Electronic Supplementary Material (ESI) for Chemical Communications. This journal is © The Royal Society of Chemistry 2021

Electronic supplementary information for

Fluorescent Molecular Glass Based on

Hexadehydrotribenzo[12]annulene

Yotaro Kasahara,^a Ichiro Hisaki,^b Tomoyuki Akutagawa^{a,c} and Takashi Takeda*^{a,c}

a: Department of Applied Chemistry, Graduate School of Engineering, Tohoku University, Sendai, 980-8579, Japan b: Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, 560-8531, Japan

c: Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, 980-8577, Japan

CONTENTS

		Page
1.	TG chart of C8[12]DBA	S2
2.	ORTEP drawings of C1[12]DBA	S2
3.	HOMO and LUMO of C1[12]DBA	S3
4.	UV-Vis and fluorescent spectra of C1[12]DBA in solution and in the solid state	S3
5.	Experimental section	S3
6.	¹ H and ¹³ C NMR spectra of C8[12]DBA	S5
7.	Cartesian coordinates for optimized structure of C1[12]DBA	S6
8.	Reference	S8

1. TG chart of C8[12]DBA

Figure S1 TG curve of C8[12]DBA.

2. ORTEP drawings of C1[12]DBA

Figure S2 ORTEP drawing of **C1[12]DBA**. Displacement ellipsoids are drawn at the 50% probability level. One of six methyl ester groups had a disordered structure. Hydrogen atoms and solvent toluene molecule are omitted for clarity.

3. HOMO and LUMO of C1[12]DBA

Figure S3 HOMO (left) and LUMO (right) of the optimized structure of C1[12]DBA

4. UV-Vis and fluorescent spectra of C1[12]DBA in solution and in the solid state

Figure S4 UV-Vis (blue) and fluorescent (red) spectra of **C1[12]DBA** in solution (CHCl₃, dotted line) and in the solid state (solid line).

5. Experimental section

General methods. Commercially available reagents and solvents were used as received. **[12]DBACA** was prepared by as described in the literature.^{S1} ¹H (400 MHz) and ¹³C (100 MHz) NMR spectra were recorded on a Bruker Avance III 400 NMR spectrometer. Chemical shifts (δ) are expressed in ppm with reference to tetramethylsilane (¹H 0.00 ppm) or residual nondeuterated solvent (CDCl₃; ¹³C 77.0 ppm) as an internal standard. Mass spectra were recorded on a JMS-700 spectrometer at the NMR and MS Laboratory, Graduate School of Agriculture, Tohoku University. Elemental analyses were performed on a Microcoder JM10 at the

Elementary Analysis Laboratory, Institute of Multidisciplinary Research for Advanced Materials, Tohoku University. IR spectra were measured on a Thermo Scientific NICOLET 6700 FT-IR spectrometer.

Preparation of C8[12]DBA.

A mixture of **[12]DBACA** (101 mg, 98.7 μ mol), 1-octanol (10 mL) and conc. H₂SO₄ (a few drops) was stirred at 150 °C for 18 h. After cooling to rt, the reaction mixture was diluted with CHCl₃ and water. The aqueous phase was separated and extracted with CHCl₃. The combined organic layer was washed with water and brine, and then dried over MgSO₄. After evaporation of solvent under reduced pressure, the crude product was purified by silica gel column chromatography and GPC to give **C8[12]DBA** (124 mg, 74%) as a yellow waxy solid.

¹H NMR (400 MHz, CDCl₃): δ 7.90 (d, J = 8.4 Hz, 12H), 7.47 (s, 6H), 7.18 (d, J = 8.4 Hz, 12H), 4.29 (t, J = 6.8 Hz, 12H), 1.75 (quint., J = 7.1 Hz, 12H), 1.28–1.45 (m, 60H), 0.88 (t, J = 7.0 Hz, 18H). ¹³C NMR (100 MHz, CDCl₃) δ 166.3, 143.9, 140.1, 134.1, 129.5, 129.4, 126.3, 93.2, 65.3, 31.8, 29.21, 29.15, 28.6, 26.0, 22.6, 14.1. (one aromatic carbon signal overlapped) IR 2955, 2926, 2855, 1720, 1608, 1489, 1467, 1405, 1381, 1310, 1273, 1179, 1115, 1103, 1017, 952, 904, 857, 777, 711 cm⁻¹. HRMS (FAB) calcd for C₁₁₄H₁₃₃O₁₂: 1693.9797 [(M+H)⁺]; found: 1693.9800. Elem. Anal.: Calc. for C₁₁₄H₁₃₂O₁₂: C, 80.82 %; H, 7.85 %; Found: C, 80.60 %; H, 7.92 %.

Physical measurement. Thermogravimetric (TG) analysis was performed on a Rigaku Thermoplus EVO 2 at a scan rate of 10 K/min under a nitrogen atmosphere. Differential scanning calorimetry (DSC) analysis was conducted using a Mettler Toledo DSC-1 at a scan rate of 10 K/min. Temperature-dependent dielectric constants of the compounds were measured using a two-probe AC impedance method at a frequency range of 1 kHz to 1 MHz (Hewlett-Packard, HP4194A) with a liquid crystal cell in a Linkam LTS350 temperature-control system. The melt of **C8[12]DBA** was fabricated on indium tin oxide(ITO) glass (SZ-A311P6N), which was sandwiched by a corresponding ITO glass to form a dielectric measurement cell with an average electrode gap of 56 μ m, and electrode area of 0.9 cm².

X-ray structural analysis. Crystallographic data for single crystals were collected using a diffractometer equipped with a rotating anode fitted with a multilayer confocal optic using Cu-K α ($\lambda = 1.54187$ Å) radiation. Structure refinements were carried out using the full-matrix least-squares method on F^2 . Calculations were performed using the Crystal Structure and SHELEX software packages.^{S2} Parameters were refined using anisotropic temperature factors, except for the hydrogen atom.

Crystal data of C8[12]DBA·(toluene): A single-crystalline sample was obtained by recrystallization from toluene. C₇₉H₅₆O₁₂, M = 1197.30, P2₁/n (#14), a = 24.3648(9) Å, b = 9.5585(4) Å, c = 25.8540(10) Å, $\beta = 94.315(7)$ °, V = 6004.1(4) Å³, Z = 4, Dc = 1.324 g cm⁻³. Independent reflections 10960 (all), T = 100 K, $\mu = 7.19$ cm⁻¹, R = 9.73%. CCDC 2069905.

DFT caluculations. DFT calculations were performed with the Gaussian 16^{S3} program package. The optimized molecular structure of **C1[12]DBA** was obtained by DFT calculations with the B3LYP/6-31G (d,p) basis set. The stationary point was assessed by a vibration frequency analysis.

6. ¹H and ¹³C NMR spectra of C8[12]DBA

Figure S5 ¹H (top) and ¹³C (bottom) NMR spectra of C8[12]DBA in CDCl₃.

7. Cartesian coordinates for optimized structure of C1[12]DBA

E(RB3LYP) = -3675.31177702 a.u.

Number of imaginary frequencies: 0

Atom Number	Element	х	Y	Z
1	н	3.325554	3.354071	-0.003586
2	С	2.270187	3.603688	-0.021074
3	С	-0.421340	4.224541	0.016601
4	С	1.340926	2.554406	-0.029560
5	С	1.892327	4.952206	0.009800
6	С	0.509578	5.271265	0.014020
7	С	-0.046160	2.874248	-0.001556
8	н	-1.479191	4.463225	-0.001260
9	С	-1.031341	1.849998	-0.001966
10	С	-1.859676	0.959705	-0.000561
11	С	-2.812389	-0.094686	0.001236
12	С	-4.750779	-2.172590	0.007699
13	С	-2.396865	-1.456305	-0.018984
14	С	-4.185704	0.186021	0.011387
15	С	-5.164925	-0.815405	0.005692
16	С	-3.379146	-2.456206	-0.013226
17	н	-4.497190	1.224726	-0.010924
18	н	-3.056785	-3.491612	0.009058
19	С	-1.017430	-1.797893	-0.033306
20	С	0.167568	-2.070425	-0.048004
21	С	1.777574	1.202198	-0.052825
22	С	2.132859	0.039387	-0.071530
23	С	1.557183	-2.367680	-0.068240
24	С	4.325491	-3.004648	-0.117842
25	С	2.527365	-1.325784	-0.088863
26	С	2.001525	-3.696980	-0.082352
27	С	3.358530	-4.043037	-0.114387
28	С	3.884603	-1.675245	-0.112917

Atom Number	Element	Х	Y	Z		
67 H		-4.791465	-4.372661	-1.572962		
68	Н	-6.813344	-2.562460	1.761566		
69	Н	-8.301936	-4.528716	1.924787		
70	Н	-6.297821	-6.347504	-1.398046		
71	С	3.703041	-5.490201	-0.193781		
72	С	4.246083	-8.247700	-0.388181		
73	С	4.567549	-5.983818	-1.186596		
74	С	3.114444	-6.405334	0.695642		
75	С	3.383328	-7.768027	0.605236		
76	С	4.833276	-7.343832	-1.283859		
77	Н	5.022019	-5.295757	-1.891224		
78	Н	2.452527	-6.039368	1.474866		
79	Н	2.929929	-8.462412	1.302900		
80	Н	5.492201	-7.730448	-2.053657		
81	С	5.795179	-3.246330	-0.078048		
82	С	8.586884	-3.599977	0.042197		
83	С	6.372680	-4.081892	0.893088		
84	С	6.643769	-2.587179	-0.984335		
85	С	8.021796	-2.764367	-0.928710		
86	С	7.750812	-4.256503	0.955851		
87	Н	5.735190	-4.588224	1.609920		
88	Н	6.213005	-1.945363	-1.746978		
89	Н	8.679823	-2.265854	-1.632160		
90	Н	8.185616	-4.897317	1.713862		
91	С	4.571439	-9.693225	-0.540592		
92	0	5.312823	-10.146010	-1.390948		
93	С	10.068783	-3.751195	0.056114		
94	0	10.494601	-4.581176	1.036267		

29	н	1.258063	-4.486408	-0.103011	1	95	0	10.824126	-3.197660	-0.719257
30	Н	4.620301	-0.878495	-0.093344		96	С	6.185160	8.821167	0.429780
31	С	-0.016434	6.664317	-0.032897		97	С	-1.654313	10.638386	-0.285864
32	С	-1.113039	9.255708	-0.166537		98	0	6.210141	9.689212	1.280398
33	С	-1.021196	7.068959	0.862454		99	0	-1.296603	11.447952	-1.119104
34	С	0.426715	7.582788	-1.000734		100	0	7.163034	8.662596	-0.492494
35	С	-0.116075	8.859727	-1.068219		101	0	-2.600875	10.905055	0.644193
36	С	-1.562497	8.349839	0.802252		102	С	-8.262855	-6.770582	0.317930
37	н	-1.367063	6.375407	1.623080		103	С	-10.651376	1.033581	-0.230903
38	н	1.192351	7.286215	-1.709587		104	0	-11.095681	1.861933	0.540317
39	н	0.215901	9.569121	-1.818386		105	0	-8.168319	-7.718424	-0.437656
40	н	-2.329996	8.652862	1.504768		106	0	-11.387615	0.475860	-1.219759
41	С	2.974705	5.972943	0.087040		107	0	-9.184215	-6.704026	1.306861
42	С	5.093542	7.818764	0.279147		108	0	3.946728	-10.463956	0.380318
43	С	2.969629	6.971686	1.076487		109	С	8.247378	9.599657	-0.399591
44	С	4.062874	5.915737	-0.800319		110	н	8.739338	9.523532	0.573121
45	С	5.109832	6.828509	-0.711008		111	н	8.936681	9.331756	-1.199985
46	С	4.015861	7.880397	1.172747		112	н	7.884778	10.622068	-0.530832
47	н	2.145220	7.024511	1.779373		113	С	-3.161517	12.225793	0.582911
48	н	4.076513	5.156892	-1.576919		114	н	-3.641425	12.395845	-0.383932
49	н	5.939343	6.780007	-1.406687		115	н	-3.894508	12.271500	1.388019
50	н	4.021372	8.647458	1.939399		116	н	-2.384599	12.980526	0.727044
51	С	-6.591177	-0.388418	-0.050441		117	С	-12.746868	0.932188	-1.300618
52	С	-9.253999	0.518648	-0.201496		118	н	-12.781162	2.010247	-1.475399
53	С	-7.468030	-0.891951	-1.026446		119	н	-13.188281	0.393486	-2.138741
54	С	-7.073245	0.581905	0.845304		120	н	-13.283190	0.709278	-0.375016
55	С	-8.388526	1.027138	0.774550		121	С	-10.054772	-7.841661	1.408049
56	С	-8.782120	-0.443798	-1.104861		122	н	-9.479282	-8.751172	1.596718
57	н	-7.111248	-1.631693	-1.735116		123	н	-10.720583	-7.628657	2.244004
58	н	-6.412168	0.974715	1.612012		124	н	-10.625759	-7.972570	0.485602
59	Н	-8.767496	1.768300	1.469824		125	С	4.220077	-11.870562	0.285227
60	Н	-9.446232	-0.833272	-1.867521		126	Н	3.648474	-12.335988	1.087856
61	С	-5.694484	-3.322942	0.081255		127	Н	3.904998	-12.259122	-0.686239
62	С	-7.392964	-5.562471	0.268094		128	Н	5.288044	-12.064456	0.411218
63	С	-5.555213	-4.407933	-0.801896		129	С	11.916726	-4.770525	1.101026

64	С	-6.698707	-3.383874	1.062554	130	Н	12.424076	-3.818902	1.277119
65	С	-7.536811	-4.489288	1.158365	131	н	12.084454	-5.454327	1.932757
66	С	-6.395388	-5.512235	-0.713115	132	н	12.290284	-5.200606	0.168578

8. Reference

S1. I. Hisaki, S. Nakagawa, N. Ikenaka, Y. Imamura, M. Katouda, M. Tashiro, H. Tsuchida, T. Ogoshi, H. Sato, N. Tohnai, M. Miyata, *J. Am. Chem. Soc.* 2016, **138**, 6617-6628.

S2. G. M. Sheldrick, Acta Crystallogr. 2008, 64A, 112-122.

S3. Gaussian 16, Revision A.03, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; et al. Gaussian, Inc., Wallingford CT, 2016.