Supporting Information

Practical Access to Fluorescent 2,3-Naphthalimides Derivatives *via* Didehydro-Diels-Alder Reaction

Xia Chen^a, Cheng Zhong^b, Yuling Lu^a, Meng Yao^a, Zhenhua Guan^a, Chunmei Chen^a, Hucheng Zhu^a, Zengwei Luo^{*a} and Yonghui Zhang^{*a}

^{*a*} Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.

^b Hubei Key Laboratory on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.

E-mail: zhangyonghui@mails.tjmu.edu.cn; luozengwei@hust.edu.cn

Table of Contents

I. General Information	2
II. General Experimental Procedures	2
III. Optimization of reaction conditions	6
IV. Characterization Data for Products	7
V. Gram-Scale Reaction for the Synthesis of 6-DMN .	29
VI. Control Experiments	33
VII. X-ray Crystal Structure and Details of Compound 3al	
VIII. Computational Details	
IX. DFT Optimized xyz Coorindates	42
X. References	51
XI. NMR Spectra	52

I. General Information

¹H NMR and ¹³C NMR spectra were measured on a 400 MHz Bruker unit (400 MHz for ¹H NMR, 100 MHz for ¹³C NMR) using CDCl₃ as the solvent at room temperature. Chemical shifts (δ) are given in parts per million relatively to the solvent peak, and coupling constants (*J*) are given in hertz. Melting points were obtained using an X-5 microscopic melting point apparatus (Beijing Tech, China). HRESIMS data were tested in the positive-ion mode on a SolariX 7.0 spectrometer and a Bruker micrOTOF II (Bruker, Karlsruhe, Germany). Dichloromethane (DCM) and tetrahydrofuran (THF) were freshly dried and distilled from CaH₂ and Na respectively.

Unless otherwise noted, materials obtained from commercial suppliers (TCI, Adamas, Aldrich, Acros, Alfa, Accela, Innochem) were used without further purification. Deuterated solvents were purchased from Cambridge Isotope Laboratories and used without further purification. NaH was purchased from TCI (60% in mineral oil), n-BuLi (2.0 M in cyclohexane) was purchased from Sigma-aldrich (2.0 M in cyclohexane). Silica gel (200-300 mesh size) was used for column chromatography. TLC analysis of reaction mixtures were performed using silica gel plates.

II. General Experimental Procedures

Amines and acrylic acids were purchased from commercial suppliers (TCI, Adamas, Acros, Innochem, etc.). 3-phenylpropiolic acid, propioic acid, 2-butynoic acid and 2-hexynoic acid were purchased from commercial suppliers (Adamas, Alfa, TCI); the preparation of other substituted propiolic acids were described in previous reports.¹ Acrylic acids were purchased from commercial suppliers (TCI, Adamas, Acros, Innochem, etc.).

1. General procedure for the synthesis of substrates 1a-1c and 2aa-2az^[2-4]

(1) The synthesis of substrates **1a-1c**: ^[2]

To a solution of EDCI (1.7 equiv.) and DMAP (0.1 equiv.) in anhydrous DCM was added triethylamine (1.8 equiv.) at -10 °C. Then propynoic acid (1.4 equiv.) was added by fraction, the

reaction was stirred for 20 min at -10 °C. Amine (1.0 equiv.) was dissolved in anhydrous DCM and was added subsequently. The mixture was then warmed to room temperature and stirred overnight. After completion of the reaction, water was added into the mixture and extracted with DCM, the organic layer was dried over anhydrous Na₂SO₄ and filtered, then the DCM was removed by rotary evaporation. Obtained the former crude product was purified by silica column chromatography (PE/EA = 15:1 - 3:1) to afford amide product.

(2) The synthesis of substrates 2aa-2av, 2ay-2az: ^[3]

To a solution of carboxylic acid (1.0 equiv.) in anhydrous DCM was added oxalyl chloride (3 equiv.) and DMF (cat.) dropwise sequentially at room temperature in a round bottom flask. The resulting mixture was stirred at room temperature for about 2 h and monitored by TLC analysis. After reaction was completed, the solvent was removed by rotary evaporation. Concentration led to the acryoyl chloride, which was used directly for the next step.

(3) The synthesis of substrates **2aw-2ax**: ^[4]

The carboxylic acid (1.0 equiv.) was dissolved in $SOCl_2$ in a Schlenk tube. The resulting mixture was stirred at 90 °C for about 2 h. After reaction was completed, the solvent was removed by rotary evaporation. Concentration led to the acryoyl chloride, which was used directly for the next step.

2. General procedure for the synthesis of compounds 3aa-3av, 3ay-3az, 3ba-3bi,3bk-3bm and 3c

Acetylene amide ^[2] **1a-1c** (0.25 mmol, 1.0 equiv.) was dissolved in anhydrous THF. The resulting solution was cooled to 0 °C with stirring, NaH (60% in mineral oil, 1.5 equiv.) was added by fraction. After stirring at 0 °C for 30 min, acryoyl chloride ^[3] **2aa-2az** (1.3 equiv.) was added. The reaction was stirred under room temperature for 3 h. The reaction mixture was quenched with water and extracted with EtOAc. The organic layer was dried over anhydrous Na₂SO₄ and filtered, then the EtOAc was removed by rotary evaporation. Obtained the former crude product was purified by silica column chromatography (PE/EA = 30:1 - 3:1) to give desired product **3aa-3av**, **3ay-3az**, **3ba-3bi**, **3bk-3bm and 3c**.

3. General procedure for the synthesis of compounds 3aw and 3ax

Acetylene amide ^[2] **1aa** (59.0 mg, 0.25 mmol, 1.0 equiv.) was dissolved in anhydrous THF. The resulting solution was cooled to -35 °C with stirring, n-BuLi (2.0 M in cyclohexane, 0.38 mmol, 1.5 equiv.) was added by dropwise via syringe. After stirring at -35 °C for 30 min, acryoyl chloride ^[4] **2aw** or **2ax** (0.33 mmol, 1.3 equiv.) was added. The reaction was stirred under room temperature for 3 h. The reaction mixture was diluted with water and extracted with EtOAc. The organic layer was dried over anhydrous Na₂SO₄ and filtered, then the EtOAc was removed by rotary evaporation.

Obtained the former crude product was purified by silica column chromatography (PE/EA = 4:1) to give desired product **3aw** and **3ax**.

4. General procedure for the synthesis of compound 3bj

To a three necks flask A containing propioic acid (21.0 mg, 0.30 mmol) was added anhydrous THF (0.4 mL) at -78 °C, nBuLi (2.0 M in cyclohexane, 0.18 mL, 0.35 mmol) was added dropwise by syringe. The reaction mixture was allowed to stir at the same temperature for a period of time, until white suspension was generated, the reaction mixture was warmed to room temperature and stirred for 45 min, then cooled to 0 °C, pivaloyl chloride (48.2 mg, 0.40 mmol) was then added dropwise to the solution, and stirring was continued for 2 h. ^[5]

To a three neck flask B containing N-(pyridin-2-ylmethyl)cinnamamide (59.5 mg, 0.25 mmol) was added anhydrous THF (2 mL) at -78 °C, nBuLi (2.0 M in cyclohexane, 0.15 mL, 0.30 mmol) was added dropwise by syringe. The reaction mixture was allowed to stir at the same temperature for 15 min. Then, the reaction solution of flask A was added slowly to flask B by injection, the reaction mixture was warmed to room temperature and stirred for 3 h. The reaction mixture was quenched carefully with a saturated solution of NH₄Cl (0.2 mL), and the mixture was extracted with EtOAc for three times. The organic layers were combined and dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The former crude product was purified by silica column chromatography (PE/EA = 5:1) to give desired product **3bj** (55.4 mg, yellow solid, yield: 77%).

III. Optimization of reaction conditions

(t H t	CI base solvent	$\rightarrow \left(\begin{array}{c} 0 \\ N \end{array} \right) $	
	O 1a	2aa	3aa	
Entry	2aa (equiv.)	Base (equiv.)	Time (h)	Yield (%)
1	1.1	NaH (1.2)	1.0	62
2	1.3	NaH (1.5)	2.0	77
3	1.3	NaH (1.5)	3.0	85
4	1.3	$Et_3N (1.5)^d$	3.0	41
5	1.3	DIPEA $(1.5)^d$	3.0	73
6	1.3	Na ₂ CO ₃ (1.5)	3.0	trace
7	1.3	K ₂ CO ₃ (1.5)	3.0	trace
8	1.3	$Cs_2CO_3(1.5)$	3.0	27
9	1.3	CH ₃ COOK(1.5)	3.0	14
10	1.3	n-BuLi (1.5)	3.0	75
11	1.3	t-BuOK (1.5)	3.0	82
12	1.3	NaH (1.5)	6.0	83

Table S1. Optimization of reaction conditions *a, b, c*

^aStandard conditions: **1a** (0.25 mmol), **2aa**, base and dry THF (2.0 mL) in a reaction bottle under air. ^bIsolated yields. ^cT: **2aa** was added at 0 °C, and the mixture was warmed to room temperature and stirred; ^dSolvent: dry DCM.

During a medicinal chemistry study, we made the surprising discovery that 3-phenyl-N-(pyridin-2-ylmethyl) propiolamide **1a** reacted with cinnamoyl chloride **2aa** to produce a fluorescent compound. This compound was determined to be 1-phenyl-2,3-naphthalimide and was generated from the oxidation of an unstable dihydronaphthalene product by air,^{10a,12} indicating the occurrence of the DDDA reaction. Thus, the reaction was studied using compounds **1aa** and **2aa** as the model substrates, and the results are summarized in Table 1. Using NaH (1.2 equiv.) as a base and THF as a solvent produced a 62% yield of **3aa** (Table 1, entry 1). The dosages of **2aa** and NaH, as well as the reaction time, were evaluated. Yield increased to 85% when 1.3 equiv. of **2aa** and 1.5 equiv. of

NaH was used and stirred for 3.0 h (entry 3). Other commonly used bases failed to afford a higher yield (entries 4-10), it should be noted that t-BuOK was also suitable for this reaction and delivered the target molecule in good yield (entry 11). Prolonging the reaction time also did not improve the yield (entry 12). Finally, the optimal reaction condition was determined, which completed the conversion in 85% yield (entry 3).

IV. Characterization Data for Products

4-phenyl-2-(pyridin-2-ylmethyl)-1*H*-benzo[*f*]isoindole-1,3(2*H*)-dione:(3aa, 77.4 mg, yellow solid, yield: 85%) mp: 200-203 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.53 – 8.49 (m, 1H), 8.42 (s, 1H), 8.10 (d, *J* = 8.0 Hz, 1H), 7.82 (d, *J* = 8.5 Hz, 1H), 7.69 (ddd, *J* = 8.1, 6.9, 1.3 Hz, 1H), 7.60 (tp, *J* = 5.8, 1.8 Hz, 2H), 7.53 (qd, *J* = 4.8, 1.6 Hz, 3H), 7.42 (dd, *J* = 7.2, 2.3 Hz, 2H), 7.25 (s, 1H), 7.17 – 7.11 (m, 1H), 5.00 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 167.8, 167.2, 155.5, 149.7, 140.5, 136.8, 135.6, 135.6, 134.5, 130.5, 130.0, 129.2, 129.1, 128.7, 128.6, 128.3, 128.0, 124.6, 124.0, 122.5, 121.7, 43.2. HRMS calcd for C₂₄H₁₇N₂O₂ [M + H]⁺ 365.1285, found 365.1279.

6-methyl-4-phenyl-2-(pyridin-2-ylmethyl)-1*H***-benzo**[*f*]isoindole-1,3(2*H*)-dione: (3ab, 82.2 mg, yellow solid, yield: 87%) mp: 224-226 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.53 – 8.49 (m, 1H), 8.37 (s, 1H), 7.99 (d, *J* = 8.3 Hz, 1H), 7.59 (td, *J* = 7.7, 1.8 Hz, 1H), 7.57 – 7.49 (m, 5H), 7.41 (dd, *J* = 7.3, 2.3 Hz, 2H), 7.24 (s, 1H), 7.17 – 7.10 (m, 1H), 4.99 (s, 2H), 2.45 (s, 3H). ¹³C NMR (100 MHz,

CDCl₃) δ 167.9, 167.3, 155.6, 149.7, 139.8, 139.7, 136.7, 135.8, 134.7, 133.8, 131.2, 130.3, 130.0, 128.5, 128.3, 127.8, 127.1, 124.4, 124.1, 122.5, 121.7, 43.2, 22.2. HRMS calcd for C₂₅H₁₉N₂O₂ [M + H]⁺ 379.1441, found 379.1440.

6-methoxy-4-phenyl-2-(pyridin-2-ylmethyl)-1*H*-benzo[*f*]isoindole-1,3(2*H*)-dione:(3ac, 76.8 mg, yellow solid, yield: 78%) mp: 213-215 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.60 – 8.45 (m, 1H), 8.33 (s, 1H), 7.98 (d, *J* = 8.9 Hz, 1H), 7.60 (td, *J* = 7.7, 1.8 Hz, 1H), 7.56 – 7.49 (m, 3H), 7.42 (dd, *J* = 7.6, 1.9 Hz, 2H), 7.32 (dd, *J* = 9.0, 2.5 Hz, 1H), 7.24 (s, 1H), 7.16 – 7.11 (m, 1H), 7.09 (d, *J* = 2.5 Hz, 1H), 4.99 (s, 2H), 3.74 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.9, 167.4, 160.3, 155.6, 149.6, 138.9, 137.5, 136.8, 134.7, 131.9, 130.7, 129.9, 128.6, 128.4, 125.8, 124.7, 124.3, 122.5, 121.7, 121.0, 107.7, 55.4, 43.1. HRMS calcd for C₂₅H₁₉N₂O₃ [M + H]⁺ 395.1390, found 395.1380.

4-phenyl-2-(pyridin-2-ylmethyl)-6-(trifluoromethyl)-1*H*-benzo[*f*]isoindole-1,3(2*H*)-dione: (**3ad**, 97.4 mg, yellow solid, yield: 93%) mp: 201-203 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.49 (d, *J* = 5.0 Hz, 1H), 8.48 (s, 1H), 8.23 (d, *J* = 8.6 Hz, 1H), 8.11 (s, 1H), 7.85 (dd, *J* = 8.6, 1.7 Hz, 1H), 7.61 (td, *J* = 7.7, 1.8 Hz, 1H), 7.58 – 7.54 (m, 3H), 7.42 (dd, *J* = 6.5, 2.9 Hz, 2H), 7.32 – 7.22 (m, 1H), 7.14 (dd, *J* = 7.5, 4.9 Hz, 1H), 5.01 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 167.2, 166.7, 155.1, 149.7, 141.3, 137.0, 136.8, 134.9, 133.3, 131.5, 130.6 (d, *J* = 33 Hz), 130.0, 130.0, 129.1, 128.5, 125.9 (q, *J* = 5 Hz), 125.1, 124.5 (d, *J* = 3 Hz), 124.1, 122.4, 121.8, 43.3. HRMS calcd for C₂₅H₁₆F₃N₂O₂ [M + H]⁺ 433.1158, found 433.1164.

1,3-dioxo-4-phenyl-2-(pyridin-2-ylmethyl)-2,3-dihydro-1*H*-benzo[*f*]isoindole-6-carbonitrile: (**3ae**, 74.3 mg, yellow solid, yield: 76%) mp: 251-253 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.52 – 8.47 (m, 1H), 8.46 (s, 1H), 8.20 (d, *J* = 9.0 Hz, 2H), 7.82 (dt, *J* = 8.3, 1.4 Hz, 1H), 7.62 (td, *J* = 7.7, 1.7 Hz, 1H), 7.58 (dd, *J* = 4.4, 2.3 Hz, 3H), 7.40 (ddd, *J* = 6.8, 3.0, 1.2 Hz, 2H), 7.28 (s, 1H), 7.15 (dd, *J* = 7.5, 5.0 Hz, 1H), 5.01 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 166.9, 166.4, 155.0, 149.8, 140.9, 137.1, 136.8, 135.0, 134.4, 133.0, 131.6, 130.8, 130.0, 129.5, 129.4, 128.7, 125.6, 124.1, 122.7, 121.9, 118.4, 112.8, 43.4. HRMS calcd for C₂₅H₁₆N₃O₂ [M +H]⁺ 390.1237, found 390.1237.

6-nitro-4-phenyl-2-(pyridin-2-ylmethyl)-1*H***-benzo**[*f*]isoindole-1,3(2*H*)-dione: (**3af**, 62.4 mg, yellow solid, yield: 61%) mp: 225-227 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.75 (d, *J* = 2.1 Hz, 1H), 8.52 (s, 2H), 8.44 (dd, *J* = 8.8, 2.1 Hz, 1H), 8.26 (d, *J* = 8.9 Hz, 1H), 7.64 (d, *J* = 38.3 Hz, 4H), 7.44 (s, 2H), 7.32 (s, 1H), 7.22 (s, 1H), 5.06 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 165.8, 165.4, 153.7, 148.4, 146.6, 141.4, 137.3, 136.6, 134.1, 131.8, 131.1, 130.4, 129.1, 128.6, 127.7, 124.7, 123.8, 123.0, 122.1, 121.4, 121.3, 42.3. HRMS calcd for C₂₄H₁₆N₃O₄ [M + H]⁺ 410.1135, found 410.1141.

6-fluoro-4-phenyl-2-(pyridin-2-ylmethyl)-1*H*-benzo[*f*]isoindole-1,3(2*H*)-dione: (3ag, 86.9 mg, white solid, yield: 91%) mp: 221-223 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.50 (d, *J* = 4.7 Hz, 1H),

8.42 (s, 1H), 8.11 (dd, J = 8.8, 5.6 Hz, 1H), 7.61 (td, J = 7.6, 1.6 Hz, 1H), 7.54 (dd, J = 5.3, 1.9 Hz, 3H), 7.49 – 7.42 (m, 2H), 7.42 – 7.38 (m, 2H), 7.27 (d, J = 4.2 Hz, 1H), 7.15 (dd, J = 7.6, 4.8 Hz, 1H), 5.00 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 166.6, 166.0, 161.7 (d, J = 249 Hz), 154.4, 148.7, 138.8 (d, J = 6 Hz), 136.3(d, J = 9 Hz), 135.9, 133.0, 131.9 (d, J = 9 Hz), 131.5, 128.9, 127.9, 127.5, 126.6 (d, J = 2 Hz), 123.9, 123.4, 121.6, 120.8, 118.3 (d, J = 25 Hz), 111.8 (d, J = 22 Hz), 42.2. HRMS calcd for C₂₄H₁₆FN₂O₂ [M + H]⁺ 383.1190, found 383.1192.

6-chloro-4-phenyl-2-(pyridin-2-ylmethyl)-1*H*-benzo[*f*]isoindole-1,3(2*H*)-dione: (3ah, 91.5 mg, yellow solid, yield: 92%) mp: 205-207 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.50 (dt, *J* = 4.8, 1.3 Hz, 1H), 8.39 (s, 1H), 8.04 (d, *J* = 8.7 Hz, 1H), 7.78 (d, *J* = 2.0 Hz, 1H), 7.61 (ddd, *J* = 13.4, 8.2, 2.0 Hz, 2H), 7.55 (dd, *J* = 5.1, 1.9 Hz, 3H), 7.43 – 7.37 (m, 2H), 7.28 – 7.23 (m, 1H), 7.14 (ddd, *J* = 7.6, 4.9, 1.1 Hz, 1H), 5.00 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 167.4, 166.9, 155.3, 149.8, 139.7, 136.8, 136.5, 135.7, 133.9, 133.8, 131.8, 130.0, 128.9, 128.5, 128.3, 127.6, 125.0, 124.3, 122.6, 121.8, 43.3. HRMS calcd for C₂₄H₁₆ClN₂O₂ [M + H]⁺ 399.0895, found 399.0901.

6-bromo-4-phenyl-2-(pyridin-2-ylmethyl)-1*H*-benzo[*f*]isoindole-1,3(2*H*)-dione: (3ai, 91.7 mg, yellow solid, yield: 83%) mp: 219-221 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.50 (dd, *J* = 5.1, 1.8 Hz, 1H), 8.38 (s, 1H), 7.98 – 7.92 (m, 2H), 7.76 (dd, *J* = 8.7, 2.0 Hz, 1H), 7.63 – 7.57 (m, 1H), 7.55 (dd, *J* = 5.1, 2.0 Hz, 3H), 7.40 (dt, *J* = 5.8, 2.2 Hz, 2H), 7.26 (d, *J* = 7.7 Hz, 1H), 7.14 (dd, *J* = 7.5, 4.9 Hz, 1H), 4.99 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 167.4, 166.8, 155.3, 149.7, 139.5, 136.8, 136.7, 134.0, 133.7, 132.5, 131.8, 130.8, 129.9, 128.9, 128.5, 128.3, 124.9, 124.3, 124.1, 122.6, 121.8, 43.2. HRMS calcd for C₂₄H₁₆BrN₂O₂ [M + H]⁺ 443.0390, found 443.0391.

8-bromo-4-phenyl-2-(pyridin-2-ylmethyl)-1*H*-benzo[*f*]isoindole-1,3(2*H*)-dione: (3aj, 96.1 mg, yellow solid, yield: 87%) mp: 203-205 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.90 (s, 1H), 8.53 – 8.47 (m, 1H), 7.96 (d, *J* = 7.5 Hz, 1H), 7.78 (d, *J* = 8.5 Hz, 1H), 7.60 (td, *J* = 7.7, 1.8 Hz, 1H), 7.53 (dd, *J* = 4.7, 2.0 Hz, 3H), 7.45 – 7.36 (m, 3H), 7.29 – 7.23 (m, 1H), 7.14 (dd, *J* = 7.5, 5.0 Hz, 1H), 5.01 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 167.4, 166.8, 155.3, 149.7, 140.7, 137.2, 136.7, 134.5, 134.1, 133.1, 130.0, 129.2, 129.1, 128.8, 128.5, 128.33, 125.4, 124.7, 124.0, 122.5, 121.7, 43.3. HRMS calcd for C₂₄H₁₆BrN₂O₂ [M + H]⁺ 433.0390, found 433.0383.

8-methyl-4-phenyl-2-(pyridin-2-ylmethyl)-1*H*-benzo[*f*]isoindole-1,3(2*H*)-dione: (3ak, 85.1 mg, yellow solid, yield: 90%) mp: 219-221 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.64 (d, *J* = 0.9 Hz, 1H), 8.51 (dt, *J* = 4.7, 1.4 Hz, 1H), 7.67 (d, *J* = 8.3 Hz, 1H), 7.60 (td, *J* = 7.7, 1.8 Hz, 1H), 7.52 (dd, *J* = 5.3, 2.0 Hz, 4H), 7.47 (dd, *J* = 8.3, 7.0 Hz, 1H), 7.42 – 7.38 (m, 2H), 7.27 – 7.24 (m, 1H), 7.14 (ddd, *J* = 7.6, 4.9, 1.1 Hz, 1H), 5.01 (s, 2H), 2.83 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 168.1, 167.3, 155.6, 149.6, 140.9, 137.2, 136.8, 136.0, 134.9, 130.0, 128.8, 128.5, 128.2, 127.6, 127.0, 123.6, 122.5, 121.7, 120.9, 43.2, 20.1. HRMS calcd for C₂₅H₁₉N₂O₂ [M + H]⁺ 379.1441, found 379.1446.

8-methoxy-4-phenyl-2-(pyridin-2-ylmethyl)-1*H*-benzo[*f*]isoindole-1,3(2*H*)-dione: (3al, 70.9 mg, yellow solid, yield: 72%) mp: 223-225 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.91 (d, *J* = 0.8 Hz, 1H), 8.50 (ddd, *J* = 4.9, 1.8, 0.9 Hz, 1H), 7.59 (td, *J* = 7.7, 1.8 Hz, 1H), 7.53 – 7.45 (m, 4H), 7.40 (dd, *J* = 7.2, 2.4 Hz, 2H), 7.37 – 7.32 (m, 1H), 7.25 (d, *J* = 9.5 Hz, 1H), 7.13 (ddd, *J* = 7.6, 4.8, 1.1 Hz, 1H), 7.01 (d, *J* = 7.8 Hz, 1H), 4.99 (s, 2H), 4.06 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.9, 167.4, 157.3, 155.7, 149.6, 139.9, 136.8, 136.7, 134.9, 130.0, 129.5, 128.5, 128.2, 127.7, 127.0, 124.5, 122.5, 121.7, 120.6, 119.5, 107.3, 56.1, 43.2. HRMS calcd for C₂₅H₁₉N₂O₃ [M + H]⁺ 395.1390, found 395.1374.

3am: 7-bromo-4-phenyl-2-(pyridin-2-ylmethyl)-1*H*-benzo[*f*]isoindole-1,3(2*H*)-dione **3am':** 5-bromo-4-phenyl-2-(pyridin-2-ylmethyl)-1*H*-benzo[*f*]isoindole-1,3(2*H*)-dione (95.0 mg, yellow solid, yield: 86%) mp: 205-207 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.49 (t, *J* = 4.5 Hz, 2.4H), 8.42 (s, 1.4H), 8.31 (s, 1H), 8.24 (d, *J* = 1.8 Hz, 1H), 8.08 (dd, *J* = 8.1, 1.3 Hz, 1.4H), 7.95 (dd, *J* = 7.6, 1.3 Hz, 1.4H), 7.70 – 7.65 (m, 2H), 7.60 (dddd, *J* = 13.7, 7.7, 5.0, 1.8 Hz, 3H), 7.53 (dd, *J* = 4.9, 1.9 Hz, 3.3H), 7.51 – 7.43 (m, 5.4H), 7.43 – 7.38 (m, 2.9H), 7.37 – 7.32 (m, 3.1H), 7.25 – 7.20 (m, 2H), 7.17 – 7.10 (m, 2.5H), 4.99 (s, 2H), 4.96 (s, 2.7H). ¹³C NMR (100 MHz, CDCl₃) δ 167.3, 167.0, 166.9, 166.7, 155.3, 155.3, 149.8, 149.7, 141.1, 140.6, 138.2, 137.6, 136.8, 136.7, 135.9, 134.2, 133.9, 132.5, 132.5, 132.4, 131.3, 130.4, 130.3, 130.0, 129.2, 128.9, 128.5, 128.4, 128.0, 127.7, 126.6, 125.6, 124.3, 123.9, 123.4, 122.9, 122.6, 122.5, 121.8, 121.7, 43.3, 43.3. HRMS calcd for C₂₄H₁₆BrN₂O₂ [M + H]⁺ 465.0209, found 465.0244.

3an: 7-methyl-4-phenyl-2-(pyridin-2-ylmethyl)-1*H*-benzo[*f*]isoindole-1,3(2*H*)-dione

3an': 5-methyl-4-phenyl-2-(pyridin-2-ylmethyl)-1H-benzo[f]isoindole-1,3(2H)-dione

(86.0 mg, white solid, yield: 91%) mp: 214-216 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.50 (dq, J = 4.8, 2.6, 1.5 Hz, 1.7H), 8.41 (s, 1.1H), 8.33 (s, 0.6H), 7.96 (d, J = 8.0 Hz, 1.1H), 7.86 (s, 0.6H), 7.70 (d, J = 8.7 Hz, 0.6H), 7.63 – 7.55 (m, 2.6H), 7.55 – 7.49 (m, 2.1H), 7.47 (ddd, J = 6.7, 4.1, 1.2 Hz, 2.9H), 7.41 (dt, J = 6.8, 2.7 Hz, 2.5H), 7.37 (dt, J = 7.8, 2.1 Hz, 2.6H), 7.25 – 7.20 (m, 1.6H), 7.14 (dt, J = 6.9, 3.3 Hz, 1.7H), 5.00 (s, 1.2H), 4.96 (s, 2.0H), 2.57 (s, 1.7H), 2.02 (s, 3.0H). ¹³C NMR (100 MHz, CDCl₃) δ 167.0, 166.6, 166.3, 154.6, 154.5, 148.6, 140.2, 139.4, 138.6, 138.2, 137.5, 136.1, 135.9, 134.9, 133.7, 133.1, 132.8, 132.6, 130.4, 129.0, 129.0, 128.7, 128.4, 127.9, 127.6, 127.5, 127.3, 127.3, 127.1, 126.9, 126.0, 124.9, 124.5, 123.0, 122.2, 121.5, 120.8, 120.7, 42.2, 42.1, 24.0, 20.8. HRMS calcd for C₂₅H₁₉N₂O₂ [M + H]⁺ 379.1441, found 379.1437.

3ao: 7-methoxy-4-phenyl-2-(pyridin-2-ylmethyl)-1*H*-benzo[*f*]isoindole-1,3(2*H*)-dione **3ao':** 5-methoxy-4-phenyl-2-(pyridin-2-ylmethyl)-1*H*-benzo[*f*]isoindole-1,3(2*H*)-dione (82.7 mg, yellow solid, yield: 84%) mp: 200-202 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.37 (dq, *J* = 5.6, 1.7 Hz, 1.9H), 8.22 (s, 1H), 8.16 (s, 0.8H), 7.58 (d, *J* = 9.3 Hz, 0.8H), 7.53 (dd, *J* = 8.2, 1.2 Hz, 1H), 7.49 – 7.42 (m, 3.1H), 7.41 – 7.36 (m, 2.4H), 7.30 – 7.25 (m, 4.6H), 7.24 (d, *J* = 2.8 Hz, 0.9H), 7.17 – 7.14 (m, 2.4H), 7.12 – 7.06 (m, 2.5H), 7.03 – 6.97 (m, 2H), 6.81 (dd, *J* = 7.8, 1.2 Hz, 1H), 4.85 (s, 1.5H), 4.82 (s, 2H), 3.85 (s, 2.2H), 3.30 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.9, 167.6, 167.4, 167.1, 160.1, 159.3, 155.7, 155.6, 149.7, 149.6, 140.5, 140.3, 139.3, 137.7, 137.6, 136.8, 136.7, 134.7, 130.6, 130.2, 130.0, 129.9, 128.9, 128.6, 128.2, 128.2, 127.9, 127.1, 127.0, 126.9, 126.5, 124.6, 123.2, 123.2, 122.5, 122.4, 122.0, 121.8, 121.7, 121.6, 121.4, 109.9, 108.8, 55.8, 55.7, 43.2, 43.2. HRMS calcd for $C_{25}H_{19}N_2O_3$ [M + H]⁺ 395.1390, found 395.1416.

5,7-dimethoxy-4-phenyl-2-(pyridin-2-ylmethyl)-1*H*-benzo[*f*]isoindole-1,3(2*H*)-dione: (3ap, 74.2 mg, yellow solid, yield: 70%) mp: 210-212 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.47 (d, *J* = 4.8 Hz, 1H), 8.18 (s, 1H), 7.56 (td, *J* = 7.7, 1.9 Hz, 1H), 7.36 (d, *J* = 5.9 Hz, 3H), 7.24 (d, *J* = 5.1 Hz, 2H), 7.18 (d, *J* = 7.9 Hz, 1H), 7.10 (t, *J* = 6.3 Hz, 1H), 6.94 (d, *J* = 2.3 Hz, 1H), 6.52 (d, *J* = 2.3 Hz, 1H), 4.91 (s, 2H), 3.94 (s, 3H), 3.37 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.8, 167.2, 161.0, 160.3, 155.7, 149.6, 140.3, 139.3, 139.2, 136.8, 129.0, 127.9, 127.0, 126.9, 123.3, 122.6, 122.5, 122.2, 121.6, 102.0, 101.7, 55.8, 55.6, 43.1. HRMS calcd for C₂₆H₂₁N₂O₄ [M + H]⁺ 425.1496, found 425.1491.

7,8-difluoro-4-phenyl-2-(pyridin-2-ylmethyl)-1*H*-benzo[*f*]isoindole-1,3(2*H*)-dione: (3aq, 88.0 mg, yellow solid, yield: 88%) mp: 201-203 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.68 (s, 1H), 8.49 (d, *J* = 4.8 Hz, 1H), 7.64 – 7.57 (m, 2H), 7.56 – 7.50 (m, 3H), 7.47 – 7.37 (m, 3H), 7.29 – 7.24 (m, 1H), 7.14 (t, *J* = 6.2 Hz, 1H), 5.00 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 167.0, 166.7, 155.1, 149.7, 147.5 (dd, *J* = 39 Hz), 145.1 (d, *J* = 12 Hz), 140.4, 136.8, 133.6, 132.7, 129.9, 129.3, 129.0 128.4, 127.3 (d, *J* = 13 Hz), 125.5 (t, *J* = 6 Hz), 124.2, 122.6, 121.8, 119.6 (d, *J* = 20 Hz), 116.8 (d, *J* = 6 Hz), 43.3. HRMS calcd for C₂₄H₁₅F₂N₂O₂ [M + H]⁺ 401.1096, found 401.1098.

8-bromo-5,6-dimethoxy-4-phenyl-2-(pyridin-2-ylmethyl)-1*H*-benzo[*f*]isoindole-1,3(2*H*)-dione: (**3ar**, 104.2 mg, yellow solid, yield: 83%) mp: 188-190 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.78 (d, *J* = 1.8 Hz, 1H), 8.48 (dd, *J* = 5.1, 1.9 Hz, 1H), 7.77 (d, *J* = 1.9 Hz, 1H), 7.60 – 7.54 (m, 1H), 7.41 (d, *J* = 6.9 Hz, 3H), 7.36 – 7.29 (m, 2H), 7.20 (d, *J* = 7.9 Hz, 1H), 7.12 (dd, *J* = 7.6, 5.0 Hz, 1H), 4.95 (s, 2H), 3.96 (d, *J* = 1.9 Hz, 3H), 3.17 (d, *J* = 1.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.2, 166.6, 155.3, 152.7, 149.6, 146.8, 138.9, 138.1, 136.7, 131.6, 129.7, 128.0, 127.2, 126.7, 126.1, 124.7, 122.5, 121.6, 121.37, 120.4, 60.7, 56.8, 43.1. HRMS calcd for C₂₆H₂₀BrN₂O₄ [M + H]⁺ 503.0601, found 503.0620.

5,6,7-trimethoxy-4-phenyl-2-(pyridin-2-ylmethyl)-1*H*-benzo[*f*]isoindole-1,3(2*H*)-dione: (3as, 71.5 mg, yellow solid, yield: 63%) mp: 224-226 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.49 (d, *J* = 5.0 Hz, 1H), 8.23 (d, *J* = 2.1 Hz, 1H), 7.62 – 7.54 (m, 1H), 7.43 (d, *J* = 7.2 Hz, 3H), 7.36 – 7.31 (m, 2H), 7.20 (d, *J* = 6.7 Hz, 2H), 7.16 – 7.09 (m, 1H), 4.93 (d, *J* = 2.1 Hz, 2H), 4.05 (d, *J* = 1.9 Hz, 3H), 3.89 (d, *J* = 1.7 Hz, 3H), 3.27 (d, *J* = 1.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.7, 167.1, 155.6, 155.5, 152.4, 149.5, 144.9, 139.0, 138.5, 136.7, 134.0, 128.0, 127.6, 127.1, 127.0, 125.8, 123.4, 123.4, 122.4, 121.5, 105.6, 61.1, 60.9, 56.2, 43.0. HRMS calcd for C₂₇H₂₃N₂O₅ [M + H]⁺ 455.1601, found 455.1597.

7-phenyl-9-(pyridin-2-ylmethyl)-8*H***-naphtho[1,2-***f***]isoindole-8,10(9***H***)-dione: (3at**, 77.6 mg, yellow solid, yield: 75%) mp: 250-252 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.28 (s, 1H), 8.85 (d, *J* = 8.2 Hz, 1H), 8.64 – 8.46 (m, 1H), 7.95 (dd, *J* = 7.9, 1.4 Hz, 1H), 7.83 (d, *J* = 9.2 Hz, 1H), 7.79 (ddd, *J* = 8.4, 6.9, 1.5 Hz, 1H), 7.76 – 7.73 (m, 1H), 7.71 (d, *J* = 9.1 Hz, 1H), 7.61 (td, *J* = 7.7, 1.8 Hz, 1H), 7.55 (qd, *J* = 5.2, 1.8 Hz, 3H), 7.44 (dd, *J* = 7.3, 2.2 Hz, 2H), 7.28 (d, *J* = 7.9 Hz, 1H), 7.17 – 7.12 (m, 1H), 5.03 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 168.3, 167.5, 155.7, 149.8, 140.3, 136.8, 135.0, 134.9, 134.2, 132.8, 130.8, 130.2, 130.2, 129.0, 128.9, 128.7, 128.7, 128.4, 128.1, 125.3, 125.3, 123.9, 122.6, 121.8, 118.7, 43.4. HRMS calcd for C₂₈H₁₉N₂O₂ [M + H]⁺ 415.1441, found 415.1438.

4-phenyl-6-(pyridin-2-ylmethyl)-5*H***-furo[2,3-***f***]isoindole-5,7(6***H***)-dione: (3au, 71.7 mg, brown solid, yield: 81%) mp: 149-151 °C; ¹H NMR (400 MHz, CDCl₃) \delta 8.54 – 8.47 (m, 1H), 8.00 (d,** *J* **= 1.0 Hz, 1H), 7.82 (d,** *J* **= 2.3 Hz, 1H), 7.64 – 7.55 (m, 3H), 7.54 – 7.45 (m, 3H), 7.28 – 7.23 (m, 1H), 7.19 – 7.11 (m, 1H), 6.86 (dd,** *J* **= 2.2, 1.0 Hz, 1H), 4.99 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) \delta 167.8, 167.6, 157.1, 155.7, 149.7, 148.8, 136.8, 135.7, 134.0, 133.1, 130.1, 129.9, 129.0, 128.3, 122.5, 122.5, 121.7, 107.9, 107.2, 43.2. HRMS calcd for C₂₂H₁₅N₂O₃ [M + H]⁺ 355.1077, found 355.1089.**

4-phenyl-6-(pyridin-2-ylmethyl)-5*H***-thieno[2,3-***f***]isoindole-5,7(6***H***)-dione: (3av, 79.6 mg, brown solid, yield: 86%) mp: 175-177 °C; ¹H NMR (400 MHz, CDCl₃) \delta 8.50 (d,** *J* **= 4.9 Hz, 1H), 8.40 (s, 1H), 7.66 (d,** *J* **= 5.5 Hz, 1H), 7.60 (td,** *J* **= 7.7, 1.7 Hz, 1H), 7.54 – 7.44 (m, 5H), 7.35 (d,** *J* **= 5.5 Hz, 1H), 7.24 (s, 1H), 7.13 (dd,** *J* **= 7.5, 5.0 Hz, 1H), 4.99 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) \delta 167.9, 167.5, 155.6, 149.7, 144.5, 143.7, 137.1, 136.7, 134.8, 131.0, 129.9, 128.8, 128.4, 128.2, 125.0, 123.8, 122.5, 121.6, 118.0, 43.2. HRMS calcd for C₂₂H₁₅N₂O₂S [M + H]⁺ 371.0849, found 371.0852.**

8-chloro-4-phenyl-2-(pyridin-2-ylmethyl)-1*H*-**pyrrolo**[**3,4-***g*]**isoquinoline-1,3**(2*H*)-**dione:** (**3aw**, 52.9 mg, yellow solid, yield: 53%) ¹H NMR (400 MHz, CDCl₃) ¹H NMR (400 MHz, CDCl₃) δ 9.11 (s, 1H), 8.83 (s, 1H), 8.79 (s, 1H), 8.53 – 8.46 (m, 1H), 7.63 (td, J = 7.7, 1.8 Hz, 1H), 7.56 (q, J = 2.9 Hz, 3H), 7.45 (dd, J = 6.6, 2.9 Hz, 2H), 7.28 (d, J = 7.8 Hz, 1H), 7.17 (dd, J = 7.5, 4.9 Hz, 1H), 5.03 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 166.6, 166.0, 154.7, 151.7, 149.8, 145.0, 141.5, 136.9, 136.7, 132.8, 132.2, 130.9, 130.2, 129.5, 128.5, 125.8, 122.8, 121.9, 119.8, 43.4. HRMS calcd for C₂₃H₁₄ClN₃O₂ [M + Na]⁺ 422.0667, found 422.0675.

1,7-dichloro-7-(4-chloropyridin-2-yl)-6-phenyl-3-(pyridin-2-ylmethyl)-3-

azabicyclo[**3.2.0**]**hept-5-ene-2,4-dione:** (**3ax**, 52.8 mg, brown solid, yield: 45%) mp: 138-140 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.68 (d, *J* = 5.3 Hz, 1H), 8.67 – 8.63 (m, 2H), 8.23 (dt, *J* = 4.7, 1.4 Hz, 1H), 8.07 (d, *J* = 1.8 Hz, 1H), 7.58 (td, *J* = 7.7, 1.8 Hz, 1H), 7.52 – 7.45 (m, 3H), 7.34 (dd, *J* = 5.3, 1.9 Hz, 1H), 7.14 (d, *J* = 7.8 Hz, 1H), 7.11 – 7.05 (m, 1H), 4.91 (d, *J* = 3.2 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 169.5, 169.5, 152.8, 150.6, 149.9, 149.4, 146.5, 145.0, 137.0, 136.8, 131.7, 131.0, 128.9, 128.5, 125.1, 124.4, 122.8, 121.3, 68.4, 67.7, 43.9. HRMS calcd for C₂₃H₁₅Cl₃N₃O₂ [M + H]⁺ 470.0224, found 470.0222.

4,5-diphenyl-2-(pyridin-2-ylmethyl)isoindoline-1,3-dione: (**3ay**, 75.1 mg, yellow solid, yield: 77%) mp: 152-154 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.51 (d, *J* = 4.8 Hz, 1H), 7.94 (d, *J* = 7.6 Hz, 1H), 7.76 (d, *J* = 7.6 Hz, 1H), 7.60 (td, *J* = 7.7, 1.7 Hz, 1H), 7.24 (dd, *J* = 6.4, 4.7 Hz, 4H), 7.20 (t, *J* = 3.4 Hz, 3H), 7.14 (td, *J* = 5.0, 2.5 Hz, 3H), 7.08 – 7.03 (m, 2H), 4.96 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 167.8, 167.5, 155.6, 149.7, 148.4, 139.5, 139.5, 136.8, 135.9, 134.9, 131.9, 130.4, 129.8, 129.3, 128.1, 127.9, 127.7, 127.6, 122.7, 122.5, 121.7, 43.1. HRMS calcd for C₂₆H₁₉N₂O₂ [M + H]+391.1441, found 391.1423.

3az

2-benzyl-6,6-dimethyl-9-phenyl-5,6,7,8-tetrahydro-1*H*-5,7-methanobenzo[*f*]isoindole-

1,3(2*H***)-dione:** (**3az**, 93.6 mg, colorless oil, yield: 92%): ¹H NMR (400 MHz, CDCl₃) δ 7.51 – 7.44 (m, 3H), 7.43 (s, 1H), 7.41 – 7.37 (m, 2H), 7.26 (qd, J = 6.7, 4.7 Hz, 5H), 4.72 (s, 2H), 2.98 (t, J = 5.6 Hz, 1H), 2.72 (d, J = 2.9 Hz, 2H), 2.66 (dt, J = 9.6, 5.8 Hz, 1H), 2.24 (tt, J = 6.0, 2.9 Hz, 1H), 1.39 (s, 3H), 1.22 (d, J = 9.6 Hz, 1H), 0.67 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 168.5, 167.8, 154.2, 141.1, 139.6, 139.2, 136.9, 135.7, 133.6, 130.3, 128.9, 128.7, 128.7, 128.6, 128.4, 128.4, 128.1, 127.7, 127.0, 120.4, 49.0, 41.5, 40.1, 38.7, 33.2, 31.3, 25.9, 21.5. HRMS calcd for C₂₈H₂₆NO₂ [M + H]⁺408.1958, found 408.1955.

4-(4-methoxyphenyl)-2-(pyridin-2-ylmethyl)-1*H*-benzo[*f*]isoindole-1,3(2*H*)-dione: (3ba, 86.7 mg, yellow solid, yield: 88%) mp: 234-236 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.52 (d, *J* = 5.0 Hz, 1H), 8.40 (s, 1H), 8.09 (d, *J* = 8.1 Hz, 1H), 7.90 (d, *J* = 8.5 Hz, 1H), 7.68 (t, *J* = 7.4 Hz, 1H), 7.67 – 7.56 (m, 2H), 7.36 (d, *J* = 8.3 Hz, 2H), 7.27 (d, *J* = 6.8 Hz, 1H), 7.20 – 7.12 (m, 1H), 7.06 (d, *J* = 8.3 Hz, 2H), 5.03 (s, 2H), 3.90 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.8, 167.4, 159.9, 155.5, 154.8, 149.5, 140.6, 135.9, 135.7, 131.5, 130.5, 130.1, 129.2, 129.0, 128.8, 128.1, 126.4, 124.4, 122.6, 121.8, 113.8, 55.4, 43.1. HRMS calcd for C₂₅H₁₉N₂O₃ [M + H]⁺ 395.1390, found 395.1381.

4-(4-fluorophenyl)-2-(pyridin-2-ylmethyl)-1*H*-benzo[*f*]isoindole-1,3(2*H*)-dione: (3bb, 75.4 mg, yellow solid, yield: 79%) mp: 236-238 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.49 (d, *J* = 4.8 Hz, 1H), 8.41 (d, *J* = 2.7 Hz, 1H), 8.09 (d, *J* = 8.1 Hz, 1H), 7.79 (d, *J* = 8.5 Hz, 1H), 7.68 (t, *J* = 7.6 Hz, 1H), 7.60 (tt, *J* = 7.9, 3.9 Hz, 2H), 7.42 – 7.33 (m, 2H), 7.28 – 7.17 (m, 3H), 7.13 (dd, *J* = 7.7, 4.8 Hz, 1H), 4.98 (d, *J* = 2.6 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 167.7, 167.3, 163.0 (d, *J* = 246 Hz), 155.4, 149.7, 139.4, 136.8, 135.6, 135.6, 132.0, 131.9, 130.6, 130.2 (d, *J* = 3 Hz), 129.4, 129.1, 128.4, 128.0, 124.8, 124.2, 122.6, 121.8, 115.4 (d, *J* = 22 Hz), 43.2. HRMS calcd for C₂₄H₁₆FN₂O₂ [M + H]⁺ 383.1190, found 383.1185.

4-(4-chlorophenyl)-2-(pyridin-2-ylmethyl)-1*H*-benzo[*f*]isoindole-1,3(2*H*)-dione: (3bc, 72.6 mg, yellow solid, yield: 73%) mp: 231-233 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.47 (d, *J* = 4.9 Hz, 1H), 8.40 (s, 1H), 8.07 (d, *J* = 8.2 Hz, 1H), 7.75 (d, *J* = 8.4 Hz, 1H), 7.67 (t, *J* = 7.5 Hz, 1H), 7.62 – 7.55 (m, 2H), 7.47 (d, *J* = 8.2 Hz, 2H), 7.33 (d, *J* = 8.3 Hz, 2H), 7.23 (d, *J* = 7.2 Hz, 1H), 7.16 – 7.08 (m, 1H), 4.97 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 167.7, 167.3, 155.4, 149.8, 139.1, 136.8, 135.6, 135.4, 134.9, 132.9, 131.5, 130.6, 129.5, 129.2, 128.6, 128.4, 128.0, 125.0, 124.1, 122.6, 121.8, 43.3. HRMS calcd for C₂₄H₁₆ClN₂O₂ [M + H]⁺ 399.0895, found 399.0893.

4-(4-bromophenyl)-2-(pyridin-2-ylmethyl)-1*H*-benzo[*f*]isoindole-1,3(2*H*)-dione: (3bd, 90.6 mg, yellow solid, yield: 82%) mp: 234-236 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.53 – 8.48 (m, 1H), 8.43 (s, 1H), 8.10 (d, *J* = 8.1 Hz, 1H), 7.79 (d, *J* = 8.5 Hz, 1H), 7.70 (t, *J* = 7.5 Hz, 1H), 7.66 (d, *J* = 8.1 Hz, 2H), 7.64 – 7.58 (m, 2H), 7.34 – 7.24 (m, 3H), 7.15 (dd, *J* = 7.5, 5.0 Hz, 1H), 5.00 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 167.6, 167.2, 155.3, 149.7, 139.0, 136.8, 135.6, 135.3, 133.3, 131.8, 131.6, 130.6, 129.5, 129.2, 128.3, 127.9, 124.9, 124.1, 123.1, 122.6, 121.8, 43.3. HRMS calcd for C₂₄H₁₆BrN₂O₂ [M + H]⁺ 443.0390, found 443.0386.

4-(3-methoxyphenyl)-2-(pyridin-2-ylmethyl)-1*H*-benzo[*f*]isoindole-1,3(2*H*)-dione: (3be, 91.6 mg, yellow solid, yield: 93%) mp: 190-192 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.50 (d, *J* = 4.8 Hz, 1H), 8.40 (s, 1H), 8.07 (d, *J* = 8.1 Hz, 1H), 7.84 (d, *J* = 8.5 Hz, 1H), 7.71 – 7.63 (m, 1H), 7.58 (tt, *J* = 7.8, 5.8, 2.0 Hz, 2H), 7.44 (t, *J* = 7.9 Hz, 1H), 7.25 (d, *J* = 7.5 Hz, 1H), 7.12 (t, *J* = 6.4 Hz, 1H), 7.04 (d, *J* = 8.1 Hz, 1H), 6.99 (d, *J* = 7.5 Hz, 1H), 6.94 (d, *J* = 2.5 Hz, 1H), 5.00 (s, 2H), 3.82 (d, *J* = 2.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.7, 167.0, 159.3, 155.5, 149.6, 140.2, 136.7, 135.8,

135.5, 130.4, 129.3, 129.2, 129.0, 128.7, 127.9, 124.6, 123.9, 122.5, 122.3, 121.7, 115.8, 113.9, 55.3, 43.2. HRMS calcd for $C_{25}H_{19}N_2O_3$ [M + H]⁺ 395.1390, found 395.1388.

4-(2-methoxyphenyl)-2-(pyridin-2-ylmethyl)-1*H*-benzo[*f*]isoindole-1,3(2*H*)-dione: (3bf, 79.8 mg, yellow solid, yield: 81%) mp: 204-206 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.51 (d, *J* = 4.8 Hz, 1H), 8.41 (s, 1H), 8.08 (d, *J* = 8.2 Hz, 1H), 7.78 (d, *J* = 8.4 Hz, 1H), 7.66 (t, *J* = 7.7 Hz, 1H), 7.58 (d, *J* = 8.0 Hz, 2H), 7.50 (t, *J* = 7.7 Hz, 1H), 7.25 (d, *J* = 7.7 Hz, 2H), 7.10 (dd, *J* = 19.0, 8.1 Hz, 3H), 5.01 (s, 2H), 3.66 (t, *J* = 2.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.9, 167.2, 157.4, 155.7, 149.6, 137.0, 136.7, 135.6, 131.3, 130.5, 130.3, 129.0, 128.9, 128.5, 128.0, 124.8, 124.5, 123.4, 122.4, 121.6, 120.6, 111.2, 55.7, 43.2. HRMS calcd for C₂₅H₁₉N₂O₃ [M + H]⁺ 395.1390, found 395.1379.

4-(naphthalen-2-yl)-2-(pyridin-2-ylmethyl)-1*H*-benzo[*f*]isoindole-1,3(2*H*)-dione: (3bg, 86.9 mg, yellow solid, yield: 84%) mp: 214-216 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.53 – 8.49 (m, 1H), 8.46 (s, 1H), 8.11 (d, *J* = 8.2 Hz, 1H), 8.00 (d, *J* = 8.4 Hz, 1H), 7.97 – 7.92 (m, 1H), 7.91 (s, 1H), 7.86 (dd, *J* = 11.3, 8.2 Hz, 2H), 7.68 (t, *J* = 7.5 Hz, 1H), 7.59 (dd, *J* = 7.8, 1.7 Hz, 1H), 7.54 (ddd, *J* = 8.4, 4.3, 1.8 Hz, 4H), 7.31 – 7.22 (m, 1H), 7.12 (dd, *J* = 7.5, 5.0 Hz, 1H), 5.00 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 167.8, 167.2, 155.4, 149.7, 140.4, 136.7, 135.7, 135.6, 133.2, 133.0, 131.9, 130.5, 129.4, 129.3, 129.1, 128.7, 128.4, 128.0, 127.8, 126.6, 126.49, 124.7, 124.1, 122.5, 121.7, 43.2. HRMS calcd for C₂₈H₁₉N₂O₂ [M + H]⁺ 415.1441, found 415.1437.

2-(pyridin-2-ylmethyl)-4-(thiophen-2-yl)-1*H*-benzo[*f*]isoindole-1,3(2*H*)-dione: (3bh, 78.6 mg, yellow solid, yield: 85%) ¹H NMR (400 MHz, CDCl₃) δ 8.53– 8.49 (m, 1H), 8.44 (s, 1H), 8.11 – 8.06 (m, 1H), 8.03 (d, *J* = 8.3 Hz, 1H), 7.73 – 7.68 (m, 1H), 7.68 – 7.63 (m, 1H), 7.63 – 7.57 (m, 2H), 7.27 (d, *J* = 8.3 Hz, 1H), 7.24 (dd, *J* = 5.0, 3.5 Hz, 1H), 7.21 (dd, *J* = 3.5, 1.1 Hz, 1H), 7.15 (dd, *J* = 7.5, 4.9 Hz, 1H), 5.02 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 167.5, 166.8, 155.5, 149.7, 136.8, 136.6, 135.5, 133.9, 133.0, 130.4, 129.6, 129.3, 128.5, 128.0, 127.5, 127.2, 125.7, 125.4, 122.6, 121.8, 43.3. HRMS calcd for C₂₂H₁₅N₂O₂S [M + H]⁺ 371.0849, found 395.0852.

2-(pyridin-2-ylmethyl)-4-(pyridin-4-yl)-1*H*-benzo[*f*]isoindole-1,3(2*H*)-dione: (3bi, 43.8 mg, yellow solid, yield: 48%) mp: 250-252 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.81 (d, J = 5.0 Hz, 2H), 8.50 (d, J = 4.9 Hz, 1H), 8.49 (s, 1H), 8.14 (d, J = 8.2 Hz, 1H), 7.77 – 7.71 (m, 1H), 7.69 (d, J = 8.1 Hz, 1H), 7.67 – 7.64 (m, 1H), 7.62 (dd, J = 7.6, 1.8 Hz, 1H), 7.44 (d, J = 5.1 Hz, 2H), 7.28 (d, J = 7.8 Hz, 1H), 7.18 – 7.14 (m, 1H), 5.01 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 167.4, 166.9, 155.1, 149.8, 149.0, 144.0, 136.9, 136.5, 135.7, 134.4, 130.8, 129.9, 129.5, 127.9, 127.8, 125.7, 125.4, 124.2, 122.7, 121.9, 43.3. HRMS calcd for C₂₃H₁₆N₃O₂ [M + H]⁺ 366.1237, found 366.1233.

2-(pyridin-2-ylmethyl)-1*H***-benzo[***f***]isoindole-1,3(2***H***)-dione: (3bj, 55.4 mg, yellow solid, yield: 77%) ¹H NMR (400 MHz, CDCl₃) δ 8.49 – 8.45 (m, 1H), 8.30 (d,** *J* **= 1.2 Hz, 2H), 7.99 (dd,** *J* **= 6.2, 3.4 Hz, 2H), 7.66 – 7.61 (m, 2H), 7.60 – 7.54 (m, 1H), 7.25 – 7.18 (m, 1H), 7.13 – 7.07 (m, 1H),** 5.03 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 167.9, 155.4, 149.6, 136.9, 135.6, 130.4, 129.3, 128.0, 125.0, 122.6, 121.8, 43.3. HRMS calcd for C₁₈H₁₃N₂O₂ [M + H]⁺ 289.0972, found 289.0970.

3bk:9-methyl-2-(pyridin-2-ylmethyl)-3a,4-dihydro-1*H***-benzo**[*f*]isoindole-1,3(2*H*)-dione (52.2 mg, yellow solid, total yield: 85%) ¹H NMR (400 MHz, CDCl₃) δ 8.53 (dt, *J* = 4.9, 1.3 Hz, 1H), 7.64 (td, *J* = 7.7, 1.8 Hz, 1H), 7.56 – 7.51 (m, 1H), 7.36 – 7.32 (m, 2H), 7.30 (dd, *J* = 9.3, 3.9 Hz, 2H), 7.20 – 7.06 (m, 1H), 5.03 – 4.85 (m, 2H), 3.63 – 3.48 (m, 1H), 3.28 (dd, *J* = 15.1, 6.3 Hz, 1H), 2.85 (t, *J* = 15.5 Hz, 1H), 2.64 (d, *J* = 2.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 175.7, 168.6, 155.2, 149.8, 142.9, 136.8, 135.8, 135.7, 130.0, 128.6, 127.7, 126.2, 122.6, 122.3, 121.9, 43.5, 40.1, 29.0, 14.5. HRMS calcd for C₁₉H₁₇N₂O₂ [M + H]⁺ 305.1285, found 305.1283.

3bk': 4-methyl-2-(pyridin-2-ylmethyl)-1*H***-benzo**[*f*]isoindole-1,3(2*H*)-dione (12.3 mg, yellow solid, total yield: 85%) ¹H NMR (400 MHz, CDCl₃) δ 8.56 – 8.53 (m, 1H), 8.28 – 8.21 (m, 2H), 8.03 (dd, *J* = 7.8, 1.6 Hz, 1H), 7.71 (dddd, *J* = 16.5, 8.2, 6.9, 1.5 Hz, 2H), 7.64 (td, *J* = 7.7, 1.8 Hz, 1H), 7.32 (d, *J* = 7.9 Hz, 1H), 7.20 – 7.14 (m, 1H), 5.07 (s, 2H), 3.11 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 169.0, 167.8, 155.7, 149.8, 137.8, 136.9, 136.0, 135.2, 131.0, 129.1, 128.9, 128.0, 126.1, 124.2, 123.4, 122.6, 121.8, 43.2, 13.4. HRMS calcd for C₁₉H₁₅N₂O₂ [M + H]⁺ 303.1128, found 303.1121.

3bl: 9-ethyl-2-(pyridin-2-ylmethyl)-3a,4-dihydro-1*H*-benzo[*f*]isoindole-1,3(2*H*)-dione (50.1 mg, yellow solid, total yield: 81%) ¹H NMR (400 MHz, CDCl₃) δ 8.47 (dd, *J* = 4.9, 1.5 Hz, 1H), 7.58 (td, *J* = 7.7, 1.7 Hz, 1H), 7.53 – 7.47 (m, 1H), 7.27 (dtt, *J* = 8.7, 6.0, 3.4 Hz, 3H), 7.23 – 7.17 (m, 1H), 7.10 (dd, *J* = 7.5, 4.9 Hz, 1H), 4.95 – 4.79 (m, 2H), 3.47 (dd, *J* = 15.9, 6.2 Hz, 1H), 3.28

(dd, J = 13.3, 7.2 Hz, 1H), 3.20 (dd, J = 15.1, 6.3 Hz, 1H), 3.00 (ddd, J = 13.1, 7.5, 1.5 Hz, 1H), 2.77 (t, J = 15.5 Hz, 1H), 1.15 (t, J = 7.5 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 175.6, 168.0, 155.1, 149.6, 149.0, 136.7, 136.2, 134.2, 129.8, 128.8, 127.6, 126.0, 122.5, 121.8, 121.5, 43.3, 39.9, 29.1, 21.1, 14.4. HRMS calcd for C₂₀H₁₉N₂O₂ [M + H]⁺ 319.1441, found 319.1437.

3bl': 4-ethyl-2-(pyridin-2-ylmethyl)-1*H***-benzo**[*f*]isoindole-1,3(2*H*)-dione (14.2 mg, yellow solid, total yield: 81%) ¹H NMR (400 MHz, CDCl₃) δ 8.58 – 8.52 (m, 1H), 8.27 (d, *J* = 8.3 Hz, 1H), 8.24 (s, 1H), 8.07 – 8.01 (m, 1H), 7.75 – 7.70 (m, 1H), 7.70 – 7.66 (m, 1H), 7.67 – 7.61 (m, 1H), 7.31 (d, *J* = 7.9 Hz, 1H), 7.17 (dd, *J* = 7.5, 5.0 Hz, 1H), 5.07 (s, 2H), 3.66 (q, *J* = 7.6 Hz, 2H), 1.37 (t, *J* = 7.5 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 175.7, 168.1, 155.1, 149.7, 149.1, 136.7, 136.2, 134.2, 129.8, 128.8, 127.6, 126.0, 122.5, 121.8, 121.5, 43.4, 39.9, 29.1, 21.1, 14.4. HRMS calcd for C₂₀H₁₇N₂O₂ [M + H]⁺ 317.1285, found 317.1282.

3bm:9-propyl-2-(pyridin-2-ylmethyl)-3a,4-dihydro-1*H***-benzo**[*f*]isoindole-1,3(2*H*)-dione (53.7 mg, yellow solid, total yield: 86%) ¹H NMR (400 MHz, CDCl₃) δ 8.54 (q, *J* = 1.6 Hz, 1H), 7.65 (td, *J* = 7.7, 1.8 Hz, 1H), 7.59 – 7.51 (m, 1H), 7.37 – 7.27 (m, 3H), 7.26 (s, 2H), 7.22 – 7.13 (m, 1H), 5.01 – 4.87 (m, 2H), 3.54 (ddd, *J* = 16.0, 6.2, 1.5 Hz, 1H), 3.38 – 3.27 (m, 1H), 3.31 – 3.21 (m, 1H), 3.00 (dddd, *J* = 12.7, 9.6, 5.4, 1.6 Hz, 1H), 2.83 (t, *J* = 15.5 Hz, 1H), 1.70 – 1.49 (m, 1H), 0.98 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 175.7, 168.2, 155.1, 149.5, 147.7, 137.0, 136.2, 134.5, 129.8, 128.8, 127.6, 126.2, 122.6, 122.2, 121.8, 43.3, 40.0, 29.6, 29.2, 23.2, 14.2. HRMS calcd for C₂₁H₂₁N₂O₂ [M + H]⁺ 333.1598, found 333.1596.

3bm': 4-propyl-2-(pyridin-2-ylmethyl)-1*H***-benzo[***f***]isoindole-1,3(2***H***)-dione (16.9 mg, yellow solid, total yield: 86%) mp: 152-154 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.54 (dt,** *J* **= 4.8, 1.4 Hz, 1H), 8.27 (s, 1H), 8.25 (d,** *J* **= 3.7 Hz, 1H), 8.03 (dd,** *J* **= 7.9, 1.7 Hz, 1H), 7.75 – 7.62 (m, 3H), 7.31 (d,** *J* **= 7.9 Hz, 1H), 7.21 – 7.14 (m, 1H), 5.08 (s, 2H), 3.67 – 3.56 (m, 2H), 1.83 – 1.68 (m, 2H), 1.09 (t,** *J* **= 7.3 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 168.7, 167.9, 155.7, 149.7, 142.7, 137.0,**

135.6, 135.2, 131.2, 129.0, 128.8, 128.0, 126.1, 123.8, 123.5, 122.6, 121.7, 43.2, 29.0, 24.65, 14.56. HRMS calcd for $C_{21}H_{19}N_2O_2$ [M + H]⁺ 331.1441, found 331.1438.

2,4-diphenyl-1*H***-benzo**[*f*]isoindole-1,3(2*H*)-dione: (3ca, 52.4 mg, white solid, yield: 60%) mp: 205-207 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.51 (s, 1H), 8.14 (d, *J* = 8.1 Hz, 1H), 7.86 (d, *J* = 8.5 Hz, 1H), 7.72 (t, *J* = 7.5 Hz, 1H), 7.63 (t, *J* = 7.7 Hz, 1H), 7.55 (q, *J* = 4.4, 3.7 Hz, 3H), 7.46 (d, *J* = 3.0 Hz, 6H), 7.37 (dq, *J* = 6.0, 3.0 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 167.0, 166.5, 141.0, 135.8, 135.8, 134.5, 131.9, 130.5, 130.0, 129.4, 129.2, 129.0, 128.8, 128.7, 128.3, 128.2, 127.56, 126.8, 124.9, 123.5. HRMS calcd for C₂₄H₁₆NO₂ [M + H]⁺ 350.1176, found 350.1174.

2-(naphthalen-1-yl)-4-phenyl-1*H***-benzo**[*f*]isoindole-1,3(2*H*)-dione: (3cb, 74.8 mg, yellow solid, yield: 75%) mp: 212-214 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.44 (s, 1H), 8.03 (d, *J* = 8.1 Hz, 1H), 7.80 (q, *J* = 7.0, 5.2 Hz, 3H), 7.55 (ddd, *J* = 18.9, 14.4, 7.5 Hz, 3H), 7.44 – 7.35 (m, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 167.4, 167.0, 141.2, 135.8, 134.5, 134.3, 130.6, 130.3, 130.1, 130.0, 129.9, 129.4, 129.3, 128.8, 128.6, 128.6, 128.3, 127.8, 127.2, 127.1, 126.5, 125.4, 125.1, 123.7, 122.7. HRMS calcd for C₂₈H₁₈NO₂ [M + H]⁺ 400.1332, found 400.1328.

2-([1,1'-biphenyl]-4-yl)-4-phenyl-1*H*-benzo[*f*]isoindole-1,3(2*H*)-dione: (3cc, 65.9 mg, yellow solid, yield: 62%) mp: 225-227 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.52 (s, 1H), 8.14 (d, *J* = 8.2 Hz, 1H), 7.87 (d, *J* = 8.5 Hz, 1H), 7.73 (t, *J* = 7.5 Hz, 1H), 7.66 (dd, *J* = 12.4, 8.3 Hz, 3H), 7.59 (q,

J = 8.0, 6.7 Hz, 3H), 7.56 – 7.51 (m, 4H), 7.45 (t, J = 7.7 Hz, 4H), 7.36 (t, J = 7.3 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 167.0, 166.5, 141.1, 140.5, 135.9, 135.8, 134.5, 131.1, 130.6, 130.0, 129.4, 129.3, 129.0, 128.8, 128.7, 128.3, 127.8, 127.7, 127.6, 127.4, 127.0, 125.0, 123.5. HRMS calcd for C₃₀H₂₀NO₂ [M+H]⁺,426.1489, found 426.1486.

2-benzyl-4-phenyl-1*H***-benzo**[*f*]isoindole-1,3(2*H*)-dione: (3cd, 78.0 mg, yellow solid, yield: 86%) mp: 199-201 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.37 (s, 1H), 8.08 (d, *J* = 8.2 Hz, 1H), 7.79 (d, *J* = 8.4 Hz, 1H), 7.67 (t, *J* = 7.5 Hz, 1H), 7.59 (d, *J* = 8.1 Hz, 1H), 7.57 – 7.52 (m, 3H), 7.44 (d, *J* = 7.2 Hz, 2H), 7.41 – 7.37 (m, 2H), 7.27 (q, *J* = 7.4 Hz, 3H), 4.83 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 167.7, 167.1, 140.4, 136.6, 135.6, 135.5, 134.5, 130.4, 130.0, 129.2, 129.0, 129.0, 128.7, 128.7, 128.3, 127.9, 127.8, 124.4, 123.9, 41.9. HRMS calcd for C₂₅H₁₈NO₂ [M+H]⁺, 364.1332, found 364.1328.

2-cyclohexyl-4-phenyl-1*H***-benzo**[*f*]isoindole-1,3(2*H*)-dione: (3ce, 75.4 mg, yellow solid, yield: 85%) mp: 157-159 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.34 (s, 1H), 8.08 (d, *J* = 8.1 Hz, 1H), 7.78 (d, *J* = 8.5 Hz, 1H), 7.67 (t, *J* = 7.5 Hz, 1H), 7.60 – 7.53 (m, 4H), 7.44 – 7.38 (m, 2H), 4.13 (tt, *J* = 12.4, 3.9 Hz, 1H), 2.32 – 2.13 (m, 2H), 1.78 (dd, *J* = 45.7, 12.3 Hz, 4H), 1.65 (d, *J* = 12.2 Hz, 1H), 1.41 – 1.18 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 168.1, 167.7, 139.9, 135.6, 135.5, 134.7, 130.3, 129.9, 129.0, 128.8, 128.6, 128.5, 128.3, 128.0, 124.0, 123.9, 51.2, 29.8, 26.1, 25.2. HRMS calcd for C₂₄H₂₂NO₂ [M+H]⁺ 356.1645, found 356.1645.

4-phenyl-2-propyl-1*H***-benzo[***f***]isoindole-1,3(2***H***)-dione: (3cf, 70.1 mg, yellow solid, yield: 89%) mp: 145-147 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.37 (s, 1H), 8.08 (d,** *J* **= 8.1 Hz, 1H), 7.81 (d,** *J* **= 8.4 Hz, 1H), 7.68 (t,** *J* **= 7.5 Hz, 1H), 7.61 – 7.58 (m, 1H), 7.57 – 7.53 (m, 3H), 7.45 – 7.37 (m, 2H), 3.63 (t,** *J* **= 7.4 Hz, 2H), 1.69 (q,** *J* **= 7.4 Hz, 2H), 0.93 (t,** *J* **= 7.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 168.1, 167.6, 140.2, 135.5, 134.6, 130.4, 130.0, 129.1, 129.0, 128.7, 128.6, 128.3, 128.0, 124.2, 124.0, 39.9, 21.9, 11.5. HRMS calcd for C₂₁H₁₈NO₂ [M + H]⁺ 316.1332, found 316.1330.**

2-butyl-4-phenyl-1*H***-benzo**[*f*]isoindole-1,3(2*H*)-dione: (3cg, 70.7 mg, yellow solid, yield: 86%) mp: 150-152 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.36 (s, 1H), 8.11 – 8.05 (m, 1H), 7.84 – 7.77 (m, 1H), 7.67 (ddd, *J* = 8.2, 6.9, 1.3 Hz, 1H), 7.61 – 7.57 (m, 1H), 7.57 – 7.53 (m, 3H), 7.44 – 7.39 (m, 2H), 3.80 – 3.50 (m, 2H), 1.65 (tt, *J* = 8.9, 6.8 Hz, 2H), 1.36 (dp, *J* = 14.8, 7.4 Hz, 2H), 0.92 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 168.1, 167.6, 140.1, 135.6, 135.5, 134.6, 130.4, 130.0, 129.1, 128.9, 128.6, 128.6, 128.3, 128.1, 124.12, 124.0, 38.2, 30.6, 20.3, 13.8. HRMS calcd for C₂₂H₂₀NO₂ [M+H]⁺330.1489, found 330.1490.

2-(methyl(pyridin-2-yl)amino)-4-phenyl-1*H***-benzo**[*f*]isoindole-1,3(2*H*)-dione: (3ch, 75.8 mg, yellow oil, yield: 80%) ¹H NMR (400 MHz, CDCl₃) δ 8.49 (s, 1H), 8.24 – 8.08 (m, 2H), 7.86 (d, *J* = 8.5 Hz, 1H), 7.72 (dd, *J* = 8.2, 6.8 Hz, 1H), 7.63 (dd, *J* = 8.5, 7.0 Hz, 1H), 7.50 (ddd, *J* = 19.3,

14.7, 8.8 Hz, 6H), 6.78 – 6.69 (m, 1H), 6.62 (d, J = 8.5 Hz, 1H), 3.50 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 165.9, 165.5, 157.5, 148.2, 141.2, 137.9, 135.8, 135.8, 134.2, 130.6, 130.2, 129.9, 129.5, 129.3, 128.7, 128.7, 128.3, 126.0, 125.2, 121.9, 115.7, 106.6, 38.5. HRMS calcd for C₂₄H₁₈N₃O₂ [M+H]⁺380.1394, found 380.1390.

Methyl-2-(1,3-dioxo-4-phenyl-1,3-dihydro-2H-benzo[f]isoindol-2-yl)-3-phenylpropanoate

(**3ci**, 44.6 mg, white solid, yield: 41%) ¹H NMR (400 MHz, CDCl₃) δ 8.32 (s, 1H), 8.06 (d, J = 8.1 Hz, 1H), 7.79 (d, J = 8.5 Hz, 1H), 7.70 – 7.64 (m, 1H), 7.56 (dtd, J = 16.0, 5.7, 4.5, 1.8 Hz, 4H), 7.39 (dt, J = 5.1, 2.1 Hz, 1H), 7.30 (dd, J = 5.7, 3.0 Hz, 1H), 7.21 – 7.11 (m, 5H), 5.18 (dd, J = 10.4, 6.0 Hz, 1H), 3.76 (s, 3H), 3.63 – 3.45 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 169.4, 167.1, 166.4, 140.6, 137.0, 135.5, 135.5, 134.3, 130.4, 130.0, 129.9, 129.2, 129.1, 129.0, 128.7, 128.6, 128.3, 128.2, 127.3, 126.8, 124.6, 123.3, 53.3, 52.9, 34.6. HRMS calcd for C₂₈H₂₂NO₄ [M+H]⁺436.1543, found 436.1541.

tert-butyl-3-(1,3-dioxo-4-phenyl-1,3-dihydro-2*H***-benzo[***f***]isoindol-2-yl)propanoate: (3cj, 48.1 mg, yellow solid, yield: 48%) mp: 127-129 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.22 (s, 1H), 7.98 – 7.91 (m, 1H), 7.70 – 7.64 (m, 1H), 7.53 (ddd,** *J* **= 8.1, 6.9, 1.3 Hz, 1H), 7.48 – 7.43 (m, 1H), 7.43 – 7.41 (m, 1H), 7.41 – 7.40 (m, 1H), 7.39 (d,** *J* **= 2.2 Hz, 2H), 7.26 – 7.23 (m, 1H), 3.87 – 3.72 (m, 2H), 2.65 – 2.41 (m, 2H), 1.25 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 170.1, 167.6, 167.3, 140.4, 135.6, 134.5, 130.5, 130.0, 130.0, 129.2, 129.1, 128.7, 128.7, 128.3, 127.9, 124.40, 123.9, 81.1,**

V. Gram-Scale Reaction for the Synthesis of 6-DMN.

6-DMN: To a three necks flask A containing propioic acid (0.30 g, 4.27 mmol) was added anhydrous THF (5 mL) at -78 °C, nBuLi (2.0 M in cyclohexane, 2.49 mL, 4.98 mmol) was added dropwise by syringe. The reaction mixture was allowed to stir at the same temperature for a period of time, until white suspension was generated, the reaction mixture was warmed to room temperature and stirred for 45 min, then cooled to 0 °C, pivaloyl chloride (0.69 g, 5.69 mmol) was then added dropwise to the solution, and stirring was continued for 2 h. ^[5]

To a three neck flask B containing (E)-3-(4-(dimethylamino)phenyl)-N-(pyridin-2ylmethyl)acrylamide 4 (1.0 g, 3.56 mmol) was added anhydrous THF (20 mL) at -78 °C, nBuLi (2.0 M in cyclohexane, 2.14 mL, 4.27 mmol) was added dropwise by syringe. The reaction mixture was allowed to stir at the same temperature for 15 min. Then, the reaction solution of flask A was added slowly to flask B by injection, the reaction mixture was warmed to room temperature and stirred for 3 h. The reaction mixture was quenched carefully with a saturated solution of NH₄Cl (5 mL), and the mixture was extracted with EtOAc for three times. The organic layers were combined and dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The former crude product was purified by silica column chromatography (PE/EA = 5:1) to give desired product **6-DMN** (0.83 g, 70%) as a luminous yellow solid.

6-CINP: To a three necks flask A containing propioic acid (0.31 g, 4.41 mmol) was added anhydrous THF (5 mL) at -78 °C, nBuLi (2.0 M in cyclohexane, 2.58 mL, 5.15 mmol) was added dropwise by syringe. The reaction mixture was allowed to stir at the same temperature for a period

of time, until white suspension was generated, the reaction mixture was warmed to room temperature and stirred for 45 min, then cooled to 0 °C, pivaloyl chloride (0.71 g, 5.88 mmol) was then added dropwise to the solution, and stirring was continued for 2 h. ^[5]

To a three neck flask B containing (E)-3-(4-chlorophenyl)-N-(pyridin-2-ylmethyl)acrylamide **5** (1.0 g, 3.68 mmol) was added anhydrous THF (20 mL) at -78 °C, nBuLi (2.0 M in cyclohexane, 2.21 mL, 4.41 mmol) was added dropwise by syringe. The reaction mixture was allowed to stir at the same temperature for 15 min. Then, the reaction solution of flask A was added slowly to flask B by injection, the reaction mixture was warmed to room temperature and stirred for 3 h. The reaction mixture was quenched carefully with a saturated solution of NH₄Cl (5 mL), and the mixture was extracted with EtOAc for three times. The organic layers were combined and dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The former crude product was purified by silica column chromatography (PE/EA = 5:1) to give desired product **6-CINP** (0.93

g, 79%) as a pale yellow solid.

Characterization data:

6-(dimethylamino)-2-(pyridin-2-ylmethyl)-1*H*-benzo[*f*]isoindole-1,3(2*H*)-dione: (6-DMN, luminous yellow solid, 0.83 g, yield: 70%): ¹H NMR (400 MHz, CDCl₃) δ 8.57 – 8.51 (m, 1H), 8.16 (s, 1H), 8.09 (s, 1H), 7.85 (d, *J* = 9.1 Hz, 1H), 7.62 (td, *J* = 7.7, 1.9 Hz, 1H), 7.29 (d, *J* = 7.9 Hz, 1H), 7.23 (dd, *J* = 9.1, 2.6 Hz, 1H), 7.15 (ddd, *J* = 7.7, 4.9, 1.1 Hz, 1H), 7.00 (d, *J* = 2.6 Hz, 1H), 5.05 (s, 2H), 3.13 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 168.5, 168.4, 156.0, 150.6, 149.7, 137.8, 136.8, 131.4, 128.8, 127.5, 125.0, 123.2, 122.9, 122.5, 121.6, 117.8, 108.0, 43.2, 40.4. HRMS calcd for C₂₀H₁₈N₃O₂ [M + H]⁺ 332.1394, found 332.1385.

¹H (400 MHz, CDCl₃)

Characterization data:

6-chloro-2-(pyridin-2-ylmethyl)-1*H***-benzo[***f***]isoindole-1,3(2***H***)-dione: (6-ClNP, pale yellow solid, 0.93 g, yield: 79%) ¹H NMR (400 MHz, CDCl₃) δ 8.55 – 8.50 (m, 1H), 8.37 (d,** *J* **= 9.9 Hz, 1H), 8.29 (s, 1H), 8.04 (d,** *J* **= 2.0 Hz, 1H), 8.00 (d,** *J* **= 8.7 Hz, 1H), 7.65 (ddd,** *J* **= 9.0, 7.1, 1.9 Hz,**

2H), 7.33 (t, J = 7.7 Hz, 1H), 7.20 – 7.15 (m, 1H), 5.09 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 167.6, 167.6, 155.2, 149.8, 136.9, 136.3, 135.6, 133.9, 131.7, 130.2, 129.2, 129.2, 128.3, 124.9, 124.04, 122.70, 121.8, 43.4. HRMS calcd for C₁₈H₁₂ClN₂O₂ [M + H]⁺323.0582, found 323.0571.

VI. Control Experiments

1. Reaction a:

To a mixture of hydroxylamine hydrochloride (0.27 g, 3.95 mmol) and (*E*)-4-cyclohexylbut-3en-2-one (0.48 g, 3.29 mmol) in 80 % ethanol (3 mL) at room temperature was added sodium hydroxide (0.26 g, 6.58 mmol) by dropwise. The mixture was heated under reflux for 10 min and was then poured into ice-cooled aqueous HCl (1.7 M, 4.0 mL). The white solid was obtained, filtered, and washed with water to give the corresponding oxime.^[6]

To a solution of the oxime in ethanol (4.1 mL) and acetic acid (4.1 mL) was added zinc dust (0.43 g, 6.58 mmol) in portions and then the solution was refluxed for 1.0 h. The precipitate was filtered and washed with ethanol (2 x 6.6 mL). The filtrate was concentrated and the residue was dissolved in aqueous HCl (6 M, 3.3 mL), and extracted with dichloromethane. The aqueous acidic layer was treated with solid sodium hydroxide (0.16 g, 4.08 mmol) and extracted with ether. The combined organic extracts were dried (BaO) and concentrated to give amine (0.19 g, 40% yield in two steps) as a colorless oil.^[6]

To a solution of EDCI (0.42 g, 2.19 mmol) and DMAP (15.7 mg, 0.13 mmol, 0.1 equiv.) in anhydrous DCM was added triethylamine (0.26 g, 2.58 mmol) at -10 °C. Then 3-phenylpropiolic

acid (0.28 g, 1.94 mmol) was added by fraction, the reaction was stirred for 20 min at -10 °C. Amine (0.19 g, 1.29 mmol) was dissolved in DCM and was added subsequently. The mixture was then warmed to room temperature and stirred overnight. After completion of the reaction, water was added into the mixture and extracted with DCM, the organic layer was dried over anhydrous Na₂SO₄ and filtered, then the DCM was removed by rotary evaporation. Obtained the former crude product was purified by silica column chromatography (PE/ EA = 3:1) to give product **6**^[2] (0.25 g, yield: 73%).

Acetylene amide **6** (68.5 mg, 0.25 mmol) was dissolved in anhydrous THF. The resulting solution was cooled to 0 °C with stirring, NaH (60% in mineral oil, 15.0 mg, 0.38 mmol) was added by fraction. After stirring at 0 °C for 30 min, benzoyl chloride (45.5 mg, 0.33 mmol) was added. The reaction was stirred under room temperature for 6 h. The reaction mixture was diluted with water and extracted with EtOAc. The organic layer was dried over anhydrous Na₂SO₄ and filtered, then the EtOAc was removed by rotary evaporation. Obtained the former crude product was purified by silica column chromatography (PE/EA = 80:1) to give the mixture of **7** and **8** (70.9 mg, 75%, **7:8** = 2.3:1).

Characterization data:

2-benzoyl-3-methyl-9-phenyl-2,3,3a,4-tetrahydro-1*H***-benzo**[*f*]isoindol-1-one with 2-benzoyl-**3-methyl-9-phenyl-2,3-dihydro-1***H***-benzo**[*f*]isoindol-1-one (7:8 = 2.3:1, white solid, 70.4 mg, yield: 75%): ¹H NMR (400 MHz, CDCl₃) δ 7.93 – 7.81 (m, 1H), 7.65 – 7.49 (m, 4H), 7.42 – 7.30 (m, 3.5H), 7.30 – 7.14 (m, 10H), 7.04 (td, *J* = 7.4, 2.0 Hz, 1.5H), 6.75 (d, *J* = 7.8 Hz, 1H), 5.61 – 5.53 (m, 0.44H), 4.10 – 4.04 (m, 1H), 3.16 – 2.96 (m, 1H), 2.81 (t, *J* = 5.8 Hz, 2H), 1.70 (d, *J* = 6.5 Hz, 1.3H), 1.46 (d, *J* = 6.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 172.0, 171.0, 166.0, 165.8, 146.2, 141.8, 141.8, 136.3, 136.1, 135.6, 135.3, 135.3, 135.2, 135.1, 133.0, 132.4, 132.0, 130.0, 129.7, 129.5, 129.5, 129.4, 129.2, 128.9, 128.4, 128.1, 128.1, 128.0, 128.0, 128.0, 127.9, 127.9, 127.9, 127.2, 126.9, 126.5, 124.0, 121.1, 57.4, 54.3, 40.2, 32.9, 20.1, 19.1.

2. Reactions b and c:

Amide^[2] **1cd** (58.8 mg, 0.25 mmol) or **10**^[2] (59.5 mg, 0.25 mmol) was dissolved in anhydrous THF. The resulting solution was cooled to 0 °C with stirring, NaH (60 % in oil, 1.5 equiv.) was added by fraction. After stirring at 0 °C for 30 min, acryoyl chloride ^[3] (1.3 equiv.) was added. The reaction was stirred under room temperature for 6 h. The reaction mixture was diluted with water and extracted with EtOAc. The organic layer was dried over anhydrous Na₂SO₄ and filtered, then the EtOAc was removed by rotary evaporation. Obtained the former crude product was purified by silica column chromatography (PE/EA = 20:1) to give products imides as stable compounds without further conversions.

(*E*)-*N*-benzyl-*N*-(3-phenylpropioloyl)but-2-enamide: (compound 9, yellowish oil) ¹H NMR (400 MHz, CDCl₃) δ 7.49 (d, *J* = 1.3 Hz, 1H), 7.47 (d, *J* = 1.6 Hz, 1H), 7.46 – 7.43 (m, 1H), 7.40 – 7.36 (m, 2H), 7.36 – 7.30 (m, 4H), 7.29 – 7.23 (m, 1H), 7.09 (dq, *J* = 15.1, 6.9 Hz, 1H), 6.87 (dq, *J* = 15.1, 1.5 Hz, 1H), 5.21 (s, 2H), 1.94 (dd, *J* = 6.9, 1.6 Hz, 3H).

N-cinnamoyl-*N*-(pyridin-2-ylmethyl)cinnamamide: (compound 11, yellow oil) ¹H NMR (400 MHz, CDCl₃) δ 8.55 (d, *J* = 4.3 Hz, 1H), 7.77 (d, *J* = 15.5 Hz, 2H), 7.64 (td, *J* = 7.7, 1.6 Hz, 1H), S36
7.50 (dd, *J* = 7.0, 2.2 Hz, 4H), 7.32 (dd, *J* = 7.8, 2.5 Hz, 7H), 7.22 (d, *J* = 1.8 Hz, 2H), 7.16 (dd, *J* = 7.1, 5.3 Hz, 1H), 5.24 (s, 2H).

VII. X-ray Crystal Structure and Details of Compound 3al

Crystals of **3al** was obtained by recrystallization from CDCl₃.

Table S2. Crystal data and structure refinement for $C_{25}H_{18}N_2O_3$

Identification code	cu_180513A_0m	
Empirical formula	$C_{25} H_{18} N_2 O_3$	
Formula weight	394.43	
Temperature	297(2) K	
Wavelength	1.54178 Å	
Crystal system	Triclinic	
Space group	P-1	
Unit cell dimensions	a = 7.0612(3) Å	a= 88.150(2)°.
	b = 10.7290(4) Å	b= 87.486(2)°.
	c = 16.0800(6) Å	g = 84.532(2)°.
Volume	1211.02(8) Å ³	
Z	2	
Density (calculated)	1.409 Mg/m ³	
Absorption coefficient	3.687 mm ⁻¹	
F(000)	528	
Crystal size	0.150 x 0.120 x 0.100 mm ³	
Theta range for data collection	2.752 to 65.759°.	
Index ranges	-8<=h<=7, -12<=k<=12, -18-	<=l<=18
Reflections collected	20395	
Independent reflections	3993 [R(int) = 0.0626]	
Completeness to theta = 65.759°	95.2 %	
Absorption correction	None	
Refinement method	Full-matrix least-squares on l	F2
Data / restraints / parameters	3993 / 21 / 346	
S	38	

Goodness-of-fit on F ²	1.039
Final R indices [I>2sigma(I)]	R1 = 0.0580, wR2 = 0.1612
R indices (all data)	R1 = 0.0623, wR2 = 0.1670
Extinction coefficient	0.0019(7)
Largest diff. peak and hole	0.304 and -0.340 e.Å ⁻³

VIII. Computational Details

Density functional theory calculations were carried out at the M06-2X level of theory in combination with def2-SVP basis sets. All relevant stationary points were characterized as minima or first-order transition states by evaluating the harmonic vibrational frequencies at the same level that had been applied for geometry optimization. Grimme-type empirical dispersion corrections were incorporated at the M062X level with zero dampening (M062X-D3). Zero-point energies (ZPE) and relative free energies (Δ G) at standard pressure (1 bar) and 323.15K were determined at the same level. The integration grid was set to ultrafine level for all the calculations. The DFT computations were performed using the Gaussian16.

Structures of calculated reactants

	НОМО	LUMO	gap
oam	-7.603	-0.919	6.683
onh	-7.392	-0.595	6.797
onm	-7.364	-0.593	6.771
ono	-7.784	-1.457	6.327
ooh	-7.835	-0.726	7.109
2no	-7.835	-1.565	6.270

Table S3. HOMO-LUMO level of optimized reactant

	НОМО	LUMO	gap
oam	-7.051	-0.771	6.280
onh	-6.936	-0.607	6.329
onm	-6.919	-0.580	6.339
ono	-7.176	-0.910	6.267
ooh	-7.124	-0.794	6.330
2no	-7.061	-0.700	6.361

Table S4. HOMO-LUMO level of optimized product

Table S5. HOMO-LUMO level of transition state

	НОМО	LUMO	gap
oam	-6.272	-1.608	4.665
onh	-6.234	-1.396	4.837
onm	-6.249	-1.328	4.921
ono	-6.467	-1.884	4.583
ooh	-6.387	-1.713	4.674
2no	-6.290	-1.749	4.541

Table S6. Gibbs free energy relative to the reactant (unit: kCal/mol)

	reactant	TS	product
oam	0	24.61594	-22.7108
onh	0	27.52382	-18.4764
onm	0	27.46107	-19.4835
ono	0	23.95706	-25.2579
ooh	0	28.2304	-18.8717
2no	0	31.7896	-1.3862

Table S7. Absolute electronic energy and Gibbs free energy (unit: k Cal/mol)

		Е		G			
	reactant	TS	product	reactant	TS	product	
oam	-757505.6781	-757482.5241	-757533.6233	-757290.1093	-757265.4934	-757312.8201	
onh	-517008.4495	-516981.8904	-517031.1606	-516859.8443	-516832.3205	-516878.3207	
onm	-541649.0737	-541622.2003	-541672.1916	-541483.419	-541455.9579	-541502.9025	
ono	-742930.9169	-742907.804	-742960.7995	-742739.3136	-742715.3565	-742764.5714	
ooh	-529457.0833	-529430.7798	-529481.3437	-529317.3393	-529289.1089	-529336.211	
2no	-758301.0039	-758271.0311	-758307.1431	-758071.3517	-758039.5621	-758072.7379	

IX. DFT Optimized xyz Coorindates

				C	-6.346539	0.147202	0.442294
oam-product				н	-5.422136	1.213603	-1.206612
50				С	-4.820520	-0.706656	2.113535
С	1.980934	-2.468232	-0.242770	н	-2.723861	-0.324037	1.760103
С	2.787452	-1.233714	-0.639675	С	-6.120832	-0.536756	1.638412
С	0.660494	-2.495897	-0.491578	н	-7.364957	0.290526	0.078728
С	1.974397	0.053734	-0.432064	н	-4.646601	-1.218677	3.060876
С	-0.017785	-1.306235	-1.097338	н	-6.963953	-0.930069	2.208466
С	0.664421	-0.023838	-0.707646	С	-2.468932	-1.748980	-1.634399
С	-1.487879	-1.107043	-0.666017	Н	-3.505927	-1.681219	-1.280899
С	-0.379899	1.035837	-0.569860	Н	-2.396798	-1.265536	-2.620024
0	-0.241517	2.218372	-0.430150	н	-2.218578	-2.813586	-1.751121
н	0.002274	-1.389350	-2.204488				
н	2.907286	-1.286848	-1.744487	oam-reactant			
С	3.971223	-3.503647	0.745620	50			
С	2.675567	-3.585710	0.389382	С	-1.962266	2.101742	0.393772
С	4.193223	-1.220288	-0.100392	С	-1.927298	2.765484	-0.843260
с	4.739224	-2.281459	0.510116	С	-0.867909	1.238603	0.873286
н	4.461019	-4.347319	1.234089	С	-1.456516	-1.979584	-0.426869
н	4.785655	-0.322191	-0.282285	С	0.252420	0.934498	0.209687
н	5.779490	-2.244908	0.837387	С	-0.260050	-1.927856	-0.616390
н	0.068349	-3.382510	-0.245963	С	1.361700	0.043935	0.720537
н	2.093270	-4.486030	0.596934	С	1.167882	-1.875774	-0.932979
С	2.653581	1.297131	0.016342	0	1.685045	-2.698674	-1.640047
с	3.286091	1.335918	1.266768	Н	0.437036	1.351346	-0.786262
с	2.680499	2.435458	-0.796081	Н	-1.043370	2.691208	-1.478228
с	3.929147	2.493836	1.696562	С	-4.203700	2.982683	0.749794
н	3.264804	0.451199	1.906562	С	-3.114765	2.228650	1.182321
С	3.334252	3.589202	-0.369675	С	-3.014793	3.516007	-1.278160
н	2.170037	2.415835	-1.759455	С	-4.159642	3.626520	-0.485512
с	3.958971	3.621563	0.875975	н	-5.091207	3.063869	1.379409
н	4.407890	2.515739	2.676657	Н	-2.969822	4.020318	-2.244596
н	3.345527	4.471304	-1.011208	Н	-5.010477	4.215834	-0.830202
н	4.465626	4.528096	1.210549	Н	-1.039058	0.790990	1.856944
Ν	-1.614777	0.358696	-0.587901	н	-3.159434	1.711679	2.143478
н	-1.615562	-1.551019	0.335664	С	-2.868847	-1.962847	-0.171248
С	-2.841206	1.056715	-0.617429	С	-3.617034	-0.815707	-0.482729
0	-2.977644	2.077207	-1.235215	С	-3.505696	-3.074605	0.403093
С	-3.965275	0.457544	0.176097	С	-4.982243	-0.783581	-0.213803
С	-5.271686	0.655375	-0.281203	Н	-3.120754	0.045135	-0.932611
С	-3.741613	-0.214143	1.381481	С	-4.870630	-3.031773	0.668560

Н	-2.919824	-3.964148	0.636636	Н	5.593642	2.443408	-0.059898
С	-5.610016	-1.888003	0.362720	н	-0.292889	2.536638	-0.358562
н	-5.554446	0.113380	-0.455448	н	1.642645	3.745537	-1.182503
н	-5.361703	-3.897066	1.115742	С	3.051896	-1.241416	-0.215807
н	-6.680279	-1.859343	0.572535	С	3.772096	-0.715287	-1.307677
N	1.890589	-0.818345	-0.361333	С	3.659822	-2.216683	0.600359
н	2.202318	0.715638	0.956152	С	5.054232	-1.175874	-1.584795
С	3.041340	-0.370059	-1.081133	н	3.311276	0.059798	-1.922406
0	3.054027	-0.317503	-2.278921	С	4.949406	-2.653655	0.322300
С	4.226452	0.047770	-0.262339	н	3.102940	-2.627743	1.443117
С	4.517202	-0.538536	0.973008	C	5.650242	-2.141038	-0.771766
С	5.101563	0.990004	-0.811080	н	5.598274	-0.769281	-2.438746
С	5.669795	-0.171368	1.663736	н	5.409401	-3.411132	0.958724
н	3.847489	-1.299465	1.376644	н	6.659205	-2.493675	-0.989305
С	6.244880	1.366830	-0.112654	Ν	-1.875809	-0.700476	0.274126
Н	4.869347	1.410783	-1.790484	н	-2.151475	1.389980	0.262558
С	6.528528	0.787164	1.125100	C	-3.146607	-1.331317	0.219112
н	5.902169	-0.638307	2.621678	0	-3.302926	-2.480025	0.524255
Н	6.922030	2.109624	-0.536257	C	-4.284033	-0.468926	-0.241933
Н	7.428111	1.078503	1.669519	C	-5.562760	-0.746076	0.251861
С	1.031801	-0.722408	1.997208	С	-4.108473	0.530244	-1.204185
н	0.852784	-0.015598	2.818650	C	-6.653980	-0.001692	-0.186062
н	0.136922	-1.346212	1.876521	н	-5.679870	-1.554056	0.975998
н	1.872505	-1.367085	2.283275	C	-5.205369	1.262335	-1.654662
				н	-3.114937	0.711076	-1.619412
oam-TS				C	-6.474883	1.003898	-1.137948
50				н	-7.649547	-0.210040	0.207912
С	1.712076	2.239321	0.380429	н	-5.070526	2.032239	-2.415465
С	2.579553	1.440366	1.169752	н	-7.331620	1.582992	-1.485963
С	0.317195	2.007076	0.379016	C	-2.392535	0.664072	2.275334
С	1.745855	-0.767268	0.077916	н	-3.478681	0.520361	2.186198
С	-0.216550	0.880956	1.023019	Н	-1.987901	-0.124007	2.927448
С	0.506426	-0.602668	0.227227	Н	-2.212961	1.641333	2.744351
С	-1.712342	0.616874	0.911284				
С	-0.725201	-1.393541	-0.095313	onh-product			
0	-0.709853	-2.465054	-0.628945	35			
н	0.188279	0.646151	2.015211	С	2.346694	-0.635282	0.086589
н	2.181602	0.838743	1.986215	С	1.004679	-0.954282	0.741516
С	3.665485	3.200714	-0.716520	С	2.721710	0.649826	-0.034233
С	2.300295	3.132358	-0.562391	С	-0.063128	0.081165	0.350422
С	3.971723	1.540409	1.020036	С	1.806941	1.742367	0.427397
С	4.511948	2.388112	0.071613	С	0.356805	1.349943	0.258840
н	4.098230	3.877538	-1.454721	С	1.912131	3.075683	-0.343448
Н	4.624704	0.920343	1.636700	С	-0.409885	2.573484	-0.151616

0	-1.602385	2.727006	-0.265166	С	-3.555006	-1.350656	0.880984
н	1.985349	1.941740	1.503848	н	-4.130347	-2.484915	-0.862865
н	1.145455	-0.778272	1.831029	н	-2.676326	-0.244799	2.516162
С	2.749995	-3.013447	-0.350183	н	-4.580942	-1.183234	1.212166
С	3.180492	-1.738066	-0.380620	н	0.530596	-2.147221	-1.571389
С	0.597301	-2.399276	0.633569	н	-1.796085	-2.832924	-1.627842
С	1.418650	-3.345190	0.156172	С	-0.039851	1.790762	-0.356327
н	3.387206	-3.817386	-0.721673	С	-0.827834	1.196492	-1.354438
н	-0.388050	-2.666420	1.019091	С	-0.636220	2.653145	0.576938
н	1.098479	-4.388289	0.144231	С	-2.195582	1.444258	-1.402121
н	3.689919	0.906571	-0.473407	н	-0.358151	0.522084	-2.071597
н	4.162007	-1.487712	-0.788994	С	-2.004925	2.897170	0.520962
С	-1.469619	-0.343094	0.127378	н	-0.018046	3.113060	1.348687
С	-1.770004	-1.271993	-0.878902	С	-2.786540	2.289403	-0.462401
С	-2.509120	0.169134	0.910912	н	-2.806093	0.965361	-2.168794
С	-3.084057	-1.678094	-1.096597	н	-2.466058	3.562412	1.252266
н	-0.964009	-1.670376	-1.498592	н	-3.861145	2.474689	-0.496638
С	-3.821848	-0.246082	0.699470	Ν	3.919114	-0.867681	0.098949
н	-2.281871	0.909469	1.678364	н	3.388621	-2.811839	-0.255454
С	-4.112645	-1.169766	-0.303162	н	2.862697	-1.714830	-1.538471
н	-3.305720	-2.393381	-1.890071	н	4.860018	-1.196827	0.285111
Н	-4.623313	0.162432	1.316553				
н	-5.142046	-1.490617	-0.470301	onh-1	rs		
Ν	0.540807	3.536320	-0.382067	35			
н	2.567460	3.798784	0.162048	С	-0.615347	2.149503	0.147294
н	2.312896	2.897732	-1.356920	С	0.193587	1.460961	1.090952
н	0.259117	4.423239	-0.780439	С	-1.965849	1.786571	-0.039391
				С	-0.230363	-0.809045	0.062610
onh-reactant				С	-2.487699	0.647349	0.592060
35				С	-1.489439	-0.799798	0.024739
С	-0.909622	-1.763229	0.021161	С	-3.894278	0.192456	0.238260
С	-1.178253	-1.034733	1.191046	С	-2.581798	-1.758098	-0.362113
С	0.459945	-1.915409	-0.501536	0	-2.393522	-2.872360	-0.780710
С	1.346417	1.438627	-0.235298	н	-2.228133	0.506666	1.647787
С	1.593526	-1.741985	0.185315	н	-0.268352	0.880979	1.889218
С	2.481053	1.035526	-0.091500	С	1.388130	3.243852	-0.709823
С	2.958589	-1.815684	-0.443392	С	0.028075	3.053162	-0.750886
С	3.815203	0.493472	0.191896	С	1.580316	1.694994	1.142485
0	4.743700	1.194146	0.525388	С	2.177125	2.549963	0.239078
н	1.571961	-1.531291	1.259547	н	1.865193	3.927162	-1.414013
н	-0.353689	-0.584669	1.747632	н	2.186202	1.168304	1.881898
С	-3.302270	-2.076167	-0.281453	н	3.256760	2.705621	0.264090
С	-1.990477	-2.275122	-0.708759	н	-2.499698	2.211472	-0.894390
C	-2.486557	-0.829946	1.614879	н	-0.581702	3.575592	-1.491358

С	1.138808	-1.186649	-0.033093	н	-2.157366	-1.257339
С	1.951054	-0.658009	-1.055917	С	-4.426111	-0.176512
С	1.710959	-2.058733	0.913623	н	-3.950850	1.004320
С	3.291775	-1.016974	-1.139385	н	-4.588643	-1.359841
н	1.513249	0.039781	-1.771825	н	-5.491853	-0.230334
С	3.057148	-2.395327	0.829102	Ν	1.454607	-3.082357
н	1.083270	-2.471170	1.704414	н	1.480798	-4.033062
С	3.851918	-1.881464	-0.197888	С	3.026590	-1.902561
н	3.908541	-0.609424	-1.941934	н	3.225840	-2.842701
н	3.489268	-3.074473	1.565695	н	3.939196	-1.292301
н	4.905972	-2.154433	-0.263069	н	2.226003	-1.363626
Ν	-3.804089	-1.199241	-0.142171	н	3.446086	-2.634648
н	-4.571250	0.314644	1.097717			
н	-4.286172	0.806302	-0.589779	onm-reacta	nt	
н	-4.621083	-1.741730	-0.393821	38		
				С	0.870936	-1.768777
onm-product				С	1.246480	-0.960222
38				С	-0.524845	-1.851007
С	1.843646	1.484131	-0.304209	С	-0.977590	1.621688
С	0.393001	1.401148	-0.771755	С	-1.606369	-1.486297
С	2.615497	0.383413	-0.308003	С	-2.131813	1.340894
С	-0.235656	0.043938	-0.426049	С	-3.023653	-1.470195
С	2.057518	-0.945830	-0.707468	С	-3.502529	0.987026
С	0.570130	-1.025160	-0.460354	0	-4.313480	1.825917
С	2.603741	-2.192107	0.043713	н	-1.502495	-1.161470
С	0.240088	-2.455880	-0.144987	н	0.486612	-0.389493
0	-0.839498	-2.985516	-0.033113	С	3.215995	-2.315830
н	2.233610	-1.109886	-1.789570	С	1.876052	-2.439324
н	0.430112	1.397749	-1.883937	С	2.583288	-0.830386
С	1.559525	3.849571	0.279654	С	3.574694	-1.508194
С	2.363463	2.781696	0.120019	н	3.983003	-2.848201
С	-0.428900	2.615907	-0.426392	Н	2.856882	-0.181670
С	0.122379	3.750256	0.027849	Н	4.623464	-1.399290
н	1.970148	4.800235	0.623217	Н	-0.644119	-2.201758
н	-1.499457	2.566592	-0.630737	Н	1.599362	-3.062017
н	-0.503809	4.625277	0.209297	С	0.422526	1.828544
н	3.668927	0.460701	-0.025598	С	1.084591	1.060633
н	3.429606	2.844850	0.348778	С	1.154207	2.724814
С	-1.689186	-0.042137	-0.120290	С	2.461891	1.172212
С	-2.204334	0.588623	1.020255	н	0.509350	0.359987
С	-2.559520	-0.744151	-0.959995	С	2.531960	2.832083
С	-3.563791	0.517301	1.314145	н	0.633168	3.319426
н	-1.528201	1.133745	1.682482	С	3.187653	2.053205
С	-3.920815	-0.806497	-0.670905	Н	2.973950	0.559491

-1.834179

0.465232

2.210468

-1.332601

0.692876

-0.012348 0.336953

1.481235

2.015508

1.517756

2.009990 -0.509531

-0.227057

-1.311861

0.241835 0.165981

-0.454777

-0.078285 0.066955

-0.466493

-0.789588

-1.494835 -1.849384

> 0.119099 0.482594

-1.671558

-0.958122

0.684006 -2.505241

-1.238313

1.271882 1.336687

0.405374 1.376284

-0.388706

1.532318 1.983216

-0.224494 -1.139836

0.729536

2.275424

н	3.098713	3.524722	-0.848202	н	-4.220888	-2.153911	-0.051990
н	4.269283	2.132483	0.848246	С	-4.403838	0.553366	-0.729573
N	-3.787172	-0.351459	-0.488343	Н	-5.358390	0.036745	-0.903649
н	-3.521046	-2.363041	-0.349026	н	-4.623445	1.602854	-0.490689
н	-4.757756	-0.527025	-0.726986	Н	-3.818234	0.511793	-1.659422
С	-3.128758	-1.534919	1.589953	Н	-4.249728	-0.031535	1.330680
н	-4.182963	-1.491106	1.894518				
н	-2.699426	-2.468345	1.978440	ono-product			
н	-2.596217	-0.685496	2.043063	46			
				С	1.971880	-2.321931	0.118880
onm-TS				С	2.685371	-1.085525	-0.432824
38				С	0.757379	-2.633103	-0.365616
С	-0.493580	2.068990	0.250638	С	1.691957	0.069148	-0.640501
С	0.385449	1.402824	1.146229	С	0.140088	-1.729782	-1.389239
С	-1.824742	1.631170	0.085010	С	0.503766	-0.286705	-1.154676
С	0.088817	-0.836133	0.070647	С	-1.383881	-1.718770	-1.390881
С	-2.258907	0.444772	0.693959	С	-0.735816	0.530021	-1.296437
С	-1.167351	-0.925930	0.080943	0	-0.895253	1.720822	-1.291166
С	-3.650270	-0.125100	0.409666	н	0.453832	-2.046999	-2.405731
С	-2.195856	-1.983936	-0.197719	н	2.992988	-1.347396	-1.468919
0	-1.944438	-3.087631	-0.611618	0	-2.121453	-2.665647	-1.381624
н	-1.950310	0.294424	1.735369	С	3.826006	-2.757682	1.660172
н	-0.015216	0.775738	1.941984	С	2.639850	-3.123274	1.138256
С	1.410265	3.319382	-0.622463	С	3.962595	-0.739788	0.283083
С	0.065285	3.040904	-0.633496	С	4.494319	-1.531311	1.225404
с	1.755734	1.728127	1.170344	Н	4.299077	-3.369348	2.429660
С	2.269494	2.649113	0.282083	н	4.478872	0.168186	-0.033765
н	1.821553	4.055087	-1.315216	н	5.448030	-1.264568	1.683619
н	2.415202	1.219622	1.875856	н	0.206110	-3.518458	-0.041016
н	3.336844	2.875469	0.284678	н	2.128075	-4.024176	1.482642
н	-2.393808	2.060963	-0.741412	С	2.051940	1.461312	-0.279541
н	-0.598360	3.546352	-1.338710	С	2.463566	1.764869	1.026659
С	1.476067	-1.125727	-0.078338	С	1.976105	2.488885	-1.226429
С	2.218122	-0.536208	-1.120167	С	2.787963	3.072637	1.376394
С	2.133347	-1.968671	0.838470	н	2.516321	0.969797	1.772766
С	3.575834	-0.807017	-1.251074	С	2.314423	3.794165	-0.877677
н	1.713576	0.139387	-1.813048	н	1.640542	2.258530	-2.238049
С	3.494797	-2.217900	0.706334	С	2.720033	4.088856	0.422819
н	1.559484	-2.428633	1.643843	н	3.094261	3.299541	2.398506
С	4.220829	-1.643420	-0.339027	н	2.252014	4.586170	-1.624994
н	4.138560	-0.352250	-2.067845	н	2.979798	5.112727	0.695882
н	3.993129	-2.875896	1.419958	Ν	-1.788518	-0.391963	-1.407470
н	5.287458	-1.847308	-0.441578	C	-3.173691	0.008463	-1.400306
N	-3.439844	-1.534211	0.129906	Н	-3.256999	0.971044	-1.923035

н	-3.754948	-0.746906	-1.946376	Н	-5.096035	2.844843	1.842670
С	-3.760354	0.160768	-0.010535	н	-6.309533	1.465058	0.168034
С	-3.022348	-0.064877	1.153882	Ν	2.086079	0.523778	-0.861758
С	-5.637465	0.687611	1.184237	С	3.484775	0.513332	-1.274266
С	-3.655151	0.103775	2.382988	н	3.574549	-0.141735	-2.148321
н	-1.975213	-0.365755	1.103161	н	3.775247	1.530889	-1.561785
С	-4.991930	0.488219	2.405396	С	4.439945	0.032252	-0.202475
н	-6.688839	0.990405	1.159375	С	4.027987	-0.312400	1.087010
н	-3.106822	-0.063637	3.311419	С	6.623529	-0.444210	0.284795
н	-5.527746	0.632071	3.343625	С	4.987691	-0.743291	1.999403
Ν	-5.040814	0.529319	0.007829	н	2.977923	-0.240224	1.370523
				С	6.317056	-0.813325	1.595405
ono-reactant				н	7.657655	-0.484386	-0.071304
46				н	4.698143	-1.019010	3.014800
С	-2.160642	-1.882923	-0.081738	н	7.102635	-1.144202	2.274710
С	-2.498227	-1.296325	1.150149	Ν	5.713251	-0.034002	-0.591413
С	-0.864759	-1.657479	-0.735594				
С	-1.035379	1.996723	-0.186313	ono-TS			
С	0.125331	-0.878711	-0.275846	46			
С	0.171825	1.896476	-0.246658	С	-1.609955	2.264980	-0.175789
С	1.336946	-0.654048	-1.105852	С	-2.573191	1.545476	-0.929493
С	1.619946	1.722228	-0.308887	С	-0.232594	2.162803	-0.478739
0	2.384024	2.588493	0.037630	С	-1.413288	-0.771988	-0.462917
н	0.059758	-0.382272	0.690909	С	0.211176	1.219061	-1.415286
н	-1.769207	-0.681959	1.681442	С	-0.245109	-0.458094	-0.815301
0	1.718708	-1.453898	-1.923954	С	1.703012	1.052367	-1.563717
с	-4.400853	-2.820963	-0.203412	С	1.082130	-1.138941	-0.884022
С	-3.128244	-2.649167	-0.745755	0	1.290877	-2.288070	-0.611231
С	-3.766371	-1.465471	1.690962	н	-0.333342	1.136694	-2.363967
С	-4.723895	-2.226834	1.014479	н	-2.311273	1.130602	-1.902278
н	-5.141743	-3.419702	-0.735187	0	2.488314	1.921415	-1.831179
н	-4.015586	-0.993971	2.642676	С	-3.351308	2.833676	1.430824
н	-5.720542	-2.354694	1.439585	С	-2.042905	2.919328	1.014222
н	-0.719813	-2.123873	-1.715567	С	-3.908840	1.488352	-0.506095
н	-2.876386	-3.108116	-1.704252	С	-4.292097	2.100255	0.673373
С	-2.466735	1.929775	-0.119820	н	-3.663988	3.326372	2.352575
С	-3.157819	1.162670	-1.072896	н	-4.638181	0.932102	-1.097350
С	-3.171606	2.542046	0.927648	н	-5.326560	2.031561	1.013377
С	-4.534471	0.999702	-0.967321	н	0.492759	2.612051	0.205173
н	-2.598225	0.683790	-1.877678	н	-1.308190	3.470654	1.604873
С	-4.549519	2.372468	1.025385	С	-2.608908	-1.391897	-0.017343
н	-2.628220	3.137058	1.662414	С	-3.115959	-1.115007	1.269325
С	-5.230180	1.599988	0.083301	С	-3.324357	-2.262812	-0.864418
н	-5.065763	0.392230	-1.701109	С	-4.291321	-1.719304	1.700096

н	-2.577170	-0.417696	1.913142	C	-1.457634	-0.380166	0.127816
С	-4.509117	-2.842392	-0.427082	С	-1.728646	-1.310757	-0.885452
н	-2.933251	-2.479995	-1.858966	С	-2.512094	0.101467	0.910749
С	-4.994855	-2.579717	0.856006	С	-3.031239	-1.747012	-1.111671
н	-4.668516	-1.507100	2.701650	Н	-0.910254	-1.685543	-1.503505
н	-5.054403	-3.516235	-1.089563	С	-3.813022	-0.345738	0.690908
Н	-5.921015	-3.044637	1.196053	Н	-2.307511	0.840825	1.685568
Ν	2.075983	-0.261175	-1.311828	С	-4.075533	-1.269241	-0.319431
С	3.462363	-0.668022	-1.352275	Н	-3.231863	-2.462060	-1.910787
н	3.971576	-0.080962	-2.127567	Н	-4.626961	0.037961	1.307391
н	3.500431	-1.731758	-1.621244	Н	-5.095824	-1.614204	-0.493739
С	4.195219	-0.472907	-0.039799	Н	2.079053	2.892885	-1.443479
С	3.582538	0.046185	1.103156	0	0.406689	3.551552	-0.430522
Ν	5.476057	-0.839086	-0.066657	Н	2.377909	3.892693	0.011397
С	4.344998	0.184771	2.260245				
н	2.530827	0.335019	1.090996	ooh-reactant			
С	6.197188	-0.703760	1.040867	34			
С	5.682512	-0.196755	2.234984	С	-1.915775	-1.159710	-0.395759
н	3.896461	0.586074	3.170453	С	-2.506156	-2.044104	0.520742
Н	7.244583	-1.015032	0.980078	С	-0.543837	-1.332128	-0.904181
н	6.317449	-0.106589	3.116299	С	2.028909	0.678149	0.282988
				С	0.296756	-2.340315	-0.645646
ooh-product				С	2.574749	-0.402198	0.350096
34				С	1.663646	-2.429184	-1.251847
С	2.366332	-0.560438	0.095273	С	3.181700	-1.728241	0.495900
С	1.032166	-0.922899	0.746930	Н	0.012417	-3.170263	0.008578
С	2.703162	0.734765	-0.029836	Н	-1.947582	-2.910249	0.878482
С	-0.064566	0.080011	0.357811	С	-3.955994	0.167056	-0.363382
С	1.753285	1.802146	0.419304	С	-2.660759	-0.052466	-0.827989
С	0.322764	1.360411	0.267428	С	-3.798454	-1.825457	0.985800
С	1.753363	3.096347	-0.410785	С	-4.529351	-0.719568	0.546120
С	-0.471837	2.559032	-0.137070	Н	-4.519311	1.033003	-0.714639
0	-1.652284	2.715504	-0.203237	Н	-4.240368	-2.522410	1.699380
н	1.941604	2.049735	1.483677	Н	-5.542679	-0.551504	0.913385
н	1.165315	-0.746757	1.837188	Н	-0.190198	-0.525247	-1.558062
С	2.844545	-2.926041	-0.336489	Н	-2.209672	0.647077	-1.535991
С	3.236684	-1.638500	-0.364062	С	1.303227	1.913504	0.190875
С	0.666982	-2.378926	0.632073	С	-0.062519	1.928289	0.518953
С	1.519756	-3.298505	0.159036	С	1.930866	3.093819	-0.235301
н	3.508708	-3.710164	-0.702865	С	-0.788597	3.110745	0.413906
н	-0.312263	-2.675943	1.011138	Н	-0.543411	1.008615	0.856186
н	1.231132	-4.350651	0.142985	С	1.195155	4.270640	-0.337580
н	3.665880	1.017775	-0.464731	Н	2.992347	3.076323	-0.484012
н	4.213031	-1.358737	-0.765366	С	-0.162749	4.281655	-0.015530

Н	-1.849279	3.114028	0.669990	21	no-product		
н	1.685248	5.186640	-0.669937	C	2.69228	-1.76811	0.75160
н	-0.734057	5.207452	-0.097035	C	3.08548	-0.99800	-0.51031
0	2.679312	-2.697975	-0.286108	C	1.46569	-2.33342	0.78861
Н	1.722594	-3.284526	-1.939265	C	2.00253	0.03508	-1.00622
Н	1.898972	-1.515212	-1.818323	C	0.59603	-2.01356	-0.37540
0	4.065697	-1.959105	1.263893	С	0.62617	-0.49973	-0.61769
				С	-0.89047	-2.31439	-0.40435
ooh-TS				C	-0.58011	-0.27899	-1.50521
34				0	-0.81389	0.61728	-2.27122
С	-0.582102	2.155359	0.156855	н	0.99781	-2.50433	-1.28747
С	0.217194	1.466119	1.106963	н	3.09944	-1.75824	-1.31648
С	-1.933585	1.796644	-0.041548	C	4.89775	-1.36478	1.73713
С	-0.257892	-0.844804	0.042644	C	3.66629	-1.90723	1.82700
С	-2.463905	0.659164	0.587482	С	4.46620	-0.41050	-0.46931
С	-1.516766	-0.787546	0.018878	C	5.30544	-0.60161	0.55908
С	-3.858163	0.202821	0.204792	н	5.60772	-1.48170	2.55739
С	-2.632956	-1.716295	-0.349793	н	4.77373	0.18565	-1.33238
н	-2.219337	0.526352	1.648092	н	6.30648	-0.16842	0.53629
н	-0.251177	0.874194	1.892593	н	1.11307	-2.94395	1.62224
С	1.434198	3.224150	-0.700728	н	3.36164	-2.46375	2.71588
С	0.071005	3.050270	-0.741876	C	2.17866	1.44629	-0.48215
С	1.604783	1.677384	1.156111	C	2.61144	1.68685	0.82766
С	2.213340	2.522035	0.248116	C	1.83461	2.53282	-1.29127
н	1.919826	3.899487	-1.406639	C	2.71155	2.99014	1.31042
н	2.203968	1.144342	1.896297	н	2.87910	0.84858	1.47682
н	3.295168	2.661796	0.271273	C	1.93374	3.83729	-0.80819
н	-2.454767	2.216324	-0.906954	н	1.46225	2.34767	-2.30110
н	-0.531645	3.577304	-1.484814	C	2.37582	4.06943	0.49289
С	1.110021	-1.215822	-0.048330	н	3.05581	3.16273	2.33129
С	1.923332	-0.684058	-1.069790	н	1.66080	4.67487	-1.45192
С	1.682484	-2.085275	0.901916	н	2.45574	5.08949	0.87165
С	3.265245	-1.038799	-1.148607	Ν	-1.45380	-1.33068	-1.21829
н	1.485776	0.011671	-1.787787	C	-3.70675	-0.54584	-0.64592
С	3.030174	-2.415072	0.821917	C	-4.22736	-1.16661	0.49382
н	1.054532	-2.500084	1.691198	C	-3.93291	0.81955	-0.83722
С	3.825776	-1.899576	-0.203935	C	-4.97100	-0.43436	1.41528
н	3.882801	-0.630096	-1.949876	н	-4.03078	-2.22838	0.66018
н	3.463013	-3.091136	1.560809	C	-4.67751	1.54642	0.08957
н	4.880975	-2.168608	-0.265649	н	-3.50739	1.31526	-1.71274
0	-3.844666	-1.173298	-0.146075	С	-5.21249	0.93197	1.22679
н	-4.570961	0.320607	1.031563	н	-5.37125	-0.93181	2.30179
н	-4.224591	0.775671	-0.660309	н	-4.84434	2.61384	-0.07183
0	-2.496170	-2.828954	-0.750950	C	-6.04660	1.71101	2.20992

Н	-7.11703	1.62798	1.96533	С	4.14956	-1.38315	-0.50249
н	-5.91201	1.33394	3.23279	С	4.58511	0.62396	0.75465
н	-5.78538	2.77753	2.19704	С	5.05033	-0.96468	-1.47613
н	0.34038	-0.03739	0.34372	н	3.61001	-2.32661	-0.61065
н	2.07366	0.07295	-2.10467	С	5.48756	1.03729	-0.22565
с	-2.85281	-1.32575	-1.61765	Н	4.38794	1.25572	1.62318
н	-3.17531	-2.37389	-1.66754	С	5.73728	0.25083	-1.35318
н	-2.89823	-0.88108	-2.62053	Н	5.22749	-1.59299	-2.35255
0	-1.49603	-3.22060	0.09985	н	6.00582	1.99223	-0.11239
				С	6.72967	0.67967	-2.40247
2no-react				Н	7.66150	0.09909	-2.32092
с	-2.93181	-2.36300	-0.14234	Н	6.33152	0.51921	-3.41435
С	-3.68326	-1.30383	0.39469	н	6.98680	1.74190	-2.29811
с	-1.46890	-2.42220	-0.02779	н	-0.25116	0.48257	-0.35922
с	-0.68786	2.16575	0.86452	н	-0.35313	2.70967	1.75389
с	-0.71154	-1.65379	0.76869	С	2.91118	-1.03315	1.67122
с	-0.00955	1.05697	0.53500	н	2.97222	-2.11473	1.82975
с	0.77119	-1.79284	0.73902	н	3.08973	-0.51073	2.61772
с	1.12320	0.60097	1.38657	0	1.31317	-2.79916	0.33794
0	1.72880	1.35813	2.11033				
н	-1.15375	-0.93164	1.45503	2no-TS			
н	-3.18046	-0.48207	0.90896	С	-2.593594	-1.756347	-0.838195
С	-4.99025	-3.35584	-0.96956	С	-3.096035	-1.578609	0.487087
С	-3.60421	-3.38105	-0.83360	С	-1.234089	-2.049584	-1.054014
С	-5.06573	-1.27385	0.25123	С	-1.538947	0.246511	1.211485
С	-5.72425	-2.30216	-0.42745	С	-0.366442	-1.978560	0.048497
н	-5.49842	-4.15908	-1.50480	С	-0.329641	-0.231399	0.661351
н	-5.63306	-0.43897	0.66514	С	1.121384	-2.178203	-0.055382
н	-6.80922	-2.27640	-0.53864	С	0.906672	-0.440164	1.515022
н	-0.94952	-3.15243	-0.65700	0	1.206022	0.170947	2.505125
н	-3.02690	-4.20238	-1.26316	н	-0.735202	-2.416199	0.983131
С	-1.84935	2.70999	0.14936	Н	-2.586777	-2.040661	1.330247
С	-2.52780	1.98297	-0.84371	С	-4.687749	-0.872756	-1.713825
С	-2.31837	3.98832	0.48425	С	-3.449785	-1.414913	-1.932744
С	-3.63511	2.52590	-1.48537	С	-4.399576	-1.076480	0.684577
н	-2.20091	0.97364	-1.10235	С	-5.163676	-0.680777	-0.388641
С	-3.42255	4.53603	-0.16462	н	-5.313893	-0.579870	-2.557726
н	-1.80280	4.55645	1.26130	н	-4.785463	-0.972535	1.700154
С	-4.08380	3.80592	-1.15078	н	-6.152081	-0.247776	-0.228175
н	-4.15613	1.94413	-2.24716	н	-0.827178	-2.051385	-2.068369
н	-3.77058	5.53435	0.10400	Н	-3.073195	-1.549925	-2.948948
н	-4.95295	4.22978	-1.65588	С	-2.348235	1.297016	0.607639
N	1.52554	-0.73989	1.27102	С	-2.209723	1.692776	-0.736472
С	3.91117	-0.59221	0.62841	С	-3.336990	1.934644	1.380010

С	-3.016594	2.689554	-1.274026	Н	3.909089	0.941568	2.132909
н	-1.472872	1.204655	-1.377456	C	5.436808	1.441766	-0.885194
С	-4.134108	2.941420	0.844125	Н	5.455672	-0.002496	-2.488494
н	-3.465049	1.637164	2.423495	Н	5.214988	2.647919	0.888038
С	-3.978008	3.326412	-0.486973	С	6.252020	2.462703	-1.635086
н	-2.890965	2.975902	-2.319504	Н	7.327175	2.239516	-1.553823
н	-4.882662	3.428834	1.470929	Н	5.997292	2.467985	-2.703778
н	-4.601255	4.115217	-0.910043	Н	6.091004	3.472881	-1.236107
Ν	1.721686	-1.412620	0.936276	Н	-0.015020	0.273140	-0.260086
С	3.966422	-0.502308	0.535343	Н	-1.723581	0.044769	2.270393
С	4.398049	-0.753809	-0.771524	С	3.134969	-1.525193	1.272652
С	4.263880	0.729878	1.121734	Н	3.443667	-2.544218	1.007295
С	5.124067	0.207204	-1.468787	Н	3.219964	-1.387063	2.358232
н	4.146768	-1.707845	-1.241153	0	1.718235	-2.892732	-0.817620
с	4.991207	1.688060	0.417152				

X. References

- [1] Tam, J.; Henault, M.; Melnyk, R. A., et al. Anal Biochem 2011, 414, 254-260.
- [2] K. Singh, G. Kaur, P. S. Shanika, G. A. Dziwornu, J. Okombo, K. Chibale, *Bioorg. Med. Chem.* 2020, 28, 115530.
- [3] J.-H. Jeong, Y.-S. Choi, Y.-J. Kim, J. Yeun Lee, J. Lee, *Heterocycles* 2014, 89, 2794.
- [4] Cao, J.; Sun, K.; Dong, S.; Lu, T.; Dong, Y.; Du, D. Org. Lett. **2017**, *19*, 6724-6727.
- [5] A. Lauber, B. Zelenay, J. Cvengroš, Chem. Commun. 2014, 50, 1195-1197
- [6] X.-S. Wu, Y. Chen, M.-B. Li, M.-G. Zhou, S.-K. Tian, J. Am. Chem. Soc. 2012, 134, 14694-14697.

XI. NMR Spectra

 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5

Partial Control (Control (Contro) (Control (Contro) (Contro) (Contro) (Contro) (Contro) (Cont

¹H (400 MHz, CDCl₃)

DEPT and ¹³C-NMR (CDCl₃)

HMBC

C 852 C 855 C 810 C 770 C 870 C 770 C

S82

S85

S86

¹H (400 MHz, CDCl₃)

S91

88.48 88.47 75.60 75.60 77.50 77.55 77.55 77.55 77.55 77.55 77.55 77.55 77.55 77.55 77.55 77.55 77.55 77.55 77.55 77.72 77.55 77.727

3bl ¹H (400 MHz, CDCl₃)

S93

3ca ¹³C (100 MHz, CDCl₃)

