Supplementary Information for:

Quantitative helix handedness bias through a single H vs. CH_{3} stereochemical differentiation

Daniel Bindl, Elisabeth Heinemann, Pradeep Kumar Mandal, and Ivan Huc
Department of Pharmacy, Centre for Integrated Protein Science, Ludwig-Maximilians-Universität, Butenandtstraße 5-13, D-81377 Munich, Germany. E-mail: ivan.huc@cup.lmu.de.

Contents

List of Abbreviations 2
1 Supplementary Figures 3
2 Chiral derivatisation experiment 6
3 Materials and Methods 7
3.1 General 7
3.2 Solid phase synthesis procedures 8
3.3 Monomer synthesis procedures 13
4 X-ray Crystallography 19
5 Spectra and Chromatograms 24
6 Literature 43

List of Abbreviations

AcOH acetic acid

CD circular dichroism
CyHex Cyclohexane

DCM dichloromethane
DIAD diisopropyl azodicarboxylate
DIPEA N, N-diisopropylethylamine
DMF N, N-dimethylformamide
DMSO dimethyl sulfoxide

EI electron ionization
ESI electrospray ionization
EtOAc ethylacetate

Fmoc fluorenylmethoxycarbonyl
HMBC heteronuclear multiple bond correlation
HMQC heteronuclear multiple quantum correlation
HPLC high performance liquid chromatography
HRMS high resolution mass spectrometry

MeOH methanol
MW molecular weight

NMR nuclear magnetic resonance

RP reversed phase

SPFS solid phase foldamer synthesis

TEA triethylamine
TFA trifluoroacetic acid
THF tetrahydrofuran
TIPS triisopropyl silane
TLC thin layer chromatography
TMSP 3-(trimethylsilyl)propionic-2,2,3,3- d_{4} acid sodium salt

UV/Vis ultraviolet-visible

1 Supplementary Figures

b)

iii)

c)

Fig. S1 (a) Failed attempts to synthesize Fmoc- $\mathrm{B}^{\mathrm{Gly}}{ }_{-} \mathrm{OH}$: i) methyl bromoacetate, $\mathrm{K}_{2} \mathrm{CO}_{3}$, acetone. ii) H_{2}, Pd / C, EtOAc or THF. iii) $\mathrm{LiOH}, \mathrm{H}_{2} \mathrm{O}, \mathrm{THF}$. (b) Synthesis route to Fmoc- $\mathrm{B}^{\mathrm{Gly}}-\mathrm{OH}$: i) tert-butyl bromoacetate, $\mathrm{K}_{2} \mathrm{CO}_{3}$, acetone. ii) H_{2}, Pd / C, ethanol. iii) Fmoc-CI, DIPEA, DCM. iv) TIPS, TFA, DCM. (c) Synthesis route to Fmoc-B ${ }^{\text {Rme }-O H: ~ i) ~(-)-e t h y l ~ L-l a c t a t e, ~} \mathrm{PPh}_{3}$, DIAD, THF. ii) $\mathrm{LiOH}, \mathrm{H}_{2} \mathrm{O}$, THF. iii) $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}, \mathrm{Na}_{2} \mathrm{CO}_{3}, \mathrm{MeOH}$. iv) $\mathrm{Fmoc}-\mathrm{Cl}, \mathrm{NaHCO}_{3}, \mathrm{H}_{2} \mathrm{O}, 1,4$-dioxane. For detailed synthetic procedures see section 3.3

Fig. S2 ${ }^{1} \mathrm{H}$ NMR spectra of oligomers $\mathbf{1 - 7}$ in $12 \mathrm{mM} \mathrm{NH}{ }_{4} \mathrm{OAc}$ buffer with water suppression (1: $0.13 \mathrm{mM}, \mathbf{2}: 0.5 \mathrm{mM}, \mathbf{3}: 0.39 \mathrm{mM}$, 4: $0.1 \mathrm{mM}, 5: 0.37 \mathrm{mM}, \mathbf{6}: 0.54 \mathrm{mM}, 7: 0.32 \mathrm{mM}$). The chiral CH_{3} groups of $\mathbf{B}^{\text {Rme }}$ in oligomers 3-7 are highlighted with a dashed rectangle.

Fig. S3 CD spectra of oligomers $\mathbf{3}$ and 5 . Maxima are marked with crosses and their respective x and y values are displayed.

Fig. S4 ${ }^{1} \mathrm{H}$ NMR spectra of oligomer 3: a) $0.4 \mathrm{mM}\left(500 \mathrm{MHz}\right.$, DMSO-d d_{6}) and b) $0.4 \mathrm{mM}\left(500 \mathrm{MHz}, \mathrm{MeOH}-\mathrm{d}_{3}\right.$, OH-suppression $)$. A zoom of the amide region is shown above the specta, respectively. c) CD spectra of oligomer 3: $22.6 \mu \mathrm{M}$ in $\mathrm{H}_{2} \mathrm{O}$ (blue), $6.85 \mu \mathrm{M}$ in DMSO (black) and $19.3 \mu \mathrm{M}$ in MeOH (red).

2 Chiral derivatisation experiment

The chiral monomer Fmoc- $\mathbf{B}^{\text {Rme }}-\mathrm{OH}$ was coupled to the chiral amine $\mathbf{2 1}$ to test if racemization occurred during its synthesis (Fig. S5). Four different products can be expected for this reaction and their ratios are determined by the optical purity of the starting materials. Therefore, knowing the enantiomeric purity of $\mathbf{2 1}(\geq 99 \%)$, the enantiomeric purity of $\mathbf{2 0}$ can be estimated.

Fig. S5 Reaction scheme for the coupling of monomer 20 to the chiral amine 21 (enantiomeric purity: $\geq 99 \%$). i) Ghosez's reagent, THF. The expected ratios of products 22a-d, based on the enantiomeric purities given by the supplier, are shown next to the respective structures.

HPLC analysis of the chiral derivatisation crude shows that two diastereomeric products were formed with a ratio of $98 / 2$, even exceeding the expected ratio of $96.5 / 3.5$ (Fig. S6). This shows that the initial enantiomeric ratio of the chiral precursor of $\mathbf{2 0}$ (given by the supplier as $\geq 97.5 / 2.5$) was preserved throughout its synthesis.

Fig. S6 HPLC analysis ($\mathrm{C} 18,55-80 \mathrm{~B}, 25^{\circ} \mathrm{C}$; $\mathrm{A}: \mathrm{H}_{2} \mathrm{O}+0.1 \%$ TFA, B: acetonitrile $+0.1 \%$ TFA) of the chiral derivativation of 20. Peaks were assigned by isolation via semi-prep HPLC (C18, 55-80B, $25^{\circ} \mathrm{C}$; $\mathrm{A}: \mathrm{H}_{2} \mathrm{O}+0.1 \%$ TFA, B: acetonitrile $+0.1 \%$ TFA) followed by mass analysis. Assignments, retention times and relative areas are given next to the respective peaks.

3 Materials and Methods

Q

Ac

or

B
$B^{\text {Gly }}: R^{2}=H$
(16: Fmoc-B Bly $_{-} \mathrm{OH}$)
$B^{\text {Rme }}: R^{2}=\mathrm{Me} \quad$ (20: Fmoc- $^{\text {Rme }}$-OH)
$\mathrm{R}^{3}=t-\mathrm{Bu}, \mathrm{H}$
or

Fig. S7 Summary of monomers and N-terminal groups used in SPFS. Fmoc-Q ${ }^{\text {Ala }}-\mathrm{OH}$ and $\mathrm{Fmoc}^{-Q^{\text {Asp }}(t-\mathrm{Bu})-\mathrm{OH} \text { have been }}$ described previously. ${ }^{1,2}$ The synthesis of Fmoc- $Q^{\text {Sem }}-\mathrm{OH}$ will be published elsewhere. Fmoc-B ${ }^{\text {Gly }}-\mathrm{OH}(\mathbf{1 6})$ and Fmoc- $\mathbf{B}^{\text {Rme }}-\mathrm{OH}$ (20) are described here (section 3.3).

3.1 General

Commercial reagents (Suppliers: Abcr, Fisher Scientific, Merck, Sigma-Aldrich, TCI or VWR) were used without further purification unless otherwise stated. Wang resin LL (100-200 mesh) was purchased from Novabiochem. Peptide grade N, N-dimethylformamide (DMF) was purchased from Carlo Erba. Anhydrous chloroform, triethylamine (TEA) and N, N-diisopropylethylamine (DIPEA) were obtained via distillation over CaH_{2} prior to use. Anhydrous tetrahydrofuran (THF) and dichloromethane (DCM) were obtained via an MBRAUN SPS-800 solvent purification system. Ultrapure water was obtained via a Sartorius arium ${ }^{\circledR}$ pro VF ultrapure water system. Reactions were monitored by thin layer chromatography (TLC) on Merck silica gel 60-F254 plates and observed under UV light. Column chromatography purifications were carried out on Merck GEDURAN Si60 ($40-63 \mu \mathrm{~m}$). Nuclear magnetic resonance (NMR) spectra were recorded on an Avance III HD 400 MHz Bruker BioSpin spectrometer or an Avance III HD 500 MHz Bruker BioSpin spectrometer equipped with a broad band observe $5-\mathrm{mm}$ BB-H\&FD CryProbe ${ }^{\mathrm{TM}}$ Prodigy. Measurements were performed at $25^{\circ} \mathrm{C}$ unless stated otherwise. Water suppression was performed with excitation sculpting. Processing was done with MestReNova (v.12.0.0-20080) NMR processing software from Mestrelab Research. Chemical shifts are reported in ppm and calibrated via residual solvent signals or 3-(trimethylsilyl)propionic-2,2,3,3- d_{4} acid sodium salt (TMSP) when water suppression was applied. ${ }^{3,4}$ Signal multiplicities are abbreviated as s , singlet; d , doublet; t , triplet; q , quartet, and m , multiplet. Signals were assigned using ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMQC and ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMBC spectra. Electrospray ionization (ESI) mass spectra were recorded on Bruker microTOF II and Thermo Finnigan LTQ FT Ultra spectrometers. Electron ionization (EI) mass spectra were recorded on a Thermo Q Exactive GC Orbitrap or a Finnigan MAT 95 sector mass spectrometer. Analytical and semi-preparative reversed phase (RP) high performance liquid chromatography (HPLC) was performed on a

Thermo Fisher Scientific Ultimate 3000 HPLC System using Macherey-Nagel Nucleodur C18 Gravity columns ($4 \times$ $100 \mathrm{~mm}, 5 \mu \mathrm{~m}$ and $10 \times 250 \mathrm{~mm}, 5 \mu \mathrm{~m}$) and Macherey-Nagel Nucleodur C8 Gravity columns ($4 \times 50 \mathrm{~mm}, 5 \mu \mathrm{~m}$ and $10 \times 100 \mathrm{~mm}, 5 \mu \mathrm{~m})$. UV absorbance was monitored at 300 nm if not stated otherwise. Simple ultraviolet-visible (UV/Vis) absorbance measurements were done with a Thermo Fisher Scientific Nanodrop One instrument using a 1 cm quartz cuvette. Circular dichroism (CD) spectra were measured on a Jasco J-810 spectrometer. Measurements were performed at $20^{\circ} \mathrm{C}$ if not stated otherwise. Microwave-assisted solid phase foldamer synthesis (SPFS) was performed via a CEM ${ }^{\circledR}$ Discover Bio manual microwave peptide synthesizer. The temperature within the reactor vessel was monitored with an optical fiber probe.

3.2 Solid phase synthesis procedures

Oligomers were synthesized according to previously reported SPFS protocols, ${ }^{2,5}$ hereafter referred to as standard method. Fmoc acid building blocks were activated in situ by generating the respective acid chlorides prior to coupling.

Capping: The resin (1.0 equiv.) was washed with DCM $(3 \times)$ and incubated in acetic anhydride in DCM (50% $v / v)$ for 10 min . Then, the resin was washed with $\mathrm{DCM}(2 \times)$, DMF $(3 \times)$ and kept suspended in DMF (if stored longer than 24 h , it was kept at $4^{\circ} \mathrm{C}$).

Acetylation: In the microwave vessel: after the resin (1.0 equiv.) was washed with anhydrous THF ($4 \times$), DIPEA (10.0 equiv.) and acetyl chloride (5.0 equiv.) in anhydrous THF (1 mL per 100 mg resin; not less than 2 mL) were added and the suspension was heated to $50^{\circ} \mathrm{C}$ for $15 \mathrm{~min}\left(25 \mathrm{~W}\right.$, ramp to $50^{\circ} \mathrm{C}$ over 5 min , hold at $50^{\circ} \mathrm{C}$ for $15 \mathrm{~min})$. The resin was washed with anhydrous THF $(3 \times)$ and the coupling step was repeated once. Then, the resin was washed again with anhydrous THF $(1 \times)$ and DMF $(5 \times)$, and kept suspended in DMF (if stored longer than 24 h , it was kept at $4^{\circ} \mathrm{C}$).

Camphanylation: In the microwave vessel: after the resin (1.0 equiv.) was washed with anhydrous THF ($4 \times$), DIPEA (10.0 equiv.) and camphanic chloride (5.0 equiv.) in anhydrous THF (1 mL per 100 mg resin; not less than 2 mL) were added and the suspension was heated to $50^{\circ} \mathrm{C}$ for $15 \mathrm{~min}\left(25 \mathrm{~W}\right.$, ramp to $50^{\circ} \mathrm{C}$ over 5 min , hold at $50^{\circ} \mathrm{C}$ for 15 min$)$. The resin was washed with anhydrous THF $(3 \times)$ and the coupling step was repeated once. Then, the resin was washed again with anhydrous THF $(1 \times)$ and DMF $(5 \times)$, and kept suspended in DMF (if stored longer than 24 h , it was kept at $4^{\circ} \mathrm{C}$).

Compound 1: Oligomer 1 was synthesized on Wang resin ($0.37 \mathrm{mmol} \mathrm{g}^{-1}, 9.25 \mu \mathrm{~mol}$ scale) according to the standard method. Loading of the first monomer: $0.21 \mathrm{mmol} \mathrm{g}^{-1}(56 \%)$. Unreacted amines were capped using the general capping method after each coupling step. The final acetyl group was installed via the general acetylation method. After purification by semi-prep HPLC (C8, $0-30 \mathrm{~B}, 25^{\circ} \mathrm{C}$; A: $13 \mathrm{mmol} \mathrm{NH}_{4} \mathrm{OAc}$ buffer pH 8.5 , B: acetonitrile), the title compound was obtained as a white solid ($0.937 \mathrm{mg}, 0.781 \mu \mathrm{~mol}, 8.4 \%$; HPLC-purity: 98.6%).
 $1 \mathrm{H}), 10.14(\mathrm{~s}, 1 \mathrm{H}), 9.15(\mathrm{~s}, 1 \mathrm{H}), 8.83(\mathrm{~d}, J=8.79 \mathrm{~Hz}, 1 \mathrm{H}), 8.65(\mathrm{~d}, J=8.55 \mathrm{~Hz}, 1 \mathrm{H}), 8.18(\mathrm{~d}, J=9.16 \mathrm{~Hz}, 1 \mathrm{H})$, $8.10(\mathrm{~d}, J=9.47 \mathrm{~Hz}, 1 \mathrm{H}), 8.03(\mathrm{~d}, J=9.24 \mathrm{~Hz}, 1 \mathrm{H}), 7.97(\mathrm{~d}, J=9.32 \mathrm{~Hz}, 1 \mathrm{H}), 7.94-7.82(\mathrm{~m}, 2 \mathrm{H}), 7.78-7.66$ $(\mathrm{m}, 2 \mathrm{H}), 7.51(\mathrm{~d}, J=8.97 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.27(\mathrm{~m}, 4 \mathrm{H}), 7.20(\mathrm{~d}, J=8.08 \mathrm{~Hz}, 1 \mathrm{H}), 7.18-7.07(\mathrm{~m}, 2 \mathrm{H}), 6.82(\mathrm{t}$, $J=8.64 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{~s}, 1 \mathrm{H}), 6.49(\mathrm{~s}, 1 \mathrm{H}), 3.19(\mathrm{q}, J=8.26 \mathrm{~Hz}, 2 \mathrm{H}), 1.69(\mathrm{~s}, 4 \mathrm{H}), 1.48(\mathrm{~d}, J=6.62 \mathrm{~Hz}, 4 \mathrm{H})$, $1.27(\mathrm{t}, J=8.06 \mathrm{~Hz}, 4 \mathrm{H})$. HRMS (ESI$\left.{ }^{-}\right) \mathrm{m} / \mathrm{z}$ calcd. for $\mathrm{C}_{59} \mathrm{H}_{44} \mathrm{~N}_{9} \mathrm{O}_{20}: 1198.2708(\mathrm{M}-\mathrm{H})^{-}$; found: 1198.3269 .

Compound 2: Oligomer 2 was synthesized on Wang resin ($0.44 \mathrm{mmol} \mathrm{g}^{-1}, 17.6 \mu \mathrm{~mol}$ scale) according to the standard method. Loading of the first monomer: $0.44 \mathrm{mmol} \mathrm{g}^{-1}(100 \%)$. The final acetyl group was installed via the general acetylation method. After purification by semi-prep HPLC $\left(\mathrm{C} 8,0-20 \mathrm{~B}, 25^{\circ} \mathrm{C}\right.$; $\mathrm{A}: 13 \mathrm{mmol} \mathrm{NH}_{4} \mathrm{OAc}$ buffer pH 8.5 , B : acetonitrile), the title compound was obtained as a white solid ($17.2 \mathrm{mg}, 9.03 \mu \mathrm{~mol}, 51 \%$; HPLCpurity: 97.3%). ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, 12 \mathrm{mmol} \mathrm{NH}_{4} \mathrm{OAc}$ buffer pH 8.5 in $\mathrm{H}_{2} \mathrm{O} / \mathrm{D}_{2} \mathrm{O} 9: 1$): $\delta=11.44(\mathrm{~s}, 1 \mathrm{H}), 11.35$ $(\mathrm{s}, 1 \mathrm{H}), 11.32(\mathrm{~s}, 1 \mathrm{H}), 10.93-10.73(\mathrm{~m}, 1 \mathrm{H}), 10.70(\mathrm{~s}, 1 \mathrm{H}), 10.11(\mathrm{~s}, 1 \mathrm{H}), 9.98(\mathrm{~s}, 1 \mathrm{H}), 9.66(\mathrm{~s}, 1 \mathrm{H}), 9.58(\mathrm{~s}, 1 \mathrm{H})$, 8.37-8.25 (m, 2H), 8.25-8.12 (m, 3H), 8.12-7.98 (m, 2H), $7.95(\mathrm{t}, J=8.56 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{t}, J=8.96 \mathrm{~Hz}$, $1 \mathrm{H}), 7.81(\mathrm{~d}, J=9.15 \mathrm{~Hz}, 1 \mathrm{H}), 7.79-7.69(\mathrm{~m}, 2 \mathrm{H}), 7.65(\mathrm{~d}, J=8.37 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{t}, J=9.10 \mathrm{~Hz}, 1 \mathrm{H}), 7.53$ $(\mathrm{d}, J=8.32 \mathrm{~Hz}, 1 \mathrm{H}), 7.48-7.39(\mathrm{~m}, 1 \mathrm{H}), 7.37(\mathrm{~d}, J=8.52 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.19(\mathrm{~s}, 1 \mathrm{H}), 7.17(\mathrm{~s}$, $1 \mathrm{H}), 7.15-7.02(\mathrm{~m}, 3 \mathrm{H}), 7.01(\mathrm{~s}, 1 \mathrm{H}), 6.97(\mathrm{t}, J=8.54 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{~s}, 2 \mathrm{H}), 6.72(\mathrm{~s}, 1 \mathrm{H}), 6.69(\mathrm{~s}, 2 \mathrm{H}), 6.64(\mathrm{~d}$, $J=9.48 \mathrm{~Hz}, 1 \mathrm{H}), 6.55(\mathrm{~s}, 1 \mathrm{H}), 6.47(\mathrm{~s}, 1 \mathrm{H}), 6.37(\mathrm{~s}, 1 \mathrm{H}), 6.28(\mathrm{~s}, 1 \mathrm{H}), 6.22(\mathrm{~s}, 1 \mathrm{H}), 6.16-6.02(\mathrm{~m}, 1 \mathrm{H}), 3.86$
(s, 5H), $3.81(\mathrm{~s}, 1 \mathrm{H}), 1.39(\mathrm{~d}, J=9.70 \mathrm{~Hz}, 5 \mathrm{H}), 1.13(\mathrm{~d}, J=7.20 \mathrm{~Hz}, 1 \mathrm{H}), 0.06(\mathrm{~d}, J=6.60 \mathrm{~Hz}, 6 \mathrm{H}) . \mathbf{H R M S}$ (ESI^{-}) m / z calcd. for $\mathrm{C}_{93} \mathrm{H}_{68} \mathrm{~N}_{15} \mathrm{O}_{27} \mathrm{Se}: 1906.3580(\mathrm{M}-\mathrm{H})^{-}$; found: 1906.4064.

Compound 3: Oligomer 3 was synthesized on Wang resin ($0.37 \mathrm{mmolg}^{-1}, 22.0 \mu \mathrm{~mol}$ scale) according to the standard method. Loading of the first monomer: $0.34 \mathrm{mmol} \mathrm{g}^{-1}(92 \%)$. Unreacted amines were capped using the general capping method after each coupling step. The final acetyl group was installed via the general acetylation method. After purification by semi-prep HPLC (C18, 0-50B, $25^{\circ} \mathrm{C}$; A: $13 \mathrm{mmol} \mathrm{NH}_{4} \mathrm{OAc}$ buffer pH 8.5, B: acetonitrile), the title compound was obtained as a white solid ($18.1 \mathrm{mg}, 8.58 \mu \mathrm{~mol}, 39 \%$; HPLC-purity: 99.2%). ${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, 12 \mathrm{mmol} \mathrm{NH}_{4} \mathrm{OAc}\right.$ buffer pH 8.5 in $\left.\mathrm{H}_{2} \mathrm{O} / \mathrm{D}_{2} \mathrm{O} 9: 1\right): \delta=11.75(\mathrm{~s}, 1 \mathrm{H}), 11.49(\mathrm{~s}, 1 \mathrm{H}), 10.51$ $(\mathrm{s}, 1 \mathrm{H}), 9.93(\mathrm{~s}, 1 \mathrm{H}), 9.04(\mathrm{~s}, 1 \mathrm{H}), 8.86(\mathrm{~s}, 1 \mathrm{H}), 8.53(\mathrm{~d}, J=8.53 \mathrm{~Hz}, 1 \mathrm{H}), 8.41(\mathrm{~d}, J=8.35 \mathrm{~Hz}, 1 \mathrm{H}), 8.14(\mathrm{~d}$, $J=9.79 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{~s}, 2 \mathrm{H}), 7.80(\mathrm{~d}, J=8.75 \mathrm{~Hz}, 1 \mathrm{H}), 7.78-7.68(\mathrm{~m}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J=9.21 \mathrm{~Hz}, 1 \mathrm{H}), 7.50$ $(\mathrm{s}, 1 \mathrm{H}), 7.40(\mathrm{~s}, 1 \mathrm{H}), 7.34-7.18(\mathrm{~m}, 2 \mathrm{H}), 7.14(\mathrm{~s}, 1 \mathrm{H}), 7.09(\mathrm{~s}, 2 \mathrm{H}), 6.98-6.79(\mathrm{~m}, 3 \mathrm{H}), 6.58-6.41(\mathrm{~m}, 2 \mathrm{H}), 6.29$ $(\mathrm{s}, 2 \mathrm{H}), 6.26(\mathrm{~s}, 1 \mathrm{H}), 6.08(\mathrm{~s}, 1 \mathrm{H}), 5.91(\mathrm{~s}, 1 \mathrm{H}), 4.19(\mathrm{~s}, 1 \mathrm{H}), 4.03(\mathrm{~s}, 2 \mathrm{H}), 3.95(\mathrm{~s}, 1 \mathrm{H}), 1.55(\mathrm{~s}, 3 \mathrm{H}),-0.18(\mathrm{~s}, 3 \mathrm{H})$. HRMS (ESI^{-}) m / z calcd. for $\mathrm{C}_{104} \mathrm{H}_{76} \mathrm{~N}_{17} \mathrm{O}_{29} \mathrm{Se}$: $2106.4166(\mathrm{M}-\mathrm{H})^{-}$; found: 2106.4162.

Compound 4: Oligomer 4 was synthesized on Wang resin $\left(0.37 \mathrm{mmolg}^{-1}, 18.5 \mu \mathrm{~mol}\right.$ scale) according to the standard method. Loading of the first monomer: $0.33 \mathrm{mmol} \mathrm{g}^{-1}(89 \%)$. Unreacted amines were capped using the general capping method after each coupling step. The final acetyl group was installed via the general acetylation method. After purification by semi-prep HPLC (C18, 10-20B, $25^{\circ} \mathrm{C}$; A: $13 \mathrm{mmol} \mathrm{NH}_{4} \mathrm{OAc}$ buffer pH 8.5 , B: acetonitrile), the title compound was obtained as a white solid ($9.75 \mathrm{mg}, 4.13 \mu \mathrm{~mol}, 22 \%$; HPLC-purity: 99.9%). ${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, 12 \mathrm{mmol} \mathrm{NH}_{4} \mathrm{OAc}\right.$ buffer pH 8.5 in $\left.\mathrm{H}_{2} \mathrm{O} / \mathrm{D}_{2} \mathrm{O} 9: 1\right): \delta=12.15(\mathrm{~s}, 1 \mathrm{H}), 11.82(\mathrm{~s}, 1 \mathrm{H}), 11.02$ $(\mathrm{s}, 1 \mathrm{H}), 10.76(\mathrm{~s}, 1 \mathrm{H}), 9.79(\mathrm{~s}, 1 \mathrm{H}), 9.28(\mathrm{~s}, 1 \mathrm{H}), 9.08(\mathrm{~s}, 1 \mathrm{H}), 8.53(\mathrm{~s}, 1 \mathrm{H}), 8.46(\mathrm{~d}, J=8.29 \mathrm{~Hz}, 1 \mathrm{H}), 8.34(\mathrm{~d}$, $J=8.25 \mathrm{~Hz}, 1 \mathrm{H}), 8.21(\mathrm{~d}, J=8.27 \mathrm{~Hz}, 1 \mathrm{H}), 8.12(\mathrm{~d}, J=9.13 \mathrm{~Hz}, 1 \mathrm{H}), 8.06(\mathrm{~s}, 1 \mathrm{H}), 8.05-7.93(\mathrm{~m}, 1 \mathrm{H}), 7.82(\mathrm{~s}$,
$1 \mathrm{H}), 7.81-7.69(\mathrm{~m}, 2 \mathrm{H}), 7.65(\mathrm{~d}, J=9.10 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~s}, 1 \mathrm{H}), 7.56-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.40(\mathrm{~d}, J=8.47 \mathrm{~Hz}, 1 \mathrm{H})$, $7.32(\mathrm{~s}, 1 \mathrm{H}), 7.20-7.09(\mathrm{~m}, 2 \mathrm{H}), 7.05(\mathrm{~s}, 1 \mathrm{H}), 6.96(\mathrm{~s}, 2 \mathrm{H}), 6.89(\mathrm{t}, J=7.97 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~s}, 1 \mathrm{H}), 6.79-6.72(\mathrm{~m}$, $3 \mathrm{H}), 6.68(\mathrm{~d}, J=7.64 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{~s}, 1 \mathrm{H}), 6.47(\mathrm{~s}, 1 \mathrm{H}), 6.33(\mathrm{~d}, J=9.08 \mathrm{~Hz}, 1 \mathrm{H}), 6.27(\mathrm{~s}, 2 \mathrm{H}), 6.13(\mathrm{~s}, 1 \mathrm{H}), 6.09$ (d, $J=9.00 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{~s}, 2 \mathrm{H}), 4.00(\mathrm{~s}, 2 \mathrm{H}), 3.95(\mathrm{~s}, 2 \mathrm{H}), 3.87(\mathrm{~d}, J=7.59 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{~d}, J=15.15 \mathrm{~Hz}$, $1 \mathrm{H}), 3.31-3.11(\mathrm{~m}, 3 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 1.57(\mathrm{~d}, J=15.40 \mathrm{~Hz}, 1 \mathrm{H}), 1.47(\mathrm{~s}, 3 \mathrm{H}), 1.28(\mathrm{t}, J=7.92 \mathrm{~Hz}, 3 \mathrm{H}), 1.21$ $(\mathrm{d}, J=13.39 \mathrm{~Hz}, 1 \mathrm{H}),-0.32(\mathrm{~d}, J=6.97 \mathrm{~Hz}, 3 \mathrm{H}) . \mathbf{H R M S}\left(\mathrm{ESI}^{-}\right) \mathrm{m} / \mathrm{z}$ calcd. for $\mathrm{C}_{119} \mathrm{H}_{90} \mathrm{~N}_{19} \mathrm{O}_{31} \mathrm{Se}: 2360.5221$ (M-H) ${ }^{-}$; found: 2360.5251 .

Compound 5: Oligomer 5 was synthesized on Wang resin ($0.37 \mathrm{mmol} \mathrm{g}^{-1}, 22.0 \mu \mathrm{~mol}$ scale) according to the standard method. Loading of the first monomer: $0.34 \mathrm{mmol} \mathrm{g}^{-1}(92 \%)$. Unreacted amines were capped using the general capping method after each coupling step. The final camphanyl group was installed via the general camphanylation method. After purification by semi-prep HPLC (C18, $0-50 \mathrm{~B}, 25^{\circ} \mathrm{C}$; A: $13 \mathrm{mmol} \mathrm{NH}_{4} \mathrm{OAc}$ buffer pH 8.5, B: acetonitrile), the title compound was obtained as a white solid ($12.7 \mathrm{mg}, 5.64 \mu \mathrm{~mol}, 26 \%$; HPLC-purity: 98.0%). ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, 12 \mathrm{mmol} \mathrm{NH}_{4} \mathrm{OAc}$ buffer pH 8.5 in $\mathrm{H}_{2} \mathrm{O} / \mathrm{D}_{2} \mathrm{O} 9: 1$): $\delta=11.90(\mathrm{~s}, 1 \mathrm{H}), 11.86(\mathrm{~s}, 1 \mathrm{H})$, $11.74(\mathrm{~s}, 4 \mathrm{H}), 11.70(\mathrm{~s}, 1 \mathrm{H}), 11.62(\mathrm{~s}, 3 \mathrm{H}), 11.51(\mathrm{~s}, 3 \mathrm{H}), 11.19(\mathrm{~s}, 1 \mathrm{H}), 10.78(\mathrm{~s}, 1 \mathrm{H}), 10.52(\mathrm{~s}, 3 \mathrm{H}), 10.36(\mathrm{~s}, 1 \mathrm{H})$, $10.17(\mathrm{~s}, 3 \mathrm{H}), 9.71(\mathrm{~s}, 1 \mathrm{H}), 9.68(\mathrm{~s}, 1 \mathrm{H}), 9.19(\mathrm{~s}, 3 \mathrm{H}), 9.02(\mathrm{~s}, 4 \mathrm{H}), 8.68(\mathrm{~s}, 1 \mathrm{H}), 8.60(\mathrm{~d}, J=8.31 \mathrm{~Hz}, 1 \mathrm{H}), 8.53(\mathrm{~d}$, $J=8.36 \mathrm{~Hz}, 3 \mathrm{H}), 8.44(\mathrm{~d}, J=8.41 \mathrm{~Hz}, 1 \mathrm{H}), 8.24(\mathrm{~d}, J=8.22 \mathrm{~Hz}, 4 \mathrm{H}), 8.19(\mathrm{~d}, J=9.22 \mathrm{~Hz}, 1 \mathrm{H}), 8.14-8.00$ $(\mathrm{m}, 4 \mathrm{H}), 7.97-7.85(\mathrm{~m}, 11 \mathrm{H}), 7.85-7.77(\mathrm{~m}, 7 \mathrm{H}), 7.74(\mathrm{~d}, J=8.99 \mathrm{~Hz}, 2 \mathrm{H}), 7.69(\mathrm{~d}, J=8.76 \mathrm{~Hz}, 1 \mathrm{H}), 7.67-7.59$ $(\mathrm{m}, 3 \mathrm{H}), 7.59-7.48(\mathrm{~m}, 3 \mathrm{H}), 7.43(\mathrm{~d}, J=8.01 \mathrm{~Hz}, 3 \mathrm{H}), 7.41-7.26(\mathrm{~m}, 12 \mathrm{H}), 7.24(\mathrm{~d}, J=8.56 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-7.08$ $(\mathrm{m}, 7 \mathrm{H}), 7.05(\mathrm{~d}, J=8.11 \mathrm{~Hz}, 1 \mathrm{H}), 7.02-6.91(\mathrm{~m}, 8 \mathrm{H}), 6.86(\mathrm{t}, J=8.11 \mathrm{~Hz}, 4 \mathrm{H}), 6.77(\mathrm{~d}, J=8.26 \mathrm{~Hz}, 1 \mathrm{H})$, 6.58-6.42 (m, 7H), $6.39(\mathrm{~s}, 3 \mathrm{H}), 6.32(\mathrm{~d}, J=8.23 \mathrm{~Hz}, 4 \mathrm{H}), 6.28(\mathrm{~s}, 4 \mathrm{H}), 6.18(\mathrm{~s}, 4 \mathrm{H}), 6.14(\mathrm{~s}, 1 \mathrm{H}), 6.00(\mathrm{~s}, 2 \mathrm{H})$, $4.22(\mathrm{~s}, 4 \mathrm{H}), 4.16(\mathrm{~d}, J=8.38 \mathrm{~Hz}, 2 \mathrm{H}), 4.07(\mathrm{~s}, 6 \mathrm{H}), 3.93(\mathrm{~s}, 2 \mathrm{H}), 2.73(\mathrm{~s}, 13 \mathrm{H}), 2.67(\mathrm{~s}, 3 \mathrm{H}), 0.98(\mathrm{~s}, 1 \mathrm{H}), 0.88$ (s, 10H), $0.79(\mathrm{~s}, 12 \mathrm{H}), 0.64(\mathrm{~d}, J=10.55 \mathrm{~Hz}, 16 \mathrm{H}), 0.57(\mathrm{~s}, 3 \mathrm{H}), 0.43(\mathrm{~d}, J=7.18 \mathrm{~Hz}, 3 \mathrm{H}), 0.10(\mathrm{~s}, 4 \mathrm{H}), 0.06$ (s, 4H), - $0.22(\mathrm{~d}, J=7.00 \mathrm{~Hz}, 9 \mathrm{H})$. HRMS (ESI ${ }^{-}$) m / z calcd. for $\mathrm{C}_{112} \mathrm{H}_{86} \mathrm{~N}_{17} \mathrm{O}_{31} \mathrm{Se}: 2244.4846(\mathrm{M}-\mathrm{H})^{-}$; found: 2244.5082.

Compound 6: Oligomer 6 was synthesized on Wang resin $\left(0.37 \mathrm{mmol} \mathrm{g}^{-1}, 11.0 \mu \mathrm{~mol}\right.$ scale) according to the standard method. Loading of the first monomer: $0.34 \mathrm{mmolg}^{-1}(92 \%)$. Unreacted amines were capped using the general capping method after each coupling step. The final camphanyl group was installed via the general camphanylation method. After purification by semi-prep HPLC (C18, 10-35B, $25^{\circ} \mathrm{C}$; A: $13 \mathrm{mmol} \mathrm{NH}_{4} \mathrm{OAc}$ buffer pH 8.5 , B: acetonitrile), the title compound was obtained as a white solid ($4.65 \mathrm{mg}, 1.52 \mu \mathrm{~mol}, 14 \%$; HPLC-purity: 96.6%). ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, 12 \mathrm{mmol} \mathrm{NH}_{4} \mathrm{OAc}$ buffer pH 8.5 in $\mathrm{H}_{2} \mathrm{O} / \mathrm{D}_{2} \mathrm{O} 9: 1$): $\delta=11.70(\mathrm{~s}, 1 \mathrm{H}), 11.47(\mathrm{~s}$, $1 \mathrm{H}), 11.12(\mathrm{~s}, 1 \mathrm{H}), 11.07(\mathrm{~s}, 1 \mathrm{H}), 10.44(\mathrm{~s}, 2 \mathrm{H}), 10.12(\mathrm{~s}, 1 \mathrm{H}), 9.71(\mathrm{~s}, 1 \mathrm{H}), 9.28(\mathrm{~s}, 1 \mathrm{H}), 9.14(\mathrm{~s}, 1 \mathrm{H}), 8.96(\mathrm{~s}$, $1 \mathrm{H}), 8.77(\mathrm{~s}, 1 \mathrm{H}), 8.66(\mathrm{~s}, 1 \mathrm{H}), 8.48(\mathrm{~d}, J=8.48 \mathrm{~Hz}, 1 \mathrm{H}), 8.16(\mathrm{~d}, J=8.20 \mathrm{~Hz}, 1 \mathrm{H}), 8.02(\mathrm{~d}, J=9.25 \mathrm{~Hz}, 1 \mathrm{H})$, $7.93-7.82(\mathrm{~m}, 2 \mathrm{H}), 7.79(\mathrm{~d}, J=8.93 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{t}, J=7.95 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J=9.17 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~d}$, $J=8.11 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~s}, 1 \mathrm{H}), 7.48(\mathrm{~d}, J=7.48 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J=8.32 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.27(\mathrm{~s}$, 1H), 7.25-7.19 (m, 1H), 7.19-7.09 (m, 1H), 7.07 (s, 1H), 7.06-6.98 (m, 3H), 6.95 (s, 1H), $6.80(t, J=8.58 \mathrm{~Hz}$, $1 \mathrm{H}), 6.73(\mathrm{~s}, 1 \mathrm{H}), 6.48(\mathrm{~s}, 1 \mathrm{H}), 6.40(\mathrm{~d}, J=8.41 \mathrm{~Hz}, 2 \mathrm{H}), 6.34(\mathrm{~s}, 1 \mathrm{H}), 6.29(\mathrm{~s}, 1 \mathrm{H}), 6.26(\mathrm{~s}, 1 \mathrm{H}), 6.24(\mathrm{~s}, 1 \mathrm{H})$, $6.14(\mathrm{~s}, 1 \mathrm{H}), 6.06(\mathrm{~s}, 1 \mathrm{H}), 5.99(\mathrm{~s}, 1 \mathrm{H}), 5.88(\mathrm{~s}, 1 \mathrm{H}), 4.17(\mathrm{~d}, J=18.58 \mathrm{~Hz}, 3 \mathrm{H}), 3.95(\mathrm{~d}, J=20.88 \mathrm{~Hz}, 5 \mathrm{H})$, $2.39(\mathrm{~s}, 3 \mathrm{H}), 0.69(\mathrm{~s}, 4 \mathrm{H}), 0.64(\mathrm{~s}, 3 \mathrm{H}), 0.07(\mathrm{~s}, 4 \mathrm{H}),-0.32(\mathrm{~d}, J=7.74 \mathrm{~Hz}, 5 \mathrm{H}) . \mathbf{H R M S}\left(\mathrm{ESI}^{-}\right) \mathrm{m} / \mathrm{z}$ calcd. for $\mathrm{C}_{155} \mathrm{H}_{118} \mathrm{~N}_{24} \mathrm{O}_{41} \mathrm{Se}: 1525.3531(\mathrm{M}-2 \mathrm{H})^{2-}$; found: 1525.3591.

Compound 7: Oligomer 7 was synthesized on Wang resin ($0.37 \mathrm{mmolg}^{-1}, 11.0 \mu \mathrm{~mol}$ scale) according to the standard method. Loading of the first monomer: $0.34 \mathrm{mmol} \mathrm{g}^{-1}(92 \%)$. Unreacted amines were capped using the general capping method after each coupling step. The final acetyl group was installed via the general acetylation method. After purification by semi-prep HPLC (C18, 10-35B, $25^{\circ} \mathrm{C}$; A: $13 \mathrm{mmol} \mathrm{NH}_{4} \mathrm{OAc}$ buffer pH 8.5, B: acetonitrile), the title compound was obtained as a white solid ($8.33 \mathrm{mg}, 2.86 \mu \mathrm{~mol}, 26 \%$; HPLC-purity: 97.6%).
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, 12 \mathrm{mmol} \mathrm{NH} 4_{4} \mathrm{OAc}\right.$ buffer $\left.\mathrm{pH} 8.5 \mathrm{in}_{2} \mathrm{O} / \mathrm{D}_{2} \mathrm{O} 9: 1\right): \delta=11.69(\mathrm{~s}, 1 \mathrm{H}), 11.46(\mathrm{~s}, 1 \mathrm{H}), 11.07$ $(\mathrm{s}, 1 \mathrm{H}), 10.48(\mathrm{~s}, 1 \mathrm{H}), 10.43(\mathrm{~s}, 1 \mathrm{H}), 10.11(\mathrm{~s}, 1 \mathrm{H}), 9.74(\mathrm{~s}, 1 \mathrm{H}), 9.21(\mathrm{~s}, 1 \mathrm{H}), 8.94(\mathrm{~s}, 1 \mathrm{H}), 8.68(\mathrm{~s}, 2 \mathrm{H}), 8.47(\mathrm{~d}$, $J=8.38 \mathrm{~Hz}, 1 \mathrm{H}), 8.14(\mathrm{~d}, J=8.11 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{~d}, J=9.29 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{t}, J=6.87 \mathrm{~Hz}, 1 \mathrm{H}), 7.81-7.74(\mathrm{~m}$, $1 \mathrm{H}), 7.71(\mathrm{~d}, J=9.28 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{~s}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=9.15 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{~s}, 1 \mathrm{H}), 7.47(\mathrm{t}, J=8.76 \mathrm{~Hz}, 1 \mathrm{H})$, $7.40(\mathrm{~d}, J=6.59 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.30(\mathrm{~m}, 1 \mathrm{H}), 7.28(\mathrm{~d}, J=7.44 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.18(\mathrm{~m}, 3 \mathrm{H}), 7.16(\mathrm{~d}, J=7.14 \mathrm{~Hz}$, $1 \mathrm{H}), 7.12(\mathrm{~d}, J=8.01 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{~s}, 1 \mathrm{H}), 7.05-6.95(\mathrm{~m}, 3 \mathrm{H}), 6.78(\mathrm{t}, J=8.29 \mathrm{~Hz}, 1 \mathrm{H}), 6.75-6.65(\mathrm{~m}, 1 \mathrm{H})$, 6.46-6.36 (m, 2H), $6.34(\mathrm{~s}, 1 \mathrm{H}), 6.27(\mathrm{~s}, 2 \mathrm{H}), 6.24(\mathrm{~s}, 2 \mathrm{H}), 6.06(\mathrm{~s}, 1 \mathrm{H}), 6.02(\mathrm{~s}, 1 \mathrm{H}), 5.86(\mathrm{~s}, 1 \mathrm{H}), 4.15(\mathrm{~s}, 3 \mathrm{H})$, $3.92(\mathrm{~s}, 4 \mathrm{H}), 3.85(\mathrm{~s}, 1 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 1.09(\mathrm{~s}, 2 \mathrm{H}),-0.33(\mathrm{~d}, J=7.07 \mathrm{~Hz}, 3 \mathrm{H}),-0.40(\mathrm{~s}, 2 \mathrm{H})$. HRMS $\left.^{(E S I}{ }^{-}\right) \mathrm{m} / \mathrm{z}$ calcd. for $\mathrm{C}_{147} \mathrm{H}_{109} \mathrm{~N}_{24} \mathrm{O}_{39} \mathrm{Se}$: $2913.6454(\mathrm{M}-\mathrm{H})^{-}$; found: 2913.6924.

3.3 Monomer synthesis procedures

Compound 8: Compound $\mathbf{8}$ was prepared according to previously described methods. ${ }^{6}$ Analytical data is in line with the literature. $\left(\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{NO}_{5}, \mathrm{MW}=211.17 \mathrm{~g} \mathrm{~mol}^{-1}\right) . \mathbf{R}_{f}(\mathrm{CyHex} / \mathrm{EtOAc} 9: 1)=0.10 .{ }^{1} \mathbf{H} \mathbf{N M R}(500 \mathrm{MHz}$, CDCl_{3}): $\delta=7.88(\mathrm{dd}, J=8.11,1.71 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 3-\mathrm{H}), 7.52(\mathrm{ddd}, J=8.29,7.44,1.69 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 5-\mathrm{H}), 7.11$ (ddd, $J=8.33,7.49,1.16 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 4-\mathrm{H}), 6.99(\mathrm{dd}, J=8.43,1.11 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 6-\mathrm{H}), 4.79(\mathrm{~s}, 2 \mathrm{H}, \mathrm{C} 7-\mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C} 9-$ H). ${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=168.4$ (C8), 151.4 (C1), 140.6 (C2), 134.2 (C5), 126.1 (C3), 122.0 (C4), $115.3(\mathrm{C} 6), 66.7(\mathrm{C} 7), 52.7(\mathrm{C} 9)$. HRMS $\left(\mathrm{ESI}^{+}\right) \mathrm{m} / \mathrm{z}$ calcd. for $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{NO}_{5}: 212.0553(\mathrm{M}+\mathrm{H})^{+}$; found: 212.0556.

Compound 9: Compound $\mathbf{8}(8.21 \mathrm{~g}, 38.9 \mathrm{mmol}, 1.0$ equiv.) was dissolved in THF (120 mL). Then, $\mathrm{LiOH}(1.86 \mathrm{~g}$, 77.8 mmol , 2.0 equiv.) in $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL})$ was added and the reaction mixture was stirred at room temperature for 1 h . After acidifying the solution to pH 1 using $1 \mathrm{M} \mathrm{HCl}_{\text {(aq.) }}$, it was extracted with $\mathrm{DCM}(3 \times)$, dried over MgSO_{4}, and solvents were removed in vacuo $\left(50^{\circ} \mathrm{C}\right)$. The title compound was obtained as an off white solid $(7.02 \mathrm{~g}, 35.6 \mathrm{mmol}$, 92%). $\left(\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{NO}_{5}, \mathrm{MW}=197.15 \mathrm{~g} \mathrm{~mol}^{-1}\right) .{ }^{1} \mathbf{H}$ NMR (500 MHz, DMSO- d_{6}): $\delta=13.21(\mathrm{~s}, 1 \mathrm{H}, \mathrm{O} 9-\mathrm{H}), 7.87$ (dd, $J=8.04,1.71 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 3-\mathrm{H}), 7.62(\mathrm{ddd}, J=8.87,7.38,1.71 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 5-\mathrm{H}), 7.26(\mathrm{dd}, J=8.55,1.07 \mathrm{~Hz}, 1 \mathrm{H}$, C6-H), 7.13 (ddd, $J=8.27,7.43,1.10 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 4-\mathrm{H}), 4.91$ (s, 2H, C7-H). ${ }^{13} \mathbf{C}$ NMR (101 MHz, DMSO-d ${ }_{6}$): $\delta=$ 169.3 (C8), 150.4 (C1), 139.7 (C2), 134.1 (C5), 124.9 (C3), 121.1 (C4), 115.0 (C6), 65.3 (C7). HRMS (ESI ${ }^{-}$) m/z.
calcd. for $\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{NO}_{5}$: $196.0251(\mathrm{M}-\mathrm{H})^{-}$; found: 196.0250. (Modified literature procedure; ${ }^{6}$ analytical data is in line with the literature).

Compound 12: From the ester: Compound $\mathbf{8}(6.85 \mathrm{~g}, 32.4 \mathrm{mmol}, 1.0$ equiv.) was dissolved in EtOAc (350 mL). The solution was quickly degassed by vacuum N_{2} cycles ($3 \times$), then $\mathrm{Pd} / \mathrm{C}(685 \mathrm{mg}, 10 \% \mathrm{~m} / \mathrm{m}$ to $\mathbf{9 a}$) was added and the N_{2} atmosphere was replaced by H_{2}. After stirring for 20 h the reaction mixture was filtered over celite ${ }^{\odot}$, washed with EtOAc and solvents were removed in vacuo $\left(50^{\circ} \mathrm{C}\right)$. The title compound was obtained as a light brown solid ($4.22 \mathrm{~g}, 28.3 \mathrm{mmol}, 87 \%$).
From the acid: Compound 9 ($7.02 \mathrm{~g}, 35.6 \mathrm{mmol}, 1.0$ equiv.) was dissolved in THF (600 mL). The solution was quickly degassed by vacuum N_{2} cycles ($3 \times$), then $\mathrm{Pd} / \mathrm{C}(702 \mathrm{mg}, 10 \% \mathrm{~m} / \mathrm{m}$ to $9 \mathbf{e})$ were added and the N_{2} atmosphere was replaced by H_{2}. After stirring for 24 h the reaction mixture was filtered over celite ${ }^{\odot}$, washed with THF and solvents were removed in vacuo $\left(50^{\circ} \mathrm{C}\right)$. The crude product was not further purified. $\left(\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{NO}_{2}\right.$, MW $\left.=149.15 \mathrm{~g} \mathrm{~mol}^{-1}\right) . \mathbf{R}_{f}(\mathrm{CyHex} / E t O A c 7: 3)=0.30 .{ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.46(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C} 9-$ H), 7.06-6.89 (m, 3H, C3-H, C4-H, C6-H), 6.87-6.78 (m, 1H, C5-H), 4.63 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{C} 7-\mathrm{H}$). ${ }^{13} \mathbf{C ~ N M R}(126 \mathrm{MHz}$, CDCl_{3}): $\delta=166.0(\mathrm{C} 8), 143.8(\mathrm{C} 1), 126.2(\mathrm{C} 2), 124.4(\mathrm{C} 3), 122.9(\mathrm{C} 6), 117.0(\mathrm{C} 4), 116.1$ (C5), 67.4 (C7). HRMS (ESI ${ }^{-}$) m / z calcd. for $\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{NO}_{2}: 148.0404(\mathrm{M}-\mathrm{H})^{-}$; found: 148.0403. (Known compound; analytical data is in line with the literature). ${ }^{7}$

Compound 13: 2-nitrophenol ($3.0 \mathrm{~g}, 21.6 \mathrm{mmol}, 1.0$ equiv.), tert-butyl bromoacetate ($3.50 \mathrm{~mL}, 23.7 \mathrm{mmol}, 1.1$ equiv.) and $\mathrm{K}_{2} \mathrm{CO}_{3}$ (3.28 g , 23.7 mmol , 1.1 equiv.) were suspended in anhydrous acetone (60 mL) under an N_{2} atmosphere. Then, the reaction mixture was refluxed for 4 h (bath temperature $75^{\circ} \mathrm{C}$). After cooling to room temperature the mixture was filtered, washed with acetone and solvents were removed in vacuo $\left(50^{\circ} \mathrm{C}\right)$. Without further purification, the title compound was obtained as a brown solid ($5.46 \mathrm{~g}, 21.6 \mathrm{mmol}$, quant.). ($\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{NO}_{5}$, MW $\left.=253.25 \mathrm{~g} \mathrm{~mol}^{-1}\right) . \mathbf{R}_{f}(\mathrm{CyHex} / \mathrm{EtOAc} 9: 1)=0.21 .{ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.86(\mathrm{dd}, \mathrm{J}=8.09 \mathrm{~Hz}$, $1.72 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 3-\mathrm{H}$), 7.51 (ddd, $J=8.43,7.451 .77 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 5-\mathrm{H}$), 7.08 (ddd, $J=8.36,7.44,1.16 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 4-$ H), $6.96(\mathrm{dd}, J=8.47,1.14 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 6-\mathrm{H}), 4.67(\mathrm{~s}, 2 \mathrm{H}, \mathrm{C} 9-\mathrm{H}), 1.46(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C} 10-\mathrm{H}, \mathrm{C} 11-\mathrm{H}, \mathrm{C} 12-\mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=166.9$ (C8), 151.5 (C1), 140.4 (C2), 134.0 (C5), 126.0 (C3), 121.5 (C4), 114.9 (C6), 83.2 (C9), $66.8(\mathrm{C} 7), 28.1(\mathrm{C} 10, \mathrm{C} 11, \mathrm{C} 12)$. HRMS $\left(\mathrm{EI}^{+}\right) \mathrm{m} / \mathrm{z}$ calcd. for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{NO}_{5}: 253.0945(\mathrm{M})^{+}$; found:
253.0955. (Known compound; analytical data is in line with the literature). ${ }^{8}$

Compound 14: Compound 13 ($5.46 \mathrm{~g}, 21.6 \mathrm{mmol}, 1.0$ equiv.) was dissolved in ethanol (350 mL). The solution was quickly degassed by vacuum N_{2} cycles ($3 \times$), then $\mathrm{Pd} / \mathrm{C}\left(546 \mathrm{mg}, 10 \% \mathrm{~m} / \mathrm{m}\right.$ to 9 b) were added and the N_{2} atmosphere was replaced by H_{2}. After stirring for 16 h the reaction mixture was filtered over celite ${ }^{\ominus}$, washed with ethanol and solvents were removed in vacuo $\left(50^{\circ} \mathrm{C}\right)$ (product was found to be unstable, especially at elevated temperatures). The title compound was obtained as a brown solid $(4.60 \mathrm{~g}$, contaminated with 30% cyclic side product). The crude product was directly used in the next step without further purification. $\left(\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{NO}_{3}\right.$, MW $=$ $\left.223.27 \mathrm{~g} \mathrm{~mol}^{-1}\right) . \mathbf{R}_{f}(\mathrm{CyHex} / E t O A c ~ 7: 3)=0.59 .{ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.24(\mathrm{~s}, 1 \mathrm{H}), 7.03-6.91(\mathrm{~m}$, 1H), 6.87-6.77 (m, 1H), 6.77-6.63 (m, 3H), $4.62(\mathrm{~s}, 1 \mathrm{H}), 4.53(\mathrm{~s}, 2 \mathrm{H}), 1.49(\mathrm{~s}, 9 \mathrm{H})$.

Compound 15: Compound 14 (4.60 g , contaminated with 30% lactam, $15.1 \mathrm{mmol}, 1.0$ equiv.) was dissolved in anhydrous DCM (100 mL) under an N_{2} atmosphere. Then, DIPEA ($3.94 \mathrm{~mL}, 22.6 \mathrm{mmol}, 1.5$ equiv.) was added and the solution was cooled to $0^{\circ} \mathrm{C}$. After the addition of $\mathrm{Fmoc}-\mathrm{Cl}\left(5.08 \mathrm{~g}, 19.6 \mathrm{mmol}, 1.3\right.$ equiv.) at $0{ }^{\circ} \mathrm{C}$ the reaction mixture was stirred at room temperature for 2 h . The mixture was acidified by adding citric acid ${ }_{\text {(aq.) }}(1 \mathrm{M}$, $15.1 \mathrm{~mL}, 15.1 \mathrm{mmol}, 1.0$ equiv.), extracted with $\mathrm{DCM}(2 \times)$, the organic phases were dried over MgSO_{4} and solvents were removed in vacuo $\left(50^{\circ} \mathrm{C}\right)$. After purification by column chromatography $\left(\mathrm{SiO}_{2}, \mathrm{CyHex} / \mathrm{EtOAc} 95: 5\right)$ the title compound was obtained as a colorless oil ($4.32 \mathrm{~g}, 9.70 \mathrm{mmol}, 64 \%$). $\left(\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{NO}_{5}\right.$, $\left.\mathrm{MW}=445.52 \mathrm{~g} \mathrm{~mol}{ }^{-1}\right)$. \mathbf{R}_{f} $\left(\right.$ CyHex/EtOAc 9:1) $=0.31 .{ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.13(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C} 3-\mathrm{H}), 7.97(\mathrm{~s}, 1 \mathrm{H}, \mathrm{N} 13-\mathrm{H}), 7.78$ (d, $J=7.70 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C} 20-\mathrm{H}, \mathrm{C} 21-\mathrm{H}), 7.70(\mathrm{~d}, J=7.46 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}-17-\mathrm{H}, \mathrm{C} 24-\mathrm{H}), 7.41(\mathrm{t}, J=7.54 \mathrm{~Hz}, 2 \mathrm{H}$, C19-H, C22-H) 7.33 (t, $J=7.41 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C} 18-\mathrm{H}, \mathrm{C} 23-\mathrm{H}), 7.03(\mathrm{t}, J=8.32 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 4-\mathrm{H}), 6.98(\mathrm{td}, J=$ $7.72,7.53,1.76 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 5-\mathrm{H}), 6.83$ (d, $J=8.06 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 6-\mathrm{H}), 4.60(\mathrm{~s}, 2 \mathrm{H}, \mathrm{C} 7-\mathrm{H}), 4.49$ (d, $J=7.20 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{C} 15-\mathrm{H}), 4.32(\mathrm{t}, J=7.24 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 16-\mathrm{H}), 1.51(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C} 10-\mathrm{H}, \mathrm{C} 11-\mathrm{H}, \mathrm{C} 12-\mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=168.5$ (C8), 153.6 (C14), 147.1 (C2), 144.5 (C1), 144.1 (C16a, C24a), 141.5 (C20a, C20b), 129.2 (C4), 127.9 (C19, C22), 127.3 (C18, C23), 125.4 (C17, C24), 123.0 (C5), 120.1 (C20, C21), 119.2 (C3), 113.7 (C6), 83.0 (C9), 68.0 (C7), 67.2 (C15), 47.3 (C16), 28.2 (C10, C11, C12). HRMS (ESI ${ }^{+}$) m / z calcd. for $\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{NO}_{5} \mathrm{Na}: 468.1781$ $(\mathrm{M}+\mathrm{Na})^{+}$; found: 468.1790 .

Compound 16: Compound $15(4.32 \mathrm{~g}, 9.70 \mathrm{mmol}, 1.0$ equiv.) and triisopropyl silane ($500 \mu \mathrm{~L}, 5 \% v / v$) were dissolved in DCM $(10 \mathrm{~mL})$. After the addition of TFA $(10 \mathrm{~mL})$ the reaction mixture was vigorously stirred under an N_{2} atmosphere for 2 h . The solution was extracted with $\operatorname{DCM}(3 \times)$ (some precipitate appeared, so the organic phases could not be dried) and solvents were removed in vacuo $\left(50^{\circ} \mathrm{C}\right)$. The crude product was triturated with $\mathrm{Et}_{2} \mathrm{O}$, filtered and washed with cold $\mathrm{Et}_{2} \mathrm{O}$ to yield the title compound as a white solid $(3.06 \mathrm{~g}, 7.87 \mathrm{mmol}, 81 \%) .\left(\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{NO}_{5}\right.$, MW $\left.=389.41 \mathrm{~g} \mathrm{~mol}^{-1}\right) . \mathbf{R}_{f}(\mathrm{CyHex} / E t O A c ~ 8: 2+1 \% \mathrm{AcOH})=0.20 .{ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}\right.$, DMSO-d $\left.{ }_{6}\right): \delta=$ 13.10 (s, 1H, O9-H), 8.67 (s, 1H, N10-H), 7.91 (d, $J=7.63 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C} 17-\mathrm{H}, \mathrm{C} 18-\mathrm{H}), 7.75$ (d, $J=7.51 \mathrm{~Hz}, 2 \mathrm{H}$, C14-H, C21-H), 7.64 (s, 1H, C3-H), 7.43 (t, $J=7.49 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C} 16-\mathrm{H}, \mathrm{C} 19-\mathrm{H}$), 7.34 (td, $J=7.44,1.18 \mathrm{~Hz}, 2 \mathrm{H}$, C15-H, C20-H) 7.03 (ddd, $J=8.73,7.20,1.65 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 5-\mathrm{H}), 6.98$ (dd, $J=8.26,1.51 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 6-\mathrm{H}), 6.93$ (t, $J=7.70 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 4-\mathrm{H}), 4.73(\mathrm{~s}, 2 \mathrm{H}, \mathrm{C} 7-\mathrm{H}), 4.42(\mathrm{~d}, J=7.10 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C} 12-\mathrm{H}), 4.31(\mathrm{t}, \mathrm{J}=7.01 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 13-\mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR (126 MHz, DMSO- d_{6}): $\delta=170.5$ (C8), 153.6 (C11), 148.59 (C2), 148.58 (C1), 143.8 (C13a, C21a), 140.7 (C17a, C17b), 127.7 (C16, C19), 127.1 (C15, C20), 125.3 (C14, C21), 124.1 (C5), 121.4 (C4), 120.2 (C17, C18), 113.5 (C6), 66.11 (C 12), $66.06(\mathrm{C} 7), 46.6(\mathrm{C} 13)$. HRMS ($\left.\mathrm{ESI}^{+}\right) \mathrm{m} / \mathrm{z}$ calcd. for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{NO}_{5}: 390.1336$ $(\mathrm{M}+\mathrm{H})^{+}$; found: 390.1330.

Compound 17: 2-nitrophenol ($6.00 \mathrm{~g}, 43.1 \mathrm{mmol}, 1.0$ equiv.), (-)-ethyl L-lactate ($4.93 \mathrm{~mL}, 43.1 \mathrm{mmol}, 1.0$ equiv.) and $\mathrm{PPh}_{3}\left(13.6 \mathrm{~g}, 51.8 \mathrm{mmol}, 1.2\right.$ equiv.) were dissolved in anhydrous THF (80 mL) under an N_{2} atmosphere. Then, DIAD ($10.2 \mathrm{~mL}, 51.8 \mathrm{mmol}, 1.2$ equiv.) was slowly added at $0^{\circ} \mathrm{C}$ and the resulting mixture was stirred at room temperature for 3 h . Solvents were evaporated in vacuo $\left(50^{\circ} \mathrm{C}\right)$, and the residue was purified by column chromatography (SiO_{2}, $\mathrm{CyHex} / \mathrm{EtOAc} 9: 1$) yielding the title compound as a white solid ($10.0 \mathrm{~g}, 41.8 \mathrm{mmol}, 97 \%$). ($\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{NO}_{5}$, MW $\left.=239.23 \mathrm{~g} \mathrm{~mol}^{-1}\right) . \mathbf{R}_{f}(\mathrm{CyHex} / E t O A c ~ 8: 2)=0.32 .{ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.83(\mathrm{dd}, J=$ $8.09,1.71 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 3-\mathrm{H}), 7.48$ (ddd, $J=8.48,7.48,1.75 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 5-\mathrm{H}$), 7.07 (ddd, $J=8.18,7.45,1.12 \mathrm{~Hz}, 1 \mathrm{H}$, C4-H), 6.96 (dd, $J=8.40,1.12 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 6-\mathrm{H}), 4.84$ (q, $J=6.84 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 7-\mathrm{H}$), 4.21 ($\mathrm{qd}, J=7.16,3.98 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{C} 10-\mathrm{H}), 1.69(\mathrm{~d}, J=6.80 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{C} 8-\mathrm{H}), 1.24(\mathrm{t}, J=7.31 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{C} 11-\mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=171.1$ (C9), 151.2 (C1), 140.9 (C2), 133.9 (C5), 125.8 (C3), 121.6 (C4), 116.0 (C6), 74.8 (C7), 61.8 (C10), $18.5(\mathrm{C} 8), 14.2(\mathrm{C} 11)$. HRMS (ESI $\left.{ }^{+}\right) \mathrm{m} / \mathrm{z}$ calcd. for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{NO}_{5}: 240.0866(\mathrm{M}+\mathrm{H})^{+}$; found: 240.0866.

Compound 18: Compound $17(6.00 \mathrm{~g}, 25.1 \mathrm{mmol}, 1.0$ equiv. $)$ was dissolved in THF (100 mL). After the addition of $\mathrm{LiOH}\left(1.20 \mathrm{~g}, 50.2 \mathrm{mmol}, 2.0\right.$ equiv.) in $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$, the mixture was stirred at room temperature for 2 h . Then, the solution was acidified by adding $\mathrm{HCl}_{\text {(aq.) }}(1 \mathrm{M}, 62.7 \mathrm{~mL}, 62.7 \mathrm{mmol}, 2.5$ equiv.) and extracted with $\mathrm{DCM}(3 \times)$. Drying over MgSO_{4} and removing the solvents in vacuo $\left(50^{\circ} \mathrm{C}\right)$ yielded the title compound as a white solid (5.35 g , 25.1 mmol , quant.). $\left(\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{NO}_{5}, \mathrm{MW}=211.17 \mathrm{~g} \mathrm{~mol}^{-1}\right) .{ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}\right.$, DMSO-d $\left.{ }_{6}\right): \delta=13.24(\mathrm{~s}, 1 \mathrm{H}$, O10-H), 7.85 (dd, $J=8.06,1.68 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 3-\mathrm{H}), 7.61$ (ddd, $J=8.61,7.38,1.71 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 5-\mathrm{H}), 7.19$ (dd, $J=8.62,1.09 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 6-\mathrm{H}), 7.12(\mathrm{ddd}, J=8.36,7.40,1.09 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 4-\mathrm{H}), 5.11(\mathrm{q}, J=6.83 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 7-\mathrm{H})$, $1.52(\mathrm{~d}, J=6.80 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{C} 8-\mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$): $\delta=172.0$ (C9), 150.1 (C1), 140.0 (C2), 134.1 (C5), 124.9 (C3), 121.0 (C4), 115.5 (C6), 72.8 (C7), 18.0 (C8). HRMS (ESI $)^{-} \mathrm{m} / \mathrm{z}$ calcd. for $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{NO}_{5}$: $210.0408(\mathrm{M}-\mathrm{H})^{-}$; found: 210.0408. (Modified literature procedure; ${ }^{6}$ analytical data is in line with the literature).

Compound 19: Compound 18 ($4.85 \mathrm{~g}, 23.0 \mathrm{mmol}, 1.0$ equiv.) and $\mathrm{Na}_{2} \mathrm{CO}_{3}(2.43 \mathrm{~g}, 23.0 \mathrm{mmol}, 1.0$ equiv.) were suspended in methanol $(400 \mathrm{~mL})$. The solution was quickly degassed by vacuum N_{2} cycles $(3 \times)$, then $\mathrm{Pd} / \mathrm{C}(485 \mathrm{mg}$, $10 \% \mathrm{~m} / \mathrm{m}$ to $\mathbf{6 c}$) were added and the N_{2} atmosphere was replaced by H_{2}. After stirring for 20 h the reaction mixture was filtered over celite ${ }^{\odot}$, washed with methanol and solvents were removed in vacuo $\left(50^{\circ} \mathrm{C}\right)$. The crude product was used in the next step without further purification. $\left(\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{NO}_{3} \mathrm{Na}\right.$, MW $\left.=203.17 \mathrm{~g} \mathrm{~mol}{ }^{-1}\right) .{ }^{1} \mathbf{H} \mathbf{N M R}(500 \mathrm{MHz}$, DMSO-d $_{6}$) $\delta=6.65$ (dd, $\left.J=7.94,1.30 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 6-\mathrm{H}\right), 6.62-6.57(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 4-\mathrm{H}), 6.56$ (dd, $J=7.73,2.01 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{C} 3-\mathrm{H}), 6.39$ (ddd, $J=7.84,6.94,2.02 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 5-\mathrm{H}), 4.91(\mathrm{~s}, 2 \mathrm{H}, \mathrm{N} 11-\mathrm{H}), 4.05(\mathrm{q}, J=6.72 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 7-\mathrm{H})$, $1.36(\mathrm{~d}, J=6.71 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{C} 8-\mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$): $\delta=175.2$ (C9), 147.2 (C1), 139.9 (C2), 121.3 (C4), 116.3 (C5), 115.7 (C6), 114.4 (C3), 78.4 (C7), 20.2 (C8). HRMS (ESI^{+}) m / z calcd. for $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{NO}_{3}$: $182.0812(\mathrm{M}+\mathrm{H})^{+}$; found: 182.0809 .

Compound 20: Compound $19\left(4.16 \mathrm{~g}, 23.0 \mathrm{mmol}, 1.0\right.$ equiv.) and $\mathrm{NaHCO}_{3}(9.64 \mathrm{~g}, 115 \mathrm{mmol}, 5.0$ equiv.) were dissolved in $\mathrm{H}_{2} \mathrm{O}(300 \mathrm{~mL})$. Then, Fmoc-Cl ($7.72 \mathrm{~g}, 29.8 \mathrm{mmol}$, 1.3 equiv.) in 1,4-dioxane (300 mL) was added at $0^{\circ} \mathrm{C}$ over 1 h . After stirring at $0^{\circ} \mathrm{C}$ for 1 h , the reaction mixture was stirred at room temperature for an additional

16 h . The mixture was acidified below pH 4 using $\mathrm{HCl}_{\text {(aq.) }}(1 \mathrm{M})$, extracted with $\mathrm{DCM}(3 \times)$, the organic phases were dried over MgSO_{4} and solvents were removed in vacuo $\left(50^{\circ} \mathrm{C}\right)$. The residue was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, CyHex/EtOAc 7:3 $+1 \%$ DIPEA \rightarrow CyHex/EtOAc 7:3 \rightarrow CyHex/EtOAc 7:3 $+1 \% \mathrm{AcOH} \rightarrow$ $\mathrm{EtOAc}+1 \% \mathrm{AcOH})$ to yield the title compound as a white solid $(8.73 \mathrm{~g}, 21.6 \mathrm{mmol}, 94 \%) .\left(\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{NO}_{5}, \mathrm{MW}=\right.$ $\left.403.43 \mathrm{~g} \mathrm{~mol}^{-1}\right) . \mathbf{R}_{f}(\mathrm{CyHex} / \mathrm{EtOAc} 8: 2+1 \% \mathrm{AcOH})=0.10 .{ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{DMSO}^{2} \mathrm{~d}_{6}\right): \delta=13.16(\mathrm{~s}, 1 \mathrm{H}$, O10-H), 8.72 (s, 1H, N11-H), 7.91 (d, $J=7.53 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C} 18-\mathrm{H}, \mathrm{C} 19-\mathrm{H}$), 7.74 (dd, $J=7.69,3.35 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C} 15-\mathrm{H}$, $\mathrm{C} 22-\mathrm{H}), 7.61$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{C} 3-\mathrm{H}$), 7.43 (t, $J=7.44 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C} 17-\mathrm{H}, \mathrm{C} 20-\mathrm{H}), 7.34(\mathrm{t}, J=7.41 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C} 16-\mathrm{H}, \mathrm{C} 21-\mathrm{H})$, 7.07-6.98 (m, 1H, C5-H), 6.99-6.89 (m, 2H, C4-H, C6-H), 4.81 (q, J = 6.77 Hz, 1H, C7-H), 4.49-4.35 (m, 2H, C13-H), 4.32 (t, $J=7.07 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 14-\mathrm{H}$), 1.56 (d, $J=6.75 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{C} 8-\mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 MHz, DMSOd_{6}): $\delta=173.5$ (C9), 153.5 (C12), 148.4 (C1), 143.8 (C14a, C22a), 140.7 (C18a, C18b), 128.1 (C2), 127.7 (C17, C20), 127.1 (C16, C21), 125.29 (C15, C22), 125.27 (C3), 124.1 (C5), 121.6 (C4), 120.2 (C18, C19), 114.6 (C6), 74.0 (C7), 66.2 (C13), 46.5 (C14), 18.5 (C8). HRMS (ESI ${ }^{-}$) m / z calcd. for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{NO}_{5}: 404.1492(\mathrm{M}-\mathrm{H})^{-}$; found: 404.1491 .

The synthesis of $\mathbf{B}^{\text {Rme }}(\mathbf{2 0})$ and its (S)-enantiomer $\mathbf{B}^{\text {Sme }}$ was repeated with the protocol reported above. This time precursors with an enantiomeric purity given by the supplier as $\geq 99 \%$ were used. The enantiomeric ratio is retained during synthesis as shown by chiral derivatisation (section 2). Therefore, an enantiomeric purity of $\geq 99 \%$ is expected for the final Fmoc-monomers as well. Their specific rotation was measured and is shown in table S1.

Table S1 Specific rotation values of chiral B monomers.

$\mathbf{B}^{\text {Rme }}$	$[\alpha]_{D}^{20}=-26.9(c 2.24, \mathrm{MeOH})$
$\mathbf{B}^{\text {Sme }}$	$[\alpha]_{D}^{20}=+26.8(c 0.56, \mathrm{MeOH})$

1) Ghosez's reagent

Compound 22a: Compound $\mathbf{8}(100 \mathrm{mg}, 0.248 \mathrm{mmol}, 1.0$ equiv.) was dissolved in anhydrous THF (2 mL). Then, 1-Chlor- $N, N, 2$-trimethyl-1-propenylamin (Ghosez's reagent) $(66.0 \mu \mathrm{~L}, 0.496 \mathrm{mmol}, 2.0$ equiv.) was added, and the reaction mixture was stirred at room temperature for 1.5 h . Solvents were evaporated at room temperature under high vacuum for 4 h , and the residue was redissolved in anhydrous THF (2 mL). After the addition of (S)-1-phenyl-ethylamin ($96.0 \mu \mathrm{~L}, 7.44 \mu \mathrm{~mol}, 3.0$ equiv.), the mixture was stirred at room temperature for another 30 min . The mixture was diluted with $\mathrm{HCl}_{\text {(aq.) }}(1 \mathrm{M})$, extracted with $\mathrm{DCM}(2 \times)$, and the organic phases were dried over MgSO_{4}. Evaporating the solvents in vacuo $\left(50^{\circ} \mathrm{C}\right)$ yielded the crude product as a white solid $(93.0 \mathrm{mg}, 184 \mu \mathrm{~mol}$, $74 \%) .\left(\mathrm{C}_{32} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{4}, \mathrm{MW}=506.60 \mathrm{~g} \mathrm{~mol}^{-1}\right) . \mathbf{R}_{f}(\mathrm{CyHex} / \mathrm{EtOAc} 8: 2)=0.20 .{ }^{1} \mathbf{H}$ NMR (500 MHz , DMSO$\left.\mathrm{d}_{6}\right): \delta=8.98(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C} 19-\mathrm{H}), 8.51(\mathrm{~d}, J=8.26 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 10-\mathrm{H}), 7.91(\mathrm{~d}, J=7.57 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C} 26-\mathrm{H}, \mathrm{C} 27-\mathrm{H})$,
7.72 (dd, $J=7.71,3.70 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C} 23-\mathrm{H}, \mathrm{C} 30-\mathrm{H}), 7.47(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C} 3-\mathrm{H}), 7.43(\mathrm{t}, J=7.49 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C} 25-\mathrm{H}, \mathrm{C} 28-\mathrm{H})$, 7.32 (t, $J=8.75 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 24-\mathrm{H}, \mathrm{C} 29-\mathrm{H}), 7.25$ (d, $J=4.30 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{C} 14-\mathrm{H}, \mathrm{C} 15-\mathrm{H}, \mathrm{C} 17-\mathrm{H}, \mathrm{C} 18-\mathrm{H}), 7.18$ (h, $J=4.41,4.34 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 16-\mathrm{H}), 7.06(\mathrm{t}, J=7.76 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 5-\mathrm{H}), 6.95(\mathrm{~d}, J=8.53 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 6-\mathrm{H}), 6.93-6.87$ (m, 1H, C4-H), $4.92(\mathrm{p}, J=7.23 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 11-\mathrm{H}), 4.80(\mathrm{q}, J=6.60 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 7-\mathrm{H}), 4.44(\mathrm{~d}, J=7.63 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{C} 21-\mathrm{H}), 4.32(\mathrm{t}, J=6.91 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 22-\mathrm{H}), 1.44(\mathrm{~d}, J=6.59 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{C} 8-\mathrm{H}), 1.24(\mathrm{~d}, J=7.00 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{C} 12-\mathrm{H})$. ${ }^{13}$ C NMR (101 MHz, DMSO-d $_{6}$): $\delta=170.4$ (C9), 154.0 (C20), 148.5 (C1), 144.1 (C13), 143.7 (C22a, C30a), 140.8 (C26a, C26b), 128.2 (C15, C17), 127.7 (C25, C28), 127.4 (C2), 127.1 (C24, C29), 126.6 (C16), 125.7 (C14, C18), 125.1 (C23, C30), 124.8 (C5), 123.2 (C3), 121.3 (C4), 120.2 (C26, C27), 113.7 (C6), 74.5 (C7), 66.0 (C21), 47.4 (C11), 46.6 (C22), 22.0 (C12), 18.7 (C8).

4 X-ray Crystallography

After preparative HPLC, the ammonium salt of compound 7 was dissolved in pure water to final concentration of 3.5 mM . Crystallization trials were performed at $20^{\circ} \mathrm{C}$ in standard aqueous sitting drop vapour diffusion method and subsequently optimized by hanging drop vapour diffusion method at $20^{\circ} \mathrm{C}$. Hexagonal crystals (Fig. S8) were obtained by mixing $1 \mu \mathrm{~L}$ of 7 and $2 \mu \mathrm{~L}$ of crystallization reagent $5 \% v / v 2$-propanol, 50 mM TRIS buffer, pH 7.5 , 10 mM Magnesium chloride; equilibrated against $500 \mu \mathrm{~L}$ of crystallization reagent in the reservoir. For data collection, a single crystal was fished using a MiTeGen microloop, cryo-protected in a solution composed of 33\% v / v Glycerol, 3.3\% 2-propanol, 33% TRIS buffer, $\mathrm{pH} 7.5,6.6 \mathrm{mM}$ Magnesium chloride and flash frozen in liquid nitrogen.

Synchrotron data was collected on beam line P14 operated by EMBL Hamburg at the Petra III storage ring (DESY, Hamburg, Germany) using 0.9808 Å wavelength. During data collection, the crystal was cooled to 100 K . The crystal was exposed for 0.008 s and 0.1° oscillation per frame and a rotation pass of 360° was measured using an EIGER 16 M detector. Data were processed using xia2 ${ }^{9}$ with DIALS ${ }^{10}$ for integration and using Pointless /Aimless ${ }^{11,12}$ for scaling and merging respectively. The crystal belonged to the space group $\mathrm{P} 3_{1} 21$ (or $\mathrm{P} 3_{2} 21$) with unit cell parameters $a=b=79.06 \AA$ and $c=39.86 \AA, V=212837 \AA^{3}$ and 4 molecules in the asymmetric unit. The structure was solved by Molecular Replacement (MR) method using PHASER ${ }^{13}$ from the CCP4 suite ${ }^{14}$. The model was built in Maestro (Version 11.5.011) in the following way: First, a \mathbf{Q} helix was built, and was minimized using the parameters shown in Table S2. Then, respective \mathbf{Q} units were converted to \mathbf{B} units and side chains were added. Finally, the structure was minimized again using the same parameters. The side chain atoms were omitted from the model to remove flexibility and to allow minimum number of clashes. ${ }^{15}$ The best MR solution (Fig. S9) had log likelihood gain (LLG) of 284 and translation function Z-score (TFZ) of 7.4 in $\mathrm{P} 3_{1} 21$ space group.
Geometric restraints for maximum likelihood restrained refinement was generated using PRODRG ${ }^{16}$. Model building and restrained refinement were performed in Coot ${ }^{17}$ and Refmac5 5^{18} respectively. Thermal displacement parameters were refined isotropically. Fig. S10 shows the sigma weighted $2 F_{o}-F_{c}$ electron density map superimposed on one of the four helices. The final model was refined to a resolution of $2.86 \AA$, with $\mathrm{R}_{\text {work }}$ and $\mathrm{R}_{\text {free }}$ factors of 24.72% and 30.37% respectively. Statistics of data collection and refinement can be found in Table S3, with statistics for
the highest-resolution shell shown in parentheses.
The final cif file was checked using IUCr's checkcif algorithm. Due to large volume fractions of disordered solvent molecules, weak diffraction intensity and poor resolution, a number of A- and B-level remain in the checkcif file. These alerts are inherent to the data and refinement procedures and illustrate the limited practicality of the checkcif tool for medium-size molecule crystallography. Atomic coordinates and structure factors for 7 was deposited in the Cambridge Crystallographic Data Centre (CCDC) with accession code 2070816. The data is available free of charge upon request (www.ccdc.cam.ac.uk/).

Table S2 Parameters used to build the model of 7.

Forcefield	OPLS3
Solvent	Water
Charges from	Force Field
Cutoff	Extended
Constraints	0
Method	TNCG
Max. Iterations	2500
Converge on	Gradient
Converge Threshold	0.05
Minimization Mode	Minimization of non-conformers

Table S3 Crystallographic data collection and refinement statistics for 7

Data collection	
Space group	$\mathrm{P}_{1} 21$
Unit cell	
$a, b, c(\AA)$	$79.06,79.06,39.86$
$\alpha, \beta, \gamma\left({ }^{\circ}\right)$	$90.0,90.0,120.0$
Resolution (Å)	$39.53-2.86(2.93-2.86)$
$R_{\text {meas }}$	$0.260(1.944)$
CC half	$0.992(0.921)$
I / σ	$4.8(1.1)$
Completeness (\%)	$100(100)$
Reflections (total)	68739
Reflections (unique)	3481
Redundancy	$19.7(20.8)$
	Refinement
Resolution (A))	$39.53-2.86$
$R_{\text {work }} / R_{\text {free }}(\%)$	$24.72 / 30.37$
No. of non-H atoms	852
Overall B-factor ($\left.\AA^{3}\right)$	52.30
R.m.s. deviations	0.019
Bond lengths (\AA) Bond angles (${ }^{\circ}$)	3.139
CCDC entry	2070816^{*}

*As key information were lost during the .pdb file to .cif file conversion process, the entire .pdb file was inserted into the 'comments' section of .cif file available from the Cambridge Crystallographic Data Centre via https://www.ccdc.cam.ac.uk/getstructures/.

Fig. S8 Crystals of 7 observed under crossed polarizing microscope.

Fig. S9 The crystallographic asymmetric unit of $\mathbf{7}$ consisted of four independent molecules.

Fig. S10 Sigma weighted $2 F_{o}-F_{C}$ electron density map (contoured at 1.6σ, carved within $2.0 \AA$) superimposed on one 7 helix.

5 Spectra and Chromatograms

Fig. S11 Analytical data of compound 1. HPLC chromatograms after cleavage from the resin (a) and after purification (b) (C18, $0-60 \mathrm{~B}, 25^{\circ} \mathrm{C}$; A: $13 \mathrm{mM} \mathrm{NH} 4 \mathrm{NAc}^{\mathrm{OA}}$ buffer pH 8.5, B: acetonitrile). c) ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, 0.13 \mathrm{mM}$ in 12 mM NH 4 OAc buffer pH 8.5 $\mathrm{H}_{2} \mathrm{O} / \mathrm{D}_{2} \mathrm{O} 9: 1, \mathrm{H}_{2} \mathrm{O}$ suppression). d) CD spectrum ($41.2 \mu \mathrm{M}$ in $13 \mathrm{mM} \mathrm{NH} \mathrm{N}_{4} \mathrm{OAc}$ buffer pH 8.5).

Fig. S12 Analytical data of compound 2. HPLC chromatograms after cleavage from the resin (a) (C8, 0-60B, $50^{\circ} \mathrm{C} ; \mathrm{A}: 13 \mathrm{mM}$ $\mathrm{NH}_{4} \mathrm{OAc}$ buffer pH 8.5, B: acetonitrile) and after purification (b) (C8, $0-40 \mathrm{~B}, 50^{\circ} \mathrm{C} ; \mathrm{A}: 13 \mathrm{mM} \mathrm{NH} 4 \mathrm{OAc}$ buffer pH 8.5, B: acetonitrile). c) ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, 0.13 \mathrm{mM}$ in $12 \mathrm{mM} \mathrm{NH} \mathrm{N}_{4} \mathrm{OAc}$ buffer $\mathrm{pH} 8.5 \mathrm{H}_{2} \mathrm{O} / \mathrm{D}_{2} \mathrm{O} 9: 1, \mathrm{H}_{2} \mathrm{O}$ suppression). d) CD spectrum ($15.4 \mu \mathrm{M}$ in $13 \mathrm{mM} \mathrm{NH} 4 \mathrm{NA}^{\mathrm{OAc} \text { buffer } \mathrm{pH}} 8.5$).

Fig. S13 Analytical data of compound 3. HPLC chromatograms after cleavage from the resin (a) and after purification (b) (C18, $0-60 \mathrm{~B}, 25^{\circ} \mathrm{C}$; A: $13 \mathrm{mM} \mathrm{NH} 4 \mathrm{OAc}^{\mathrm{O}}$ buffer pH 8.5, B: acetonitrile). c) ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, 0.13 \mathrm{mM}\right.$ in $12 \mathrm{mM} \mathrm{NH} 4 \mathrm{NAc}^{\mathrm{O}}$ buffer pH 8.5 $\mathrm{H}_{2} \mathrm{O} / \mathrm{D}_{2} \mathrm{O} 9: 1, \mathrm{H}_{2} \mathrm{O}$ suppression). d) CD spectrum ($22.6 \mu \mathrm{M}$ in $13 \mathrm{mM} \mathrm{NH} \mathrm{N}_{4} \mathrm{OAc}$ buffer pH 8.5).

Fig. S14 Analytical data of compound 4. HPLC chromatograms after cleavage from the resin (a) (C18, 0-60B, $25^{\circ} \mathrm{C} ; \mathrm{A}: 13 \mathrm{mM}$ $\mathrm{NH}_{4} \mathrm{OAc}$ buffer pH 8.5, B: acetonitrile) and after purification (b) (C18, 10-20B, $25^{\circ} \mathrm{C}$; $\mathrm{A}: 13 \mathrm{mM} \mathrm{NH} 4 \mathrm{OAc}$ buffer pH 8.5, B: acetonitrile). c) ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, 0.13 \mathrm{mM}$ in $12 \mathrm{mM} \mathrm{NH} 4 \mathrm{NA}^{\mathrm{OAc}}$ buffer pH $8.5 \mathrm{H}_{2} \mathrm{O} / \mathrm{D}_{2} \mathrm{O} 9: 1, \mathrm{H}_{2} \mathrm{O}$ suppression). d) CD spectrum ($10.2 \mu \mathrm{M}$ in $13 \mathrm{mM} \mathrm{NH} 4{ }_{4} \mathrm{OAc}$ buffer pH 8.5).

Fig. S15 Analytical data of compound 5. HPLC chromatograms after cleavage from the resin (a) and after purification (b) (C18,
 $\mathrm{H}_{2} \mathrm{O} / \mathrm{D}_{2} \mathrm{O} 9: 1, \mathrm{H}_{2} \mathrm{O}$ suppression). d) CD spectrum ($31.1 \mu \mathrm{M}$ in $13 \mathrm{mM} \mathrm{NH} \mathrm{N}_{4} \mathrm{OAc}$ buffer pH 8.5).

Fig. S16 Analytical data of compound 6. HPLC chromatograms after cleavage from the resin (a) and after purification (b) (C18, $0-60 \mathrm{~B}, 25^{\circ} \mathrm{C}$; A: 13 mM NH 44 OAc buffer pH 8.5, B: acetonitrile). c) ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, 0.13 \mathrm{mM}$ in $12 \mathrm{mM} \mathrm{NH} 4 \mathrm{NAc}^{\mathrm{OAc}}$ buffer pH 8.5 $\mathrm{H}_{2} \mathrm{O} / \mathrm{D}_{2} \mathrm{O} 9: 1, \mathrm{H}_{2} \mathrm{O}$ suppression). d) CD spectrum ($8.73 \mu \mathrm{M}$ in $13 \mathrm{mM} \mathrm{NH} \mathrm{N}_{4} \mathrm{OAc}$ buffer pH 8.5).

Fig. S17 Analytical data of compound 7. HPLC chromatograms after cleavage from the resin (a) and after purification (b) (C18, $0-60 \mathrm{~B}, 25^{\circ} \mathrm{C}$; A: 13 mM NH 44 OAc buffer pH 8.5, B: acetonitrile). c) ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, 0.13 \mathrm{mM}$ in $12 \mathrm{mM} \mathrm{NH} 4 \mathrm{NAc}^{\mathrm{OAc}}$ buffer pH 8.5 $\mathrm{H}_{2} \mathrm{O} / \mathrm{D}_{2} \mathrm{O} 9: 1, \mathrm{H}_{2} \mathrm{O}$ suppression). d) CD spectrum ($9.04 \mu \mathrm{M}$ in $12 \mathrm{mM} \mathrm{NH} \mathrm{N}_{4} \mathrm{OAc}$ buffer pH 8.5).

b)

Fig. S18 NMR spectra of compound 8. a) ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$). b) ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$).
a)

b)

Fig. S19 NMR spectra of compound 9. a) ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}). b) ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$).

b)

Fig. S20 NMR spectra of compound 12. a) ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$. b) ${ }^{13} \mathrm{C} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.
a)

b)

$\begin{array}{cc}\underset{N}{N} & \infty \\ \underset{\sim}{\infty} & \infty \\ \cdots & 0 \\ 1 & 1\end{array}$

12,10,11

Fig. S21 NMR spectra of compound 13. a) ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$. b) ${ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Fig. S22 ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{1 4}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

 $\stackrel{\Gamma}{i n}$

Fig. S23 NMR spectra of compound 15. a) ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$). b) ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$).
a) $\stackrel{\stackrel{\omega}{\circ}}{\stackrel{\oplus}{-}}$

b)

20,15

Fig. S24 NMR spectra of compound 16. a) ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$). b) ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$).
b)

11

Fig. S25 NMR spectra of compound 17. a) ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$. b) ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$).
a)

$\stackrel{\infty}{\sim}$ $\stackrel{\sim}{\sim}$ $\stackrel{1}{*}$	

$$
x_{2}
$$

b)

Fig. S26 NMR spectra of compound 18. a) ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO-d d_{6}). b) ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$).
a)

b)

Fig. S27 NMR spectra of compound 19. a) ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$). b) ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$).
a)

Fig. S28 NMR spectra of compound 20. a) ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}). b) ${ }^{13} \mathrm{C}$ NMR (126 MHz , DMSO- d_{6}).
b)

Fig. S29 NMR spectra of compound 22. a) ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO-d d_{6}). b) ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$).

6 Literature

(1) J. Buratto, C. Colombo, M. Stupfel, S. J. Dawson, C. Dolain, B. Langlois d'Estaintot, L. Fischer, T. Granier, M. Laguerre, B. Gallois and I. Huc, Angew. Chem. Int. Ed., 2014, 53, 883-887.
(2) B. Baptiste, C. Douat-Casassus, K. Laxmi-Reddy, F. Godde and I. Huc, J. Org. Chem., 2010, 75, 7175-7185.
(3) H. E. Gottlieb, V. Kotlyar and A. Nudelman, J. Org. Chem., 1997, 62, 7512-7515.
(4) L. Pohl and M. Eckle, Angew. Chem. Int. Ed., 1969, 8, 381-381.
(5) X. Hu, S. J. Dawson, Y. Nagaoka, A. Tanatani and I. Huc, J. Org. Chem., 2016, 81, 1137-1150.
(6) M. Akazome, Y. Ishii, T. Nireki and K. Ogura, Tetrahedron Lett., 2008, 49, 4430-4433.
(7) Z. Xu, K. Li, R. Zhai, T. Liang, X. Gui and R. Zhang, RSC Adv., 2017, 7, 51972-51977.
(8) O. Tour, S. R. Adams, R. A. Kerr, R. M. Meijer, T. J. Sejnowski, R. W. Tsien and R. Y. Tsien, Nat. Chem. Biol., 2007, 3, 423-431.
(9) G. Winter, J. Appl. Crystallogr., 2010, 43, 186-190.
(10) G. Winter, D. G. Waterman, J. M. Parkhurst, A. S. Brewster, R. J. Gildea, M. Gerstel, L. Fuentes-Montero, M. Vollmar, T. Michels-Clark, I. D. Young, N. K. Sauter and G. Evans, Acta Crystallogr. D, 2018, 74, 85-97.
(11) P. Evans, Acta Crystallogr. D, 2006, 62, 72-82.
(12) P. R. Evans and G. N. Murshudov, Acta Crystallogr. D, 2013, 69, 1204-1214.
(13) A. J. Mccoy, R. W. Grosse-Kunstleve, P. D. Adams, M. D. Winn, L. C. Storoni and R. J. Read, J. Appl. Crystallogr., 2007, 40, 658-674.
(14) M. D. Winn, C. C. Ballard, K. D. Cowtan, E. J. Dodson, P. Emsley, P. R. Evans, R. M. Keegan, E. B. Krissinel, A. G. W. Leslie, A. Mccoy, S. J. Mcnicholas, G. N. Murshudov, N. S. Pannu, E. A. Potterton, H. R. Powell, R. J. Read, A. Vagin and K. S. Wilson, Acta Crystallogr. D, 2011, 67, 235-242.
(15) A. J. Mccoy, Acta Crystallogr. D, 2007, 63, 32-41.
(16) A. W. Schüttelkopf and D. M. F. Van Aalten, Acta Crystallogr. D, 2004, 60, 1355-1363.
(17) P. Emsley, B. Lohkamp, W. G. Scott and K. Cowtan, Acta Crystallogr. D, 2010, 66, 486-501.
(18) G. N. Murshudov, P. Skubák, A. A. Lebedev, N. S. Pannu, R. A. Steiner, R. A. Nicholls, M. D. Winn, F. Long and A. A. Vagin, Acta Crystallogr. D, 2011, 67, 355-367.

