SUPPORTING INFORMATION

Titanocene Pnictinidene Complexes

Dr. Malte Fischer, Dr.Fabian Reiß, Dr. Christian Hering-Junghans

This file includes:

1 Experimental 2
2 Structure elucidation 4
3 Attempted Syntheses of $\mathrm{Cp}_{2} \mathrm{Ti}\left(\mathrm{PMe}_{3}\right) \mathrm{PR}\left(\mathrm{R}=\mathrm{Mes}^{\star}\right.$, $\left.{ }^{\mathrm{Dip}} \mathrm{Ter}\right)$ 11
4 Syntheses of compounds 15
5 Computational details 26
6 References. 63

1 Experimental

General Information. If not stated otherwise, all manipulations were performed under oxygen- and moisture-free conditions under an inert atmosphere of argon using standard Schlenk techniques or an inert atmosphere glovebox (MBraun LABstar ECO). All glassware was heated three times in vacuo using a heat gun and cooled under argon atmosphere. Solvents were transferred using syringes, steel- or PE-canulas, which were purged with argon prior to use. Solvents and reactants were either obtained from commercial sources or synthesized as detailed in Table S1.

Table S1: Origin and purification of solvents and reactants.

Substance	Origin	Purification
Benzene	local trade	dried over Na /benzophenone freshly distilled prior to use, stored over molecular sieves.
n-pentane	local trade	dried over Na /benzophenone/tetraglyme freshly distilled prior to use
THF	Sigma Aldrich, inhibitorfree, for HPLC, $\geq 99.9 \%$	purified with the Grubbs-type column system "Pure Solv MD-5" dried over Na /benzophenone freshly distilled prior to use
$\mathrm{C}_{6} \mathrm{D}_{6}$	euriso-top	dried over Na /benzophenone freshly distilled prior to use
$\mathrm{C}_{7} \mathrm{D}_{8}$ (toluene- d_{8})	euriso-top	dried over Na /benzophenone freshly distilled prior to use
$\mathrm{Cp}_{2} \mathrm{Ti}\left(\mathrm{C}_{2}\left(\mathrm{SiMe}_{3}\right)_{2}\right)^{1}$	synthesized	
${ }^{\text {Dip }}$ TerPPMe ${ }^{2}$	synthesized	
DipTerAsPMe3 ${ }^{3}$	synthesized	
${ }^{\text {MesTerPPMe }}{ }^{2}$	synthesized	
Mes*PPMe ${ }^{2}$	synthesized	

NMR spectra were recorded on Bruker spectrometers (AVANCE 300, AVANCE 400 or Fourier 300) and were referenced internally to the deuterated solvent (${ }^{13} \mathrm{C}$: $\mathrm{C}_{6} \mathrm{D}_{6}$ $\delta_{\text {ref }}=128.06 \mathrm{ppm} ; \mathrm{C}_{7} \mathrm{D}_{8} \delta_{\text {ref }}=20.43 \mathrm{ppm}$) or to protic impurities in the deuterated solvent (${ }^{1} \mathrm{H}: \mathrm{C}_{6} \mathrm{HD}_{5} \delta_{\text {ref }}=7.16 \mathrm{ppm} ; \mathrm{C}_{7} \mathrm{D}_{8} \delta_{\text {ref }}=2.08 \mathrm{ppm}$). All measurements were carried out at ambient temperature unless denoted otherwise. NMR signals were assigned using experimental data (e.g. chemical shifts, coupling constants, integrals where applicable).

Elemental analyses were obtained using a Leco Tru Spec elemental analyzer.

Mass spectra were recorded on a Thermo Electron MAT 95-XP sector field mass spectrometer using crystalline samples.

UV-Vis analysis was performed using an analytikjena specord s 600 diode array photometer. The samples were dissolved in THF in a drybox in a 1 cm quartz cuvette with a Schlenk-Valve. If necessary, the samples were diluted using Schlenk techniques.

2 Structure elucidation

X-ray Structure Determination: X-ray quality crystals of $\mathbf{3}$ and $\mathbf{5}$ were selected in Fomblin Y perfluoroether (Sigma Aldrich) at $-30^{\circ} \mathrm{C}$ under a constant stream of nitrogen. X-ray quality crystals of 6_i and 6_ii were selected in Fomblin© Y-1800 perfluoroether (Alfa Aesar) at room temperature. The samples were cooled to 150(2) K during measurement. The data were collected on a Bruker Kappa Apex II diffractometer using Mo K ${ }_{\alpha}$ radiation ($\lambda=0.71073 \AA$) or Cu K ${ }_{\alpha}$ radiation $(\lambda=1.54178 \AA$). The structures were solved by iterative methods (SHELXT) ${ }^{4}$ and refined by full matrix least squares procedures (SHELXL). ${ }^{5}$ Semi-empirical absorption corrections were applied (SADABS). ${ }^{6}$ All non-hydrogen atoms were refined anisotropically, hydrogen atoms were included in the refinement at calculated positions using a riding model.

The structure of $\mathbf{3}$ was refined as a two-component twin.
In the asymmetric unit of 5 eight severely disordered n-hexane molecules were found. These solvent molecules have been treated as a diffuse contribution to the overall scattering by using PLATON/SQUEEZE. ${ }^{7}$

For 6 two modifications could be obtained. In 6_ii the central As2 unit was found to be disordered and was split in two parts. The occupancy of each part was allowed to refine freely.

Table S2: Crystallographic details of 3, 5 and 6_i.

Compound	3	5	6_i
Chem. Formula	$\mathrm{C}_{37} \mathrm{H}_{44} \mathrm{P}_{2} \mathrm{Ti}$	$\begin{aligned} & \mathrm{C}_{43} \mathrm{H}_{56} \mathrm{PAsTi} \\ & 1.33\left(\mathrm{C}_{6} \mathrm{H}_{14}\right) \end{aligned}$	$\mathrm{C}_{60} \mathrm{H}_{74} \mathrm{As}_{2}$
Formula weight [g/mol]	598.56	841.56	945.03
Colour	black	brown	yellow
Crystal system	monoclinic	triclinic	monoclinic
Space group	P2 $1_{1} \mathrm{C}$	P-1	C2/c
$a[\AA]$	16.6969(8)	17.7808(5)	21.4486(15)
$b[\AA]$	10.4621(5)	19.3646(5)	14.9005(10)
$c[\AA]$	18.3000(8)	21.7658(5)	16.0230(11)
$\alpha\left[{ }^{\circ}\right]$	90	79.424(2)	90
$\beta\left[{ }^{\circ}\right]$	99.112(2)	81.436(2)	95.2270(13)
$V^{[0]}$	90	89.781(2)	90
$V\left[\AA^{3}\right]$	3156.4(3))	7282.8(3)	5099.6(6)
z	4	6	4
$\rho_{\text {calca. }}\left[\mathrm{g} / \mathrm{cm}^{3}\right]$	1.260	1.151	1.231
$\mu\left[\mathrm{mm}^{-1}\right]$	3.424	2.716	1.347
T [K]	150(2)	150(2)	150(2)
Measured reflections	26770	103642	38522
Independent reflections	5650	24760	7447
Reflections with $/>2 \sigma($)	5490	18627	5712
$R_{\text {int }}$	0.0375	0.0609	0.0334
$F(000)$	1272	2704	2000
$R_{1}\left(R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]\right)$	0.0311	0.0505	0.0315
$w R_{2}\left(F^{2}\right)$	0.0870	0.1423	0.0836
GooF	1.057	1.025	1.024
No. of Parameters	371	1317	288
CCDC \#	2060154	2060155	2060156

Table S3: Crystallographic details of 6 _ii.

Compound	6_ii
Chem. Formula	$\mathrm{C}_{60} \mathrm{H}_{74} \mathrm{As}_{2} \cdot 2\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)$
Formula weight [g/mol]	1101.24
Colour	orange
Crystal system	Triclinic
Space group	P-1
$a[\AA]$	13.2848(10)
$b[\AA]$	14.6046(12)
$c[\AA]$	16..1967(13)
$\alpha{ }^{\circ}{ }^{\circ}$	97.9377(29)
$\beta\left[{ }^{\circ}{ }^{\text {] }}\right.$	97.4838(28)
$\gamma\left[{ }^{\circ}\right]$	96.5107(29)
$V\left[\AA^{3}\right]$	3058.1(4)
Z	2
$\rho_{\text {calcd. }}\left[\mathrm{g} / \mathrm{cm}^{3}\right]$	1.196
$\mu\left[\mathrm{mm}^{-1}\right]$	1.133
T [K]	150(2)
Measured reflections	102903
Independent reflections	16266
Reflections with $/>2 \sigma()$	14004
$R_{\text {int }}$	0.0301
$F(000)$	1168
$R_{1}\left(R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]\right)$	0.0297
$\mathrm{w} \mathrm{R}_{2}\left(F^{2}\right)$	0.0800
GooF	1.036
No. of Parameters	739
CCDC \#	2060157

Figure S1: Molecular structure of 3. ORTEPs drawn at 50\% probability, all H -atoms omitted and Mesgroups rendered as wireframe forclarity. Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ of 3: C1-P11.8417(18), Ti1-P1 2.4225(6), Ti1-P2 2.5688(6), Ti1-Ct1 2.0491(3), Ti1-Ct2 2.0770(3); C1-P1-Ti1 122.12(6), P1-Ti1-P2 86.823(19), Ct1-Ti1-Ct2 135.374(18), Ct2-Ti1-P1 111.213(17), Ct1-Ti1-P2 105.424(19), Ct2-Ti1-P1 104.007(17), Ct2-Ti1-P2 102.986(18); C6-C1-P1-Ti1-2.05(18).

Figure S2: Molecular structure of 5 showing all three independent molecules in the asymmetric unit. ORTEPs drawn at 30\% probability, all H-atoms omitted and Dip-groups rendered as wireframe for clarity. Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ of 5 : (1) C1-As1 1.989(3), Ti1-As1 2.4726(8), Ti1-P1 2.5545(11), Ti1-Ct1 2.0585(6), Ti1-Ct2 2.0292(7); C1-As1-Ti1 121.73(10), P1-Ti1-As1 88.05(3), Ct1-Ti1-Ct2 136.128(35), Ct2-Ti1-As1 109.337(30), Ct1-Ti1-P1 104.260(34), Ct2-Ti1-As1 103.156(26), Ct2-Ti1-P1 105.498(34); Ti1-As1-C1-C2 -97.723(246); (2) C44-As2 1.985(3), Ti2-As2 2.4638(9), Ti2-P2A 2.549(3), Ti2-Ct3 2.0702(6), Ti2-Ct4 2.0300(7); C44-As2-Ti2 121.63(9), As2-Ti2-P2A 92.49(18), Ct3-Ti2-Ct4 136.251(37), Ct4-Ti2-P2A 101.949(104), Ct3-Ti2-As2 102.878(27), Ct3-Ti2-P2A 105.817(89), Ct4-Ti2-As2 109.015(34); Ti2-As2-C43-C44-99.118(280); (3) C87-As3 2.008(4), Ti3-As3 2.4659(9), Ti3-P3 2.5526(13), Ti3-Ct5 2.0698(6), Ti3-Ct6 2.0218(6); C87-As3-Ti3 123.22(11), P3-Ti3-As3 89.31(4), Ct5-Ti3-Ct6 135.590(33), Ct6-Ti3-As3 108.447(29), Ct5-Ti3-P1 104.525(38), Ct5-Ti3-As3 103.880(31), Ct6-Ti3-P3 105.475(38); Ti3-As3-C87-C88 -94.946(277).

Figure S3: Molecular structure of 6_i. ORTEPs drawn at 50\% probability, all H-atoms omitted and Dipgroups rendered as wireframe for clarity. The molecule lies on an inversion center. Labels with added prime indicate symmetry equivalent positions ($3 / 2-x, 3 / 2-y, 1-z$). Selected bond lengths (\AA) and angles (${ }^{\circ}$) of 6_i: C1-As1 1.9901(13), As1-As1' 2.2679(3); C1-As1-As1' 101.15(4); C2-C1-As1-As1' -95.725(109).

Figure S4: Molecular structure of 6_ii. ORTEPs drawn at 50\% probability, all H -atoms and two benzene molecules associated with 6_ii omitted and Mes-groups rendered as wireframe for clarity. The occupancy of the major orientation is $0.9438(13)$, whereas the minor orientation is $0.0562(13)$. Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ of 3: C1-As1A 1.9929(12), C31-As2A 1.9764(12), As1A-As2A 2.2659(3), As1B-As2B 2.355(6); C1-As1A-As2A 96.61(3), C31-As2A-As1A 108.62(4); C6-C1-As1A-As2A 78.869(98), C32-C31-As2A-As 1A -16.112(116).

3 Attempted Syntheses of $\mathrm{Cp}_{2} \mathrm{Ti}\left(\mathrm{PMe}_{3}\right) \mathrm{PR}\left(\mathrm{R}=\right.$ Mes* *, ${ }^{\text {Dip }}$ Ter)

3.1 Attempted Synthesis of $\mathrm{Cp}_{2} \mathrm{Ti}\left(\mathrm{PMe}_{3}\right)$ PMes*

In a Young NMR tube Cp $\mathrm{Cl}_{2} \mathrm{~T}(\mathrm{btmsa})(\mathbf{1})(0.022 \mathrm{~g}, 0.063 \mathrm{mmol})$ and $\mathrm{Mes}^{*} \mathrm{PPMe}_{3}(\mathbf{2 a})$ $(0.022 \mathrm{~g}, 0.063 \mathrm{mmol})$ were dissolved in 0.6 mL of $\mathrm{C}_{6} \mathrm{D}_{6}$. The reaction mixture was allowed to stand for 16 h at room temperature. Regular control by ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ spectroscopy showed that no reaction has occurred. Subsequent heating of the reaction mixture to $40^{\circ} \mathrm{C}$ for two hours results mainly in the formation of 3,3-dimethyl-5,7-di-tert-butylphosphaindane (A) (Figures S5-S7).
${ }^{1} \mathbf{H}$ NMR (300 MHz, $\left.\mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}\right): \delta=1.12\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}_{\mathrm{q}}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.30-1.32\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{C}_{\mathrm{q}}\left(\mathrm{CH}_{3}\right)_{2}\right.$, $\left.\mathrm{C}_{\mathrm{q}}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.57\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}_{\mathrm{q}}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.69-1.75\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{PHCH}_{2}\right), 4.40\left(\mathrm{dm},{ }^{1} \mathrm{~J}_{\mathrm{P}, \mathrm{H}}=181.6 \mathrm{~Hz}\right.$, PH), $7.16\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{\text {Aryl }}\right)^{*}, ~ 7.46-7.48\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{\text {Aryl }}\right) \mathrm{ppm}$.

* = overlap with $\mathrm{C}_{6} \mathrm{D}_{5} \mathrm{H}$ signal
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(75 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}\right): \delta=27.5\left(\mathrm{C}_{\mathrm{q}}\left(\mathrm{CH}_{3}\right)_{2}\right), 30.3\left(\mathrm{C}_{\mathrm{q}}\left(\mathrm{CH}_{3}\right)_{2}\right), 31.3(\mathrm{~d}$, $\left.J_{P, C}=10.0 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\left(\underline{(C H}_{3}\right)_{3}\right), 31.7\left(\mathrm{C}\left(\underline{C H}_{3}\right)_{3}\right), 35.1\left(\underline{\mathrm{C}}_{q}\left(\mathrm{CH}_{3}\right)_{3}\right), 35.6\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{P}, \mathrm{C}}=4.9 \mathrm{~Hz}, \mathrm{PCH}_{2}\right)$, $31.7\left(\underline{C}_{q}\left(\mathrm{CH}_{3}\right)_{3}\right), 47.0\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{P}, \mathrm{C}}=\mathrm{Hz}, \underline{\mathrm{C}}_{q}\left(\mathrm{CH}_{3}\right)_{2}\right), 117.9\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{P}, \mathrm{C}}=1.2 \mathrm{~Hz}, \mathrm{CH}_{\text {Aryy }}\right)$, $121.4(\mathrm{~d}$, $\left.{ }^{3} J_{P, C}=4.9 \mathrm{~Hz}, C_{\text {Ary }}\right), 130.0\left(\mathrm{~d},{ }^{2} J_{\mathrm{P}, \mathrm{C}}=14.9 \mathrm{~Hz}, C_{q, A r y}\right), 151.7\left(C_{q, A r y}\right), 152.9\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{P}, \mathrm{C}}\right.$ $\left.=14.2 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}, \mathrm{Ary}}\right)$, $157.4\left(\mathrm{C}_{\mathrm{q}, \mathrm{Ary}}\right) \mathrm{ppm}$.
${ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\} /{ }^{31} \mathbf{P}$ NMR (122 MHz, $\left.\mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}\right): \delta=-79.7\left(\mathrm{dm},{ }^{1} \mathrm{~J}_{\mathrm{P}, \mathrm{H}}=181.9 \mathrm{~Hz}\right) \mathrm{ppm}$.

Figure S5: ${ }^{1} \mathrm{H}$ NMR spectrum of the reaction of $\mathrm{Cp}_{2} \mathrm{Ti}$ (btmsa) (1) with Mes*PPMe ${ }_{3}(\mathbf{2 a})\left(300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right.$ rt); -0.25 and 6.26 ppm: Cp ${ }_{2}$ Ti(btmsa), 0.15 ppm : btmsa.

Figure S6: ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of the reaction of $\mathrm{Cp}_{2} \mathrm{Ti}(\mathrm{btmsa})(\mathbf{1})$ with Mes*PPMe $_{3}(\mathbf{2 a})(75 \mathrm{MHz}$, $\left.\mathrm{C}_{6} \mathrm{D}_{6}, \mathrm{rt}\right) ; 0.9$ and $116.2 \mathrm{ppm}: \mathrm{Cp}_{2} \mathrm{Ti}($ btmsa), 0.0 ppm : btmsa.

Figure S7: ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ (bottom) and ${ }^{31} \mathrm{P}$ NMR (top) spectra of the reaction of $\mathrm{Cp}_{2} \mathrm{Ti}$ (btmsa) (1) with Mes*PPMe $_{3}(\mathbf{2 a})\left(122 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, \mathrm{rt}\right)$.

3.2 Attempted Synthesis of $\mathrm{Cp}_{2} \mathrm{Ti}\left(\mathrm{PMe}_{3}\right) \mathrm{P}^{\mathrm{Dip}} \mathrm{Ter}$

In a Young NMR tube $\mathrm{Cp}_{2} \mathrm{Ti}(\mathrm{btmsa})(\mathbf{1})(0.015 \mathrm{~g}, 0.043 \mathrm{mmol})$ and ${ }^{\text {Dip }} \mathrm{TerPPMe}_{3}(\mathbf{2 c})$ $(0.022 \mathrm{~g}, 0.043 \mathrm{mmol})$ were dissolved in 0.6 mL of $\mathrm{C}_{6} \mathrm{D}_{6}$. The reaction mixture was allowed to stand for 16 h at room temperature. Regular control by ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ spectroscopy showed that no reaction has occurred. Subsequent heating of the reaction mixture to $80^{\circ} \mathrm{C}$ for two days and further heating to $115{ }^{\circ} \mathrm{C}$ only results in the
decomposition of $\mathrm{Cp}_{2} \mathrm{Ti}$ (btmsa) (1), which is shown by the release of btmsa and decreasing signal intensity for the signals of $\mathrm{Cp}_{2} \mathrm{Ti}($ btmsa) (1) (Figure S 8).

Figure S8: Monitoring of the reaction of Cp_{2} Ti(btmsa) (1) with ${ }^{\text {DippTerPPMe }}{ }_{3}$ (2c) via ${ }^{1} \mathrm{H}$ NMR spectroscopy ($300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$, rt to indicated T); 0.15 ppm : btmsa, -0.32 and 6.42 ppm : Cp 2 Ti(btmsa) (1).
after additional 16 h at $115{ }^{\circ} \mathrm{C}$

after additional 32 h at $80^{\circ} \mathrm{C}$

after additional $\mathbf{1 6 ~ h}$ at $80^{\circ} \mathrm{C}$

4 Syntheses of compounds

4.1 Synthesis of $\mathrm{Cp}_{2}\left(\mathrm{PMe}_{3}\right)$ TiP ${ }^{\text {Mes }} \operatorname{Ter}$ (3)

A) In a Young NMR tube Cp 2Ti $\left.^{\text {(btmsa) (1) }} \mathbf{(0 . 0 2 2 ~} \mathrm{g}, 0.063 \mathrm{mmol}\right)$ and ${ }^{\text {Mes }} \mathrm{TerPPMe}_{3}(\mathbf{2 b})$ $(0.027 \mathrm{~g}, 0.063 \mathrm{mmol})$ were dissolved in either 0.6 mL of $\mathrm{C}_{6} \mathrm{D}_{6}$ or 0.6 mL of toluene $-d_{8}$ The reaction mixture was heated to $80^{\circ} \mathrm{C}$ overnight, which resulted in a colour change to dark orange/red and, due to its poor solubility, precipitation of $\mathrm{Cp}_{2}\left(\mathrm{PMe}_{3}\right) \mathrm{Ti} \mathrm{P}^{\mathrm{Mes}} \mathrm{Ter}$ (3). NMR spectroscopy revealed consumption of both starting materials to mainlyyield Cp_{2} (PMe_{3}) TiP ${ }^{\mathrm{Mes}}$ Ter (3).

Crystals suitable for single-crystal X-ray diffraction were obtained by slowly cooling of a toluene $-d_{8}$ solution of $\mathbf{3}$ from $80^{\circ} \mathrm{C}$ to room temperature.
B) $\mathrm{Cp}_{2} \mathrm{Ti}$ (btmsa) (1) $(0.331 \mathrm{~g}, 0.951 \mathrm{mmol})$ and ${ }^{\text {Mes }} \operatorname{TerPPMe}_{3}(\mathbf{2 b})(0.400 \mathrm{~g}, 0.951 \mathrm{mmol})$ were dissolved in 10 mL of benzene and the reaction mixture was stirred for 48 h at $80^{\circ} \mathrm{C}$. All volatile components were removed under vacuum and the remaining solid was washed with small amounts of benzene ($3 \times 1 \mathrm{~mL}$). Removal of all volatile components under vacuum yielded $\mathrm{Cp}_{2}\left(\mathrm{PMe}_{3}\right) \mathrm{TiP}{ }^{\mathrm{Mes}} \operatorname{Ter}(\mathbf{3})$ as a dark orange/red solid.

Note: $\mathbf{3}$ is poorly soluble in aromatic and aliphatic hydrocarbons such as benzene, toluene, n-hexane and tetrahydrofuran. Btmsa helps with the solubility so that the NMR data of attempt A are shown below.

Yield: 0.386 g ($0.645 \mathrm{mmol} ; 68 \%$).
EA: calculated: C 74.24, H 7.41; found: C 74.14, H 7.83. ${ }^{1}$ H NMR ($300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}$): $\delta=0.32\left(\mathrm{~d}^{2}{ }^{2} \mathrm{~J}_{\mathrm{P}, \mathrm{H}}=6.8 \mathrm{~Hz}, 9 \mathrm{H}, \mathrm{P}\left(\mathrm{CH}_{3}\right)_{3}\right), 2.20\left(\mathrm{~s}(\mathrm{br}), 6 \mathrm{H}, \mathrm{p}-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{3}\right), 2-37(\mathrm{~s}(\mathrm{br}), 12 \mathrm{H}$, o- $\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{3}$), $5.22\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 5.23\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 6.42\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}_{\text {Ary }}\right), 6.77-6.78$ (m(br), 4H, $\mathrm{CH}_{\text {Aryl }}$), 7.16-7.18 (m, $\left.2 \mathrm{H}, \mathrm{CH}_{\text {Aryl }}\right)^{*}$ ppm. ${ }^{*}=$ overlap with $\mathrm{C}_{6} \mathrm{D}_{5} \mathrm{H}$ signal. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathbf{N M R}$ $\left(75 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}\right): \delta=19.5\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{P}, \mathrm{C}}=19.8 \mathrm{~Hz},\left(\mathrm{PCH}_{3}\right)_{3}\right), 21.1\left(p-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{3}\right), 21.6$ $\left(o-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{3}\right), 103.8\left(\mathrm{C}_{5} \mathrm{H}_{5}\right), 114.2\left(\mathrm{C}_{\text {Aryl }}\right), 117.9\left(\mathrm{C}_{\text {Aryl }}\right), 124.5\left(\mathrm{C}_{\text {Aryl }}\right), 135.3\left(\mathrm{C}_{\text {Aryl }}\right) \mathrm{ppm}$. Note: All other signals are significantly broadened so that an unambiguous assignment was not possible. ${ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(122 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}\right): \delta=8.0\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{P}, \mathrm{P}}=21.7 \mathrm{~Hz}, \mathrm{P}\left(\mathrm{CH}_{3}\right)_{3}\right)$, 1067.3 ($\mathrm{d},{ }^{2} \mathrm{~J}_{\mathrm{P}, \mathrm{P}}=27.8 \mathrm{~Hz}, \mathrm{P}^{\text {Mes }}$ Ter) ppm. MS (ESI-TOF): expected: $\mathrm{m} / \mathrm{z}=599.2480[\mathrm{M}+$ $\mathrm{H}]^{+}$; found: $\mathrm{m} / \mathrm{z}=599.2484$. Fragment: $\mathrm{m} / \mathrm{z}=523.2036\left[\mathrm{M}+\mathrm{H}-\mathrm{PMe}_{3}\right]^{+}$.

Figure S9: ${ }^{1} \mathrm{H}$ NMR spectrum after the reaction of $\mathrm{Cp}_{2} \mathrm{Ti}(\mathrm{btmsa})(\mathbf{1})$ with ${ }^{\text {Mes }} \mathrm{TerPPMe}_{3}(\mathbf{2 b})$ (procedure A$)$ ($300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, \mathrm{rt}$); 0.15 ppm : btmsa.

Figure S10: ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum after the reaction of $\mathrm{Cp}_{2} \mathrm{Ti}\left(\right.$ btmsa) (1) with ${ }^{\mathrm{Mes} T e r P P M e} 3$ (2b) (procedure A) ($75 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, \mathrm{rt}$); 0.0 ppm : btmsa.

Figure S11: ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum after the reaction of $\mathrm{Cp}_{2} \mathrm{Ti}(\mathrm{btmsa})$ (1) with ${ }^{\text {Mes } \mathrm{TerPPMe}_{3} \text { (2b) }}$ (procedure A) (122 MHz, $\left.\mathrm{C}_{6} \mathrm{D}_{6}, r \mathrm{rt}\right)$; \#: free ${ }^{\mathrm{Mes} T e r P=} \mathrm{PMe}_{3}$.

4.2 Synthesis of $\mathrm{Cp}_{2} \mathrm{Ti}\left(\mathrm{PMe}_{3}\right) \mathrm{As}^{\text {Dip }} \operatorname{Ter}$ (5)

A) In a Young NMR tube $\mathrm{Cp}_{2} \mathrm{Ti}($ btmsa $)(\mathbf{1})(0.030 \mathrm{~g}, 0.086 \mathrm{mmol})$ and ${ }^{\mathrm{Dip}} \mathrm{TerAsPMe}_{3}(\mathbf{4})$ $(0.047 \mathrm{~g}, 0.086 \mathrm{mmol})$ were dissolved in 0.6 mL of $\mathrm{C}_{6} \mathrm{D}_{6}$. The reaction mixture was heated to $80^{\circ} \mathrm{C}$ over night which results in a color change to dark red. All volatile components were removed under vacuum. n-Pentane ($4 \times 1 \mathrm{~mL}$) was added to the residue and the respective supernatants were filtered through a microfiber filter.

Storage of the combined solutions at $-30^{\circ} \mathrm{C}$ resulted in the precipitation of crystals of 5 suitable for single crystal X-ray diffraction.
B) $\mathrm{Cp}_{2} \mathrm{Ti}$ (btmsa) (1) ($\left.0.019 \mathrm{~g}, 0.055 \mathrm{mmol}\right)$ and ${ }^{\text {DipTerAsPMe }} 3$ (4) ($\left.0.030 \mathrm{~g}, 0.086 \mathrm{mmol}\right)$ were dissolved in $\mathrm{C}_{6} \mathrm{D}_{6}$. The reaction mixture was heated to $80^{\circ} \mathrm{C}$ for 16 hours which revealed complete conversion of both starting materials to give $\mathrm{Cp}_{2}\left(\mathrm{PMe}_{3}\right) \mathrm{TiAs}{ }^{\mathrm{Dip}} \mathrm{Ter}$ (5) accompanied by release of btmsa. Removal of all volatile components under vacuum gave 5 as a dark red solid.

Note: Performing the reaction at $80^{\circ} \mathrm{C}$ according to procedure \mathbf{B} but using an excess of ${ }^{\text {Dip }} \mathrm{TerAsPMe}_{3}$ (4) results in the formation of ${ }^{\text {Dip }} \mathrm{TerAsAs}^{\text {Dip }}$ Ter (6) as a byproduct (Figure S15).

Yield: $0.024 \mathrm{~g}(0.033 \mathrm{mmol} ; 60 \%(\operatorname{method} \mathbf{B}))$.
${ }^{1} \mathbf{H} \mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}\right): \delta=0.10\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{P}, \mathrm{H}}=6.6 \mathrm{~Hz}, 9 \mathrm{H}, \mathrm{P}\left(\mathrm{CH}_{3}\right)_{3}, 0.69-1.42(\mathrm{~m}(\mathrm{br})\right.$, $\left.24 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.42-3.80\left(\mathrm{~m}(\mathrm{br}), 4 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 4.97-5.07$ (m(br), 10H, $\left.\mathrm{C}_{5} \mathrm{H}_{5}\right), 6.86-7.05$ $\left(\mathrm{m}(\mathrm{br}), 5 \mathrm{H}, \mathrm{CH}_{\text {Aryl }}\right) *, 7.09-7.14\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{\text {Aryl }}\right), 7.17-7.37\left(\mathrm{~m}(\mathrm{br}), 2 \mathrm{H}, \mathrm{CH}_{\text {Aryl }}\right) \mathrm{ppm} . *=$
overlap with $\mathrm{C}_{6} \mathrm{D}_{5} \mathrm{H}$ signal．${ }^{13} \mathrm{C}\left\{{ }^{\mathbf{1}} \mathrm{H}\right\}$ NMR（ $75 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}$ ）：$\delta=19.5\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{P}, \mathrm{C}}=20.1\right.$ $\left.\mathrm{Hz}, \mathrm{P}\left(\mathrm{CH}_{3}\right)_{3}\right)$ ppm．Note：All other signals are significantly broadened so that a clear assignment was not possible．${ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(122 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}\right): \delta=16.7 \mathrm{ppm}$ ．

Figure S12：${ }^{1} \mathrm{H}$ NMR spectrum after the reaction of $\mathrm{Cp}_{2} \mathrm{Ti}(\mathrm{btmsa})(\mathbf{1})$ with ${ }^{\mathrm{Dip}} \mathrm{TerAsPMe}_{3}(\mathbf{4})(300 \mathrm{MHz}$ ， $\left.C_{6} D_{6}, r t\right)$ ．

	$\begin{array}{cc} \hat{0} \\ \stackrel{\circ}{\circ} \\ 1 \\ 1 \end{array}$	$\stackrel{\otimes}{\infty}$	N	$\stackrel{\text { \％}}{\text { \％}}$	1

Figure S1 3: ${ }^{13} \mathrm{C}$ NMR spectrum after the reaction of $\mathrm{Cp}_{2} \mathrm{Ti}($ btmsa $)(\mathbf{1})$ with ${ }^{\mathrm{Dip}} \mathrm{TerAsPMe}_{3}(\mathbf{4})(122 \mathrm{MHz}$, $\left.C_{6} D_{6}, r t\right)$.

Figure S14: ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum after the reaction of $\mathrm{Cp}_{2} \mathrm{Ti}($ btmsa $)(\mathbf{1})$ with ${ }^{\text {Dip } T e r A s P M e ~} 3(4)(122 \mathrm{MHz}$, $\left.C_{6} D_{6}, r t\right)$.
$\stackrel{\star}{\stackrel{\rightharpoonup}{\circ}}$

Figure S15: ${ }^{1} \mathrm{H}$ NMR spectrum of the reaction of excess ${ }^{\text {Dip }} \mathrm{TerAsPMe}_{3}(\mathbf{4})$ with $\mathrm{Cp}_{2} \mathrm{Ti}($ btmsa $)(\mathbf{1})(300 \mathrm{MHz}$, $\left.\mathrm{C}_{6} \mathrm{D}_{6}, \mathrm{rt}\right)$ * $=$ characteristic signals of ${ }^{\mathrm{Dip} T e r A s A s} \mathrm{~s}^{\mathrm{Dip}} \operatorname{Ter}(\mathbf{6}),+=$ characteristic signals of ${ }^{\mathrm{Dip} T e r A s P M e} 3$ (4).

4.3 Synthesis of $\left({ }^{\text {Dip }} \mathrm{TerAs}\right)_{2}(6)$

- $2 \mathrm{PMe}_{3}$

In a Young NMR tube ${ }^{\text {DippTerAsPMe }} 3$ (4) ($\left.0.030 \mathrm{~g}, 0.055 \mathrm{mmol}\right)$ was dissolved in 0.6 mL of $C_{6} D_{6}$. The sample was heated to $80^{\circ} \mathrm{C}$ for 7 hours and subsequent ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopy revealed slow conversion of 4. Therefore, the temperature was increased to $105{ }^{\circ} \mathrm{C}$, and the sample was regularly analysed by ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ spectroscopy. After 130 h at that temperature 4 was consumed completely to give ${ }^{\text {DipTerAsAs }}{ }^{\text {Dip }}$ Ter (6). All volatile components were removed under vacuum. 2 mL of
n-pentane were added, the solution was passed through a microfiber filter, and stored at $-30^{\circ} \mathrm{C}$ to yield ${ }^{\text {Dip }}$ TerAsAs ${ }^{\text {Dip }}$ Ter (6) as an orange crystalline solid. These crystals were suitable for single crystal X-ray diffraction. Crystals suitable for single crystal X-ray diffraction were also obtained from a saturated solution of 6 in $C_{6} D_{6}$ at room temperature.

Yield: 0.014 g (0.015 mmol; 54\%).
${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}$): $\delta=0.92\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=6.8 \mathrm{~Hz}, 24 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.02(\mathrm{~d}$, $\left.{ }^{3} \jmath_{\mathrm{H}, \mathrm{H}}=6.9 \mathrm{~Hz}, 24 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.77$ (hept, $\left.{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=7.0 \mathrm{~Hz}, 8 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)$, 7.04-7.05 (m,
 $\mathrm{C}_{6} \mathrm{D}_{5} \mathrm{H}$ signal. ${ }^{13} \mathbf{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(75 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}\right): \delta=23.8\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 25.8\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $31.1\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 123.8\left(\mathrm{CH}_{\text {Ary }}\right), 128.2\left(\mathrm{CH}_{\text {Aryl }}\right) *, 128.9\left(\mathrm{CH}_{\text {Aryl }}\right), 130.8\left(\mathrm{CH}_{\text {Aryl }}\right), 140.4\left(\mathrm{C}_{\mathrm{q}, \text { Ary }}\right)$, $144.9\left(C_{q, \text { Aryl }}\right), 146.2\left(C_{q, \text { Ary }}\right), 151.4\left(C_{\text {q.Aryl }}\right)$ ppm. ${ }^{*}=$ overlap with $C_{6} D_{6}$ signal. MS (ESITOF): expected: $\mathrm{m} / \mathrm{z}=945.4301[\mathrm{M}+\mathrm{H}]^{+}, 967.4114[\mathrm{M}+\mathrm{Na}]^{+}$; found: $\mathrm{m} / \mathrm{z}=945.4283$ $\left[\mathrm{M}+\mathrm{H}^{+}, 967.4113[\mathrm{M}+\mathrm{Na}]^{+}\right.$.

Figure S1 6: Monitoring of ${ }^{\text {Dip }} \mathrm{TerAsPMe}_{3}(4)$ at higher temperatures via ${ }^{1} \mathrm{H}$ NMR spectroscopy $(300 \mathrm{MHz}$, $C_{6} \mathrm{D}_{6}$.
after additional 80 h at $105^{\circ} \mathrm{C}$

after additional 50 h at $105{ }^{\circ} \mathrm{C}$

Figure S1 7: Monitoring of ${ }^{\text {Dip }} \mathrm{TerAsPMe}_{3}(4)$ at higher temperatures via ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopy (122 $\left.\mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, \mathrm{rt}\right) ;-14.6 \mathrm{ppm}:{ }^{\mathrm{Dip} T e r A s P M e}{ }_{3}(6) ;-57.6 \mathrm{ppm}: \mathrm{PMe}_{3}$.
\qquad

Figure S1 8: ${ }^{1} \mathrm{H}$ NMR spectrum of ${ }^{\mathrm{Dip}} \mathrm{TerAsAs}^{\mathrm{Dip}} \operatorname{Ter}(6)\left(300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, \mathrm{rt}\right) ; 0.29 \mathrm{ppm}$: silicon grease.

Figure S1 9: ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of ${ }^{\mathrm{Dip}} \mathrm{TerAsAs}^{\mathrm{Dip}} \operatorname{Ter}(\mathbf{6})\left(75 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, \mathrm{rt}\right) ; 1.4 \mathrm{ppm}$: silicon grease.

[^0]
5 Computational details

5.1 General remarks

Computations were carried out using Gaussian 16^{8} and the standalone version of NBO $6.0 .{ }^{9}$

In a first step we investigated the thermodynamic feasibility of the reaction between group 4 alkyne complexes and experimentally accessible phospha- as well as arsaWittig reagents to form the respective phosphinidene or arsinidene complexes of the type $\mathrm{Cp}_{2} \mathrm{M}\left(\mathrm{PMe}_{3}\right) \mathrm{PAr}(\mathrm{M}=\mathrm{Ti}, \mathrm{Zr}$). Therefore, we optimized the real-size molecules using the hybrid density functional method B3LYP, ${ }^{10,11}$ in combination with the basis set def2svpp, ${ }^{12}$ and the empirical dispersion correction GD3BJ ${ }^{13}$ (notation: B3LYP/GD3BJ/def2svpp). Vibrational frequencies were also computed, to include zeropoint vibrational energies in thermodynamic parameters and to characterise all structures as minima on the potential energy surface. NLMO analyses were performed using the standalone version of NBO 6.0. QT-AIM, ELF and Wiberg Bondindex calculations/visualization were performed using MultiWfn 3.6 employing Gaussian16 formatted checkpoint files. ${ }^{14}$ For the visualization of 3D-quantum chemical results we used GaussView6.1.1. ${ }^{15}$ In addition to the electronic supporting information we provide a multi-structure xyz-file including all calculated molecules.

Please note that all computations were carried out for single, isolated molecules in the gas phase (ideal gas approximation). There may well be signific ant differences between gas phase and condensed phase.

5.2 Thermochemistry

In this chapter we summarize the results of our thermodynamic calculations, which were performed on the B3LYP/GD3BJ/def2svpp level of theory as described
beforehand. It should be noted that we did not calculate transition states or intermediate structures for further insights into the reaction mechanism. Nevertheless, this simple thermodynamic consideration nicely supports the observed reaction behaviours.

5.2.1 Group 4 metallocenes bearing phosphinidenes and arsinidenes

$E=P, A s$
R* $=$ Ter, Mes*, DipTer

$$
\begin{aligned}
& \mathrm{M}=\mathrm{Ti}, \mathrm{Zr} \\
& \mathrm{~L}=\text { none, } \text { pyridine }
\end{aligned}
$$

Scheme S1: Calculated reaction sequence to group 4 metallocenes bearing phosphinidenes and arsinidenes.

Table S4. Summary of calculated thermodynamic values for the formation of group 4 metallocene bearing phosphinidenes and arsinidenes.

Compound	$\Delta_{\mathrm{R}} \mathrm{H}[\mathrm{kJ} / \mathrm{mol}]$	$\Delta_{R} \mathrm{G}[\mathrm{kJ} / \mathrm{mol}]$	$\Delta_{R} \mathrm{H}[\mathrm{kcal} / \mathrm{mol}]$	$\Delta_{R} G[\mathrm{kcal} / \mathrm{mol}]$
$\mathrm{Cp}_{2} \mathbf{T i}$ (PMe_{3}) $\mathbf{P}^{\text {Mes }}$ Ter	-54.7	-47.0	-13.1	-11.2
$\mathrm{Cp}_{2} \mathrm{Ti}$ (PMM_{3}) $\mathrm{P}^{\text {Dip }} \mathrm{Ter}$	-48.0	-37.8	-11.5	-9.0
$\mathrm{Cp}_{2} \mathrm{Ti}$ (PMe_{3}) PM Mes*	-27.8	-24.1	-6.6	-5.8
$\mathrm{Cp}_{2} \mathrm{Zr}$ (PMe_{3}) $\mathrm{P}^{\text {Mes }} \mathrm{Ter}$	16.2	-38.8	3.9	-9.3
$\mathrm{Cp}_{2} \mathrm{Ti}\left(\mathrm{PMe}_{3}\right) \mathrm{As}^{\text {Mes }}$ Ter	-62.1	-56.3	-14.9	-13.4
$\mathrm{Cp}_{2} \mathrm{Zr}$ (PMe_{3}) $\mathrm{As}^{\text {Mes }}$ Ter	13.6	-39.4	3.3	-9.4
$\mathrm{Cp}_{2} \mathrm{Ti}\left(\mathrm{PMe}_{3}\right) \mathrm{As}^{\text {Dip }}$ Ter	-57.6	-49.6	-13.8	-11.8
$\mathrm{Cp}_{2} \mathrm{Zr}$ (PMe_{3}) $\mathrm{As}^{\text {dip }}$ Ter	20.8	-33.9	5.0	-8.1

5.2.2 Decomposition of phospha-Wittig reagents to formal CH activation products

As outlined in Section 3 of the SI in the case of Mes*- and DipTer-substituted phosphaWittig reagents no conversion to the desired titanocene phosphinideneswas observed.

In case of the Mes* phospha-Wittig reagent 2a instead the clean conversion into a phosphaindane species was detected. The thermodynamic values for this formal CH activation process on a CH group of the sterically loaded substituent clearly show this step, in the case of the Mes* substituent, to be the thermodynamically preferred compared to the formation of the phosphinidene complex. Furthermore, the endothermic reaction enthalpies in case of the ${ }^{\text {Mes }}$ Ter- and ${ }^{\text {Dip Ter-derivatives explain }}$ the absence of analogous decomposition reactions.
$\mathrm{R}^{*} \mathrm{PPMe}_{3}$

Mes*PH

DipTerPH iso1

DipTerPH iso2

TerPH

Scheme S2: Calculated reaction sequence to formal CH-activation products.

Table S5. Summary of calculated thermodynamic values for the formation of formal CH activation products.

Compound	$\Delta_{R} H[\mathrm{~kJ} / \mathrm{mol}]$	$\Delta_{R} G[\mathrm{~kJ} / \mathrm{mol}]$	$\Delta_{R} H[\mathrm{kcal} / \mathrm{mol}]$	$\Delta_{R} G[\mathrm{kcal} / \mathrm{mol}]$
MesTerPH	1.7	-45.0	0.4	-10.7
DipTerPH iso1	5.4	-42.2	1.3	-10.1
DipTerPH iso2	9.5	-39.9	2.3	-9.5
Mes*PH	-66.4	-116.5	-15.9	-27.9

5.2.3 Report of total enthalpies and energies for all calculated molecules

Table S6. Summary of thermodynamic data of all calculated compounds, if different isomers were considered only the minimum isomer (marked with *) was used for thermodynamic calculations.

Compound	Nim ag	HF	ZPE [kcal/mol]	$\mathrm{H}_{\text {tot }}$ [a.u.]	$\mathrm{G}_{\text {tot }}$ [a.u.]
H_{2}	0	-1.1710938	6.211710	-1.157890	-1.172736
$\mathrm{C}_{2}\left(\mathrm{SiMe}_{3}\right)_{2}$	0	-894.3438671	145.050420	-894.094213	-894.159269
PMe_{3}	0	-460.9178429	70.239730	-460.798299	-460.834131

pyridine	0	-248.111213	55.723280	-248.017208	-248.049810
MesTerPH	0	-1270.310053	261.540350	-1269.868360	-1269.948021
${ }^{\text {Dip }}$ TerPH iso1	0	-1506.022004	369.933810	-1505.400794	-1505.492960
${ }^{\text {Dip }}$ TerPH iso2	0	-1506.019420	369.098070	-1505.399231	-1505.492091
Mes*PH	0	-1044.194176	267.013690	-1043.746549	-1043.816315
$\mathrm{Cp}_{2} \mathrm{Ti}\left(\mathrm{C}_{2}\left(\mathrm{SiMe}_{3}\right)_{2}\right)$	0	-2130.617297	251.521230	-2130.187530	-2130.275546
$\mathrm{Cp}_{2} \mathrm{Zr}\left(\mathrm{C}_{2}\left(\mathrm{SiMe}_{3}\right)_{2}\right) \mathrm{py}$	0	-1576.468978	308.366770	-1575.942928	-1576.042481
${ }^{\text {MesTerPPMe }} 3$	0	-1731.2328654	333.781820	-1730.667291	-1730.765023
${ }^{\text {Dip }}$ TerPPMe ${ }_{3}$	0	-1966.946423	442.40777	-1966.201131	-1966.311015
Mes*PPMe ${ }_{3}$	0	-1505.091645	340.16317	-1504.519546	-1504.606055
${ }^{\text {Mes }}$ TerAsPMe 3	0	-3625.6173707	333.075840	-3625.052389	-3625.151929
${ }^{\text {Dip }}$ TerAsPMe ${ }_{3}$	0	-3861.33058	441.73408	-3860.585878	-3860.69717
$\mathrm{Cp}_{2} \mathrm{Ti}\left(\mathrm{PMe}_{3}\right) \mathrm{P}^{\mathrm{Mes}} \mathrm{Ter}$ iso1	0	-2967.5287754	441.445210	-2966.781450	-2966.899194
$\mathrm{Cp}_{2} \mathrm{Ti}\left(\mathrm{PMe}_{3}\right) \mathrm{P}^{\mathrm{Mes}} \mathrm{Ter}$ iso2	0	-2967.5287754	441.445220	-2966.781450	-2966.899194
$\mathrm{Cp}_{2} \mathrm{Ti}\left(\mathrm{PMe}_{3}\right) \mathrm{P}^{\mathrm{Mes}} \mathrm{Ter}$ trip on sin geom sp	2	-2967.4892274	440.593330	-2966.744298	-2966.861182
$\mathrm{Cp}_{2} \mathrm{Ti}\left(\mathrm{PMe} \mathrm{B}^{\text {MespTer }}\right.$ trip opt	0	-2967.5152634	440.920400	-2966.768276	-2966.888126
$\mathrm{Cp}_{2} \mathrm{Ti}\left(\mathrm{PM}_{3}\right) \mathrm{P}^{\text {Dip }}$ Ter	0	-3203.240121	550.34371	-3202.31272	-3202.441707
$\mathrm{Cp}_{2} \mathrm{Ti}\left(\mathrm{PM}_{3}\right)$ PMes*	0	-2741.377354	447.6102	-2740.623446	-2740.731506
$\mathrm{Cp}_{2} \mathrm{Zr}\left(\mathrm{PMe}_{3}\right) \mathrm{PM}^{\text {Mes }}$ Ter	0	-2165.2388170	440.25904	-2164.492634	-2164.613202
$\mathrm{Cp}_{2} \mathrm{Ti}\left(\mathrm{PM}_{3}\right) \mathrm{As}^{\text {Mes }}$ Ter	0	-4861.916139	440.76626	-4861.169376	-4861.289636
$\mathrm{Cp}_{2} \mathrm{Zr}\left(\mathrm{PMe}_{3}\right) \mathrm{As}^{\text {Mes }}$ Ter	0	-4059.6244079	439.69117	-4058.878697	-4059.000337
$\begin{aligned} & \mathrm{Cp}_{2} \mathrm{Ti}\left(\mathrm{PMe}_{3}\right) \mathrm{As}^{\mathrm{Dip}} \mathrm{Ter} \\ & 01 \end{aligned}$	0	-5097.627992	549.63502	-5096.701148	-5096.832328
$\mathrm{Cp}_{2} \mathrm{Ti}\left(\mathrm{PMe}_{3}\right) \mathrm{As}^{\mathrm{Dip}} \mathrm{Ter}$ trip opt	0	-5097.6146257	548.40668	-5096.688912	-5096.824735
$\begin{aligned} & \mathrm{Cp}_{2} \mathrm{Ti}\left(\mathrm{PMe}_{3}\right) \mathrm{As}^{\mathrm{Dip} T e r} \\ & \mathrm{TS} \end{aligned}$	1	-5097.6013088	548.96615	-5096.675722	-5096.807185
$\begin{aligned} & \mathrm{Cp}_{2} \mathrm{Ti}\left(\mathrm{PMe}_{3}\right) \mathrm{As}^{\mathrm{Dip} T e r} \\ & -1 \text { (Charge) } 2 \text { (Mult) } \\ & \hline \end{aligned}$	0	-5097.6504725	546.29912	-5096.727902	-5096.863079
$\mathrm{Cp}_{2} \mathrm{Zr}\left(\mathrm{PMe}_{3}\right) \mathrm{As}^{\text {Dip }}$ Ter	0	-4295.335088	548.41375	-4294.409468	-4294.543496
$\begin{aligned} & \mathrm{Cp}_{2} \mathrm{Ti}\left(\mathrm{PMe}_{3}\right) \mathrm{As}^{\mathrm{Dip}} \mathrm{Ter} \\ & \text { iso2 } \end{aligned}$	0	-5097.620866	549.66600	-5096.694069	-5096.824913
$\begin{aligned} & \mathrm{Cp}_{2} \mathrm{Ti}\left(\mathrm{PMe}_{3}\right)^{\text {Mes PTer }} \\ & \text { iso2 } \end{aligned}$	0	-2969.5267313	441.27406	-2968.779323	-2968.898715
$\mathrm{Cp}_{2} \mathrm{Ti}\left(\mathrm{PMe}_{3}\right) \mathrm{P}^{\text {Mes }} \mathrm{Ter}$ trip on sin geom sp	2	-2969.4862653	440.53012	-2968.741222	-2968.858093
Cp2Ti(PMe $)^{\text {Mes }}$ PTer iso3 "TS Ter rot" sp	0	-2969.4964196	439.29505	-2968.756001	-2968.862061

Cp2Ti(PMe ${ }^{\prime}$ As $^{\text {DipTer }}$	0	-5100.0683280	549.61907	-5099.141199	-5099.273392
Cp2Ti(PMe ${ }_{3}$)As tip Ter_ trip on sin geom sp	1	-5100.0315314	549.07103	-5099.105687	-5099.2391
Complex II singlet opt	0	-3331.8877943	762.2345	-3330.605817	-3330.770986
Complex II triplet sp		Did not converged			
Complex III singlet opt	0	-3419.5232041	630.65398	-3418.461361	-3418.602137
Complex III triplet sp	2	-3419.4770355	629.60201	-3418.417837	-3418.557335
Complex IV singlet opt	0	-2167.1455579	439.98482	-2166.399405	-2166.52218
Complex IV triplet sp	3	-2167.0884977	438.92127	-2166.345958	-2166.464271
Complex V singlet opt	0	-2354.539857	399.7258	-2353.861838	-2353.976107
Complex V triplet sp	6	-2354.458006	396.44008	-2353.788477	-2353.895104
Complex II singlet svp on tzvp structure	29	-3329.151259	761.78629	-3327.88572	-3328.017315
Complex II triplet sp	30	-3329.10444	760.54984	-3327.840953	-3327.974888

5.3 Bonding analysis of $\mathrm{Cp}_{2} \mathrm{Ti}\left(\mathrm{PMe}_{3}\right) \mathrm{P}^{\mathrm{Mes}} \mathrm{Ter}$ (3) and $\mathrm{Cp}_{2} \mathrm{Ti}\left(\mathrm{PMe}_{3}\right) \mathrm{As}^{\mathrm{Dip}} \operatorname{Ter}$ (5)

In this chapter, we summarize the most important results from a series of different bonding analyses to gain a deeper insight into the electronic situation of the respective phosphinidine (3) and arsinidene (5) complexes. These calculations were performed on the molecular structures optimized at B3LYP/GD3BJ/def2tzvp level of theory. To verify the chosen method, we compared selected bond parameters with the metrical parameters obtained by single crystal X-Ray crystallography.

Table S7. Deviations of the calculated structures from the experimental molecular structure of $\mathrm{Cp}_{2} \mathrm{Ti}\left(\mathrm{PMe}_{3}\right) \mathrm{PTer}$ (3).

Bonding parameter	SC-XRD	B3LYP/GD3BJ/def2svpp		B3LYP/GD3BJ/def2tzvp	
Ti-PMe3	2.569	2.550	-0.019	2.552	-0.017
Ti-PTer	2.423	2.334	-0.089	2.335	-0.088

P-CTer	1.842	1.852	0.010	1.842	0.000
P-Ti-P	86.820	88.940	2.120	89.650	2.830
Ti-P-CTer	122.110	123.590	1.480	124.420	2.310
P-Ti-P-CTer	-119.710	-116.490	3.220	-115.520	4.190

Table S8. Deviations of the calculated structures from the experimental molecular structure of $\mathrm{Cp}_{2} \mathrm{Ti}\left(\mathrm{PMe}_{3}\right) \mathrm{As}^{\mathrm{Dip}} \mathrm{Ter}(\mathbf{5})$ (For this analysis, we compare only the values of the best resolved molecule 1 among the three independent experimentally determined, Figure S2).

Bonding parameter	SC-XRD	01/B3LYP/GD3BJ/def2svpp		$01 / B 3 L Y P / G D 3 B J / d e f 2 t z v p ~$	
Ti-PMe3	2.555	2.545	-0.010	2.546	-0.009
Ti-AsDipTer	2.473	2.441	-0.032	2.446	-0.027
As-CDipTer	1.989	1.994	0.005	1.992	0.003
P-Ti-As	88.05	87.27	-0.78	87.53	-0.52
Ti-As-CDipTer	121.73	119.99	-1.74	120.68	-1.05
P-Ti-As-CDipTer	115.20	115.04	-0.16	115.01	-0.19

Table S9. Deviations of the calculated structures from the experimental molecular structure of ${ }^{\text {Dip TerAsAs }}{ }^{\text {Dip }}$ Ter (6_i).

Bonding parameter	SC-XRD	01/B3LYP/GD3BJ/def2svpp		01C2h/B3LYP/GD3BJ/def2svp	
As-As	2.268	2.271	0.003	2.272	0.004
As-C	1.990	2.005	0.015	2.005	0.015
C-As-As	101.150	101.660	0.510	101.660	0.510
As-C-C	120.890	120.310	-0.580	120.310	-0.580
C-As-As-C	180.000	180.000	0.000	180.000	0.000
C-C-As-As	95.730	95.420	-0.310	95.140	-0.590

We found two different energetically identical isomers of $\mathrm{Cp}_{2} \mathrm{Ti}\left(\mathrm{PMe}_{3}\right) \mathrm{P}^{\mathrm{Mes}} \operatorname{Ter}(\mathbf{3})$, which can be transformed into each other by rotation of the sterically demanding terphenyl substituent around the $\mathrm{P}-\mathrm{C}$ axis. In the case of $\mathrm{Cp}_{2} \mathrm{Ti}\left(\mathrm{PMe}_{3}\right) \mathrm{As} \mathrm{s}^{\mathrm{Dip}} \mathrm{Ter}(5)$ we found two energetically different but similar isomers, which can be transferred via an formal swing through of the arsinidene into each other. The activation barrier of the isomerisation in the case of $\mathbf{5}$ is significant lower compared to that of $\mathbf{3}$, which might give an explanation for the broader resonances in the NMR spectra of compound 5.

Table S10. Summary of calculated thermodynamic values for a rotation of the terphenyl ligand around the $\mathrm{P}-\mathrm{C}$ axis.

Rotational Barrier	$\begin{gathered} \Delta_{R} \mathrm{H} \\ {[\mathrm{~kJ} / \mathrm{mol}]} \end{gathered}$	$\begin{gathered} \Delta_{R} G \\ {[\mathrm{~kJ} / \mathrm{mol}]} \end{gathered}$	$\begin{gathered} \Delta_{\mathrm{R}} \mathrm{H} \\ {[\mathrm{kcal} / \mathrm{mol}]} \end{gathered}$	$\Delta_{R} G$ [kcal/mol]
$\mathrm{Cp}_{2} \mathrm{Ti}$ (PMe P_{3} PMes $^{\text {Ter }}$ "TS Ter rot" sp	61.2	96.2	14.6	23.0
Cp2Ti_AsDipTer_PMe3 "TS DipTer swing through"	66.8	66.0	16.0	15.8

5.3.1 NBO analysis and Natural Molecular Orbitals NLMOs of 3 and 5.

NBO6.0 analyses of the B3LYP/GD3BJ/def2tzvp optimized structures of $\mathbf{3}$ and $\mathbf{5}$ were performed to analyse the natural localized molecular orbitals(NLMO). The NBO routine found a double bond between $\mathrm{P}(82)$ and $\mathrm{Ti}(84)$ in 3, in agreement with the Lewis structure in Scheme S1. It is worth to note that this r-type NBO as well as the LP at $P(82)$ are only occupied by approx. 1.8 electrons. At this point it should be mentioned that the occupations in arsinidene complex 5 behave in a similar way. This could be in general an indicator for a delocalized double bond or for a biradical character of the $\mathrm{Ti}=\mathrm{P}$ or $\mathrm{Ti}=\mathrm{As}$ bonds (as outlined earlier), which is not well represented in the NBO picture. Based on this theory, the condensed NLMO analyses (listed below) clearly characterizes the $\mathrm{Ti}(84)-\mathrm{P}(83) \mathrm{Me}_{3}$ bond as a dative bond, with a major contribution (74\%) of sp-hybrid orbitals at the phosphorus atom. We found two different types of $\mathrm{Ti}(84)-\mathrm{P}(82)$ bonds in agreement with the double bond character. The Ti-P σ-bond mainly consists of sp^{3} type hybrid at phosphorus and a d-type orbital at the titanium center with small s orbital contributions. This Ti(84)-P(82) NLMO shows only small contributions from the carbon atom of the terphenyl substituent (1.34%). The second $\mathrm{Ti}(84)-\mathrm{P}(82)$ NLMO is best described as a π-type $\mathrm{Ti}=\mathrm{P}$ bond consisting of pure p orbital at phosphorus and pure d orbital character at the titanium center. This $T i(84)-P(82)$ NLMO shows only small contributions from the phosphorus atom of the PMe_{3} ligand (1.35 \%). Furthermore, the lone pair (LP) at the phosphinidene phosphorus is best described as sp-hybrid orbital.

When evaluating the NLMO's of the arsinidene complex $\mathrm{Cp}_{2} \mathrm{Ti}\left(\mathrm{PMe}_{3}\right) \mathrm{As}{ }^{\mathrm{Dip}} \mathrm{Ter}(\mathbf{5})$, it is immediately noticeable that the natural localized bonding orbitals described here are very similar to those of the lighter phosphinidene derivative 3. Furthermore, it is noticeable that no remarkable contributions of the adjacent carbon atoms are found (threshold value > 1.3\%). A closer look reveals only small differences in the hybridization of the arsenic lone pair with a $\mathrm{sp}^{0.5}$ hybridization compared to the sp hybrid on the phosphinidene P atom as well as the $s p^{4}$ hybrid on As in the Ti-As σ bond compared to the sp^{3} hybrid on the comparable P atom.

Table S11. Summary of selected NLMO's of $\mathrm{Cp}_{2} \mathrm{Ti}\left(\mathrm{PMe}_{3}\right)^{\text {Mesp }} \mathrm{PTer}$ (3).

Shortened NLMO Analysis of $\mathrm{Ti}(84)-\mathrm{P}(83) \mathrm{Me}_{3} \sigma-$ bond (threshold > 1.3\%)	Shortened NLMO Analysis of Ti(84)-P(82)Ter $\pi-$ bond (threshold > 1.3\%)
159. (2.00000) 96.7058\% BD (1) P 83-Ti 84	158. (2.00000) 91.5439\% BD (2) P 82-Ti 84
$\begin{aligned} & 73.856 \% \text { P } 83 \text { s(} 45.08 \%) p ~ 1.21 \text { (} 54.77 \%) d \text { d } 000(\\ & 0.14 \%) \text { f 0.00(0.01\%) } \end{aligned}$	$\begin{aligned} & \text { 47.393\% P } 82 \text { s(0.29\%)p99.99(99.43\%)d } 0.90 \text { (} \\ & 0.26 \%) \text { f } 0.07(0.02 \%) \end{aligned}$
$\begin{aligned} & \text { 23.293\% Ti } 84 \text { s(} 13.21 \%) \text { p 0.01(0.15\%)d 6.56(} \\ & \text { 86.62\%) f0.00(0.02\%) } \end{aligned}$	$\begin{aligned} & \text { 1.345\% P } 83 \text { s(0.08\%)p99.99(91.94\%)d99.99(} \\ & 7.70 \% \text {) f } 3.60(0.28 \%) \end{aligned}$
	44.415\% Ti 84 s(0.01\%)p 1.00(0.02\%)d99.99(99.96\%) f0.50(0.01\%)

Shortened NLMO Analysis of Ti(84)-P(82)Ter σ bond (threshold > 1.3\%)	Shortened NLMO Analysis of LP at P(82) (threshold > 1.5%)
157. (2.00000) 94.7179\% BD (1) P 82-Ti 84	59. (2.00000) 90.7432\% LP (1) P 82
$\begin{aligned} & 1.343 \% \text { C } 1 \text { s(3.08\%)p31.17(} 95.91 \%) d \text { 0.29(} \\ & 0.90 \%) \text { f } 0.04(0.11 \%) \end{aligned}$	$\begin{aligned} & 1.612 \% \text { C } 1 \mathrm{~s}(\mathrm{6.12} \mathrm{\%}) \mathrm{p} 15.09(92.32 \%) \mathrm{d} 0.22(\\ & 1.35 \%) \text { f0.03(} 0.21 \%) \end{aligned}$
$\begin{aligned} & \text { 62.574\% P } 82 \text { s(} 24.57 \%) \text { p } 3.05(75.05 \%) d 0.01 \text { (} \\ & 0.35 \%) \text { f } 0.00(0.04 \%) \end{aligned}$	$\begin{aligned} & 90.811 \% \text { P } 82 \text { s(61.69\%)p 0.62(38.26\%)d 0.00(} \\ & 0.06 \%) \text { f } 0.00(0.00 \%) \end{aligned}$
$\begin{aligned} & 32.637 \% \text { Ti } 84 \mathrm{~s}(8.90 \%) \mathrm{p} 0.01(0.06 \%) \mathrm{d} 10.23(\\ & 91.03 \%) 0.00(0.01 \%) \end{aligned}$	$\begin{aligned} & 3.800 \% \text { Ti } 84 \mathrm{~s}(20.03 \%) \mathrm{p} 0.00(\quad 0.02 \%) \mathrm{d} 3.99 \text { (} \\ & 79.89 \%) \text { f } 0.00(0.06 \%) \end{aligned}$

Table S12. Summary of selected NLMO's of $\mathrm{Cp}_{2} \mathrm{Ti}\left(\mathrm{PMe}_{3}\right)^{\mathrm{Dip}} A s T e r$ (5).

Shortened NLMO Analysis of Ti(1)-P(55)Me3 σ bond (threshold > 1.3\%)	Shortened NLMO Analysis of Ti(1)-As(102)Ter $\pi-$ bond (threshold > 1.3\%)
75. (2.00000) 96.6234\% BD (1)Ti 1-P 55 23.800\% Ti 1 s(13.04\%)p 0.01(0.13\%)d 6.66(86.81\%) f0.00(0.02\%) 73.231\% P 55 s(45.35\%)p 1.20(54.51\%)d 0.00 (0.13\%) f0.00(0.01\%)	```44.421% Ti 1 s(0.02%)p 1.29(0.03%)d99.99(99.94%) f0.51(0.01%) 46.100% As 102 s(0.40%)p99.99(99.43%)d 0.41(0.16%) f0.04(0.02%)```
Shortened NLMO Analysis ofTi(1)-As(102)Ter σ bond (threshold > 1.3\%)	Shortened NLMO Analysis of LP at As(102) (threshold > 1.5\%)
$\begin{aligned} & \text { 76. (2.00000) 94.7659\% BD (1)Ti 1-As } 102 \\ & 34.287 \% \text { Ti } 1 \text { s(} 9.19 \%) \text { p 0.01(} 0.09 \%) d 9.88(\\ & 90.71 \%) \text { f0.00(} 0.02 \%) \end{aligned}$	$\begin{aligned} & \text { 74. (2.00000) } 93.0616 \% \text { LP (1)As102 } \\ & \text { 3.123\% Ti } 1 \mathrm{~s}(19.71 \%) \mathrm{p} 0.00(\quad 0.01 \%) \mathrm{d} 4.07(\\ & 80.23 \%) \mathrm{f} 0.00(0.06) \end{aligned}$
60.877\% As 102 s(20.37\%)p 3.89(79.29\%)d 0.01(0.30%) f 0.00 (0.03\%)	93.070\% As 102 s(68.65\%)p 0.46(31.31\%)d 0.00 (0.03\%) f 0.00 (0.00\%)

5.3.2 QT-AIM analysis of $\mathrm{Cp}_{2} \mathrm{Ti}\left(\mathrm{PMe}_{3}\right)^{\text {Mes }} \mathrm{PTer}$ (3) and $\mathrm{Cp}_{2} \mathrm{Ti}\left(\mathrm{PMe}_{3}\right) \mathrm{As}{ }^{\mathrm{Dip}} \mathrm{Ter}$ (5)

QT-AIM analysis ${ }^{16}$ for $\mathrm{Cp}_{2} \mathrm{Ti}\left(\mathrm{PMe}_{3}\right) \mathrm{P}^{\text {Mes }}$ Ter (3) revealed two $\mathrm{Ti}-\mathrm{P}$ "bond" paths (Ti(84)$P(82)$ and $T i(84)-P(82)$), in agreement with the Lewis resonance scheme (Scheme S1). In addition to the contour plot of the Laplacian of the electron density $\nabla^{2} r$ of Ti complex 3 we added the wiberg bond indices (WBI) next to the bond critical points in italic numbers (Figure S20). The WBI of 1.73 for the $\mathrm{Ti}(84)-\mathrm{P}(82)$ bond clearly reveals a double bond on the basis of this theory. The QT-AIM analysis for $\mathrm{Cp}_{2} \mathrm{Ti}\left(\mathrm{PM}_{3}\right) \mathrm{As}^{\mathrm{Dip}} \mathrm{Ter}$ can be interpreted in the same manner (Figure S21). We found "bond" paths between the titanium center the phosphorus and arsenic atoms. Also in this case the WBI of the $\mathrm{Ti}(1)-\mathrm{As}(102)$ bond with 1.72 clearly indicates a double bond within the framework of this theory.

Figure S20: Contour plot of the Laplacian of the electron density $\nabla^{2} r$ of Ti complex $\mathbf{3}$ in the $\mathrm{P}-\mathrm{Ti}-\mathrm{P}$ plane. Dashed lines indicate negative (local charge concentration), solid lines indicate positive values (local charge depletion). The Laplacian plot is overlaid with the molecular graph from QT-AIM analysis and wiberg bond indices (italic small numbers). Brown lines indicate bonding paths, blue dots correspond to bond critical points. Density from B3LYP/GD3BJ/def2tzvp calculation.

Figure S2 1: Contour plot of the Laplacian of the electron $\nabla^{2} r r$ of Ti complex $\mathbf{5}$ in the P-Ti-As plane. Dashed lines indicate negative (local charge concentration), solid lines indicate positive values (local charge depletion). The Laplacian plot is overlaid with the molecular graph from QT-AIM analysis and wiberg bond indices (italic small numbers). Brown lines indicate bonding paths, blue dots correspond to bond critical points. Density from B3LYP/GD3BJ/def2tzvp calculation.

5.3.3 Electron Localisation Function of $\mathrm{Cp}_{2} \mathrm{Ti}\left(\mathrm{PMe}_{3}\right)^{\mathrm{Mes}} \mathrm{PTer}$ (3) and

 $\mathrm{Cp}_{2} \mathrm{Ti}\left(\mathrm{PMe}_{3}\right) \mathrm{As}^{\mathrm{Dip}} \mathrm{Ter}(5)$To further classify the bonding situation in $\mathrm{Cp}_{2} \mathrm{Ti}\left(\mathrm{PMe}_{3}\right) \mathrm{P}^{\mathrm{Mes}} \mathrm{Ter}$ and $\mathrm{Cp}_{2} \mathrm{Ti}\left(\mathrm{PMe}_{3}\right) \mathrm{As}^{\mathrm{Dip}} \mathrm{Ter}$ we had a closer look to the 3D-plots of the electron localization functions (ELF). The results from QT-AIM- and NBO-analysis are corroborated by ELF analysis (Figure S22 and Figure S23) showing a dative $\mathrm{Ti}(84)-\mathrm{P}(83) \mathrm{Me}_{3}$ bond and a lone pair at the $\mathrm{P}(82)$ atom. Furthermore, there is a dumbbell-shaped ELF between the titanium center and the phosphinidene phosphorus atom which indicates a $\mathrm{Ti}=\mathrm{P}$ double bond based on this theory. The 3D plot of the ELF for $\mathrm{Cp}_{2} \mathrm{Ti}\left(\mathrm{PMe}_{3}\right)$ AsDipTer can be described in the same manner. We find a dative Ti1-P55 bond as well as a lone pair on As102 and a dumbbell-shaped ELF between Ti(1)-As(102).

Figure S22: 3D-ELF plot of the central Ti($\left.\mathrm{PMe}_{3}\right) \mathrm{PAr}$ unit in $\mathrm{Cp}_{2} \mathrm{Ti}\left(\mathrm{PMe}_{3}\right) \mathrm{P}^{\mathrm{Mes}} \mathrm{Ter}(\mathbf{3})$.

Figure S23: 3D-ELF plot of the central $\mathrm{Ti}\left(\mathrm{PMe}_{3}\right) \mathrm{AsAr}$ unit in $\mathrm{Cp}_{2} \mathrm{Ti}\left(\mathrm{PMe}_{3}\right) \mathrm{As}^{\mathrm{Dip}} \mathrm{Ter}$ (5).

5.3.4 Proof of the wavefunction stability of $\mathrm{Cp}_{2} \mathrm{Ti}\left(\mathrm{PMe}_{3}\right) \mathrm{P}^{\mathrm{Mes}} \mathrm{Ter}$ (3),

 $\mathrm{Cp}_{2} \mathrm{Ti}\left(\mathrm{PMe}_{3}\right) \mathrm{As}^{\mathrm{Dip}} \mathrm{Ter}$ (5) and comparable literature complexes II-VIn order to proof the correctness of the electronical description of the complexes $\mathbf{3}$ and 5 described here and selected literature compounds II-V, we first proofed the stability of the Kohn-Sham wavefunctions of the performed DFT calculations (B3LYP/GD3BJ/def2svpp of def2tzvp). We found in all investigated systems stable closed shell KS wavefunctions. To take the results from the NBO calculations into account, which gives indication of a potentially open shell singlet state (biradicaloid character), we next proofed the stability of the Hatree-Fock (HF) wavefunctions. To our surprise we find in all cases an RHF/UHF instability of these. With a closer look to the spin density of these optimised UHF calculations we notice in all cases opposing spin densities located at the metal center and the pnictogen atoms (Table S13). Moreover, we obtain high spin contamination of the aromatic ligand systems. Nevertheless, these results are an indicator for considering those molecules as biradicaloid's, or in other words, bearing an antiferromagnetic coupled electron pair as π-bond system. Therefore, we performed simple Complete Active Space (CAS) calculations considering just two electrons in two orbitals (see next section). We choose the orbitals which are in line with the examined spin density plots as active space.

Table S13. Representation of the spindensity plots of the investigated compounds at isovalue 0.01.

Compound 3	Compound 5

5.3.5 Biradical character of $\mathrm{Cp}_{2} \mathrm{Ti}\left(\mathrm{PMe}_{3}\right) \mathrm{P}^{\mathrm{Mes}} \mathrm{Ter}$ (3) and $\mathrm{Cp}_{2} \mathrm{Ti}\left(\mathrm{PMe}_{3}\right) \mathrm{As}^{\mathrm{Dip}} \mathrm{Ter}$ (5)

The "broken-symmetry" solution is not a true eigenfunction of the S^{2} operator. In fact, it may be considered as a 50:50 mixture of the singlet and triplet state, if the overlap between the singly occupied orbitals and spin polarisation are small. ${ }^{17}$ The actual singlet wave function can then be expressed in terms of a linear combination of two "broken-symmetry" wave functions

$$
{ }^{1} \Psi=\frac{1}{\sqrt{2}}\left(\left|\cdots \chi_{+} \overline{\chi_{-}}\right\rangle-\left|\cdots \overline{\chi_{+}} \chi_{-}\right\rangle\right)
$$

where χ_{+}, χ_{-}are the singly occupied orbitals and the overline indicates β spin. Therefore, the open-shell singlet must be described by a multi-reference wave function.

In the "broken-symmetry" picture, the singly occupied orbitals χ_{+}and χ_{-}are, in principle, localised orbitals formed by linear combinations of the (delocalised) canonical HOMO ϕ_{H} and LUMO ϕ_{L} :

$$
\chi_{ \pm}=\frac{1}{\sqrt{2}}\left(\phi_{H} \pm \phi_{L}\right)
$$

Hence, the multi-reference wave function expressed in terms of the canonical MOs is given by

$$
{ }^{1} \Psi=c_{1}\left|\cdots \phi_{\mathrm{H}}^{2}\right\rangle+c_{2}\left|\cdots \phi_{\mathrm{L}}^{2}\right\rangle
$$

where the expansion coefficients c_{i} are the square roots of the relative weight of each determinant. This type of multi-determinant open-shell singlet wave function can be obtained by the Complete Active Space (CAS) SCF method and gives a qualitatively correct description of the electronic structure of a biradical. The biradical character can be evaluated as

$$
\beta=\frac{2 c_{2}^{2}}{c_{1}^{2}+c_{2}^{2}}
$$

where a value of $\beta=1$ indicates a "perfect" biradical with two electrons in two degenerate orbitals. ${ }^{18}$ Smaller values indicate an increasing energy gap between HOMO and LUMO, and $\beta \rightarrow 0$ indicates a closed-shell species.

Consequently, the smallest active space to properly describe a biradical is a $\operatorname{CAS}(2,2)$ calculation (i.e. two electrons in two orbitals). In case of compounds 3 and 5, this calculation show that the contributions to the multi-determinant wave function are the two determinants placing two electrons either in the formal HOMO (ϕ_{1}) or LUMO (ϕ_{2}) lead to a biradical character of $\beta=37 \%$ for $\mathrm{Cp}_{2} \mathrm{Ti}\left(\mathrm{PMe}_{3}\right)^{\text {Mes }}$ PTer (3) and 40% for $\mathrm{Cp}_{2} \mathrm{Ti}\left(\mathrm{PMe}_{3}\right) \mathrm{As}^{\mathrm{Dip}} \operatorname{Ter}(\mathbf{5})$.

Figure S24: Schematic depiction of the active orbitals of a $\operatorname{CAS}(2,2)$ calculation (def2svpp) of the $\mathrm{Cp}_{2} \mathrm{Ti}\left(\mathrm{PMe}_{3}\right) \mathrm{P}^{\text {Mes }} \operatorname{Ter}(\mathbf{3})$. The orbital localization scheme indicates that one of the radical centers is localized at Ti, while the other is localized at the phosphinidene phosphorus atom.

orbital localization

$$
\chi_{ \pm}=\frac{1}{\sqrt{2}}\left(\varphi_{1} \pm \varphi_{2}\right)
$$

| relative weights $c_{i}^{2}:$ | 81% | 18% |
| ---: | :---: | :---: | :---: |
| coefficients: | 0.90 | -0.43 |$\quad \Psi_{\mathrm{CAS}} \approx c_{1} \Psi_{1}+c_{2} \Psi_{2}$

Figure S25: Schematic depiction of the active orbitals of a $\operatorname{CAS}(2,2)$ calculation (def2svpp) of the $\mathrm{Cp}_{2} \mathrm{Ti}\left(\mathrm{PMe}_{3}\right) \mathrm{As}{ }^{\mathrm{Dip}} \operatorname{Ter}(\mathbf{5})$. The orbital localisation scheme indicates that one of the radical centres is localised at Ti, while the other is localised at the phosphinidene phosphorus atom.

CAS Most important Occupation MOs determinants Number

$$
\begin{array}{rlr}
\text { relative weights } c_{i}^{2}: & 79 \% & 20 \% \\
\text { coefficients: } & 0.89 & -0.45
\end{array} \quad \Psi_{\mathrm{CAS}} \approx c_{1} \Psi_{1}+c_{2} \Psi_{2}
$$

Hence, compounds $\mathbf{3}$ and $\mathbf{5}$ can be regarded as a biradicals. The singlet states are calculated to be the ground states $\left(\Delta E_{S-T}=-106.2 \mathrm{~kJ} / \mathrm{mol}\right.$ for 3 and $-96.6 \mathrm{~kJ} / \mathrm{mol}$ for 5); i.e. the radical centres are strongly antiferromagnetically coupled. The calculated exchange coupling constants ${ }^{19}$ are.

$$
\begin{aligned}
& 2 J(3)=E_{\mathrm{S}}-E_{\mathrm{T}}=-8881.2 \mathrm{~cm}^{-1} \\
& 2 J(5)=E_{\mathrm{S}}-E_{\mathrm{T}}=-8075.9 \mathrm{~cm}^{-1}
\end{aligned}
$$

The radical centers are localized at Ti and on the phosphorus atom of the phosphinidene or arsenic atom of the arsinidene ligand (Figure S24 and Figure S25), respectively. Therefore, the electronic structure can be understood as a complex between a formal Ti (III) fragment and a phosphorus or arsenic centered radical, whose "free" electrons are antiferromagnetically coupled. Therefore, complexes $\mathbf{3}$ and $\mathbf{5}$ are EPR-silent in their respective ground states. To proof the general description of group 4 pnictinidenes as biradicoloids we further performed the same calculations for the literature known complexes (II-V). Through the calculations of complex II and Ve noticed two sets of formally Ti-E $(E=P, N) \pi$-bonds consisting of orthogonal d-shaped orbitals at titanium and p -shaped orbitals at the pnictogen atom. This was described in the original literature resulting in a pseudo Ti-P triple bond. ${ }^{20}$ To take this into account we increased, in these complexes, the active space considering four electrons in four molecular orbitals (CAS $(4,4)$). This revealed in the complexes II and \mathbf{V} the expected biradical character alongside a small degree of formally tetra radical character. It should be noted that the smaller $\operatorname{CAS}(2,2)$ calculations intrinsically lead to larger β values compared to larger active space calculations and may overestimate this value as they do not account for dynamic correlations. Nevertheless, we have summarized in Table S14 the calculated occupation numbers of the orbitals considered. In the case of the $\operatorname{CAS}(2,2)$ calculations, these values of the ϕ_{L} are mathematically identical with the beta value.

Table S14. Summary of all calculated biradical character β from CAS(2,2)/def2svpp calculations and $\Delta E_{\text {S-T }}$ (B3LYP/GD3BJ/def2tzvp).

Compound	Occupation numbers	Singlet Triplet gap $\boldsymbol{\Delta} \boldsymbol{E}_{\mathbf{s}-\mathbf{T}}$
$\mathrm{Cp}_{2} \mathrm{Ti}\left(\mathrm{PMe}_{3}\right) \mathrm{P}^{\text {Mes Ter (3) }}$	$\phi_{1}=1.63$	$-106.2 \mathrm{~kJ} / \mathrm{mol}$
	$\phi_{2}=0.37$	
$\mathrm{Cp}_{2} \mathrm{Ti}\left(\mathrm{PMe}_{3}\right) \mathrm{As}^{\text {DipTer (5) }}$	$\phi_{1}=1.60$	$-96.6 \mathrm{~kJ} / \mathrm{mol}$
	$\phi_{2}=0.40$	
Complex II	$\phi_{1}=1.88$	$-122.92 \mathrm{~kJ} / \mathrm{mol}^{[\mathrm{ad}}$
	$\phi_{2}=1.85$	
	$\phi_{3}=0.15$	
Complex III	$\phi_{4}=0.12$	
Complex IV	$\phi_{1}=1.67$	$-121.22 \mathrm{~kJ} / \mathrm{mol}$
	$\phi_{2}=0.33$	
Complex V	$\phi_{1}=1.84$	$-149.81 \mathrm{~kJ} / \mathrm{mol}$
	$\phi_{2}=0.16$	
	$\phi_{1}=1.93$	$-214.90 \mathrm{~kJ} / \mathrm{mol}$
	$\phi_{2}=1.86$	
	$\phi_{3}=0.14$	
	$\phi_{4}=0.07$	

[a] In case of this complex the def2tzvp calculation did not converged, therefore we calculated this value on the basis of single point def2svpp calculations considering the optimised structure of the higher basis.

Table S15. Representation of the ϕ_{1} and ϕ_{2} of the CAS(2,2) calculations.
Compound $3 \phi_{1}$

5.3.6 Calculation of the theoretical ${ }^{31} \mathrm{P}$ NMR chemical shifts of the phosphorus atoms in $\mathrm{Cp}_{2} \mathrm{Ti}\left(\mathrm{PMe}_{3}\right) \mathrm{P}^{\mathrm{Mes}} \mathrm{Ter}$ and $\mathrm{Cp}_{2} \mathrm{Ti}\left(\mathrm{PMe}_{3}\right) \mathrm{As}{ }^{\mathrm{Dip}} \mathrm{Ter}$

Chemical shifts were derived by the GIAO method at the PBEO/def2svp level of theory using the optimized structures from B3LYP/GD3BJ/def2tzvp calculations. ${ }^{21}$ The calculated absolute shifts ($\sigma_{\mathrm{cal}, \mathrm{X}}$) were referenced to the experimental absolute shift of $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$ in the gas phase $\left(\sigma_{\text {ref }, 1}=328.35 \mathrm{ppm}\right){ }^{22}$ using $\mathrm{PH}_{3}\left(\sigma_{\text {ref }, 2}=594.45 \mathrm{ppm}\right)$ as a secondary standard: ${ }^{23}$

$$
\left.\begin{array}{rl}
\delta_{\mathrm{calc}, \mathrm{X}} & =\left(\sigma_{\mathrm{ref}, 1}-\sigma_{\mathrm{ref}, 2}\right)-\left(\sigma_{\mathrm{calc}, \mathrm{X}}-\sigma_{\mathrm{cal}, \mathrm{PH}}^{3}\right.
\end{array}\right)
$$

At the PBEO/def2-SVP level of theory, $\sigma_{\text {cal, }, \text { PH }}$ amounts to +629.20 ppm . With these data in hand we were able to calculate the ${ }^{31}$ P NMR chemical shifts of the complexes 3 and $\mathbf{5}$, which are in reasonable agreement with the experimental values.

Table S16. Summary of all calculated ${ }^{31} \mathrm{P}$ NMR shifts.

Compound	Ti-PR	Ti-PR
$\mathrm{Cp}_{2} \mathrm{Ti}\left(\mathrm{PMe}_{3}\right) \mathrm{P}^{\text {Mes }} \mathrm{Ter}(\mathbf{3})$	$404.29 \rightarrow-41.19 \mathrm{ppm}$	$-799.08 \rightarrow 1162.12 \mathrm{ppm}$
$\mathrm{Cp}_{2} \mathrm{Ti}\left(\mathrm{PMe}_{3}\right) \mathrm{As}^{\mathrm{Dip}} \mathrm{Ter}(\mathbf{5})$	$402.12 \rightarrow-39.02 \mathrm{ppm}$	-
Complex II	-	$121,76 \rightarrow 241.34 \mathrm{ppm}$
Complex III	$370.47 / 420.05 \rightarrow-7.37 /-56.95 \mathrm{ppm}$	$-280.50 \rightarrow 643.60 \mathrm{ppm}$
Complex IV	$415.49 \rightarrow-52.39 \mathrm{ppm}$	$-407.41 \rightarrow 770.51 \mathrm{ppm}$

5.3.7 Comparison of the experimental and calculated UV/Vis spectra of $\mathrm{Cp}_{2} \mathrm{Ti}\left(\mathrm{PMe}_{3}\right) \mathrm{P}^{\mathrm{Mes}} \mathrm{Ter}$ and $\mathrm{Cp}_{2} \mathrm{Ti}\left(\mathrm{PMe}_{3}\right) \mathrm{As}^{\mathrm{Dip}} \mathrm{Ter}$

These calculations were performed to gain a deeper understanding about the colour of the herein described complexes. The calculations were performed on the former described B3LYP/GD3BJ/def2tzvp level of theory considering 40 excited states as well as the scrf approach for THF as solvent. The calculated data were plotted with a halfwidth of $2000 \mathrm{~cm}^{-1}$ and normalized to a prominent band of the experimentally
observed spectrum. For the experimental measurement of the UV/Vis spectra of both complexes we diluted approximately 1 mg of complex in 4 mL THF under Aratmosphere. Due to the large UV absorption of the terphenyl substituents the spectrum was not well resolved, especially in the UV region, and we diluted the Sample approx. 1:4 (we note that upon dilution a partial decomposition of $\mathbf{3}$ cannot be ruled out, which might explain the deviation of the calculated and the experimental spectra). Those prepared samples of the compound $\mathbf{3}$ showed only small shoulders next to the strong UV band in the Vis region from which the $\lambda_{\max }$ values are difficult to specify. In contrast to this the spectrum of 5 shows two broad absorption maxima at $\lambda=652$ and 474,5 nm in the Vis region and one further prominent band at $\lambda=353,5 \mathrm{~nm}$ which tailed out in the Vis region. These experiments are well in line with the observatio ns by our naked eyes were the color of compound $\mathbf{5}$ is much more intense compared to complex $\mathbf{3}$. As expected, revealed the calculations a more complex excitation behavior for both complexes. The first excitation states $\left(\lambda_{\text {EX1 }}(\mathbf{3})=634 \mathrm{~nm} ; \lambda_{\mathrm{EX} 1}(\mathbf{5})=652 \mathrm{~nm}\right)$ can be explained by an excitation by electrons from the highest occupied molecular orbital (HOMO) as well as the HOMO-1 into the lowest unoccupied molecular orbital (LUMO) (TableS17 and Table S18). These both donor molecularorbitals can be best described as titanium - phosphorus/arsenic binding molecular orbitals which together form the $\mathrm{Ti}=\mathrm{P} /$ As double bond. This is in line with the shape of the acceptor LUMO which can be described as Ti-P/As antibonding molecular orbital. The following 17 excited states, which also possess the HOMO and HOMO-1 as donor molecular orbitals, combine transitions of various LUMO orbitals that can be described mainly as antibonding molecular orbitals of the terphenyl substituents.

Figure S2 6: Plot of the UV/Vis spectra and the calculated oscillator strength of $\mathrm{Cp}_{2} \mathrm{Ti}\left(\mathrm{PMe}_{3}\right) \mathrm{P}^{\mathrm{Mes}} \mathrm{Ter}$ (3).

Figure S27: Plot of the UV/Vis spectra and the calculated oscillator strength of $\mathrm{Cp}_{2} \mathrm{Ti}\left(\mathrm{PMe}_{3}\right) \mathrm{As}^{\mathrm{Dip}} \mathrm{Ter}(\mathbf{5})$.

5.3.7.1 Report of the first 20 excited states of $\mathrm{Cp}_{2} \mathrm{Ti}\left(\mathrm{PMe}_{3}\right) \mathrm{P}^{\mathrm{Mes}} \mathrm{Ter}$ (3) and corresponding molecular orbitals

Cp2Ti_PTer_PMe_UV_old_THFsolv

\# b3lyp empiricaldispersion=gd3bjdef2tzvp geom=allcheck guess=read TD $=($ Nstates $=20)$ scrf $=(p c m$, solvent=THF)

Excitation energies and oscillator strengths:

Excited State 1: Singlet-A $1.9563 \mathrm{eV} 633.77 \mathrm{~nm} \mathrm{f}=0.0065<\mathrm{S}^{* *} 2>=0.000$ 158 -> $160 \quad 0.27486$ 159 -> $160 \quad 0.64251$
This state for optimization and/or second-order correction.
Total Energy, E(TD-HF/TD-DFT) $=-2969.46321641$
Copying the excited state density forthis state as the 1-particle RhoCl density.

Excited State 2: Singlet-A $2.5526 \mathrm{eV} 485.72 \mathrm{~nm} \mathrm{f}=0.0052<\mathrm{S}^{\star *} 2>=0.000$ 158 -> $160 \quad 0.46997$
$158->162 \quad 0.15559$
$159->160-0.16282$
$159->161-0.24648$
$159->162-0.27666$
$159->1630.16983$
$159->164 \quad 0.17881$

Excited State 3: Singlet-A $2.7017 \mathrm{eV} 458.92 \mathrm{~nm} \mathrm{f}=0.0054<S^{* *} 2>=0.000$ 158 -> $160 \quad 0.16145$
$158->162-0.14499$
$159->161 \quad-0.22928$
$159->1620.57789$
$159->164 \quad 0.19168$

Excited State 4: Singlet-A $2.8356 \mathrm{eV} 437.23 \mathrm{~nm} \mathrm{f}=0.0442<\mathrm{S}^{* *} 2>=0.000$ $158->160 \quad 0.29699$
$158->161-0.24843$
$158->162 \quad 0.16261$
158 -> $164 \quad 0.17390$
$159->160-0.12793$
$159->161 \quad 0.37792$
$159->162 \quad 0.13553$
$159->163-0.16545$
$159->164-0.21946$

Excited State 5: Singlet-A $2.9642 \mathrm{eV} 418.28 \mathrm{~nm} \mathrm{f}=0.0045<\mathrm{S}^{* * 2>=0.000}$
$158->162-0.31886$
158 -> 1630.12665
$158->166-0.18250$
159 -> $162-0.14923$
$159->164 \quad 0.11282$
159 -> $165-0.12407$
$159->166 \quad 0.46652$
159 -> $167 \quad 0.14048$
$159->168 \quad 0.16460$

Excited State 6: Singlet-A $3.0123 \mathrm{eV} 411.59 \mathrm{~nm} \mathrm{f}=0.0231<\mathrm{S}^{* *} 2>=0.000$ 158 -> 1620.12623
$158->164-0.15408$
$159->161 \quad 0.36942$
$159->163 \quad 0.12085$
159 -> 1640.46793
$159->167 \quad 0.18158$
$159->168-0.11712$
$159->171-0.10553$

Excited State 7: Singlet-A $3.0990 \mathrm{eV} 400.07 \mathrm{~nm} \mathrm{f}=0.0006<S^{* *} 2>=0.000$

158 -> 161	0.27164	
$158->162$	0.41148	
$158->163$	-0.16400	
$158->164$	-0.16635	
$158->166$	-0.18617	
$158->168$	-0.15422	
$159->162$	0.11071	
$159->163$	-0.13145	
159 -> 166	0.26195	
Excited State 8:	8: Singlet-A	$3.2034 \mathrm{eV} 387.04 \mathrm{~nm} \mathrm{f}=0.0108<S^{* *} 2>=0.000$
$158->161$	0.12026	
$159->161$	0.17677	
159 -> 162	0.13803	
159 -> 163	0.58890	
$159->164$	-0.20185	
159 -> 165	-0.13084	
Excited State 9:	9: Singlet-A	3.3068 eV $374.94 \mathrm{~nm} \mathrm{f}=0.0764$ <S**2>=0.000
$158->160$	-0.12535	
158 -> 161	-0.19991	
$158->162$	0.27656	
$158->164$	0.36995	
158 -> 166	0.12715	
158 -> 167	0.15916	
$159->161$	-0.17638	
$159->163$	0.20701	
159 -> 166	0.21719	
159 -> 167	0.11816	
Excited State 10	0: Singlet-A	$3.4053 \mathrm{eV} 364.09 \mathrm{~nm} \mathrm{f}=0.0088<S^{* *} 2=0.000$
158 -> 161	0.11116	
158 -> 163	-0.15365	
$158->164$	-0.10443	
$158->165$	-0.16096	
$158->166$	0.50576	
$158->168$	0.21084	
159 -> 165	-0.17275	
159 -> 166	0.19879	
159 -> 168	0.12720	
Excited State 11	1: Singlet-A	$3.4500 \mathrm{eV} 359.37 \mathrm{~nm} \mathrm{f}=0.0279<\mathrm{S}^{* *} 2=0.000$
158 -> 161	0.23049	
$158->164$	0.34748	
158 -> 165	0.10103	
$158->167$	0.15075	
$158->168$	-0.10475	
158 -> 171	-0.10298	
159 -> 161	0.15772	
159 -> 164	0.26494	
159 -> 165	-0.17541	
159 -> 166	-0.12541	
$159->167$	-0.26805	
159 -> 168	0.15763	
Excited State 12	2. Singlet-A	$3.5261 \mathrm{eV} \mathrm{351.61} \mathrm{~nm} \mathrm{f}=0.0054<\mathrm{S}^{* *} \mathrm{~B}=0.000$
$159->165$	0.53012	
159 -> 166	0.24066	
$159->167$	-0.37938	
Excited State 13	3: Singlet-A	$3.5849 \mathrm{eV} 345.85 \mathrm{~nm} \mathrm{f}=0.1401<S^{* *} 2=0.000$
$158->161$	0.39842	
$158->164$	0.19611	
159 -> 164	-0.10429	
159 -> 165	0.27783	
159 -> 167	0.39156	
Excited State 14	4: Singlet-A	$3.6593 \mathrm{eV} 338.82 \mathrm{~nm} \mathrm{f}=0.0448<S^{* *} 2=0.000$
158 -> 161	-0.22968	
$158->163$	-0.39894	

159 -> 165	0.12938	
$159->166$	-0.14649	
159 -> 167	0.15117	
159 -> 168	0.43860	
Excited State 15:	5: Singlet-A	$3.7028 \mathrm{eV} 334.84 \mathrm{~nm} \mathrm{f}=0.0477<\mathrm{S}^{* *} 2=0.000$
158 -> 162	0.16808	
158 -> 163	0.48763	
158 -> 164	-0.20105	
159 -> 166	-0.11076	
159 -> 168	0.37451	
Excited State 16:	: Singlet-A	$3.9135 \mathrm{eV} 316.81 \mathrm{~nm} \mathrm{f}=0.0221<S^{* *} 2=0.000$
158 -> 164	0.12576	
158 -> 165	-0.25832	
158 -> 166	-0.14556	
158 -> 167	-0.17546	
158 -> 168	0.18522	
159 -> 167	-0.11615	
159 -> 168	0.12166	
159 -> 169	0.39672	
159 -> 170	0.27461	
$159->171$	-0.15848	
Excited State 17:	7: Singlet-A	$3.9519 \mathrm{eV} 313.73 \mathrm{~nm} \mathrm{f}=0.0159<\mathrm{S}^{* *} 2=0.000$
$158->165$	0.30573	
158 -> 166	0.15708	
158 -> 168	-0.12911	
159 -> 169	0.55034	
Excited State 18:	: Singlet-A	$3.9988 \mathrm{eV} 310.05 \mathrm{~nm} \mathrm{f}=0.0061<\mathrm{S}^{* *} 2=0.000$
154 -> 160	0.22555	
156 -> 160	-0.12730	
157 -> 160	-0.11742	
158 -> 165	0.43631	
158 -> 166	0.15026	
$158->167$	-0.36207	
159 -> 170	0.12930	
Excited State 19:	: Singlet-A	$4.0069 \mathrm{eV} 309.43 \mathrm{~nm} \mathrm{f}=0.0365<\mathrm{S}^{* *} \mathrm{~B}=0.000$
152 -> 160	-0.11100	
$153->160$	-0.11411	
154 -> 160	0.42170	
156 -> 160	-0.23659	
157 -> 160	-0.23623	
158 -> 165	-0.19236	
159 -> 169	0.13187	
159 -> 170	-0.25159	
$159->171$	0.12723	
Excited State 20	: Singlet-A	$4.0928 \mathrm{eV} 302.93 \mathrm{~nm} \mathrm{f}=0.0039<\mathrm{S}^{* *} 2=0.000$
152 -> 160	0.11420	
157 -> 160	0.14644	
158 -> 165	0.19263	
158 -> 166	-0.21365	
158 -> 167	0.15235	
158 -> 168	0.52458	
$159->170$	-0.19987	
$159->171$	0.12562	

Table S17. Representation of the most important molecular orbitals of $\mathbf{3}$.

5.3.7.2 Report of the first 20 excited states of $\mathrm{Cp}_{2} \mathrm{Ti}\left(\mathrm{PMe}_{3}\right) \mathrm{As}{ }^{\text {Dip }}$ Ter (5) and the corresponding molecular orbitals

Cp2Ti_AsDipTer_PMe3_UV_old_THFsolv40

\# b3lyp empiricaldispersion=gd3bjdef2tzvp geom=allcheck guess=read TD
$=($ Nstates $=40)$ scrf=(pcm,solvent=THF)

Excitation energies and oscillator strengths:
Excited State 1: Singlet-A $1.9015 \mathrm{eV} 652.05 \mathrm{~nm} f=0.0080<S^{* *} 2>=0.000$ 191 -> 1930.39300 192 -> 1930.57818
This state for optimization and/or second-order correction.
Total Energy, E(TD-HF/TD-DFT) $=-5100.00652260$
Copying the excited state density forthis state as the 1-particle RhoCl density.

Excited State	2: Singlet-A	2.4378 eV $508.59 \mathrm{~nm} \mathrm{f}=0.0252<S^{* * 2}>=0.000$
191 -> 193	0.49960	
$192->193$	-0.30905	
$192->194$	0.22975	
$192->197$	-0.19047	
Excited State	3: Singlet-A	2.6358 eV $470.38 \mathrm{~nm} \mathrm{f}=0.0019<S^{* * 2}>=0.000$
$191->195$	-0.14340	
$192->194$	-0.23205	
$192->195$	0.63631	
Excited State	4: Singlet-A	$2.7355 \mathrm{eV} 453.24 \mathrm{~nm} \mathrm{f}=0.0284<\mathrm{S}^{* * 2>=0.000}$
191 -> 193	-0.19366	
$191->194$	-0.21299	
$191->197$	0.16918	
$192->193$	0.14501	
$192->194$	0.44258	
$192->195$	0.18222	
$192->196$	-0.11701	
$192->197$	-0.29303	
Excited State	5: Singlet-A	$2.9545 \mathrm{eV} 419.64 \mathrm{~nm} \mathrm{f}=0.0066<\mathrm{S}^{* *} 2>=0.00$
191 -> 195	0.32869	
$191->200$	-0.17762	
$192->200$	0.55118	
$192->201$	0.15498	
Excited State	6: Singlet-A	$2.9767 \mathrm{eV} 416.51 \mathrm{~nm} \mathrm{f}=0.0107$ <S**2>=0.000
192 -> 194	0.32959	
$192->197$	0.44971	
$192->198$	0.16042	
$192->199$	0.32167	
$192->201$	0.10298	
Excited State	7: Singlet-A	3.1074 eV $398.99 \mathrm{~nm} \mathrm{f}=0.0028<S^{* * 2}>=0.000$
191 -> 194	0.20456	
191 -> 195	0.49765	
$191->197$	-0.21154	
191 -> 200	0.19063	
$191->201$	0.12633	
$192->195$	0.11808	
$192->200$	-0.25719	
Excited State	8: Singlet-A	$3.2029 \mathrm{eV} 387.10 \mathrm{~nm} \mathrm{f}=0.0090<\mathrm{S}^{* * 2>=0.000}$
191 -> 194	0.16094	
$192->194$	0.19913	
$192->196$	0.61028	
$192->199$	-0.13958	
Excited State	9: Singlet-A	$3.2927 \mathrm{eV} 376.55 \mathrm{~nm} \mathrm{f}=0.0775<\mathrm{S}^{* * 2} 2>=0.000$
191 -> 194	0.29297	
$191->195$	-0.18912	
$191->197$	-0.17149	
191 -> 199	-0.11290	
$192->194$	0.18856	
$192->196$	-0.28685	
$192->197$	0.16987	
$192->198$	-0.23253	
$192->199$	-0.21100	
$192->200$	0.15037	
$192->201$	-0.12127	
$192->203$	-0.13319	
Excited State	10: Singlet-A	$3.3750 \mathrm{eV} 367.36 \mathrm{~nm} \mathrm{f}=0.0227<\mathrm{S}^{* *} 2=0.000$
191 -> 194	-0.15055	
191 -> 195	0.13496	
$191->197$	0.28406	
$191->198$	0.10153	
191 -> 199	0.22818	
191 -> 203	0.10562	

$192->193$	-0.10111	
$192->197$	0.34556	
$192->198$	-0.22459	
192 -> 199	-0.26449	
Excited State 11:	1: Singlet-A	$3.4425 \mathrm{eV} 360.16 \mathrm{~nm} \mathrm{f}=0.0012<\mathrm{S}^{* *} 2=0.000$
191 -> 197	0.11080	
191 -> 199	0.12640	
$191->200$	0.58155	
$191->201$	0.18659	
$192->200$	0.23980	
Excited State 12:	Singlet-A	$3.4778 \mathrm{eV} 356.50 \mathrm{~nm} \mathrm{f}=0.0790<S^{* *} 2=0.000$
191 -> 194	0.40401	
$191->197$	0.32403	
191 -> 199	0.16158	
$192->196$	-0.11148	
$192->198$	0.38380	
Excited State 13:	3: Singlet-A	3.5166 eV 352.57 nm f $=0.0563<\mathrm{S}^{* *} \mathrm{~B}=0.000$
191 -> 194	-0.26951	
$191->197$	-0.18335	
$192->198$	0.46089	
$192->199$	-0.36531	
Excited State 14:	4: Singlet-A	$3.6321 \mathrm{eV} 341.36 \mathrm{~nm} \mathrm{f}=0.0245<\mathrm{S}^{* * 2} 2=0.000$
191 -> 194	0.10535	
191 -> 196	0.53926	
$191->199$	-0.11860	
$192->199$	-0.21807	
$192->201$	0.31188	
Excited State 15:	5: Singlet-A	$3.6785 \mathrm{eV} 337.05 \mathrm{~nm} \mathrm{f}=0.0138<\mathrm{S}^{* *} 2=0.000$
191 -> 196	-0.41403	
$191->197$	0.15713	
$191->198$	-0.11052	
$191->199$	-0.11044	
$192->199$	-0.20039	
$192->201$	0.42427	
Excited State 16:	6: Singlet-A	$3.7710 \mathrm{eV} 328.78 \mathrm{~nm} \mathrm{f}=0.0012<\mathrm{S}^{* *} \mathrm{C}=0.000$
$192->201$	0.19205	
$192->202$	0.64626	
$192->203$	-0.14998	
Excited State 17:	7: Singlet-A	$3.8423 \mathrm{eV} 322.68 \mathrm{~nm} \mathrm{f}=0.0416<\mathrm{S}^{* *} \mathrm{C}=0.000$
189 -> 193	0.13986	
$191->197$	-0.23927	
$191->198$	0.45516	
191 -> 199	0.18297	
$192->201$	0.21968	
192 -> 202	-0.20683	
$192->203$	-0.19227	
Excited State 18:	: Singlet-A	$3.9145 \mathrm{eV} 316.73 \mathrm{~nm} \mathrm{f}=0.0015<S^{* *} 2=0.000$
189 -> 193	-0.14141	
191 -> 198	0.47422	
191 -> 199	-0.25352	
$192->201$	-0.13235	
$192->202$	0.10060	
$192->203$	0.34467	
Excited State 19:	: Singlet-A	$3.9264 \mathrm{eV} 315.77 \mathrm{~nm} \mathrm{f}=0.0270<S^{* *} 2=0.000$
$189->193$	0.48095	
$190->193$	-0.18031	
$191->199$	0.17382	
$192->199$	-0.10153	
$192->201$	-0.10333	
$192->202$	0.10304	
$192->203$	0.33920	

Excited State $20:$	Singlet-A	$4.0184 \mathrm{eV} 308.54 \mathrm{~nm} \mathrm{f}=0.0739<\mathrm{S}^{* *} \mathrm{Z}=0.000$
$189->193$	-0.28460	
$190->193$	0.19534	
$191->197$	-0.19868	
$191->199$	0.44391	
$191->201$	-0.10812	
$191->203$	-0.11551	
$192->203$	0.23449	

Table S18. Representation of the most important molecular orbitals of $\mathbf{5}$.

6 References

1 M. Fischer, L. Vincent-Heldt, M. Hillje, M. Schmidtmann and R. Beckhaus, Dalton Trans. 2020, 49, 2068-2072
P. Gupta, J.-E. Siewert, T. Wellnitz, M. Fischer, W. Baumann, T. Beweries and C. Hering-Junghans, Dalton Trans. 2021, 50, 1838-1844.
M. Fischer, S. Nees, T. Kupfer, J. T. Goettel, H. Braunschweig and C. Hering.Junghans J. Am. Chem. Soc. 2021, http://dx.doi.org/10.1021/jacs.1c00204.
G. M. Sheldrick, Acta Cryst. A 2015, 71, 3-8.
G. M. Sheldrick, Acta Cryst. C 2015, 71, 3-8.

6 G. M. Sheldrick, SADABS Version 2, University of Göttingen, Germany, 2004.
7 A. L. Spek, Acta Cryst. 2015, C71, 9-18
8 Gaussian 16, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.
a) E. D. Glendening, J. K. Badenhoop, A. E. Reed, J. E. Carpenter, J. A. Bohmann, C. M. Morales, C. R. Landis and F. Weinhold, NBO 6.0, Theoretical Chemistry Institute, University of Wisconsin, Madison, 2013; b) J. E. Carpenter and F. Weinhold, J. Mol. Struct.: THEOCHEM 1988, 169, 41-62; c) F. Weinhold and J. E. Carpenter, The Structure of Small Molecules and Ions, Plenum Press, 1988; d) F.

Weinhold and C. R. Landis, Valency and Bonding. A Natural Bond Orbital DonorAcceptor Perspective, Cambridge University Press, 2005.
a) A. D. Becke, Phys. Rev. A 1988, 38, 3098-3100; b) J. P. Perdew, Phys. Rev. B 1986, 33, 8822-8824.
a) S. H. Vosko, L. Wilk and M. Nusair, Can. J. Phys. 1980, 58, 1200-1211; b) C. Lee, W. Yang and R. G. Parr, Phys. Rev. B 1988, 37, 785-789; c) B. Miehlich, A. Savin, H. Stoll and H. Preuss, Chem. Phys. Lett. 1989, 157, 200-206; d) A. D. Becke, J. Chem. Phys. 1993, 98, 5648-5652.
F. Weigend and R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297-3305.
a) S. Grimme, J. Antony, S. Ehrlich and H. Krieg, J. Chem. Phys. 2010, 132, 154104;
b) S. Grimme, S. Ehrlich and L. Goerigk, J. Comput. Chem. 2011, 32, 1456-1465.
T. Lu and F. Chen, J. Comput. Chem. 2012, 33, 580.

GaussView, Version 6.1, Roy Dennington, Todd A. Keith, and John M. Millam, Semichem Inc., Shawnee Mission, KS, 2016
a) R. F. W. Bader, Acc. Chem. Res. 1985, 18, 9-15; b) R. F. W. Bader, Chem. Rev. 1991, 91, 893-928; c) R. F. W. Bader, Atoms in Molecules: A Quantum Theory, Oxford University Press, 1994; d) R. F. W. Bader, Monatsh. Chem. 2005, 136, 819854.
a) C. J. Cramer, Essentials of Computational Chemistry: Theories and Models, John Wiley \& Sons, Ltd, Chichester, UK, 2004; b) L. Salem and C. Rowland, C. Angew. Chem. Int. Ed. Engl. 1972, 11, 92-111; c) J.-P. Malrieu and G. Trinquier, J. Phys. Chem. A 2012, 116, 8226-8237.
E. Miliordos, K. Ruedenberg and S. S. Xantheas, S. S. Angew. Chem. Int. Ed. 2013, 52, 5736-5739.
a) L. Noodleman, J. Chem. Phys. 1981, 74, 5737-5743; b) D. Herebian, K. E. Wieghardt and F. Neese, J. Am. Chem. Soc. 2003, 125, 10997-11005; c) M. Abe, Chem. Rev. 2013, 113, 7011-7088.
G. Zhao, F. Basuli, U. J. Kilgore, H. Fan, H. Aneetha, J. C. Huffman, G. Wu and D. J. Mindiola, J. Am. Chem. Soc. 2006, 128, 13575-13585.
a) F. London, J. Phys. Radium 1937, 8, 397-409; b) R. McWeeny, Phys. Rev. 1962, 126, 1028-1034; c) R. Ditchfield, Mol. Phys. 1974, 27, 789-807; d) K. Wolinski, J. F. Hinton and P. Pulay, J. Am. Chem. Soc. 1990, 112, 8251-8260; e) J. R.

Cheeseman, G. W. Trucks, T. A. Keith and M. J. Frisch, J. Chem. Phys. 1996, 104, 5497-5509.
C. J. Jameson, A. De Dios and A. Keith Jameson, Chem. Phys. Lett. 1990, 167, 575-582.

23
C. van Wüllen, Phys. Chem. Chem. Phys. 2000, 2, 2137-2144.

[^0]:

