# **Electronic Supplementary Information**

# Photochemical synthesis and device application of acene-phenacene hybrid molecules, dibenzo[n]phenacenes (n = 5-7)

Yanting Zhang,<sup>a</sup> Ritsuko Eguchi,<sup>\*a</sup> Shino Hamao,<sup>a</sup> Kenta Goto,<sup>b</sup> Fumito Tani,<sup>b</sup> Minoru Yamaji,<sup>c</sup> Yoshihiro Kubozono<sup>a</sup> and Hideki Okamoto<sup>\*d</sup>

- <sup>a</sup> Research Institute for Interdisciplinary Science, Okayama University, Okayama 700-8530, Japan.
- <sup>b</sup> Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka 819-0395, Japan.
- <sup>c</sup> Division of Molecular Science, Graduate School of Science and Engineering, Gunma University, Ota 373-0057, Japan.
- <sup>d</sup> Division of Earth, Life, and Molecular Sciences, Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan.

# Contents

# Experimental

| 1. Synthesis of materials                                                    |
|------------------------------------------------------------------------------|
| 2. NMR, MS, and elemental analyses7                                          |
| NMR spectra of novel compounds                                               |
| 3. X-ray diffraction (XRD) measurements and atomic force microscopy (AFM) 13 |
| 4. UV-Vis absorption and photoelectron yield measurements                    |
| 5. Synthesis of <b>DBnP</b> single crystals                                  |
| 6. Device fabrication of single-crystal FETs14                               |
| 7. Device fabrication of thin film FETs15                                    |
| Results                                                                      |
| 1. X-ray diffraction patters                                                 |
| 2. UV-Vis absorption and photoelectron yield spectra                         |
| 3. Surface morphology of <b>DBnP</b> thin films                              |
| 4. Optical microscope images of <b>DBnP</b> single crystals                  |
| 5. Typical FET performances of <b>DBnP</b> single crystal FETs               |
| 6. Typical FET performances of <b>DBnP</b> thin film FETs                    |
| Tables 23                                                                    |
| Additional References                                                        |

### Experimental

#### 1. Synthesis of materials

#### 1-1. (*E*)-1,2-Bis(1-anthryl)ethene 2



A solution of 1-bromoanthracene **1** (257 mmol), (*E*)-1,2-bis(tributylstannyl)ethene (274 mg, 0.45 mmol), and Pd(PPh<sub>3</sub>)<sub>4</sub> (52 mg, 0.045 mmol) in toluene (30 ml) was refluxed under an N<sub>2</sub> atmosphere for 13 h. The resulting solution was filtered through a short silica-gel column containing 5% K<sub>2</sub>CO<sub>3</sub>. After removal of the solvent, the residue was washed with toluene/hexane (1/1 mixt.) to afford (*E*)-1,2-bis(1-anthryl)ethene **2** (148 mg, 86%).

Yellow crystals, mp 286–288°C (Lit 277–279°C)<sup>1</sup>

<sup>1</sup>**H** NMR (600 MHz, CDCl<sub>3</sub>)  $\delta_{\rm H}$  8.84 (s, 2H), 8.50 (s, 2H), 8.15 (s, 2H), 8.08–8.00 (m, 6H), 7.93 (d, 2H, J = 6.7 Hz), 7.58 (dd, 2H, J = 8.4, 6.3 Hz), 7.52–7.45 (m, 4H).

<sup>13</sup>**C NMR** (151 MHz, CDCl<sub>3</sub>)  $\delta_{\rm C}$  135.59, 131.96, 131.80, 131.58, 130.03, 129.31, 128.66, 128.58, 127.93, 126.97, 125.68, 125.61, 125.23, 123.48, 122.76.

Anal. Calcd for C<sub>30</sub>H<sub>20</sub>, C, 94.70; H, 5.30. Found, C, 94.70; H, 5.36.

#### 1-2. Dibenzo[*b*,*n*]picene (DP5P)



A solution of bis(anthryl)ethene 2 (200 mg, 0.53 mmol) and a small portion of  $I_2$  in toluene (200 ml) was irradiated with black-light lamps (352 nm,  $6 \times 16$  W) for 8.5 h. the precipitate formed was collected and recrystallized from *o*-dichlorobenzene (**A**, 37 mg). The filtrate was

further irradiated for 14 h and the filtrate was collected and recrystallized from *o*-dichlorobenzene (**B**, 11 mg). The filtrate was concentrated and the obtained yellow solid (79 mg) was dissolved in toluene (200 ml) and a small portion of I<sub>2</sub> was added. The resulting solution was irradiated with the black-light lamps with heating at 85–100°C for 20 h. The precipitate formed was collected and recrystallized from *o*-dichlorobenzene (**C**, 32 mg). The total amount of the obtained **DB5P** (**A** + **B** + **C**) was 81 mg (40%).

Pale yellow fine plates, mp >300°C.

<sup>1</sup>**H** NMR (600 MHz, 1,1,2,2-tetrachloroethane- $d_2$ , 80°C)  $\delta_{\rm H}$  9.39 (s, 2H), 9.20 (s, 2H), 9.69 (d, 2H, J= 9.2 Hz), 8.54 (s, 2H), 8.26 (d, 2H, J = 7.5 Hz), 8.14 (two doublets overlap, 4H), 7.76–7.60 (m, 4H).

<sup>13</sup>C NMR was not observed due to the low solubility.

Anal. Calcd. for C<sub>30</sub>H<sub>18</sub>: C, 95.21; H, 4.79. Found: C, 94.51; H, 4.72.

#### 1-3. 4-Ethenylbenzo[a]anthracene 4



A mixture of 4-bromobenzanthracene<sup>2</sup> (600 mg, 1.96 mmol), tributylvinyltin (746 mg, 2.35 mmol), and Pd(PPh<sub>3</sub>)<sub>4</sub> (113 mg, 0.10 mmol) in toluene (30 ml) was refluxed for 15 h. The insoluble materials formed was filtered off and the filtrate was passed through a short silica-gel column containing K<sub>2</sub>CO<sub>3</sub> (10wt%) to afford 4-vinylbenzo[*a*]anthracene **4** (404 mg, 81%). Recrystallization from toluene produced off-white plates of product **4**.

Off-white plates, mp. 191–192°C.

<sup>1</sup>**H NMR** (600 MHz, CDCl<sub>3</sub>) 9.18 (s, 1H), 8.81 (d, 1H, *J* = 8.0 Hz), 8.37 (s, 1H), 8.13 (m, 1H), 8.05 (m, 1H), 7.97 (d, 1H, *J* = 9.3 Hz), 7.83 (d, 1H, *J* = 7.8 Hz), 7.76 (d, 1H, *J* = 7.0 Hz), 7.66 (t, 1H, *J* = 7.8 Hz), 7.59–7.51 (m, 3H), 5.82 (dd, 1H, *J* = 17.2, 1.1 Hz), 5.54 (dd, 1H, *J* = 10.8, 1.1 Hz).

<sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) 136.48, 134.93, 132.14, 132.10, 130.80, 130.37, 129.36, 129.12, 128.63, 127.85, 127.62, 126.83, 126.70, 126.01, 125.88, 125.38, 122.86, 122.72, 122.04, 117.73.

**HRMS** (FAB) *m*/*z* calcd. for C<sub>20</sub>H<sub>14</sub>, 254.1096 [M<sup>+</sup>]. Found, 254.1100.

#### 1-4. (E)-1-(1-Anthryl)-2-(4-benzo[a]anthryl)ethene 5



A mixture of vinylbenzoanthracene 4 (300 mg, 1.18 mmol), 1-bromoanthacene 1 (306 mg, 1.19 mmol),  $(o-\text{Tol})_3\text{P}$ , and Pd(OAc)<sub>2</sub> in DMF (5 ml) and TEA (3 ml) was evacuated and backfilled with Ar three times. The resulting mixture was heated at 80°C for 17 h. After being cooled to r.t., The precipitate formed was collected and washed with a 1 : 1 mixture of toluene and EtOH to afford (*E*)-1-(1-anthryl)-2-(4-benzo[*a*]anthryl)ethene **5** (334 mg, 65%) as greenish-yellow fine needles. mp >300°C

<sup>1</sup>**H** NMR (600 MHz, 1,1,2,2-tetrachloroethane- $d_2$ , 90°C)  $\delta_{\rm H}$  9.24 (s, 1H), 8.90 (d, 1H, J = 8.0 Hz), 8.28 (s, 1H), 8.49 (s, 1H), 8.40 (s, 1H), 8.20–8.12 (m, 2H), 8.10–7.99 (m, 7H), 7.91–7.7.83 (m, 2H), 7.79 (t, 1H, J = 7.6 Hz), 7.61–7.52 (m, 3H), 7.51–7.44 (m, 2H).

<sup>13</sup>C NMR (151 MHz, 1,1,2,2-tetrachloroethane-*d*<sub>2</sub>, 90°C) δ<sub>C</sub> 136.31, 135.61, 132.26, 132.22, 132.15, 131.98, 131.76, 131.14, 130.43, 130.17, 129.99, 129.89, 129.65, 129.19, 128.66, 128.62, 128.55, 127.94, 127.78, 127.73, 127.01, 126.82 (2C), 126.06, 125.93, 125.79, 125.71 (2C), 125.31, 123.60, 122.96, 122.86, 122.83, 122.05.

Anal. Calcd. for C<sub>34</sub>H<sub>22</sub>; C, 94.85; H, 5.15. Found; C, 94.85%; H, 5.13%.

#### 1-5. Benzo[b]naphtho[2, 3-m]picene (DB6P)



A solution of (*E*)-1-(1-anthryl)-2-(4-benzo[*a*]anthryl)ethane **5** (200 mg, 0.46 mmol) and a small portion of I<sub>2</sub> in *o*-dichlororbenzene (300 mol) was heated at 85–100°C and irradiated with black-light lamps (352 nm,  $6 \times 16$  W) for 7.2 h. The precipitate formed was collected (63 mg, **A**). The filtrate was irradiated with the black-light lamps for 12.5 h and the precipitated product was collected (26 mg, **B**). The total yield of the product (**A** + **B**) was 89 mg (45%). Pale yellow plates, mp >300°C.

**1H NMR** (600 MHz, 1,1,2,2-tetrachloroethane- $d_2$ , 80°C)  $\delta_H$  9.14 (s, 2H), 9.19 (d, 2H, J = 8.8 Hz), 9.09 (d, 2H, J = 9.0 Hz), 8.83 (d, 2H, J = 8.7 Hz), 8.58 (s, 2H), 8.27 (brd, 2H, J = 7.4 Hz), 8.22 (d, 2H, J = 8.7 Hz), 8.15 (brd, 2H, J = 7.1 Hz), 7.64 (m, 4H).

<sup>13</sup>C NMR spectra were not observed due to the low solubility of **DB6P**.

Anal. calcd. for C<sub>34</sub>H<sub>20</sub>; C, 95.30; H, 4.70. Found; C, 94.54; H, 4.46.

#### 1-7. (E)-1,2-Bis(4-benzoanthryl)ethene 6



A mixture of 4-bromobenzo[*a*]anthracene **3** (612 mg, 2.0 mmol), trans-1,2bis(tributylstannyl)ethene (547 mg, 0.9 mmol), and Pd(PPh<sub>3</sub>)<sub>4</sub> (231 mg, 0.20 mmol) was refluxed under an Ar atmosphere for 24 h. The precipitate formed was collected and washed with toluene to afford (*E*)-1,2-bis(4-benzo[*a*]anthryl)ethene **6** 358 mg (37%). Recrystallization from *o*-dichlorobenzene gave pale brown plates.

Pale brown plates, mp  $>300^{\circ}$ C.

<sup>1</sup>**H** NMR (600 MHz, 1,1,2,2-tetrachloroethane- $d_2$ , 80°C)  $\delta_H$  9.25 (s, 2H), 8.91 (d, 2H, J = 8.3 Hz), 8.34 (s, 2H), 8.21–8.14 (m, 4H), 8.12–8.07 (m, 2H), 8.054 (d, 2H, J = 7.1 Hz), 8.00 (s, 2H), 7.92 (d, 2H, J = 9.3 Hz), 7.81 (t, 2H,J = 7.6 Hz), 7.65–7.57 (m, 4H).

<sup>13</sup>C NMR spectrum was not observed due to low solubility.

Anal. Calcd. for C<sub>38</sub>H<sub>24</sub>, C, 94.97; H, 5.03. Found, C, 94.63; H, 4.85.

### 1-8. Benz[b]anthra[2,1-m]picene (DP7P)



A solution of (*E*)-1,2-bis(4-benzo[*a*]anthryl)ethene **6** (150 mg, 0.31 mmol) and a small portion of I<sub>2</sub> in *o*-dichlorobenzene (300 ml) was heated at *ca*. 125°C and the solution was irradiated with black-light lamps (365 nm,  $6 \times 16W$ ) at the temperature for 2.2 h. The precipitate formed was collected and washed with boiling *o*-dichlorobenzene to afford **DB7P** (129 mg, 86%). Pale yellow plates, mp >300°C.

<sup>1</sup>H and <sup>13</sup>C NMR spectra were not observed due to the low solubility od **DB7P**.

Anal. Calcd. for C<sub>38</sub>H<sub>22</sub>, C, 95.37; H, 4.63. Found, C, 95.26; H, 4.39.

## 2. NMR, MS and elemental analyses

<sup>1</sup>H and <sup>13</sup>C NMR spectra were recorded on VARIAN NMR System 600 (600 MHz) and JEOL ECZ600 (600 MHz) spectrometers. Elemental analyses were measured on a PERKIN-ELMER 2400II CHN-S analyser at the Micro Elemental Analysis Laboratory of Okayama University. High-resolution mass spectra (FAB) were recorded on a JEOL JMS-700 MStation spectrometer at Institute for Materials Chemistry and Engineering, Kyushu University.



Figure S1.  $^{1}$ H (600 MHz) and  $^{13}$ C (151 MHz) NMR spectra of compound 2 (CDCl<sub>3</sub>).



Figure S2. <sup>1</sup>H NMR spectrum of **DB5P** (600 MHz, 1,1,2,2-tetrachloroenthane-*d*<sub>2</sub>, at 80°C). Asterisked signals are due to the solvent and water.



Figure S3.  $^{1}$ H (600 MHz) and  $^{13}$ C (151 MHz) NMR spectra of compound 4 (CDCl<sub>3</sub>).



Figure S4. <sup>1</sup>H (600 MHz) and <sup>13</sup>C (151 MHz) NMR spectra of compound **5** (1,1,2,2-tetrachloroethane-*d*<sub>2</sub>, at 80°C).



Figure S5. <sup>1</sup>H NMR spectrum of **DB6P** (600 MHz, 1,1,2,2-tetrachloroethane, at 95°C). Asterisked signals are due to the solvent, <sup>13</sup>C satellite, water, and impurity (inset).

#### 3. X-ray diffraction (XRD) measurements and atomic force microscopy (AFM)

X-ray powder diffraction (XRPD) patterns of polycrystalline **DBnP** samples were measured at room temperature using synchrotron radiation at BL12B, SPring-8. The wavelength,  $\lambda$ , of x-ray beam was set to 0.5636 Å. X-ray diffraction patterns of **DBnP** thin films on SiO<sub>2</sub>/Si substrate were measured at room temperature using an X-ray diffractometer (RIGAKU SMARTLAB-PRO) with CuK $\alpha$  radiation ( $\lambda = 1.5418$  Å). The AFM image was measured with an AFM measurement system (SII Nano Technology SPA400). For the XRD and AFM measurements, a 60-nm thin-film of **DBnP** was formed on the SiO<sub>2</sub>/Si substrate by thermal deposition under  $10^{-7}$  Torr.

#### 4. UV-Vis absorption and photoelectron yield measurements

Optical absorption was recorded with a UV-Vis absorption spectrometer (JASCO V-670 iRM EX). Photoelectron yield spectroscopy (PYS) was measured at room temperature under vacuum condition using a PYS spectrometer (Bunko-keiki BIP-KV200BS). 60-nm thick films of **DBnP**s formed on quartz and SiO<sub>2</sub>/Si substrates were prepared for the measurements of the UV-Vis absorption and PYS spectra, respectively.

#### 5. Synthesis of DBnP single crystals

Single crystals of **DBnPs** were prepared by the physical vapor transport method using synthesized powder samples of **DBnPs**. The polycrystalline samples (15-20 mg) of **DBnPs** were placed in a glass tube installed in the two-temperature-zone furnace, and for the preparation of single crystals the glass tube was heated to 240 and 400 °C for **DB5P**, 280 and 430 °C for **DB6P**, and 300 and 480 °C for **DB7P**. During growth of single crystals, Ar gas was shed at 50 mL/min in the glass tube. The single crystals were collected in the lower temperature zone. The single crystals were transparent and plate-like (Figure S10). Their flat side was parallel to the *ab*-plane, and their thickness direction corresponds to the *c*-axis. 200-400 nm-thick crystals were used as active layers of single crystal FET devices.

#### 6. Device fabrication of single-crystal FETs

Single crystals of **DBnPs** was placed on the SiO<sub>2</sub>/Si substrate, in which SiO<sub>2</sub> (300 nm thick) was used as the gate dielectric. The surface of the SiO<sub>2</sub>/Si substrate was coated with parylene to produce a hydrophobic surface. The thickness of the Au source/drain electrodes was 100 nm. 3 nm-thick 2,3,5,6-tetrafluoro-7,7,8,8-teracyano-quinodimethane (F<sub>4</sub>TCNQ) was inserted into the space between the Au electrodes and the single crystal to reduce contact resistance. The Au source/drain electrodes and the F<sub>4</sub>TCNQ were emplaced by thermal deposition at  $10^{-7}$  Torr. The FET characteristics were recorded using a semiconductor parametric analyser (Agilent

B1500A) in an Ar-filled glove box. As seen in the device structures, the source electrode was grounded ( $V_{\rm S} = 0$ ). Negative voltage was applied to  $V_{\rm G}$  and  $V_{\rm D}$  in measurements of transfer and output curves. The measured transfer curves were analysed to determine the FET parameters (mobility ( $\mu_{\rm sat}$ ), threshold voltage ( $V_{\rm th}$ ), on/off ratio and subthreshold swing (S)) using the general metal-oxide-semiconductor (MOS) transistor formula for a saturation regime:

$$I_D = \frac{\mu_{\text{sat}} W C_0}{2L} (V_{\text{G}} - V_{\text{th}})^2,$$

where  $I_D$ ,  $V_G$ ,  $V_{th}$ , W, L and  $C_o$  refer to drain current, gate voltage, threshold voltage, channel width, channel length and capacitance per area of gate dielectric, respectively. The channel width W and the length L for each device are listed in Tables S1-S4. The  $C_o$  values for SiO<sub>2</sub> (300 nm) and ZrO<sub>2</sub> (150 nm) covered with parylene were measured using a precision LCR meter (Agilent E4980A). The  $C_o$  of SiO<sub>2</sub> gate dielectrics for **DB5P**, **DB6P**, and **DB7P** single crystal FETs were 9.95 nF cm<sup>-2</sup>, 9.31 nF cm<sup>-2</sup> and 9.45 nF cm<sup>-2</sup>, respectively, and that of ZrO<sub>2</sub> for **DB6P** single crystal FETs was 42.7 nF cm<sup>-2</sup>, which was determined by extrapolation of the capacitance measured at 20 Hz - 1 MHz to 0 Hz. The condition for a saturation regime,  $V_D > V_G - V_{th}$ , was completely satisfied in the analysis of the transfer curve. The saturation was completely found in the output characteristics of all FET devices fabricated in this study.

#### 7. Device fabrication of thin-film FETs

60 nm thick thin-films of **DBnP**s were formed for an active layer on solid gate dielectrics of 400 nm thick SiO<sub>2</sub> and 150 nm thick ZrO<sub>2</sub> by a thermal deposition of **DBnP**s under a vacuum of  $10^{-7}$  Torr. The surface of the SiO<sub>2</sub> was coated with hexamethyldisilazane (HMDS) to produce a hydrophobic surface, while that of ZrO<sub>2</sub> was covered with 50 nm thick parylene. The shape of the thin film was determined by use of a metal mask. 3 nm thick F<sub>4</sub>TCNQ was deposited on the **DBnP**s' thin films, and 50 nm thick source and drain electrodes were formed by the thermal deposition of Au on the F<sub>4</sub>TCNQ. The device structure is top-contact bottom-gate type. The *W* and *L* for each device are listed in Tables S5-S8. The *C*<sub>0</sub> value of SiO<sub>2</sub> for **DB5P**, **DB6P** and **DB7P** thin film FETs was 8.3 nF cm<sup>-2</sup>, and that of ZrO<sub>2</sub> for **DB6P** thin film FETs was 42.7 nF cm<sup>-2</sup>. The measured transfer curves were analysed to determine the FET parameters using the general MOS transistor formula for a saturation regime in the same matter as the analysis of single crystal FETs.

## Results

## 1. X-ray diffraction patterns



**Figure S6.** (a) Comparison of X-ray powder diffraction patterns of sublimed **DBnP** powders. X-ray diffraction patterns with the patterns calculated using Le Bail fitting of (b) **DB5P**, (c) **DB6P**, and (d) **DB7P**.



Figure S7. Comparison of X-ray diffraction patterns of DBnP thin films on SiO<sub>2</sub>/Si substrates.

## 2. UV-Vis absorption and photoelectron yield spectra



Figure S8. (a) UV-Vis absorption and (b) photoelectron yield spectra of DBnP thin films.

## 3. Surface morphology of DBnP thin films



Figure S9. AFM images (10  $\mu$ m × 10  $\mu$ m scale) of (a) DB5P, (b) DB6P, and (c) DB7P thin films on SiO<sub>2</sub>/Si substrates, respectively. (d), (e), and (f) are enlarged images (1  $\mu$ m × 1  $\mu$ m scale) of (a), (b), and (c), respectively.

## 4. Optical microscope images of DBnP single crystals



Figure S10. Optical microscope images of (a) DB5P, (b) DB6P, and (c) DB7P single crystals.

## 5. Typical FET performances of DBnP single crystal FETs



## 5-1. DBnP single crystal FETs with SiO<sub>2</sub> gate dielectric

**Figure S11.** Transfer and output curves of **DB5P** single crystal FET with SiO<sub>2</sub> gate dielectric. This FET refers to device #4 in Table S1.



**Figure S12.** Transfer and output curves of **DB7P** single crystal FET with SiO<sub>2</sub> gate dielectric. This FET refers to device #2 in Table S3.

## 5-2. DBnP single crystal FETs with ZrO<sub>2</sub> gate dielectric



Figure S13. Transfer and output curves of DB6P single crystal FET with  $ZrO_2$  gate dielectric. This FET refers to device #4 in Table S4.

## 6. Typical FET performances of DBnP thin film FETs





**Figure S14.** Transfer and output curves of **DB5P** thin film FET with SiO<sub>2</sub> gate dielectric. This FET refers to device #2 in Table S5.



**Figure S15.** Transfer and output curves of **DB6P** thin film FET with SiO<sub>2</sub> gate dielectric. This FET refers to device #2 in Table S6.



**Figure S16.** Transfer and output curves of **DB7P** thin film FET with SiO<sub>2</sub> gate dielectric. This FET refers to device #2 in Table S7.

#### 6-2. DB6P thin film FETs with ZrO<sub>2</sub> gate dielectric

![](_page_21_Figure_3.jpeg)

**Figure S17.** Transfer and output curves of **DB6P** thin film FET with ZrO<sub>2</sub> gate dielectric. This FET refers to device #4 in Table S8.

## Tables

| DB5P<br>SC | μ <sub>sat</sub><br>(cm <sup>2</sup> V <sup>-1</sup> s <sup>-1</sup> ) | <b>r</b> <sub>sat</sub> | μ <sub>eff</sub><br>(cm <sup>2</sup> V <sup>-1</sup> s <sup>-1</sup> ) | V <sub>th</sub><br>(V) | on/off               | S<br>(V decade <sup>-1</sup> ) | <i>W/L</i><br>(μm/μm) |
|------------|------------------------------------------------------------------------|-------------------------|------------------------------------------------------------------------|------------------------|----------------------|--------------------------------|-----------------------|
| #1         | 1.39                                                                   | 0.64                    | 8.90×10 <sup>-1</sup>                                                  | 19.4                   | 3.25×10 <sup>8</sup> | 1.71                           | 300/250               |
| #2         | 1.29                                                                   | 0.29                    | 3.74×10 <sup>-1</sup>                                                  | 45.8                   | 9.16×10 <sup>6</sup> | 3.48                           | 410/200               |
| #3         | 1.07                                                                   | 0.26                    | 2.78×10 <sup>-1</sup>                                                  | 49.1                   | 1.54×10 <sup>8</sup> | 1.34                           | 250/150               |
| #4*        | 3.21                                                                   | 0.25                    | 8.03×10 <sup>-1</sup>                                                  | 50.0                   | 1.45×10 <sup>8</sup> | 3.49                           | 550/250               |
| #5         | 1.55                                                                   | 0.22                    | 3.41×10 <sup>-1</sup>                                                  | 53.0                   | 2.13×10 <sup>7</sup> | 2.23                           | 200/250               |
| #6         | 1.41                                                                   | 0.21                    | 2.96×10 <sup>-1</sup>                                                  | 54.9                   | 1.21×10 <sup>7</sup> | 4.89                           | 300/50                |
| average    | 1.7(8)                                                                 | 0.3(2)                  | 5(3)×10 <sup>-1</sup>                                                  | 50(10)                 | 1(1)×10 <sup>8</sup> | 3(1)                           |                       |

Table S1. FET parameters of DB5P single-crystal FETs with  $SiO_2$  gate dielectric.

Table S2. FET parameters of DB6P single-crystal FETs with SiO<sub>2</sub> gate dielectric.

| DB6P<br>SC | μ <sub>sat</sub><br>(cm <sup>2</sup> V <sup>-1</sup> s <sup>-1</sup> ) | <b>r</b> <sub>sat</sub> | μ <sub>eff</sub><br>(cm <sup>2</sup> V <sup>-1</sup> s <sup>-1</sup> ) | V <sub>th</sub><br>(V) | on/off               | S<br>(V decade⁻¹) | <i>W/L</i><br>(μm/μm) |
|------------|------------------------------------------------------------------------|-------------------------|------------------------------------------------------------------------|------------------------|----------------------|-------------------|-----------------------|
| #1         | 1.03                                                                   | 0.94                    | 9.68×10 <sup>-1</sup>                                                  | 2.84                   | 1.84×10 <sup>7</sup> | 1.48              | 315/50                |
| #2         | 1.80                                                                   | 0.82                    | 1.48                                                                   | 9.26                   | 1.22×10 <sup>8</sup> | 1.26              | 220/50                |
| #3         | 2.19                                                                   | 0.76                    | 1.66                                                                   | 12.6                   | 3.36×10 <sup>7</sup> | 1.88              | 580/450               |
| #4         | 2.39                                                                   | 0.75                    | 1.79                                                                   | 13.4                   | 2.00×10 <sup>7</sup> | 1.48              | 200/450               |
| #5*        | 2.73                                                                   | 0.66                    | 1.80                                                                   | 18.7                   | 2.05×10 <sup>7</sup> | 1.46              | 700/700               |
| average    | 2.0(7)                                                                 | 0.8(1)                  | 1.5(4)                                                                 | 11(6)                  | 4(4)×10 <sup>7</sup> | 1.5(2)            |                       |

Table S3. FET parameters of DB7P single-crystal FETs with SiO<sub>2</sub> gate dielectric.

| DB7P<br>SC | µ <sub>sat</sub><br>(cm <sup>2</sup> V <sup>-1</sup> s <sup>-1</sup> ) | <b>r</b> <sub>sat</sub> | µ <sub>eff</sub><br>(cm² V⁻¹ s⁻¹) | V <sub>th</sub><br>(V) | on/off               | S<br>(V decade⁻¹) | <i>W/L</i><br>(μm/μm) |
|------------|------------------------------------------------------------------------|-------------------------|-----------------------------------|------------------------|----------------------|-------------------|-----------------------|
| #1         | 2.07                                                                   | 0.58                    | 1.20                              | 23.6                   | 6.04×10 <sup>7</sup> | 2.70              | 300/50                |
| #2*        | 2.58                                                                   | 0.55                    | 1.42                              | 25.0                   | 4.87×10 <sup>7</sup> | 1.67              | 270/50                |
| #3         | 1.35                                                                   | 0.54                    | 7.29×10 <sup>-1</sup>             | 26.1                   | 9.03×10 <sup>6</sup> | 1.06              | 820/450               |
| #4         | 1.76                                                                   | 0.53                    | 9.33×10 <sup>-1</sup>             | 26.6                   | 5.42×10 <sup>6</sup> | 1.40              | 470/50                |
| #5         | 1.70                                                                   | 0.34                    | 5.78×10 <sup>-1</sup>             | 41.7                   | 2.09×10 <sup>8</sup> | 1.79              | 470/50                |
| #6         | 1.48                                                                   | 0.28                    | 4.14×10 <sup>-1</sup>             | 47.4                   | 2.22×10 <sup>7</sup> | 1.58              | 590/50                |
| average    | 1.8(5)                                                                 | 0.5(1)                  | 9(8)×10 <sup>-1</sup>             | 30(10)                 | 6(8)×10 <sup>7</sup> | 1.7(6)            |                       |

| DB7P<br>SC | μ <sub>sat</sub><br>(cm <sup>2</sup> V <sup>-1</sup> s <sup>-1</sup> ) | <b>r</b> <sub>sat</sub> | µ <sub>eff</sub><br>(cm² V⁻¹ s⁻¹) | V <sub>th</sub><br>(V) | on/off               | S<br>(V decade <sup>-1</sup> ) | <i>W/L</i><br>(μm/μm) |
|------------|------------------------------------------------------------------------|-------------------------|-----------------------------------|------------------------|----------------------|--------------------------------|-----------------------|
| #1         | 2.06                                                                   | 0.75                    | 1.55                              | 2.16                   | 7.49×10 <sup>6</sup> | 0.30                           | 175/50                |
| #2         | 2.03                                                                   | 0.74                    | 1.50                              | 2.22                   | 1.23×10 <sup>7</sup> | 0.29                           | 320/50                |
| #3         | 2.06                                                                   | 0.73                    | 1.50                              | 2.33                   | 1.48×10 <sup>7</sup> | 0.28                           | 345/50                |
| #4*        | 2.54                                                                   | 0.63                    | 1.60                              | 3.32                   | 1.01×10 <sup>6</sup> | 0.39                           | 525/450               |
| average    | 2.2(3)                                                                 | 0.71(6)                 | 1.54(5)                           | 2.5(6)                 | 9(6)×10 <sup>6</sup> | 0.32(5)                        |                       |

Table S4. FET parameters of DB6P single-crystal FETs with ZrO<sub>2</sub> gate dielectric.

| DB5P<br>thin-film | μ <sub>sat</sub><br>(cm <sup>2</sup> V <sup>-1</sup> s <sup>-1</sup> ) | <b>r</b> <sub>sat</sub> | μ <sub>eff</sub><br>(cm <sup>2</sup> V <sup>-1</sup> s <sup>-1</sup> ) | V <sub>th</sub><br>(V) | on/off                 | S<br>(V decade⁻¹) | <i>W/L</i><br>(μm/μm) |
|-------------------|------------------------------------------------------------------------|-------------------------|------------------------------------------------------------------------|------------------------|------------------------|-------------------|-----------------------|
| #1                | 1.77×10 <sup>-2</sup>                                                  | 0.19                    | 3.36×10 <sup>-3</sup>                                                  | 55.7                   | 2.34×10 <sup>4</sup>   | 7.27              | 500/200               |
| #2*               | 3.68×10 <sup>-2</sup>                                                  | 0.18                    | 6.62×10 <sup>-3</sup>                                                  | 57.1                   | 1.55×10 <sup>4</sup>   | 6.54              | 500/450               |
| #3                | 2.92×10 <sup>-2</sup>                                                  | 0.17                    | 4.96×10 <sup>-3</sup>                                                  | 58.2                   | 8.52×10 <sup>3</sup>   | 7.67              | 500/450               |
| #4                | 1.97×10 <sup>-2</sup>                                                  | 0.17                    | 3.35×10 <sup>-3</sup>                                                  | 58.6                   | 1.60×10 <sup>4</sup>   | 5.35              | 500/450               |
| #5                | 1.32×10 <sup>-2</sup>                                                  | 0.17                    | 2.24×10 <sup>-3</sup>                                                  | 58.7                   | 1.48×10 <sup>4</sup>   | 7.09              | 500/250               |
| #6                | 1.51×10 <sup>-2</sup>                                                  | 0.12                    | 1.81×10 <sup>-3</sup>                                                  | 65.1                   | 3.33×10 <sup>4</sup>   | 8.14              | 500/150               |
| #7                | 1.71×10 <sup>-2</sup>                                                  | 0.11                    | 1.88×10 <sup>-3</sup>                                                  | 66.7                   | 9.41×10 <sup>3</sup>   | 7.71              | 500/300               |
| #8                | 1.47×10 <sup>-2</sup>                                                  | 0.11                    | 1.62×10 <sup>-3</sup>                                                  | 66.6                   | 5.42×10 <sup>3</sup>   | 9.44              | 500/100               |
| average           | 2.0(8)×10 <sup>-2</sup>                                                | 0.15(3)                 | 3(2)×10 <sup>-3</sup>                                                  | 61(5)                  | 1.6(9)×10 <sup>4</sup> | 7(1)              |                       |

Table S5. FET parameters of DB5P thin-film FETs with SiO<sub>2</sub> gate dielectric.

Table S6. FET parameters of DB6P thin-film FETs with SiO<sub>2</sub> gate dielectric.

| DB6P<br>thin-film | μ <sub>sat</sub><br>(cm <sup>2</sup> V <sup>-1</sup> s <sup>-1</sup> ) | <b>r</b> <sub>sat</sub> | μ <sub>eff</sub><br>(cm <sup>2</sup> V <sup>-1</sup> s <sup>-1</sup> ) | V <sub>th</sub><br>(V) | on/off               | S<br>(V decade <sup>-1</sup> ) | <i>W/L</i><br>(μm/μm) |
|-------------------|------------------------------------------------------------------------|-------------------------|------------------------------------------------------------------------|------------------------|----------------------|--------------------------------|-----------------------|
| #1                | 5.70×10 <sup>-2</sup>                                                  | 0.40                    | 2.28×10 <sup>-2</sup>                                                  | 36.6                   | 3.16×10 <sup>5</sup> | 2.62                           | 1000/450              |
| #2*               | 9.83×10 <sup>-2</sup>                                                  | 0.38                    | 3.74×10 <sup>-2</sup>                                                  | 38.7                   | 4.37×10 <sup>5</sup> | 2.88                           | 500/250               |
| #3                | 7.82×10 <sup>-2</sup>                                                  | 0.37                    | 2.89×10 <sup>-2</sup>                                                  | 39.7                   | 4.61×10 <sup>5</sup> | 4.54                           | 500/50                |
| #4                | 8.90×10 <sup>-2</sup>                                                  | 0.35                    | 3.12×10 <sup>-2</sup>                                                  | 41.3                   | 7.76×10 <sup>5</sup> | 4.33                           | 500/135               |
| #5                | 6.74×10 <sup>-2</sup>                                                  | 0.30                    | 2.02×10 <sup>-2</sup>                                                  | 45.7                   | 3.86×10 <sup>5</sup> | 3.46                           | 1000/450              |
| average           | 8(2)×10 <sup>-2</sup>                                                  | 0.36(4)                 | 2.8(7) ×10 <sup>-2</sup>                                               | 40(3)                  | 5(2)×10 <sup>5</sup> | 3.6(9)                         |                       |

Table S7. FET parameters of DB7P thin-film FETs with SiO<sub>2</sub> gate dielectric.

| DB7P<br>thin-film | μ <sub>sat</sub><br>(cm <sup>2</sup> V <sup>-1</sup> s <sup>-1</sup> ) | r <sub>sat</sub> | µ <sub>eff</sub><br>(cm² V⁻¹ s⁻¹) | V <sub>th</sub><br>(V) | on/off               | S<br>(V decade <sup>-1</sup> ) | <i>W/L</i><br>(μm/μm) |
|-------------------|------------------------------------------------------------------------|------------------|-----------------------------------|------------------------|----------------------|--------------------------------|-----------------------|
| #1                | 8.11×10 <sup>-4</sup>                                                  | 0.21             | 1.70×10 <sup>-4</sup>             | 54.1                   | 8.71×10 <sup>3</sup> | 2.96                           | 1000/450              |
| #2*               | 1.14×10 <sup>-3</sup>                                                  | 0.16             | 1.82×10 <sup>-4</sup>             | 60.2                   | 3.78×10 <sup>3</sup> | 5.34                           | 1000/450              |
| #3                | 4.22×10 <sup>-4</sup>                                                  | 0.14             | 5.91×10 <sup>-5</sup>             | 62.6                   | 1.72×10 <sup>3</sup> | 3.30                           | 1000/450              |
| average           | 8(4)×10 <sup>-4</sup>                                                  | 0.17(4)          | 1.4(7)×10 <sup>-4</sup>           | 59(4)                  | 5(4)×10 <sup>3</sup> | 4(1)                           |                       |

| DB6P<br>thin-film | μ <sub>sat</sub><br>(cm <sup>2</sup> V <sup>-1</sup> s <sup>-1</sup> ) | r <sub>sat</sub> | μ <sub>eff</sub><br>(cm <sup>2</sup> V <sup>-1</sup> s <sup>-1</sup> ) | V <sub>th</sub><br>(V) | on/off               | S<br>(V decade⁻¹) | <i>W/L</i><br>(μm/μm) |
|-------------------|------------------------------------------------------------------------|------------------|------------------------------------------------------------------------|------------------------|----------------------|-------------------|-----------------------|
| #1                | 7.74×10 <sup>-2</sup>                                                  | 0.32             | 2.48×10 <sup>-2</sup>                                                  | 6.98                   | 7.28×10 <sup>6</sup> | 0.43              | 500/50                |
| #2                | 7.24×10 <sup>-2</sup>                                                  | 0.31             | 2.24×10 <sup>-2</sup>                                                  | 7.02                   | 7.85×10 <sup>5</sup> | 0.58              | 1000/450              |
| #3                | 6.64×10 <sup>-2</sup>                                                  | 0.31             | 2.06×10 <sup>-2</sup>                                                  | 7.03                   | 1.93×10 <sup>4</sup> | 1.52              | 1000/450              |
| #4*               | 8.10×10 <sup>-2</sup>                                                  | 0.30             | 2.43×10 <sup>-2</sup>                                                  | 7.15                   | 9.98×10 <sup>3</sup> | 0.54              | 500/250               |
| #5                | 7.89×10 <sup>-2</sup>                                                  | 0.20             | 1.58×10 <sup>-2</sup>                                                  | 8.91                   | 1.21×10 <sup>5</sup> | 0.49              | 500/135               |
| average           | 7.5(6)×10 <sup>-2</sup>                                                | 0.29(5)          | 2.2(4)×10 <sup>-2</sup>                                                | 7.4(8)                 | 2(3)×10 <sup>6</sup> | 0.7(5)            |                       |

Table S8. FET parameters of DB6P thin-film FETs with  $ZrO_2$  gate dielectric.

## **Additional References**

- 1. Y. Takeuchi, S. Akiyama and M. Nakagawa, Bull. Chem. Soc. Jpn., 1972, 45, 3183.
- 2. B. P. Cho and R. G. Harvey, J. Org. Chem., 1987, 52, 5668.