.8436 -0.25827
Н	-5.51928 -2.13085 0.71136
Н	-3.12024 -2.73492 0.73986
Н	-2.09916 1.25027 -0.51172
Н	-4.48292 1.85114 -0.54136
С	1.3065 -1.25898 0.04305
Н	1.24495 -2.29847 0.3589
С	2.49401 -0.6722 -0.19004
Н	2.51763 0.37333 -0.48905
С	5.19764 -0.15085 0.00444
С	4.99578 0.92316 0.88251
С	6.3663 -0.2144 -0.76627
С	5.9509 1.93848 0.96666
Н	4.10376 0.96377 1.49939
С	7.32735 0.79345 -0.65725
Н	6.51599 -1.04123 -1.45389
С	7.11982 1.875 0.20273
Н	5.78472 2.77322 1.64137
Н	8.23073 0.73867 -1.25766
Н	7.86352 2.66254 0.27803
S	4.03339 -1.50996 -0.11155
С	-5.17241 -0.10421 0.08574
С	-7.00481 1.42307 -0.24788
С	-8.5195 1.39773 -0.14231
Н	-6.68788 1.6708 -1.27071
Н	-6.57727 2.17237 0.43307
Н	-8.92757 2.37907 -0.40596
Н	-8.94285 0.65224 -0.82201
Н	-8.83319 1.15434 0.87717
0	-6.5218 0.12414 0.10334
С	0.05646 -0.47402 -0.12474
0	0.04794 0.70867 -0.47029
Ν	-1.0859 -1.19434 0.15363
Н	-0.94699 -2.15619 0.43016

CHARATERIZATION DATA

(Z)-N-Phenyl-3-(phenylthio)acrylamide (3aa): $R_f = 0.45$ (20% ethyl acetate in hexane); yellow solid; yield 95% (100 mg); mp 154-156 °C; ¹H NMR (400 MHz, DMSO-d₆) δ 10.13 (s, 1H), 7. 65 (d, J = 8.0 Hz, 2H), 7.53 (d, J = 7.4Hz, 2H), 7.43 (t, J = 7.4 Hz, 2H), 7.40-7.35 (m, 2H), 7.32 (t, J = 7.8 Hz, 2H), 7.05 (t, J = 7.4 Hz, 1H), 6.25 (d, J = 9.8 Hz, 1H); ¹³C NMR (100 MHz, DMSO-d₆) δ 164.0, 144.0, 139.2, 136.9, 129.7, 129.4, 128.8, 127.6, 123.1, 118.8, 117.0; IR (KBr) \bar{v} 3303, 3054, 2935, 1644, 690; HRMS (ESI/Q-TOF) m/z: [M + Na]⁺ calcd for C₁₅H₁₃NOSNa 278.0610; found 278.0636.

(Z)-3-(Phenylthio)-N-(p-tolyl)acrylamide (3ba): $R_f = 0.5$ (20% ethyl acetate in hexane); pale yellow solid; yield 85% (86 mg); mp 163-167 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.50-7.48 (m, 4H), 7.41 (s, 1H), 7.38-7.29 (m, 3H), 7.17 (d, J = 9.8 Hz, 1H), 7.10 (d, J = 8.0 Hz, 2H), 6.00 (d, J = 9.8Hz, 1H), 2.30 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 164.3, 147.0, 137.2, 135.5, 133.9, 131.0, 129.6, 129.4, 128.1, 119.8, 115.8, 21.0; IR (KBr) \bar{v} 3310, 2915, 2339, 1657, 688; HRMS (ESI/Q-TOF) m/z: [M + H]⁺ calcd for C₁₆H₁₆NOS 270.0947; found 270.0966.

(Z)-3-(Phenylthio)-N-(o-tolyl)acrylamide (3ca): $R_f = 0.55$ (20% ethyl acetate in hexane); white $A_{HN} \rightarrow A_{H} \rightarrow A_{H}$ solid; yield 87% (88 mg); mp 160-164 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.05 (s, 1H), 7.51 (d, J = 7.8 Hz, 2H), 7.39-7.31 (m, 3H), 7.23-7.18 (m, 3H), 7.08-7.00 (m, 2H), 6.02 (d, J = 9.8 Hz, 1H), 2.29 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 164.5, 147.5, 137.3, 135.9, 131.1, 130.5, 129.7, 129.4, 128.2, 127.0, 125.0, 122.7, 115.6, 18.0; IR (KBr) \bar{v} 3206, 3034, 2922, 1634, 689; HRMS (ESI/Q-TOF) m/z: [M + Na]⁺ calcd for C₁₆H₁₅NOSNa 292.0767; found 292.0761.

(Z)-N-(2,4-Dimethylphenyl)-3-(phenylthio)acrylamide (3da): $R_f = 0.6$ (20% ethyl acetate in hexane); white solid; yield 79% (78 mg); mp 182-184 °C; ¹H NMR (700 MHz, CDCl₃) δ 7.85-7.84 (m, 1H), 7.49 (d, J = 7.4 Hz, 2H), 7.36 (t, J = 7.4 Hz, 2H), 7.32 (t, J = 7.4 Hz, 1H), 7.19 (d, J = 9.0 Hz, 1H), 7.03-6.99 (m, 3H), 6.03 (d, J = 9.0 Hz, 1H), 2.29 (s, 3H), 2.24 (s, 3H); ¹³C NMR (175 MHz, CDCl₃) δ 164.4, 147.0, 137.3, 134.7, 133.2, 131.14, 131.08, 129.4, 128.6, 128.1, 127.4, 123.0, 115.7, 21.0, 17.9; IR (KBr) $\bar{\nu}$ 3387, 3003, 1733, 1274, 657; HRMS (ESI/Q-TOF) m/z: [M + Na]⁺ calcd for C₁₇H₁₇NOSNa 306.0923; found 306.0925.

(Z)-N-(4-Isopropylphenyl)-3-(phenylthio)acrylamide (3ea): $R_f = 0.5$ (20% ethyl acetate in

hexane); white solid; yield 76% (72 mg); mp 173-174 °C; ¹H
NMR (400 MHz, CDCl₃) δ 7.53 (s, 1H), 7.50 (d, J = 6.8 Hz, 3H),
7.38-7.34 (m, 2H), 7.34-7.30 (m, 2H), 7.20-7.16 (m, 3H), 5.99 (d, J = 9.8 Hz, 1H), 2.87 (sept, J = 6.8 Hz, 1H), 1.23 (d, J = 6.8 Hz,

6H); ¹³C NMR (100 MHz, CDCl₃) δ 164.3, 147.1, 145.0, 137.3, 135.8, 131.1, 129.4, 128.1, 127.0, 119.9, 115.7, 33.7, 24.1; IR (KBr) υ 3294, 2955, 1600, 822, 691; HRMS (ESI/Q-TOF) m/z: [M + Na]⁺ calcd for C₁₈H₁₉NOSNa 320.1080; found 320.1065.

(Z)-N-(4-(tert-Butyl)phenyl)-3-(phenylthio)acrylamide (3fa): $R_f = 0.65$ (20% ethyl acetate in

hexane); white solid; yield 82% (76 mg); mp 183-185 °C; ¹H

NMR (400 MHz, CDCl₃) δ 7.53 (s, 1H), 7.52-7.50 (m, 3H), 7.39-7.30 (m, 6H), 7.20 (d, J = 9.8 Hz, 1H), 5.99 (d, J = 9.8 Hz, 1H), 1.30 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 164.4, 147.30, 147.27, 137.3, 135.4, 131.1, 129.4, 128.1, 125.9, 119.5, 115.6, 34.5, 31.5; IR (KBr) $\bar{\nu}$ 3299, 2962, 1597, 694; HRMS (ESI/Q-TOF) m/z: [M + Na]⁺ calcd for C₁₉H₂₁NOSNa 334.1236; found 334.1236.

(Z)-N-(4-Ethoxyphenyl)-3-(phenylthio)acrylamide (3ga): $R_f = 0.55$ (30% ethyl acetate in hexane); white solid; yield 90% (85 mg); mp 163-165 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.50-7.48 (m, 4H), 7.40-7.30 (m, 4H), 7. 17 (d, J = 9.8 Hz, 1H), 6.84 (d, J = 8.8 Hz, 2H), 5.97 (d, J = 9.8Hz, 1H), 4.00 (q, J = 6.8 Hz, 2H), 1.39 (t, J = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 164.2, 155.8, 146.8, 137.3, 131.11, 131.06, 129.4, 128.1, 121.5, 115.7, 114.9, 63.8, 15.0; IR (KBr) \bar{v} 3321, 2977, 2339, 1632, 685; HRMS (ESI/Q-TOF) m/z: [M + Na]⁺ calcd for C₁₇H₁₇NO₂SNa 322.0872; found 322.0869.

(Z)-3-(Phenylthio)-N-(4-(trifluoromethoxy)phenyl)acrylamide (3ha): $R_f = 0.45$ (30% ethyl acetate in hexane); white solid; yield 95% (85 mg); mp 170-174 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.63 (d, J = 8.6 H z, 2H), 7.51-7.47 (m, 2H), 7.44 (s, 1H), 7.39-7.31 (m, 3H), 7.26-7.24 (m, 1H), 7.16 (d, J = 8.6 Hz, 2H), 6.00 (d, J = 9.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 164.5, 148.4, 145.4, 136.9, 136.7, 131.1, 129.5, 128.3, 121.8, 120.9, 119.3, 115.1; ¹⁹F

NMR (376 MHz, CDCl₃) δ -58.11; IR (KBr) $\bar{\upsilon}$ 3330, 3057, 2359, 1636, 668; HRMS (ESI/Q-TOF) m/z: [M + Na]⁺ calcd for C₁₆H₁₂F₃NO₂SNa 362.0433; found 362.0415.

(Z)-N-(4-Fluorophenyl)-3-(phenylthio)acrylamide (3ia): $R_f = 0.5$ (30% ethyl acetate in

F hexane); white solid; yield 76% (76 mg); mp 153-157 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.56-7.50 (m, 2H), 7.49 (d, J = 7.4 Hz, 2H), 7.44-7.38 (m, 1H), 7.37-7.31 (m, 3H), 7.21 (d, J = 9.8 Hz, 1H), 7.00 (t, J = 8.4 Hz, 2H), 5.99 (dd, J = 9.8, 1.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 164.4, 159.5 (d, ¹ $J_{CF} = 243.4$ Hz), 147.8, 137.0, 134.1, 131.0, 129.4, 128.2, 121.6 (d, ³ $J_{CF} = 6.2$ Hz), 115.7 (d, ² $J_{CF} = 22.4$ Hz), 115.4; ¹⁹F NMR (376 MHz, CDCl₃) δ -118.12; IR (KBr) \bar{v} 3305, 2921, 2341, 1634, 688; HRMS (ESI/Q-TOF) m/z: [M + H]⁺ calcd for C₁₅H₁₃FNOS 274.0696; found 274.0694.

(Z)-N-(4-Bromophenyl)-3-(phenylthio)acrylamide (3ja): $R_f = 0.55$ (30% ethyl acetate in hexane); white solid; yield 83% (74 mg); mp 166-168 °C; ¹H NMR Br (400 MHz, CDCl₃) δ 7.52 (s, 1H), 7.50-7.48 (m, 3H), 7.42-7.31 (m, 6H), 7.23 (d, J = 9.8 Hz, 1H), 5.98 (d, J = 9.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 164.4, 148.3, 137.2, 136.9, 132.1, 131.1, 129.5, 128.3, 121.3, 116.9, 115.2; IR (KBr) $\bar{\nu}$ 3327, 3052, 2964, 1624, 690, 681; HRMS (ESI/Q-TOF) m/z: [M + H]⁺ calcd for C₁₅H₁₃BrNOS 333.9896; found 333.9885.

(Z)-N-(4-Iodophenyl)-3-(phenylthio)acrylamide (3ka): $R_f = 0.6$ (30% ethyl acetate in hexane);

white solid; yield 89% (75 mg); mp 165-167 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.63-7.60 (m, 2H), 7.51-7.48 (m, 2H), 7.41-7.37 (m, 3H), 7.36-7.32 (m, 2H), 7.25 (d, *J* = 9.8 Hz, 1H), 7.23 (s, 1H), 5.96

(d, J = 9.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 164.4, 148.4, 138.0, 137.9, 136.9, 131.1, 129.5, 128.3, 121.6, 115.2, 87.5; IR (KBr) \bar{v} 3327, 3077, 2324, 1651, 681, 506; HRMS (ESI/Q-TOF) m/z: [M + H]⁺ calcd for C₁₅H₁₃INOS 381.9757; found 381.9743.

(Z)-N-(3-Chlorophenyl)-3-(phenylthio)acrylamide (3la): $R_f = 0.65$ (30% ethyl acetate in

hexane); pale yellow solid; yield 78% (63 mg); mp 156-160 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.79 (s, 1H), 7.52-7.50 (m, 2H), 7.42-7.32 (m, 4H), 7.32-7.26 (m, 2H), 7.23 (t, *J* = 8.0 Hz, 1H), 7.08 (d, *J* = 7.8 Hz, 1H), 5.98 (d, *J* = 9.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ

164.4, 148.7, 139.2, 136.9, 134.9, 131.1, 130.1, 129.5, 128.3, 124.4, 119.9, 117.6, 115.0; IR (KBr) $\bar{\upsilon}$ 3302, 2922, 2851, 1674, 745, 691; HRMS (ESI/Q-TOF) m/z: [M + H]⁺ calcd for C₁₅H₁₃CINOS 290.0401; found 290.0379.

(Z)-N-(3,4-Dichlorophenyl)-3-(phenylthio)acrylamide (3ma): $R_f = 0.6$ (30% ethyl acetate in

hexane); white solid; yield 77% (70 mg); mp 154-156 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.88-7.87 (m, 1H), 7.64 (s, 1H), 7.49-7.46 (m, 2H), 7.40-7.37 (m, 2H), 7.35-7.31 (m, 2H), 7.27-7.24 (m, 2H), 6.01 (d, *J* = 9.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 164.6, 148.9,

137.5, 136.6, 132.9, 131.1, 130.5, 129.5, 128.4, 127.4, 121.5, 119.1, 114.9; IR (KBr) \bar{v} 3319, 3060, 2916, 1537, 745, 690; HRMS (ESI/Q-TOF) m/z: [M + Na]⁺ calcd for C₁₅H₁₁Cl₂NOSNa 345.9831; found 345.9836.

(Z)-N-(3-Chloro-4-fluorophenyl)-3-(phenylthio)acrylamide (3na): $R_f = 0.55$ (30% ethyl acetate in hexane); yellow solid; yield 68% (63 mg); mp 162-164 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.84-7.83 (m, 1H), 7.50 (d, J =7.4 Hz, 2H), 7.39-7.32 (m, 5H), 7.27-7.25 (m, 1H), 7.09-7.05 (t, J =8.6 Hz, 1H), 5.97 (d, J = 9.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 164.4, 154.9 (d, ¹ $J_{CF} = 246.2$ Hz), 148.7, 136.8, 134.7 (d, ⁴ $J_{CF} = 3.2$ Hz), 131.1, 129.5, 128.4, 122.0, 121.3 (d, ² $J_{CF} = 18.4$ Hz), 119.4 (d, ⁴ $J_{CF} = 3.4$ Hz), 116.7 (d, ² $J_{CF} = 22.0$ Hz), 114.8; ¹⁹F

NMR (376 MHz, CDCl₃) δ -120.68; IR (KBr) ū 3294, 2957, 2852, 1652, 1241, 745, 692; HRMS

(ESI/Q-TOF) m/z: $[M + Na]^+$ calcd for $C_{15}H_{11}CIFNOSNa$ 330.0126; found 330.0120.

(Z)-N-(4-Bromo-2-methylphenyl)-3-(phenylthio)acrylamide (3oa): $R_f = 0.6$ (30% ethyl acetate in hexane); white solid; yield 93% (81 mg); mp 166-170 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.61 (s, 1H), 7.50-7.47 (m, 2H), 7.43 (d, J = 8.6 Hz, 1H), 7.39-7.31 (m, 4H), 7.26-7.21 (m, 2H), 5.98 (d, J = 9.8 Hz, 1H), 2.35 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 164.4, 148.1, 138.7, 137.3, 137.0, 132.7, 131.1, 129.5, 128.3, 121.9, 119.5, 118.6, 115.3, 23.1; IR (KBr) \bar{v} 3327, 3055, 2341, 1634, 680, 555; HRMS (ESI/Q-TOF) m/z: [M + Na]⁺ calcd for C₁₆H₁₄BrNOSNa 369.9872; found 369.9865.

(Z)-N-methyl-N-phenyl-3-(phenylthio)acrylamide (3pa): $R_f = 0.75$ (20% ethyl acetate in hexane); colorless liquid; yield 68% (69 mg); ¹H NMR (700 MHz, CDCl₃) δ 7.48 -7.47 (m, 2H), 7.40 (t, J = 7.8 Hz, 2H), 7.34-7.31 (m, 3H), 7.30-7.28 (m, 1H), 7.22 (d, J = 7.4 Hz, 2H), 6.99 (d, J = 9.8 Hz,

1H), 5.79 (d, J = 9.8 Hz, 1H), 3.37 (s, 3H); ¹³C NMR (175 MHz, CDCl₃) δ 166.5, 146.7, 143.9, 137.8, 131.1, 129.8, 129.3, 127.9, 127.6, 127.4, 113.7, 37.1; IR (KBr) ū 3052, 2930, 2322, 1680, 680; HRMS (ESI/Q-TOF) m/z: [M + Na]+ calcd for C₁₆H₁₅NOSNa 292.0767; found 292.0778.

(Z)-N-Phenyl-3-(p-tolylthio)acrylamide (3ab): $R_f = 0.5$ (20% ethyl acetate in hexane); yellow

solid; yield 78% (86 mg); mp 183-187 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.60 (d, *J* = 6.2 Hz, 2H), 7.39 (d, *J* = 8.0 Hz, 2H), 7.33-7.29 (m, 3H), 7.19-7.16 (m, 3H), 7.10 (t, *J* = 7.4 Hz, 1H), 5.96 (d,

 $J = 9.8 \text{ Hz}, 1\text{H}, 2.36 \text{ (s, 3H)}; {}^{13}\text{C NMR} (100 \text{ MHz}, \text{CDCl}_3) \delta 164.4, 148.5, 138.4, 138.1, 133.7, 131.3, 130.2, 129.1, 124.3, 119.7, 115.2, 21.3; IR (KBr) <math>\bar{\upsilon}$ 3300, 3033, 2849, 2335, 1633, 692; HRMS (ESI/Q-TOF) m/z: [M + Na]⁺ calcd for C₁₆H₁₅NOSNa 292.0767; found 292.0758.

(Z)-N-Phenyl-3-(o-tolylthio)acrylamide (3ac): $R_f = 0.55$ (20% ethyl acetate in hexane); pale

yellow solid; yield 69% (77 mg); mp 155-157 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.62 (d, *J* = 7.4 Hz, 2H), 7.49 (d, *J* = 7.2 Hz, 1H), 7.36 (s, 1H), 7.32 (t, *J* = 7.8 Hz, 2H), 7.27-7.19 (m, 3H), 7.11 (d, *J* = 7.4 Hz, 1H), 7.07 (d, *J* = 9.8 Hz, 1H), 6.00 (d, *J* = 9.8 Hz, 1H), 2.46

(s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 164.5, 148.1, 139.9, 138.1, 136.2, 132.6, 130.7, 129.1, 128.7, 127.0, 124.3, 119.7, 115.6, 21.0; IR (KBr) υ 3357, 3054, 1596, 691; HRMS (ESI/Q-TOF) m/z: [M + H]⁺ calcd for C₁₆H₁₆NOS 270.0947; found 270.0923.

(Z)-3-((2,4-Dimethylphenyl)thio)-N-phenylacrylamide (3ad): $R_f = 0.7$ (20% ethyl acetate in

NMR (400 MHz, CDCl₃) δ 7.61 (d, J = 6.6 Hz, 2H), 7.38 (d, J = 7.8 Hz, 1H), 7.32 (t, J = 7.8 Hz, 2H), 7.26 (s, 1H), 7.12-7.07 (m, 2H), 7.04-7.02 (m, 2H), 5.96 (d, J = 9.8 Hz, 1H), 2.43 (s, 3H), 2.33 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 164.7, 148.9, 139.9, 138.9, 138.2, 133.0, 132.7, 131.6, 129.1, 127.8, 124.3, 119.7, 115.3, 21.2, 21.0; IR (KBr) \bar{v} 3454, 2919, 2312, 1634, 686; HRMS (ESI/Q-TOF) m/z: [M + Na]⁺ calcd for C₁₇H₁₇NOSNa 306.0923; found 306.0915.

(Z)-3-((4-Methoxyphenyl)thio)-N-phenylacrylamide (3ae): $R_f = 0.45$ (30% ethyl acetate in

hexane); white solid; yield 82% (96 mg); mp 171-173 °C; ¹H -OMe NMR (400 MHz, CDCl₃) δ 7.60 (d, J = 6.6 Hz, 2H), 7.43 (d, J= 8.8 Hz, 2H), 7.33-7.26 (m, 3H), 7.12-7.07 (m, 2H), 6.89 (d, J

= 8.8 Hz, 2H), 5.93 (d, J = 9.8 Hz, 1H), 3.81 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 164.7, 160.1, 149.5, 138.1, 133.5, 129.1, 127.9, 124.3, 119.7, 115.0, 114.9, 55.5; IR (KBr) \bar{v} 3266, 3129, 2357, 1618, 1210, 694; HRMS (ESI/Q-TOF) m/z: [M + H]⁺ calcd for C₁₆H₁₆NO₂S 286.0896; found 286.0871.

(Z)-3-((2-Methoxyphenyl)thio)-N-phenylacrylamide (3af): $R_f = 0.4$ (30% ethyl acetate in hexane); white solid; yield 80% (94 mg); mp 169-171 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.61 (d, J = 6.6 Hz, 2H), 7.53 (s, 1H), 7.46 (dd, J = 7.6, 1.5 Hz, 1H), 7.34-7.30 (m, 1H), 7.28-7.26 (m, 2H), 7.11 (d, J = 9.8 Hz, 1H), 7.07 (t, J = 7.4 Hz, 1H), 6.96-6.90 (m, 2H), 6.01 (d, J = 9.8 Hz, 1H), 3.84 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 164.6, 158.4, 147.6, 138.2, 133.3, 130.1, 129.0, 124.5, 124.1, 121.2, 119.8, 115.5, 111.5, 56.0; IR (KBr) $\bar{\nu}$ 3305, 3052, 2934, 1645, 692; HRMS (ESI/Q-TOF) m/z: [M + H]⁺ calcd for C₁₆H₁₆NO₂S 286.0896; found 286.0869.

(Z)-3-((4-Fluorophenyl)thio)-N-phenylacrylamide (3am): $R_f = 0.45$ (20% ethyl acetate in

Hz), 144.6, 139.2, 132.6 (d, ${}^{4}J_{CF}$ = 3.0 Hz), 132.5 (d, ${}^{3}J_{CF}$ = 8.4 Hz), 128.8, 123.2, 118.9, 116.8, 116.4 (d, ${}^{2}J_{CF}$ = 22.0 Hz); 19 F NMR (377 MHz, DMSO-d₆) δ -114.17; IR (KBr) $\bar{\upsilon}$ 3309, 3055, 2337, 1625, 1303, 688; HRMS (ESI/Q-TOF) m/z: [M + H]⁺ calcd for C₁₅H₁₃FNOS 274.0696; found 274.0696.

(Z)-3-((2-Fluorophenyl)thio)-N-phenylacrylamide (3an): $R_f = 0.35$ (20% ethyl acetate in

hexane); pale yellow solid; yield 84% (94 mg); mp 145-148 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.60 (d, J = 6.8 Hz, 2H), 7.51 (td, J =7.8, 1.6 Hz, 1H), 7.43 (s, 1H), 7.37-7.29 (m, 3H), 7.16-7.06 (m, 4H),

6.04 (d, J = 9.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 164.5, 161.6 (d, ¹ $J_{CF} = 247.6$ Hz), 146.6, 138.0, 134.1, 130.7 (d, ³ $J_{CF} = 7.8$ Hz), 129.1, 124.9 (d, ⁴ $J_{CF} = 3.8$ Hz), 124.4, 123.8 (d, ² $J_{CF} = 17.8$ Hz), 119.9, 116.4 (d, ² $J_{CF} = 22.4$ Hz), 116.1; ¹⁹F NMR (376 MHz, CDCl₃) δ -108.61; IR (KBr) \bar{v} 3322, 2923, 2851, 1652, 1309, 692; HRMS (ESI/Q-TOF) m/z: [M + Na]⁺ calcd for C₁₅H₁₂FNOSNa 296.0516; found 296.0513.

(Z)-3-((4-Chlorophenyl)thio)-N-phenylacrylamide (3aj): $R_{\rm f}$ = 0.5 (20% ethyl acetate in

hexane); yellow solid; yield 92% (110 mg); mp 205-210 °C; ¹H

NMR (400 MHz, DMSO-d₆) δ 10.16 (s, 1H), 7.65 (d, J = 7.8 Hz, 2H), 7.55 (d, J = 8.4 Hz, 2H), 7.48 (d, J = 8.4 Hz, 2H), 7.37 (d, J = 9.8 Hz, 1H), 7.32 (t, J = 7.8 Hz, 2H), 7.05 (t, J = 7.4 Hz, 1H), 6.27 (d, J = 9.8 Hz, 1H); ¹³C NMR (100 MHz, DMSO-d₆) δ 164.0, 143.3, 139.1, 135.9, 132.4, 131.4, 129.3, 128.8, 123.2, 118.9, 117.3; IR (KBr) \bar{v} 3345, 3035, 2923, 2359, 1633, 692; HRMS (ESI/Q-TOF) m/z: [M + Na]⁺ calcd for C₁₅H₁₂CINOSNa 312.0220; found 312.0207.

(Z)-3-((3-Chlorophenyl)thio)-N-phenylacrylamide (3ak): $R_f = 0.65$ (30% ethyl acetate in $H_{N} + G_{H} + G_{H}$ (400 MHz, CDCl₃) δ 7.60 (d, J = 6.8 Hz, 2H), 7.48-7.47 (m, 1H), $T_{138} + 7.29$ (m, 6H), 7.16 (dd, J = 9.8, 1.2 Hz, 1H), 7.11 (t, J = 7.2Hz, 1H), 6.04 (d, J = 9.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 164.3, 146.1, 139.1, 137.9, 135.1, 130.6, 130.5, 129.2, 129.0, 128.3, 124.5, 119.8, 116.3; IR (KBr) $\bar{\nu}$ 3305, 2955, 1733, 779, 694; HRMS (ESI/Q-TOF) m/z: [M + Na]⁺ calcd for C₁₅H₁₂ClNOSNa 312.0220; found 312.0212.

(Z)-3-((2,6-Dichlorophenyl)thio)-*N*-phenylacrylamide (3al): $R_f = 0.6$ (30% ethyl acetate in hexane); pale yellow solid; yield 88% (118 mg); mp 186-188 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.62 (d, J = 7.4 Hz, 2H), 7.42 (d, J = 8.0Hz, 2H), 7.34-7.30 (m, 3H), 7.27-7.23 (m, 1H), 7.11 (t, J = 7.4 Hz, 1H), 6.82 (d, J = 9.8 Hz, 1H), 6.06 (d, J = 9.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 164.5, 146.8, 140.1, 137.9, 134.6, 130.7, 129.1, 129.0, 124.4, 119.7, 115.8; IR (KBr) \bar{v} 3446, 2924, 1700, 778, 690; HRMS (ESI/Q-TOF) m/z: [M + Na]⁺ calcd for C₁₅H₁₁Cl₂NOSNa 345.9831; found 345.9814. (Z)-3-((4-Bromophenyl)thio)-N-phenylacrylamide (3ai): $R_f = 0.55$ (20% ethyl acetate in hexane); yellow solid; yield 89% (124 mg); mp 211-215 °C; ¹H hexane); yellow solid; yield 89% (124 mg); mp 211-215 °C; ¹H NMR (400 MHz, DMSO-d₆) δ 10.16 (s, 1H), 7.64 (d, J = 7.8 Hz, 2H), 7.61 (d, J = 7.8 Hz, 2H), 7.49-7.47 (m, 2H), 7.38 (d, J = 9.8 Hz, 1H), 7.32 (t, J = 7.8 Hz, 2H), 7.05 (t, J = 7.4 Hz, 1H), 6.27 (d, J = 9.8 Hz, 1H); ¹³C NMR (100 MHz, DMSO-d₆) δ 164.0, 143.1, 139.1, 136.4, 132.2, 131.6, 128.8, 123.2, 120.8, 118.9, 117.4; IR (KBr) \bar{v} 3340, 2918, 2359, 1637, 692, 602; HRMS (ESI/Q-TOF) m/z: [M + Na]⁺ calcd for C₁₅H₁₂BrNOSNa 355.9715; found 355.9721.

(Z)-3-((2-Aminophenyl)thio)-N-(4-ethoxyphenyl)acrylamide (3gg): $R_f = 0.35$ (30% ethyl Et - 0 acetate in hexane); white solid; yield 73% (72 mg); mp 169-173 $O = H_N + H_2 + 0$ $C; ^1H$ NMR (400 MHz, CDCl₃) δ 7.49 (d, J = 8.4 Hz, 2H), 7.39 (d, J = 7.4 Hz, 2H), 7.17 (t, J = 7.6 Hz, 1H), 6.85-6.82 (m, 3H), 6.75-6.70 (m, 2H), 5.98 (d, J = 9.8 Hz, 1H), 4.24 (s, 2H), 3.99 (q, J = 6.8 Hz, 2H), 1.39 (t, J = 7.0 Hz, 3H); ^{13}C NMR (100 MHz, CDCl₃) δ 164.4, 155.9, 148.2, 147.8, 135.4, 131.1, 130.9, 121.6, 119.2, 118.8, 116.5, 115.5, 114.9, 63.8, 15.0; IR (KBr) \bar{v} 3305, 2978, 1557, 1181, 694; HRMS (ESI/Q-TOF) m/z: $[M + Na]^+$ calcd for $C_{17}H_{18}N_2O_2SNa$ 337.0981; found 337.0966.

(Z)-*N*-Phenyl-3-((4-(trifluoromethyl)phenyl)thio)acrylamide (3ah): $R_f = 0.5$ (30% ethyl acetate in hexane); yellow solid; yield 87% (116 mg); mp 202-HN-G-G-GF₃ 206 °C; ¹H NMR (400 MHz, DMSO-d₆) δ 10.21 (s, 1H), 7.78-7.73 (m, 4H), 7.65 (d, J = 7.8 Hz, 2H), 7.53 (d, J = 9.8 Hz, 1H),

7.32 (t, J = 7.8 Hz, 2H), 7.06 (t, J = 7.4 Hz, 1H), 6.34 (d, J = 9.8 Hz, 1H); ¹³C NMR (100 MHz, 100 MHz)

DMSO-d₆) δ 163.9, 142.4, 141.3, 139.1, 129.4, 128.8, 127.6 (q, ${}^{2}J_{CF3}$ = 32.0 Hz), 126.1 (q, ${}^{4}J_{CF3}$ = 3.4 Hz), 124.10 (q, ${}^{1}J_{CF3}$ = 272.0 Hz), 123.3, 118.9, 118.2; 19 F NMR (376 MHz, DMSO-d₆) δ - 61.02; IR (KBr) \bar{v} 3344, 3045, 2922, 1643, 1225, 693; HRMS (ESI/Q-TOF) m/z: [M + Na]⁺ calcd for C₁₆H₁₂F₃NOSNa 346.0484; found 346.0471.

(Z)-3-((4-Nitrophenyl)thio)-N-phenylacrylamide (3ao): $R_f = 0.4$ (30% ethyl acetate in hexane); yellow solid; yield 88% (108 mg); mp 210-215 °C; $H_N + H_H + H_H = 0.4$ (400 MHz, DMSO-d₆) δ 10.26 (s, 1H), 8.23 (d, J = 8.8 Hz, 2H), 7.79 (d, J = 8.8 Hz, 2H), 7.66 (s, 1H), 7.66-7.62 (m, 2H) 7.33 (t, J = 7.8 Hz, 2H), 7.07 (t, J = 7.4 Hz, 1H), 6.40 (d, J = 9.8 Hz, 1H); ¹³C NMR (100 MHz, DMSO-d₆) δ 163.8, 146.1, 145.9, 139.6, 139.0, 130.3, 128.8, 124.2, 123.4, 119.0, 118.9; IR (KBr) \bar{v} 3208, 2920, 1568, 694; HRMS (ESI/Q-TOF) m/z: [M + H]⁺ calcd for C₁₅H₁₃N₂O₃S 301.0641; found 301.0641.

(Z)-*N*-Phenyl-3-(pyridin-2-ylthio)acrylamide (3ap): $R_f = 0.45$ (30% ethyl acetate in hexane);

yellow solid; yield 90% (95 mg); mp 103-108 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.49-8.48 (m, 1H), 8.46-8.43 (m, 1H), 7.87 (s, 1H), 7.62-7.60 (m, 2H), 7.56-7.52 (m, 1H), 7.29-7.26 (m, 3H), 7.09-7.05

(m, 2H), 6.22 (d, J = 9.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 164.8, 156.0, 149.6, 139.2, 138.1, 136.9, 129.0, 124.3, 123.4, 121.3, 119.9, 116.4; IR (KBr) \bar{v} 3303, 2955, 1645, 1136, 691; HRMS (ESI/Q-TOF) m/z: [M + Na]⁺ calcd for C₁₄H₁₂N₂OSNa 279.0563; found 279.0562.

(Z)-3-((2,4-Diphenyloxazol-5-yl)thio)-N-phenylacrylamide (3aq): $R_f = 0.5$ (20% ethyl acetate

in hexane); yellow solid; yield 93% (153 mg); mp 168-173 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.09 (d, *J* = 9.8 Hz, 1H), 7.67 (d, *J* = 6.8 Hz, 2H), 7.59 (s, 1H), 7.59-7.57 (m, 3H), 7.41-7.33 (m, 9H), 7.14 (t, *J* = 7.0 Hz, 1H), 6.24 (d, *J* = 9.8 Hz, 1H); ¹³C

NMR (100 MHz, CDCl₃) δ 164.1, 158.8, 147.9, 139.0, 137.6, 136.51, 132.1, 129.3, 128.90(×2), 128.86, 128.8, 128.6, 128.1, 126.6, 124.8, 120.0, 117.7; IR (KBr) ῡ 3274, 3045, 2922, 1596, 689; HRMS (ESI/Q-TOF) m/z: [M + Na]⁺ calcd for C₂₄H₁₈N₂O₂SNa 421.0981; found 421.0959.

(2Z, 2'Z)-3,3'-(1,4-Phenylenebis(sulfanediyl))bis(N-phenylacrylamide) (3ar): $R_f = 0.5$ (30%)

ethyl acetate in hexane); pale yellow solid; yield 96% (175 mg); mp >230 °C; ¹H NMR (400 MHz, DMSO-d₆) δ 10.16 (s, 2H), 7.65 (d, *J* = 7.4 Hz,

4H), 7.64-7.56 (m, 4H), 7.41 (d, J = 9.8 Hz, 2H), 7.32 (t, J = 7.8 Hz, 4H), 7.05 (t, J = 7.4 Hz, 2H), 6.28 (d, J = 9.8 Hz, 2H); ¹³C NMR (100 MHz, DMSO-d₆) δ 164.0, 143.2, 139.2, 136.3, 130.4, 128.8, 123.2, 118.9, 117.3; IR (KBr) \bar{v} 3222, 3049, 1637, 1258, 692; HRMS (ESI/Q-TOF) m/z: [M + Na]⁺ calcd for C₂₄H₂₀N₂O₂S₂Na 455.0858; found 455.0848.

(Z)-3-((4-(((E)-3-Oxo-3-(phenylamino)prop-1-en-1-yl)thio)phenyl)thio)-N-

phenylacrylamide (3ar): $R_f = 0.55$ (30% ethyl acetate in hexane); solid; yield ~1% (~2 mg); ¹H NMR (400 MHz, DMSO-d₆) δ 10.19 (s, 1H), 9.93 (s, 1H), 7.68-7.64 (m, 5H), 7.61-7.57 (m, 4H), 7.48 (d, J = 9.8 Hz, 1H), 7.34-7.31 (m, 2H), 7.30-7.27 (m, 2H), 7.08-7.01 (m, 2H), 6.31 (d, J = 9.8 Hz, 1H), 6.06 (d, J = 14.8 Hz, 1H); ¹³C NMR (175 MHz, DMSO-d₆) δ 164.0, 161.9, 142.5,

140.5, 139.2, 139.1(×2), 138.2, 133.2, 130.5, 129.6, 128.8, 128.8, 123.3, 120.0, 119.2(×2), 118.9(×2), 117.7; HRMS (ESI/Q-TOF) m/z: $[M + Na]^+$ calcd for $C_{24}H_{20}N_2O_2S_2Na$ 455.0858; found 455.0821.

(2Z,2'Z)-3,3'-(Propane-1,3-diylbis(sulfanediyl))bis(N-phenylacrylamide) (3as): $R_f = 0.7$

(30% ethyl acetate in hexane); quasi-solid; yield 72% (160 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.60 (d, J = 6.8 Hz, 4H), 7.33 (t, J = 7.8 Hz, 4H), 7.22 (s, 2H), 7.11 (t, J = 7.4 Hz, 2H), 7.00 (d, J = 9.8 Hz, 2H), 5.96 (d, J = 9.8 Hz, 2H), 2.94 (t, J = 7.00 (d, J = 9.8 Hz, 2H), 5.96 (d, J = 9.8 Hz, 2H), 2.94 (t, J = 7.00 (d, J = 9.8 Hz, 2H), 5.96 (d, J = 9.8 Hz, 2H), 2.94 (t, J = 7.00 (d, J = 9.8 Hz, 2H), 5.96 (d, J = 9.8 Hz, 2H), 2.94 (t, J = 7.00 (d, J = 9.8 Hz, 2H), 5.96 (d, J = 9.8 Hz, 2H), 2.94 (t, J = 7.00 (d, J = 9.8 Hz, 2H), 5.96 (d, J = 9.8 Hz, 2H), 2.94 (t, J = 7.00 (d, J = 9.8 Hz, 2H), 5.96 (d, J = 9.8 Hz, 2H), 2.94 (t, J = 7.00 (d, J = 9.8 Hz, 2H), 5.96 (d, J = 9.8

6.8 Hz, 4H), 2.09 (p, *J* = 6.8 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 164.9, 146.9, 138.2, 129.0, 124.2, 119.9, 116.3, 34.6, 30.5; IR (KBr) $\bar{\nu}$ 3301, 2918, 2849, 1652, 743, 686; HRMS (ESI/Q-TOF) m/z: [M + Na]⁺ calcd for C₂₁H₂₂N₂O₂S₂Na 421.1015; found 421.1015.

(2E,2'E)-3,3'-(Propane-1,3-diylbis(sulfanediyl))bis(N-phenylacrylamide) (3as): $R_f = 0.75$ (30% ethyl acetate in hexane); solid; yield 7% (16 mg); ¹H NMR (400 MHz, DMSO-d₆) δ 9.89 (s, 2H), 7.63 (d, J = 7.8 Hz, 4H), 7.59 (d, J = 15.0 Hz, 2H), 7.30 (t, J = 7.8 Hz, 4H), 7.04 (t, J = 7.4 Hz, 2H), 6.16 (d, J = 15.0 Hz, 2H), 3.02 (t, J = 7.2 Hz, 4H), 2.07-2.01 (m, 2H); ¹³C NMR (100 MHz, DMSO-d₆) δ 162.1, 141.2, 139.3, 128.7, 123.1, 119.1, 118.2, 30.1, 27.9; HRMS (ESI/Q-TOF) m/z: [M + Na]⁺ calcd for C₂₁H₂₂N₂O₂S₂Na 421.1015; found 421.1018. (Z)-3-((3-(((E)-3-Oxo-3-(phenylamino)prop-1-en-1-yl)thio)propyl)thio)-Nphenylacrylamide

(3as): $R_f = 0.75$ (30% ethyl acetate in hexane); semi-solid; yield 12% (27 mg); ¹H NMR (700 MHz, CDCl₃) δ 8.63 (s, 1H), 8.15 (s, 1H), 7.69 (d, J = 7.1 Hz, 2H), 7.62-7.59 (m, 3H), 7.27-7.25 (m, 3

4H), 7.09-7.06 (m, 2H), 6.89 (d, *J* = 9.9 Hz, 1H), 6.07 (d, *J* = 9.9 Hz, 1H), 6.04 (d, *J* = 14.7 Hz, 1H), 2.81-2.78 (m, 4H), 1.97-1.93 (m, 2H); ¹³C NMR (175 MHz, CDCl₃) δ 165.0, 163.4, 146.7, 142.2, 138.7, 138.1, 129.1, 129.0, 124.4, 124.1, 120.2, 119.9, 117.4, 116.6, 35.4, 29.5, 28.7; HRMS (ESI/Q-TOF) m/z: [M + Na]⁺ calcd for C₂₁H₂₂N₂O₂S₂Na 399.1195; found 399.1197.

(Z)-3-(Phenethylthio)-*N*-phenylacrylamide (3at): $R_f = 0.45$ (20% ethyl acetate in hexane);

MHz, CDCl₃) δ 7.57 (d, *J* = 7.0 Hz, 2H), 7.38 (s, 1H), 7.32-7.27 (m, 4H), 7.24-7.21 (m, 3H), 7.08 (t, *J* = 7.4 Hz, 1H), 6.92 (d, *J* = 9.8 Hz, 1H), 5.91 (d, *J* = 9.8 Hz, 1H), 3.03-2.94 (m,

white solid; yield 67% (78 mg); mp 160-164 °C; ¹H NMR (400

4H); ¹³C NMR (100 MHz, CDCl₃) δ 165.0, 147.4, 139.7, 138.2, 129.0, 128.7, 128.7, 126.7, 124.1, 119.6, 115.7, 37.9, 36.9; IR (KBr) υ 3222, 3023, 2944, 1634, 692; HRMS (ESI/Q-TOF) m/z: [M + Na]⁺ calcd for C₁₇H₁₇NOSNa 306.0923; found 306.0922.

(Z)-3-(cyclohexylthio)-*N*-phenylacrylamide (3au): $R_f = 0.55$ (10% ethyl acetate in hexane); white solid; yield 62% (67 mg); mp 137-140 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.58 (d, *J* = 7.2 Hz, 2H), 7.42 (s, 1H), 7.29-7.25 (m, 2H), 7.07-7.04 (m, 2H), 5.92 (d, *J* = 10.1 Hz, 1H), 2.83-2.76 (m, 1H), 2.03-1.99 (m , 2H), 1.82-1.78 (m, 2H), 1.63-1.59 (m, 1H), 1.50-1.40 (m, 2H), 1.38-1.21 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 164.8, 145.7, 138.3, 129.0, 124.0, 119.7, 115.3, 47.9, 33.6, 25.9, 25.5; IR (KBr) \bar{v} 3308, 2927, 2851, 1668, 691; HRMS (ESI/Q-TOF) m/z: [M + Na]⁺ calcd for C₁₅H₁₉NOSNa 284.1080; found 284.1091.

(Z)-3-(*iso*-Butylthio)-*N*-phenylacrylamide (3av): $R_f = 0.75$ (20% ethyl acetate in hexane); white solid; yield 65% (63 mg); mp 120-123 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.58 (d, J = 6.8 Hz, 2H), 7.29 (t, J = 7.8 Hz, 2H), 7.23 (s, 1H), 7.08 (t, J = 7.4 Hz, 1H), 6.97 (d, J = 10.0 Hz, 1H), 5.89 (d, J =10.0 Hz, 1H), 2.66 (d, J = 6.8 Hz, 2H), 1.90 (nonet, J = 6.6 Hz, 1H), 1.03 (d, J = 6.6 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 164.7, 148.8, 138.3, 129.1, 124.1, 119.6, 115.2, 46.0, 29.5, 21.8; IR (KBr) $\bar{\nu}$ 3341, 3054, 2359, 1627, 750, 689; HRMS (ESI/Q-TOF) m/z: [M + Na]⁺ calcd for C₁₃H₁₇NOSNa 258.0923; found 258.0928.

(Z)-3-((Furan-2-ylmethyl)thio)-*N*-phenylacrylamide (3aw): $R_f = 0.35$ (20% ethyl acetate in hexane); white solid; yield 92% (98 mg); mp 111-115 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.55 (d, J = 6.6 Hz, 2H), 7.37-7.36 (m, 1H), 7.29 (t, J = 8.0 Hz, 2H), 7.23 (s, 1H), 7.09-7.06 (m, 2H), 6.33-6.31 (m, 1H), 6.25 (d, J = 3.2 Hz, 1H), 5.94 (d, J = 9.8 Hz, 1H), 3.91 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 164.5, 151.1, 146.1, 142.7, 138.1, 129.0, 124.2, 119.7, 116.0, 110.7, 108.2, 32.1; IR (KBr) \bar{v} 3312, 2923, 1642, 691; HRMS (ESI/Q-TOF) m/z: [M + Na]⁺ calcd for C₁₄H₁₃NO₂SNa 282.0559; found 282.0562. (Z)-*N*-Phenyl-3-((4-(trifluoromethyl)phenyl)sulfinyl)acrylamide 6: $R_f = 0.45$ (50% ethyl acetate in hexane); white solid; yield 95% (60 mg); mp >230 $H_N + H_H + H_H = 8.2$ Hz, 2H), 7.95 (d, J = 8.0 Hz, 2H), 7.67 (d, J = 8.2 Hz, 2H), 7.37 (t, J = 7.8 Hz, 2H), 7.13 (t, J = 7.4 Hz, 1H), 6.93 (d, J = 9.8 Hz, 1H), 6.69 (d, J = 9.8 Hz, 1H); ¹³C NMR (100 MHz, DMSO-d₆) δ 161.7, 152.7, 150.3, 138.2, 130.9 (q, ² $J_{CF3} = 32.0$ Hz), 129.0, 128.7, 126.3 (q, ³ $J_{CF3} = 3.4$ Hz), 125.8, 124.4, 123.8 (q, ¹ $J_{CF3} = 272.6$ Hz), 119.6; ¹⁹F NMR (376 MHz, CDCl₃) δ -56.54; IR (KBr) $\bar{\nu}$ 3305, 3033, 2974, 1668, 1000, 696; HRMS (ESI/Q-TOF) m/z: [M + H]⁺ calcd for C₁₆H₁₃F₃NO₂S 340.0614; found 340.0587.

(Z)-3-([1,1'-Biphenyl]-4-ylthio)-N-phenylacrylamide 7: $R_f = 0.45$ (20% ethyl acetate in

hexane); white solid; yield 76% (60 mg); mp 177-180 °C; ¹H NMR (400 MHz, DMSO-d₆) δ 10.15 (s, 1H), 7.74-7.60 (m, 8H), 7.55-7.44 (m, 3H), 7.39 (t, *J* = 6.8 Hz, 1H), 7.33 (t,

J = 7.8 Hz, 2H), 7.06 (t, J = 7.4 Hz, 1H), 6.28 (d, J = 9.8 Hz, 1H); ¹³C NMR (100 MHz, DMSOd₆) δ 164.1, 143.7, 139.3, 139.20, 139.18, 136.0, 130.2, 129.0, 128.8, 127.8, 127.6, 126.6, 123.2, 118.9, 117.1; IR (KBr) \bar{v} 3397, 3040, 2916, 1657, 697; HRMS (ESI/Q-TOF) m/z: [M + Na]⁺ calcd for C₂₁H₁₇NOSNa 354.0923; found 354.0919.

(Z)-3-Phenyl-3-(phenylthio)-N-(p-tolyl)acrylamide (3ra):⁵ $R_f = 0.6$ (20% ethyl acetate in

hexane); white solid; yield 83% (75 mg); mp 167-172 °C; ¹H NMR (700 MHz, CDCl₃) δ 7.90 (s, 1H), 7.51 (d, *J* = 7.5 Hz, 2H), 7.26-7.25 (m, 2H), 7.19-7.18 (m, 2H), 7.14-7.13 (m, 5H), 7.07-7.06 (m, 3H), 6.24 (s, 1H), 2.32 (s, 3H); ¹³C NMR (175 MHz, CDCl₃) δ 163.6, 153.3, 138.7, 135.6, 134.0, 133.3, 132.7, 129.6, 128.8, 128.7, 128.6, 128.0, 127.7, 121.9, 119.9, 21.0; IR (KBr) $\bar{\upsilon}$ 3362, 2927, 2396, 1676, 691; HRMS (ESI/Q-TOF) m/z: [M + Na]⁺ calcd for C₂₂H₁₉NOSNa 368.1080; found 368.1070.

N-Phenylpropiolamide 1a:⁶ R_f = 0.75 (20% ethyl acetate in hexane); yellow solid; yield 64% (301 mg); mp 81-84 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.75 (s, 1H), 7.52 (d, J = 7.8 Hz, 2H), 7.34 (t, J = 7.8 Hz, 2H), 7.15 (t, J = 7.4 Hz, 1H), 2.92 (s, 1H).

N-(*p*-Tolyl)propiolamide 1b:⁷ $R_f = 0.35$ (20% ethyl acetate in hexane); yellow solid; yield 61%

(270 mg); mp 126-129 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.56 (s, 1H), 7.39 (d, J = 8.4 Hz, 2H), 7.14 (d, J = 8.4 Hz, 2H), 2.90 (s, 1H), 2.32 (s,

3H).

N-(*o*-Tolyl)propiolamide 1c: $R_f = 0.35$ (20% ethyl acetate in hexane); yellow solid; yield 89% (400 mg); mp 133-135 °C; ¹H NMR (400 MHz, DMSO-d₆) δ 10.24 (s, 1H), 7.29-7.23 (m, 2H), 7.20-7.13 (m, 2H), 4.34 (s, 1H), 2.19 (s, 3H); ¹³C NMR (100 MHz, DMSO-d₆) δ 150.2, 134.8, 132.7, 130.4, 126.3, 126.1, 125.8, 78.4, 76.9, 17.8; IR (KBr) \bar{v} 3256, 3023, 2926, 2359, 2107, 1677; HRMS (ESI/Q-TOF) m/z: [M + H]⁺ calcd for C₁₀H₁₀NO 160.0757; found 160.0764. *N*-(2,4-Dimethylphenyl)propiolamide 1d: $R_f = 0.35$ (20% ethyl acetate in hexane); yellow solid; yield 70% (300 mg); mp 151-153 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.62 (d, J = 8.6 Hz, 1H), 7.24 (s, 1H), 7.03-7.01 (m, 2H), 2.91 (s, 1H), 2.30 (s, 3H), 2.25 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 150.1, 136.1, 132.0, 131.4, 129.5, 127.6, 123.6, 77.8, 74.0, 21.0, 17.8; IR (KBr) \bar{v} 3279, 3088, 2969, 2107, 1672, 745; HRMS (ESI/Q-TOF) m/z: [M + H]⁺ calcd for C₁₁H₁₂NO 174.0913; found 174.0937.

N-(4-*iso*-Propylphenyl)propiolamide 1e: $R_f = 0.35$ (20% ethyl acetate in hexane); semi solid;

yield 67% (280 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.57 (s, 1H), 7.43 (d, *J* = 8.4 Hz, 2H), 7.19 (d, *J* = 8.4 Hz, 2H), 2.90 (s, 1H), 2.93-2.83 (m, 1H), 1.23 (d, *J* = 6.8 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 150.3,

145.9, 134.9, 126.9, 120.5, 77.7, 74.4, 33.6, 24.0; IR (KBr) $\bar{\upsilon}$ 3273, 2959, 2108, 1699, 833; HRMS (ESI/Q-TOF) m/z: [M + H]⁺ calcd for C₁₂H₁₄NO 188.1070; found 188.1088.

 $N-(4-(tert-Butyl)phenyl)propiolamide 1f: R_{f} = 0.4 (20\% \text{ ethyl acetate in hexane}); \text{ semi solid};$ yield 58% (234 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.95 (s, 1H), 7.45 (d, J = 8.6 Hz, 2H), 7.34 (d, J = 8.6 Hz, 2H), 2.90 (s, 1H), 1.30 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 150.0, 148.3, 134.5, 126.0, 120.1, 77.8, 74.2, 34.5, 31.4; IR (KBr) \bar{v} 3299, 2981, 2109, 1599, 741; HRMS (ESI/Q-TOF) m/z: [M + H]⁺ calcd

for C₁₃H₁₆NO 202.1226; found 202.1245.

N-(4-Ethoxyphenyl)propiolamide 1g: $R_f = 0.30$ (20% ethyl acetate in hexane); grey solid;

yield 85% (350 mg); mp 95-103 °C; $^1\mathrm{H}$ NMR (400 MHz, CDCl_3) δ

7.42-7.39 (m, 3H), 6.87-6.85 (d, J = 9.0 Hz, 2H), 4.01 (q, J = 7.0 Hz, 2H), 2.90 (s, 1H), 1.40 (t, J = 7.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 156.4, 149.9, 130.1, 122.0, 114.9, 77.8, 74.2, 63.9, 14.9; IR (KBr) \bar{v} 3292, 3064, 2970, 2340, 2109, 1635; HRMS (ESI/Q-TOF) m/z: [M + H]⁺ calcd for C₁₁H₁₂NO₂ 190.0863; found 190.0865.

N-(4-(Trifluoromethoxy)phenyl)propiolamide 1h: $R_f = 0.4$ (30% ethyl acetate in hexane); $F_3C \longrightarrow V$ yellow solid; yield 91% (210 mg); mp 123-127 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.88 (s, 1H), 7.58-7.56 (m, 2H), 7.19 (d, J = 8.6 Hz, 2H), 2.95 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 149.9, 146.0, 135.7, 122.0, 121.4, 120.6 (q, J = 257.8 Hz), 77.4, 74.8; IR (KBr) \bar{v} 3303, 3073, 2111, 1670, 1240; HRMS (ESI/Q-TOF) m/z: [M + H]⁺ calcd for C₁₀H₇F₃NO₂ 230.0423; found 230.0437.

N-(4-Fluorophenyl)propiolamide 1i: $R_f = 0.35$ (20% ethyl acetate in hexane); yellow solid; yield 79% (350 mg); mp 175-177 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.57 (s, 1H), 7.50-7.47 (m, 2H), 7.03 (t, *J* = 8.6 Hz, 2H), 2.93 (s, 1H).

N-(4-Bromophenyl)propiolamide 1j:⁷ $R_f = 0.35$ (20% ethyl acetate in hexane); yellow solid;

N-(4-Iodophenyl)propiolamide 1k: $R_f = 0.25$ (20% ethyl acetate in hexane); white solid; yield 64% (237 mg); mp 206-211 °C; ¹H NMR (400 MHz, DMSO-d₆) δ 10.90 (s, 1H), 7.66 (d, J = 8.6 Hz, 2H), 7.43 (d, J = 8.6 Hz, 2H), 4.44 (s, 1H); ¹³C NMR (100 MHz, DMSO-d₆) δ 149.7, 138.0, 137.5, 121.8, 88.1, 78.2, 77.5; IR (KBr) \bar{v} 3294, 2922, 2108, 1655, 508; HRMS (ESI/Q-TOF) m/z: [M + H]⁺ calcd for C₉H₇INO 271.9567; found 271.9558.

N-(3-Chlorophenyl)propiolamide 11:⁷ $R_f = 0.6$ (20% ethyl acetate in hexane); yellow solid; yield 54% (230 mg); mp 164-166 °C; ¹H NMR (400 MHz, DMSO-d₆) δ 10.99 (s, 1H), 7.75 (t, *J* = 2.0 Hz, 1H), 7.50-7.48 (m, 1H), 7.36 (t, *J* = 8.0 Hz, 1H), 7.17 (d, *J* = 8.0 Hz, 1H), 4.48 (s, 1H).

N-(3,4-Dichlorophenyl)propiolamide 1m: $R_f = 0.3$ (20% ethyl acetate in hexane); yellow solid; yield 88% (350 mg); mp 179-184 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.75 (d, J = 2.0 Hz, 1H), 7.55 (s, 1H), 7.40 (d, J = 8.6 Hz, 1H), 7.36-7.33 (m, 1H), 2.98 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 149.8, 137.6, 132.1, 130.1, 127.0, 121.5, 119.3, 77.8, 74.3; IR (KBr) $\bar{\nu}$ 3284, 3096, 2110, 1643, 675; HRMS (ESI/Q-TOF) m/z: [M + H]⁺ calcd for C₉H₆Cl₂NO 213.9821; found 213.9812.

N-(3-Chloro-4-fluorophenyl)propiolamide 1n: $R_f = 0.3$ (30% ethyl acetate in hexane); yellow solid; yield 68% (280 mg); mp 153-155 °C; ¹H NMR (400 MHz, DMSOd₆) δ 11.00 (s, 1H), 7.86 (d, J = 5.2 Hz, 1H), 7.52-7.50 (m, 1H), 7.40-7.38 (m, 1H), 4.48 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 154.8 (d, ¹ $J_{CF} = 246.4$ Hz), 145.0, 134.6, 122.3, 120.8 (d, ² $J_{CF} = 18.4$ Hz), 119.9 (d, ³ $J_{CF} = 6.8$ Hz), 116.46 (d, ² $J_{CF} = 22.0$ Hz), 77.9, 74.2; IR (KBr) \bar{v} 3268, 2925, 2850, 2108, 1645, 1238, 686; HRMS (ESI/Q-TOF) m/z: [M + H]⁺ calcd for C₉H₆ClFNO 198.0116; found 198.0106. *N*-(4-Bromo-2-methylphenyl)propiolamide 10: $R_f = 0.36$ (20% ethyl acetate in hexane); Br yellow solid; yield 57% (220 mg); mp 123-126 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.80 (s, 1H), 7.46-7.44 (m, 2H), 7.23 (dd, J = 8.6, 2.6 Hz, 1H), 2.93 (s, 1H), 2.36 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 149.8, 139.0, 136.2, 132.9, 122.3, 120.6, 119.1, 77.6, 74.5, 23.2; IR (KBr) \bar{v} 3280, 2925, 2853, 2109, 1607, 671; HRMS (ESI/Q-TOF) m/z: [M + H]⁺ calcd for C₁₀H₉BrNO 237.9862; found 237.9879.

3-Phenyl-N-(p-tolyl)propiolamide 1r:⁸ $R_f = 0.75$ (20% ethyl acetate in hexane); yellow solid;

yield 76% (499 mg); mp 146-148 °C (lit.⁸143-145); ¹H NMR (400 MHz, CDCl₃) δ 7.64 (s, 1H), 7.58-7.56 (m, 2H), 7.44 (t, *J* = 7.4 Hz, 3H), 7.37 (t, *J* = 7.4 Hz, 2H), 7.15 (d, *J* = 8.0 Hz, 2H), 2.33 (s,

3H).

1-phenyl-3,3-bis(phenylthio)propan-1-one 5: 9 R_f = 0.45 (5% ethyl acetate in hexane); colorless

Solution in the image of the i

128.8, 128.1, 127.9, 54.1, 43.9.

phenyl(styryl)sulfane 4:¹⁰ R_f = 0.85 (in hexane); colorless liquid; yield 79% (98 mg); 1H NMR (400 MHz, CDCl3) δ 7.58-7.28 (m, 10H), 6.92 (d, J = 15.5 Hz, 1H), 6.76 (d, J = 15.5 Hz, 1H), 6.63 (d, J = 10.8 Hz, 1H), 6.53 (d, J = 10.7 Hz, 1H).

REFERENCES

- H. Wang, Y. Li, Z. Tang, S. Wang, H. Zhang, H. Cong and A. Lei, ACS Catal., 2018, 8, 10599-10605.
- 2. G. Sheldrick, Acta Crystallogr. Sect. A, 2008, 64, 112-122.
- 3. SADABS, Bruker AXS, Madison, Wisconsin, USA, 2004
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, *Journal*, 2009.
- 5. M. Pramanik, K. Choudhuri, S. Chakraborty, A. Ghosh and P. Mal, *Chem. Commun.*, 2020, **56**, 2991-2994.
- 6. N. T. Coles, M. F. Mahon and R. L. Webster, *Chem. Commun.*, 2018, 54, 10443-10446.
- Y. Zhou, J. Feng, L. Feng, D. Xie, H. Peng, M. Cai and H. He, J. Agric. Food. Chem., 2019, 67, 12538-12546.
- 8. M. Kissane, M. Murphy, E. O'Brien, J. Chopra, L. Murphy, S. G. Collins, S. E. Lawrence and A. R. Maguire, *Org. Biomol. Chem.*, 2011, **9**, 2452-2472.
- 9. B. C. Ranu, S. Banerjee and R. Jana, *Tetrahedron*, 2007, **63**, 776-782.
- K. Choudhuri, M. Pramanik, A. Mandal and P. Mal, *Asian J. Org. Chem.*, 2018, 7, 1849– 1855.

Fig. S7. ¹H NMR spectrum of (Z)-N-phenyl-3-(phenylthio) acrylamide (**3aa**)

Fig. S8. ¹³C NMR spectrum of (Z)-N-phenyl-3-(phenylthio)acrylamide (3aa)

--- 2.30

Fig. S9. ¹H NMR spectrum of (Z)-3-(phenylthio)-N-(p-tolyl)acrylamide (3ba)

Fig. S10. ¹³C NMR spectrum of (Z)-3-(phenylthio)-N-(p-tolyl)acrylamide (3ba)

Fig. S11. ¹H NMR spectrum of (Z)-3-(phenylthio)-N-(o-tolyl)acrylamide (3ca)

Fig. S12. ¹³C NMR spectrum of (Z)-3-(phenylthio)-N-(o-tolyl)acrylamide (3ca)

Fig. S13. ¹H NMR spectrum of (Z)-N-(2,4-dimethylphenyl)-3-(phenylthio)acrylamide (3da)

Fig. S14. ¹³C NMR spectrum of (Z)-N-(2,4-dimethylphenyl)-3-(phenylthio)acrylamide (3da)

Fig. S15. ¹H NMR spectrum of (Z)-N-(4-isopropylphenyl)-3-(phenylthio)acrylamide (**3ea**)

Fig. S16. ¹³C NMR spectrum of (Z)-N-(4-isopropylphenyl)-3-(phenylthio)acrylamide (3ea)

Fig. S17. ¹H NMR spectrum of (Z)-N-(4-(tert-butyl)phenyl)-3-(phenylthio)acrylamide (3fa)

Fig. S18. ¹³C NMR spectrum of (Z)-N-(4-(tert-butyl)phenyl)-3-(phenylthio)acrylamide (3fa)

Fig. S19. ¹H NMR spectrum of (Z)-N-(4-ethoxyphenyl)-3-(phenylthio)acrylamide (**3ga**)

Fig. S20. ¹³C NMR spectrum of (Z)-N-(4-ethoxyphenyl)-3-(phenylthio)acrylamide (3ga)

Fig. S21. ¹H NMR spectrum of (Z)-3-(phenylthio)-N-(4-(trifluoromethoxy)phenyl)acrylamide

Fig. S22. ¹³C NMR spectrum of (Z)-3-(phenylthio)-N-(4-(trifluoromethoxy)phenyl)acrylamide

(3ha)

Fig. S23. ¹⁹F NMR spectrum of (Z)-3-(phenylthio)-N-(4-(trifluoromethoxy)phenyl)acrylamide

(**3ha**)

Fig. S24. ¹H NMR spectrum of (Z)-N-(4-fluorophenyl)-3-(phenylthio)acrylamide (3ia)

Fig. S25. ¹³C NMR spectrum of (Z)-N-(4-fluorophenyl)-3-(phenylthio)acrylamide (3ia)

Fig. S26. ¹⁹F NMR spectrum of (Z)-N-(4-fluorophenyl)-3-(phenylthio)acrylamide (3ia)

Fig. S27. ¹H NMR spectrum of (Z)-N-(4-bromophenyl)-3-(phenylthio)acrylamide (3ja)

Fig. S28. ¹³C NMR spectrum of (Z)-N-(4-bromophenyl)-3-(phenylthio)acrylamide (3ja)

Fig. S29. ¹H NMR spectrum of (Z)-N-(4-iodophenyl)-3-(phenylthio)acrylamide (3ka)

Fig. S30. ¹³C NMR spectrum of (Z)-N-(4-iodophenyl)-3-(phenylthio)acrylamide (3ka)

Fig. S31. ¹H NMR spectrum of (Z)-N-(3-chlorophenyl)-3-(phenylthio)acrylamide (**3la**)

Fig. S32. ¹³C NMR spectrum of (Z)-N-(3-chlorophenyl)-3-(phenylthio)acrylamide (3la)

Fig. S33. ¹H NMR spectrum of (Z)-N-(3,4-dichlorophenyl)-3-(phenylthio)acrylamide (3ma)

Fig. S34. ¹³C NMR spectrum of (Z)-N-(3,4-dichlorophenyl)-3-(phenylthio)acrylamide (3ma)

7.83

Fig. S35. ¹H NMR spectrum of (Z)-N-(3-chloro-4-fluorophenyl)-3-(phenylthio)acrylamide(3na)

Fig. S36. ¹³C NMR spectrum of (Z)-N-(3-chloro-4-fluorophenyl)-3-(phenylthio)acrylamide(3na)

Fig. S37. ¹⁹F NMR spectrum of (Z)-N-(3-chloro-4-fluorophenyl)-3-(phenylthio)acrylamide(3na)

Fig. S38. ¹H NMR spectrum of (Z)-N-(4-bromo-2-methylphenyl)-3-(phenylthio)acrylamide

(**3**0a)

Fig. S39. ¹³C NMR spectrum of (Z)-N-(4-bromo-2-methylphenyl)-3-(phenylthio)acrylamide

(**30a**)

Fig. S40. ¹H NMR spectrum of (Z)-N-methyl-N-phenyl-3-(phenylthio)acrylamide (3pa)

Fig. S41. ¹³C NMR spectrum of (Z)-N-methyl-N-phenyl-3-(phenylthio)acrylamide (3pa)

Fig. S42. ¹H NMR spectrum of (Z)-N-phenyl-3-(p-tolylthio)acrylamide (3ab)

Fig. S43. ¹³C NMR spectrum of (Z)-N-phenyl-3-(p-tolylthio)acrylamide (3ab)

Fig. S44. ¹H NMR spectrum of (Z)-N-phenyl-3-(o-tolylthio)acrylamide (3ac)

Fig. S45. ¹³C NMR spectrum of (Z)-N-phenyl-3-(o-tolylthio)acrylamide (3ac)

Fig. S46. ¹H NMR spectrum of (Z)-3-((2,4-dimethylphenyl)thio)-N-phenylacrylamide (3ad)

Fig. S47. ¹³C NMR spectrum of (Z)-3-((2,4-dimethylphenyl)thio)-N-phenylacrylamide (3ad)

Fig. S48. ¹H NMR spectrum of (Z)-3-((4-methoxyphenyl)thio)-N-phenylacrylamide (**3ae**)

Fig. S49. ¹³C NMR spectrum of (Z)-3-((4-methoxyphenyl)thio)-N-phenylacrylamide (3ae)

Fig. S50. ¹H NMR spectrum of (Z)-3-((2-methoxyphenyl)thio)-N-phenylacrylamide (3af)

Fig. S51. ¹³C NMR spectrum of (Z)-3-((2-methoxyphenyl)thio)-N-phenylacrylamide (3af)

Fig. S52. ¹H NMR spectrum of (Z)-3-((4-fluorophenyl)thio)-N-phenylacrylamide (3am)

Fig. S53. ¹³C NMR spectrum of (Z)-3-((4-fluorophenyl)thio)-N-phenylacrylamide (3am)

Fig. S54. ¹⁹F NMR spectrum of (Z)-3-((4-fluorophenyl)thio)-N-phenylacrylamide (3am)

Fig. S55. ¹H NMR spectrum of (Z)-3-((2-fluorophenyl)thio)-N-phenylacrylamide (3an)

Fig. S56. ¹³C NMR spectrum of (Z)-3-((2-fluorophenyl)thio)-N-phenylacrylamide (3an)

Fig. S57. ¹⁹F NMR spectrum of (Z)-3-((2-fluorophenyl)thio)-N-phenylacrylamide (3an)

Fig. S58. ¹H NMR spectrum of (Z)-3-((4-chlorophenyl)thio)-N-phenylacrylamide (3aj)

Fig. S59. ¹³C NMR spectrum of (Z)-3-((4-chlorophenyl)thio)-N-phenylacrylamide (3aj)

Fig. S60. ¹H NMR spectrum of (Z)-3-((3-chlorophenyl)thio)-N-phenylacrylamide (3ak)

Fig. S61. ¹³C NMR spectrum of (Z)-3-((3-chlorophenyl)thio)-N-phenylacrylamide (3ak)

Fig. S62. ¹H NMR spectrum of (Z)-3-((2,6-dichlorophenyl)thio)-N-phenylacrylamide (3al)

Fig. S63. ¹³C NMR spectrum of (Z)-3-((2,6-dichlorophenyl)thio)-N-phenylacrylamide (3al)

Fig. S64. ¹H NMR spectrum of (Z)-3-((4-bromophenyl)thio)-N-phenylacrylamide (3ai)

Fig. S65. ¹³C NMR spectrum of (Z)-3-((4-bromophenyl)thio)-N-phenylacrylamide (3ai)

Fig. S66. ¹H NMR spectrum of (Z)-3-((2-aminophenyl)thio)-N-(4-ethoxyphenyl)acrylamide

(**3gg**)

Fig. S67. ¹³C NMR spectrum of (Z)-3-((2-aminophenyl)thio)-N-(4-ethoxyphenyl)acrylamide

Fig. S68. ¹H NMR spectrum of (Z)-N-phenyl-3-((4-(trifluoromethyl)phenyl)thio)acrylamide

(**3ah**)

Fig. S69. ¹³C NMR spectrum of (Z)-N-phenyl-3-((4-(trifluoromethyl)phenyl)thio)acrylamide

(**3ah**)

Fig. S70. ¹⁹F NMR spectrum of (Z)-N-phenyl-3-((4-(trifluoromethyl)phenyl)thio)acrylamide

(**3ah**)

Fig. S71. ¹H NMR spectrum of (Z)-3-((4-nitrophenyl)thio)-N-phenylacrylamide (3ao)

Fig. S72. ¹³C NMR spectrum of (Z)-3-((4-nitrophenyl)thio)-N-phenylacrylamide (3ao)

Fig. S73. ¹H NMR spectrum of (Z)-N-phenyl-3-(pyridin-2-ylthio)acrylamide (3ap)

Fig. S74. ¹³C NMR spectrum of (Z)-N-phenyl-3-(pyridin-2-ylthio)acrylamide (**3ap**)

Fig. S75. ¹H NMR spectrum of (Z)-3-((2,4-diphenyloxazol-5-yl)thio)-N-phenylacrylamide (3aq)

Fig. S76. ¹³C NMR spectrum of (Z)-3-((2,4-diphenyloxazol-5-yl)thio)-N-phenylacrylamide (3aq)

Fig. S77. ¹H NMR spectrum of (2Z,2'Z)-3,3'-(1,4-phenylenebis(sulfanediyl))bis(N-

Fig. S78. ¹³C NMR spectrum of (2Z,2'Z)-3,3'-(1,4-phenylenebis(sulfanediyl))bis(N-phenylacrylamide) (**3ar**)

phenylacrylamide) (3ar)

Fig. S79. ¹H NMR spectrum of (2Z,2'Z)-3,3'-(propane-1,3-diylbis(sulfanediyl))bis(N-

Fig. S80. ¹³C NMR spectrum of (2Z,2'Z)-3,3'-(propane-1,3-diylbis(sulfanediyl))bis(N-phenylacrylamide) (**3as**)

Fig. S81. ¹H NMR spectrum of (Z)-3-(phenethylthio)-N-phenylacrylamide (3at)

Fig. S82. ¹³C NMR spectrum of (Z)-3-(phenethylthio)-N-phenylacrylamide (3at)

Fig. S83. ¹H NMR spectrum of (Z)-3-(cyclohexylthio)-N-phenylacrylamide (3au)

Fig. S84. ¹³C NMR spectrum of (Z)-3-(cyclohexylthio)-N-phenylacrylamide (3au)

Fig. S85. ¹H NMR spectrum of (Z)-3-(isobutylthio)-N-phenylacrylamide (**3av**)

Fig. S86. ¹³C NMR spectrum of (Z)-3-(isobutylthio)-N-phenylacrylamide (3av)

Fig. S87. ¹H NMR spectrum of (Z)-3-((furan-2-ylmethyl)thio)-N-phenylacrylamide (**3aw**)

Fig. S88. ¹³C NMR spectrum of (Z)-3-((furan-2-ylmethyl)thio)-N-phenylacrylamide (3aw)

Fig. S89. ¹H NMR spectrum of (Z)-N-phenyl-3-((4-(trifluoromethyl)phenyl)sulfinyl)acrylamide

6

Fig. S90. ¹³C NMR spectrum of (Z)-N-phenyl-3-((4-(trifluoromethyl)phenyl)sulfinyl)acrylamide 6

Fig. S91. ¹⁹F NMR spectrum of (Z)-N-phenyl-3-((4-(trifluoromethyl)phenyl)sulfinyl)acrylamide

6

Fig. S92. ¹H NMR spectrum of (Z)-3-([1,1'-biphenyl]-4-ylthio)-N-phenylacrylamide 7

Fig. S93. ¹³C NMR spectrum of (Z)-3-([1,1'-biphenyl]-4-ylthio)-N-phenylacrylamide 7

Fig. S96. ¹H NMR spectrum of N-(o-tolyl)propiolamide (1c)

Fig. S97. ¹³C NMR spectrum of N-(o-tolyl)propiolamide (1c)

Fig. S98. ¹H NMR spectrum of N-(2,4-dimethylphenyl)propiolamide (1d)

Fig. S99. ¹³C NMR spectrum of N-(2,4-dimethylphenyl)propiolamide (1d)

Fig. S100. ¹H NMR spectrum of N-(4-isopropylphenyl)propiolamide (1e)

Fig. S101. ¹³C NMR spectrum of N-(4-isopropylphenyl)propiolamide (1e)

Fig. S102. ¹H NMR spectrum of N-(4-(tert-butyl)phenyl)propiolamide (1f)

Fig. S103. ¹³C NMR spectrum of N-(4-(tert-butyl)phenyl)propiolamide (1f)

Fig. S104. ¹H NMR spectrum of N-(4-ethoxyphenyl)propiolamide (1g)

Fig. S105. ¹³C NMR spectrum of N-(4-ethoxyphenyl)propiolamide (1g)

Fig. S106. ¹H NMR spectrum of N-(4-(trifluoromethoxy)phenyl)propiolamide (1h)

Fig. S107. ¹³C NMR spectrum of N-(4-(trifluoromethoxy)phenyl)propiolamide (1h)

Fig. S108. ¹H NMR spectrum of N-(4-fluorophenyl)propiolamide (1i)

Fig. S109. ¹H NMR spectrum of N-(4-bromophenyl)propiolamide (1j)

Fig. S110. ¹H NMR spectrum of N-(4-iodophenyl)propiolamide (1k)

Fig. S111. ¹³C NMR spectrum of N-(4-iodophenyl)propiolamide (1k)

Fig. S112. ¹H NMR spectrum of N-(3-chlorophenyl)propiolamide (11)

Fig. S113. ¹H NMR spectrum of N-(3,4-dichlorophenyl)propiolamide (1m)

Fig. S114. ¹³C NMR spectrum of N-(3,4-dichlorophenyl)propiolamide (1m) [CDCl₃+DMSO-d₆

mixture]

Fig. S115. ¹H NMR spectrum of N-(3-chloro-4-fluorophenyl)propiolamide (1n)

Fig. S116. ¹³C NMR spectrum of N-(3-chloro-4-fluorophenyl)propiolamide (1n)

Fig. S117. ¹H NMR spectrum of N-(4-bromo-2-methylphenyl)propiolamide (10)

Fig. S118. ¹³C NMR spectrum of N-(4-bromo-2-methylphenyl)propiolamide (10)

Fig. S119. ¹H NMR spectrum of 1-phenyl-3,3-bis(phenylthio)propan-1-one 5

Fig. S120. ¹³C NMR spectrum of 1-phenyl-3,3-bis(phenylthio)propan-1-one 5

Fig. S121. ¹H NMR spectrum of phenyl(styryl)sulfane 4.

Fig. S122. ¹H NMR spectrum of (Z)-3-phenyl-3-(phenylthio)-N-(p-tolyl)acrylamide (3ra)

6.5 5.5 f1 (ppm)

4.5

3.5

2.5

1.5

0.5

7.5

8.5

11.5

10.5

9.5

Fig. S123. ¹³C NMR spectrum of (Z)-3-phenyl-3-(phenylthio)-N-(p-tolyl)acrylamide (**3ra**)

Fig. S124. ¹H NMR spectrum of 3-phenyl-N-(p-tolyl)propiolamide 1r

Control experiment

Fig. S125. ESI-MS spectrum of inseparable reaction mixture of reaction of 1q and 2a.

Fig.126. ¹H NMR spectrum of inseparable mixture from reaction of 1q and 2a.

Scheme S3. Reaction of 3ak using 'BuOLi and EtOH.

Crude ¹H NMR of Reaction Mixture:

Fig. S127. ¹H NMR spectrum of crude N-phenyl-3-(phenylthio) acrylamide (3aa)

Fig. S128. ¹H NMR spectrum of crude 3-(phenylthio)-N-(p-tolyl)acrylamide (3ba)

Fig. S129. ¹H NMR spectrum of crude 3-(phenylthio)-N-(o-tolyl)acrylamide (3ca)

Fig. S130. ¹H NMR spectrum of crude N-(2,4-dimethylphenyl)-3-(phenylthio)acrylamide (3da)

Fig. S131. ¹H NMR spectrum of crude N-(4-isopropylphenyl)-3-(phenylthio)acrylamide (3ea)

Fig. S132. ¹H NMR spectrum of crude N-(4-(tert-butyl)phenyl)-3-(phenylthio)acrylamide (3fa)

Fig. S133. ¹H NMR spectrum of crude N-(4-ethoxyphenyl)-3-(phenylthio)acrylamide (3ga)

Fig. S134. ¹H NMR spectrum of crude 3-(phenylthio)-N-(4-(trifluoromethoxy)phenyl)acrylamide (**3ha**)

Fig. S135. ¹H NMR spectrum of crude N-(4-fluorophenyl)-3-(phenylthio)acrylamide (3ia)

Fig. S136. ¹H NMR spectrum of crude N-(4-bromophenyl)-3-(phenylthio)acrylamide (3ja)

Fig. S137. ¹H NMR spectrum of crude N-(4-iodophenyl)-3-(phenylthio)acrylamide (3ka)

Fig. S138. ¹H NMR spectrum of crude N-(3-chlorophenyl)-3-(phenylthio)acrylamide (3la)

Fig. S139. ¹H NMR spectrum of crude N-(3,4-dichlorophenyl)-3-(phenylthio)acrylamide (3ma)

Fig. S140. ¹H NMR spectrum of crude N-(3-chloro-4-fluorophenyl)-3-

(phenylthio)acrylamide(3na)

Fig. S141. ¹H NMR spectrum of crude N-(4-bromo-2-methylphenyl)-3-(phenylthio)acrylamide

(**30a**)

Fig. S142. ¹H NMR spectrum of crude N-methyl-N-phenyl-3-(phenylthio)acrylamide (3pa)

Fig. S143. ¹H NMR spectrum of crude N-phenyl-3-(p-tolylthio)acrylamide (3ab)

Fig. S144. ¹H NMR spectrum of crude N-phenyl-3-(o-tolylthio)acrylamide (3ac)

Fig. S145. ¹H NMR spectrum of crude 3-((2,4-dimethylphenyl)thio)-N-phenylacrylamide (3ad)

Fig. S146. ¹H NMR spectrum of crude 3-((4-methoxyphenyl)thio)-N-phenylacrylamide (3ae)

Fig. S147. ¹H NMR spectrum of crude 3-((2-methoxyphenyl)thio)-N-phenylacrylamide (3af)

Fig. S148. ¹H NMR spectrum of crude 3-((2-aminophenyl)thio)-N-(4-ethoxyphenyl)acrylamide

(**3gg**)

Fig. S149. ¹H NMR spectrum of crude N-phenyl-3-((4-(trifluoromethyl)phenyl)thio)acrylamide

Fig. S150. ¹H NMR spectrum of crude 3-((4-bromophenyl)thio)-N-phenylacrylamide (3ai)

Fig. S151. ¹H NMR spectrum of crude 3-((4-chlorophenyl)thio)-N-phenylacrylamide (3aj)

Fig. S152. ¹H NMR spectrum of crude 3-((3-chlorophenyl)thio)-N-phenylacrylamide (3ak)

Fig. S153. ¹H NMR spectrum of crude 3-((2,6-dichlorophenyl)thio)-N-phenylacrylamide (3al)

Fig. S154. ¹H NMR spectrum of crude 3-((4-fluorophenyl)thio)-N-phenylacrylamide (3am)

Fig. S155. ¹H NMR spectrum of crude 3-((2-fluorophenyl)thio)-N-phenylacrylamide (3an)

Fig. S156. ¹H NMR spectrum of crude 3-((4-nitrophenyl)thio)-N-phenylacrylamide (3ao)

Fig. S157. ¹H NMR spectrum of crude N-phenyl-3-(pyridin-2-ylthio)acrylamide (3ap)

Fig. S158. ¹H NMR spectrum of crude 3-((2,4-diphenyloxazol-5-yl)thio)-N-phenylacrylamide

(**3**aq)

Fig. S159. ¹H NMR spectrum of crude 3-(phenethylthio)-N-phenylacrylamide (3at)

Fig. S160. ¹H NMR spectrum of crude 3-(cyclohexylthio)-N-phenylacrylamide (3au)

Fig. S161. ¹H NMR spectrum of crude 3-(isobutylthio)-N-phenylacrylamide (3av)

Fig. S162. ¹H NMR spectrum of crude 3-((furan-2-ylmethyl)thio)-N-phenylacrylamide (3aw).

Fig. S163. ¹H NMR spectrum of (2E,2'E)-3,3'-(Propane-1,3-diylbis(sulfanediyl))bis(N-phenylacrylamide) (**3as**).

Fig. S164. ¹³C NMR spectrum of (2E,2'E)-3,3'-(Propane-1,3-diylbis(sulfanediyl))bis(N-phenylacrylamide) (**3as**).

 $\begin{array}{c} 2.81\\ 2.80\\ 2.80\\ 2.79\\ 2.78\\ 1.97\\ 1.97\\ 1.95\\ 1.94\\ 1.93\end{array}$

-8.63 -8.15 -8.15 7.62 7.62 7.28 7.28 6.06 6.06 6.05

Fig. S165. ¹H NMR spectrum of (Z)-3-((3-(((E)-3-Oxo-3-(phenylamino)prop-1-en-1yl)thio)propyl)thio)-Nphenylacrylamide (**3as**).

Fig. S166. ¹³C NMR spectrum of (Z)-3-((3-(((E)-3-Oxo-3-(phenylamino)prop-1-en-1yl)thio)propyl)thio)-Nphenylacrylamide (**3as**).

Fig. S167. ¹H NMR spectrum of (Z)-3-((4-(((E)-3-oxo-3-(phenylamino)prop-1-en-1yl)thio)phenyl)thio)-N-phenylacrylamide (**3ar**).

Fig. S168. ¹³C NMR spectrum of (Z)-3-((4-(((E)-3-oxo-3-(phenylamino)prop-1-en-1yl)thio)phenyl)thio)-N-phenylacrylamide (**3ar**).