Supporting Information

Direct Functionalization of Cyclic Ethers with Maleimide Iodides via Free Radial Mediated sp³ C-H Activation

Xiaoyu Cheng, Baojun Li, Mengsi Zhang, Haotian Lu, Wenbo Wang, Yun Ding and Aiguo Hu*

Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.

* Corresponding Authors: hagmhsn@ecust.edu.cn.

Table of Contents

Materials and Methods	······S2
Synthesis Section	······S3
Procedure and characterization for direct C-H activation of maleimide iodides with cyclic	
ethers	······S4
Mechanism study ······	······S10
Copies of ¹ H and ¹³ C NMR Spectra	S11

Materials and Methods Materials

Unless otherwise noted, all reagents were purchased from commercial sources and used without further purification. Tetrahydrofuran (THF) were dried over calcium hydride (CaH₂) and distilled before use.

Methods

¹H NMR and ¹³C NMR spectra were recorded on Bruker DRX-400 and DRX-600 instruments and calibrated using residual undeuterated solvent (CDCl₃: δ_H = 7.26 ppm, δ_C = 77.2 ppm) as the internal reference. High-resolution mass spectra (HR-MS) were obtained on a Micromass LCTTM mass spectrometer using the ESI or EI method. **Synthesis Section**

Scheme S1. Synthesis of compound 3d': (a) Rimantadine hydrochloride, potassium acetate, acetic acid, 120°C, 13 h. (b) NaI, acetonitrile, 95°C, 30 h.

Synthesis of 1-(1-((3r,5r,7r)-adamantan-1-yl)ethyl)-3,4-dichloro-1*H*-pyrrole-2,5-dione (3d's): Dichloromaleic anhydride (10.3 g, 62 mmol) was dissolved in acetic acid (50 mL) with slow addition of rimantadine hydrohloride (12 g, 56 mmol); the solution was heated to reflux at 120°C for 13 h. After removal of solvent, the crude residue was separated by column chromatography on silica gel (hexane/ ethyl acetate = 50:1) to give the product 3d's (3.92 g, 22%). ¹H NMR (600 MHz, CDCl₃) δ 3.88 (q, *J* = 7.4 Hz, 1H), 1.97 (s, 3H), 1.63 (dd, *J* = 47.0, 11.9 Hz, 6H), 1.56 – 1.47 (m, 6H), 1.38 (d, *J* = 7.4 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 164.1, 133.3, 132.2, 58.7, 39.2, 37.5, 36.7, 28.2, 11.8.

Synthesis of 1-(1-((3r,5r,7r)-adamantan-1-yl)ethyl)-3,4-diiodo-1*H*-pyrrole-2,5-dione (3d'):

A solution of sodium iodide (10.8 g, 72 mmol) and 1-(1-((3r,5r,7r)-adamantan-1-yl)ethyl)-3,4dichloro-1*H*-pyrrole-2,5-dione (3.92 g, 12 mmol) in acetonitrile (70 mL) was heated at 95°C for 30 h. After removal of solvent, the crude residue was separated by column chromatography on silica gel (hexane/ ethyl acetate = 50:1) to give the yellow product 3d (4.24 g, 70%). ¹H NMR (600 MHz, CDCl₃) δ 3.84 (dd, *J* = 14.7, 7.3 Hz, 1H), 1.91 (s, 3H), 1.56 (dd, *J* = 41.2, 10.5 Hz, 5H), 1.51 – 1.42 (m, 7H), 1.32 (d, *J* = 7.4 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 167.2, 166.5, 118.6, 116.3, 58.9, 39.1, 37.4, 36.5, 28.1, 11.5. HRMS (EI) *m/z*: [M]⁺ calcd for C₁₆H₁₉I₂NO₂ 510.9505; found 510.9503.

Procedure and characterization for direct C-H activation of maleimide iodides with cyclic ethers

General procedure:

1-benzyl-3,4-diiodo-1H-pyrrole-2,5-dione (1a, 65.85 mg, 0.15 mmol), *tert*-butyl peroxy-2ethylhexanoate (TBPO, 0.13 mL, 0.75 mmol) and Na₂CO₃ (47.70 mg, 0.45 mmol) were added in THF (2a, 2.5 mL, excess, as well as solvent) in a sealed tube. The mixture was stirred in an oil bath at 70 °C for 24 h. After removal of the solvent under vacuum, the crude product was purified by column chromatography on silica gel (hexane/ ethyl acetate = 8:1) to give compound **3a** as a yellow oil (34.5 mg, 60 %).

Product Characterization

1-benzyl-3-iodo-4-(tetrahydrofuran-2-yl)-1*H*-pyrrole-2,5-dione (3a):

Yellow oil, 60 % (34.5 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.35 – 7.16 (m, 5H), 4.80 (t, *J* = 7.5 Hz, 1H), 4.62 (s, 2H), 4.05 (dd, *J* = 14.6, 7.5 Hz, 1H), 3.87 (td, *J* = 7.9, 5.1 Hz, 1H), 2.29 – 1.85 (m, 5H); ¹³C NMR (101 MHz, CDCl₃) δ 168.2, 166.0, 150.9, 135.8, 128.7, 128.0, 102.0, 74.8, 69.6, 42.5, 31.5, 26.8. HRMS (ESI-TOF) *m/z*: [M + H]⁺ calcd for C₁₅H₁₅INO₃ 384.0097; found 384.0096.

3-iodo-1-neopentyl-4-(tetrahydrofuran-2-yl)-1*H*-pyrrole-2,5-dione (3b):

Yellow oil, 50% (27.1 mg). ¹H NMR (400 MHz, CDCl₃) δ 4.90 (t, *J* = 7.5 Hz, 1H), 4.13 (dd, *J* = 14.6, 7.5 Hz, 1H), 3.95 (dd, *J* = 12.4, 7.4 Hz, 1H), 3.34 (s, 2H), 2.35 – 2.26 (m, 1H), 2.18 – 1.95 (m, 3H), 0.91 (s, 9H). ¹³C NMR (151 MHz, CDCl₃) δ 169.2, 167.0, 150.8, 101.9, 74.7, 69.6, 50.3, 33.5, 31.6, 27.9, 26.8. HRMS (ESI-TOF) *m/z*: [M + Na]⁺ calcd for C₁₃H₁₈INO₃Na 386.0229; found 384.0230.

tert-butyl 2-(3-iodo-2,5-dioxo-4-(tetrahydrofuran-2-yl)-2,5-dihydro-1H-pyrrol-1-yl)acetate (3c):

Yellow oil, 38 % (23.5 mg). ¹H NMR (400 MHz, CDCl₃) δ 4.90 (t, J = 7.3 Hz, 1H), 4.18 (s, 2H), 4.12 (dd, J = 14.5, 7.3 Hz, 1H), 3.95 (dd, J = 12.5, 7.3 Hz, 1H), 2.36 – 2.25 (m, 1H), 2.14 – 1.96 (m, 3H), 1.44 (s, 9H). ¹³C NMR (151 MHz, CDCl₃) δ 167.9, 165.8, 151.4, 101.7, 83.0, 74.8, 69.6, 40.4, 31.6, 27.9, 26.7. HRMS (ESI-TOF) *m*/*z*: [M + Na]⁺ calcd for C₁₄H₁₈INO₅Na 430.0127; found 430.0125.

1-(1-((3r,5r,7r)-adamantan-1-yl)ethyl)-3-iodo-4-(tetrahydrofuran-2-yl)-1H-pyrrole-2,5-dione

(3d):

Yellow oil, 47 % (32 mg). ¹H NMR (600 MHz, CDCl₃) δ 4.89 (s, 1H), 4.14 (d, *J* = 7.3 Hz, 1H), 3.95 (s, 1H), 3.83 (d, *J* = 52.8 Hz, 1H), 2.31 (s, 1H), 2.14 (s, 1H), 2.01 (s, 2H), 1.96 (s, 3H), 1.75 – 1.58 (m, 6H), 1.52 (q, *J* = 12.3 Hz, 6H), 1.36 (dd, *J* = 7.4, 2.8 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 169.8, 167.4, 166.9, 103.5, 74.9, 69.6, 57.5, 39.3, 37.6, 36.7, 31.6, 28.3, 26.9, 11.7. HRMS (ESI-TOF) *m/z*: [M + Na]⁺ calcd for C₂₀H₂₆INO₃Na 478.0855; found 478.0856.

1-benzyl-3-iodo-4-(2-methyltetrahydrofuran-2-yl)-1*H*-pyrrole-2,5-dione (3e):

Yellow oil, 73% (43.2 mg) ¹H NMR (600 MHz, CDCl₃) δ 7.37 – 7.26 (m, 5H), 4.68 (s, 2H), 3.99 – 3.88 (m, 2H), 2.36 – 2.26 (m, 1H), 2.08 – 1.93 (m, 2H), 1.81 (dd, *J* = 12.9, 5.7 Hz, 1H), 1.55 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 168.9, 166.3, 153.8 135.8, 128.7, 128.0, 81.7, 68.1, 42.6, 37.7, 26.2, 25.6. HRMS (ESI-TOF) *m/z*: [M + Na]⁺ calcd for C₁₆H₁₆INO₃Na 420.0073; found 420.0074.

1-benzyl-3-(1,4-dioxan-2-yl)-4-iodo-1*H*-pyrrole-2,5-dione (3f):

Yellow oil, 45% (27 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.39 – 7.23 (m, 6H), 4.72 (d, *J* = 3.7 Hz, 1H), 4.69 (s, 2H), 3.96 – 3.71 (m, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 167.9, 165.7, 146.0, 135.5, 128.7, 128.1, 105.7, 72.2, 67.5, 66.7, 66.2, 42.7. HRMS (ESI-TOF) *m/z*: [M + H]⁺ calcd for C₁₅H₁₅INO₄ 400.0046; found 400.0049.

1-benzyl-3-(1,3-dioxolan-2-yl)-4-iodo-1*H*-pyrrole-2,5-dione (3g):

Yellow oil, 35% (21 mg). ¹H NMR (600 MHz, CDCl₃) δ 7.38 – 7.26 (m, 5H), 5.87 (s, 1H), 4.70 (s, 2H), 4.28 – 4.19 (m, 2H), 4.07 – 3.99 (m, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 167.3, 165.6, 145.7, 135.6, 128.7, 128.1, 106.8, 98.9, 66.2, 42.7. HRMS (ESI-TOF) *m/z*: [M + Na]⁺ calcd for C₁₄H₁₂INO₄Na 407.9709; found 407.9708.

1-benzyl-3-iodo-4-(tetrahydro-2H-pyran-2-yl)-1*H*-pyrrole-2,5-dione (3h):

Yellow oil, 50% (30 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.31 (dt, J = 17.5, 8.5 Hz, 5H), 4.69 (s, 2H), 4.40 (d, J = 1.9 Hz, 1H), 4.11 (dd, J = 11.4, 3.8 Hz, 1H), 3.52 (td, J = 11.9, 1.7 Hz, 1H), 1.99 – 1.50 (m, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 168.2, 166.1, 149.7, 135.7, 128.7, 128.0, 102.5, 73.8, 68.8, 42.6, 29.2, 25.3, 23.1. HRMS (ESI-TOF) m/z: [M + Na]⁺ calcd for C₁₆H₁₆INO₃Na 420.0073; found 420.0074.

1-benzyl-3,4-bis(2-methyltetrahydrofuran-2-yl)-1H-pyrrole-2,5-dione (3i):

Yellow oil, 20% (21 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.33 (dt, *J* = 12.2, 5.9 Hz, 5H), 4.60 (s, 2H), 3.92 (td, *J* = 7.9, 4.9 Hz, 2H), 3.74 (q, *J* = 7.7 Hz, 2H), 2.38 – 2.14 (m, 4H), 1.89 (ddt, *J* = 19.7, 7.5, 6.3 Hz, 4H), 1.49 (s, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 169.9, 143.5, 136.6, 128.8, 128.7 127.6, 82.1, 67.3, 41.5, 39.4, 27.5, 25.2. HRMS (ESI-TOF) *m/z*: [M + Na]⁺ calcd for C₂₁H₂₅NO₄Na 378.1681; found 378.1680.

General procedure for the Sonogashira coupling reaction:

CuI (6 mg, 20 %), $(PPh_3)_2PdCl_2$ (5.3 mg, 5 %), and DIPEA (38.7 mL, 0.3 mmol) were successively added to dry THF (1.5 ml) under nitrogen. Then, compound **3e** (60 mg, 0.15 mmol) and the corresponding terminal alkyne (0.225 mmol, commercially available) in THF (1 ml) were added dropwise. The mixture was stirred at ambient temperature overnight. After the completion of the reaction as detected by TLC, the mixture was directly purified by column chromatography on silica gel (hexane/ethyl acetate = 8:1) to give the product.

1-benzyl-3-(2-methyltetrahydrofuran-2-yl)-4-(phenylethynyl)-1*H*-pyrrole-2,5-dione (5a):

Yellow oil, 80% (44.5 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.62 – 7.23 (m, 10H), 4.68 (s, 2H), 4.04 (s, 2H), 2.33 (s, 1H), 2.00 (s, 3H), 1.64 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 169.8, 167.0, 150.0, 136.1, 132.2, 129.8, 128.7, 128.4, 127.9, 81.9, 79.9, 68.6, 42.0, 38.2, 26.3, 25.9, 25.6. HRMS (ESI-TOF) *m/z*: [M + Na]⁺ calcd for C₂₄H₂₁NO₃Na 394.1419; found 394.1420.

1-benzyl-3-(2-methyltetrahydrofuran-2-yl)-4-((trimethylsilyl)ethynyl)-1*H*-pyrrole-2,5-dione (5b):

Yellow oil, 50% (27 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.32 (dd, J = 18.3, 7.5 Hz, 5H), 4.63 (s, 2H), 3.97 (dd, J = 11.1, 5.0 Hz, 2H), 2.26 (dd, J = 11.6, 4.1 Hz, 1H), 2.05 – 1.81 (m, 3H), 1.60 (s, 3H), 0.25 (s, 9H). ¹³C NMR (151 MHz, CDCl₃) δ 169.7, 166.8, 151.6, 136.0, 128.6, 127.9, 122.1, 114.2, 93.8, 81.7, 68.6, 42.0, 38.2, 26.1, 25.8, 1.0. HRMS (ESI-TOF) *m/z*: [M + Na]⁺ calcd for C₂₁H₂₅NO₃SiNa 390.1501; found 390.1500.

1-benzyl-3-(cyclopropylethynyl)-4-(2-methyltetrahydrofuran-2-yl)-1H-pyrrole-2,5-dione (5c):

Yellow oil, 65% (31.8 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.31 (dt, *J* = 10.8, 5.4 Hz, 5H), 4.62 (s, 2H), 3.94 (dd, *J* = 13.2, 6.1 Hz, 2H), 2.32 – 1.80 (m, 4H), 1.56 (s, 3H), 1.04 – 0.77 (m, 5H). ¹³C NMR (151 MHz, CDCl₃) δ 170.2, 167.1, 148.5, 136.1, 128.6, 127.8, 123.2, 113.3, 81.7, 68.4, 66.9, 41.9, 38.0, 26.2, 25.8, 9.8, 1.3. HRMS (ESI-TOF) *m/z*: [M + Na]⁺ calcd for C₂₁H₂₁NO₃Na 358.1419; found 358.1418.

General procedure for the Suzuki coupling reaction

A mixture of compound **3e** (58 mg, 0.146 mmol), phenboronic (0.292 mmol, commercially available), K_2CO_3 (47.88 mg, 0.292 mmol), $Pd(PPh_3)_4$ (16.87 mg, 10 %) and *N*,*N*-dimethylacetamide (DMAc, 1 ml) was added to a 10 ml sealed tube. After three freeze-pump-thaw cycles, the tube was sealed under nitrogen atmosphere and stirred at 60 °C for 24 h. After cooled to room temperature, the mixture was directly purified by column chromatography on silica gel (eluted with 10-25% hexane/ethyl acetate) to give the product.

1-benzyl-3-(2-methyltetrahydrofuran-2-yl)-4-phenyl-1*H*-pyrrole-2,5-dione (7a):

Colourless oil, 88% (26.9 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.24 (tt, *J* = 19.2, 12.5 Hz, 10H), 4.59 (s, 2H), 3.44 (dd, *J* = 14.8, 7.3 Hz, 1H), 2.91 (td, *J* = 8.0, 6.1 Hz, 1H), 2.17 (ddd, *J* = 12.8, 7.8, 5.3 Hz, 1H), 1.91 – 1.57 (m, 3H), 1.54 (d, *J* = 9.3 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 170.6, 144.2, 137.9, 136.4, 130.3, 129.0, 128.7, 127.8, 127.1, 82.1, 67.1, 41.9, 38.1, 27.3, 25.3. HRMS (ESI-TOF) *m/z*: [M + Na]⁺

calcd for C₂₂H₂₁NO₃Na 370.1419; found 370.1418.

1-benzyl-3-(2-methyltetrahydrofuran-2-yl)-4-(p-tolyl)-1H-pyrrole-2,5-dione (7b):

Colourless oil, 93% (50.2 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.44 – 7.26 (m, 7H), 7.18 (d, J = 8.0 Hz, 2H), 4.70 (s, 2H), 3.58 (dd, J = 14.4, 7.6 Hz, 1H), 3.07 (td, J = 8.0, 6.0 Hz, 1H), 2.38 (s, 3H), 2.34 – 2.23 (m, 1H), 2.00 – 1.77 (m, 2H), 1.71 (dd, J = 13.1, 5.4 Hz, 1H), 1.66 (s, 3H). HRMS (ESI-TOF) m/z: [M + Na]⁺ calcd for C₂₃H₂₃NO₃Na 384.1576; found 384.1577.

3-(4-acetylphenyl)-1-benzyl-4-(2-methyltetrahydrofuran-2-yl)-1H-pyrrole-2,5-dione (7c):

Colourless oil, 85% (48.3 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.95 (d, *J* = 8.3 Hz, 2H), 7.51 – 7.26 (m, 7H), 4.70 (s, 2H), 3.55 (dd, *J* = 14.8, 7.2 Hz, 1H), 3.02 (dd, *J* = 14.1, 7.9 Hz, 1H), 2.62 (s, 3H), 2.27 (ddd, *J* = 13.1, 7.7, 5.6 Hz, 1H), 2.05 – 1.96 (m, 1H), 1.86 (tt, *J* = 13.2, 6.6 Hz, 1H), 1.76 – 1.67 (m, 1H), 1.66 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 197.7, 170.2, 170.0, 145.7, 136.9, 136.6, 136.2, 133.8, 130.6, 128.7, 127.9, 127.0, 82.1, 67.1, 41.9, 38.1, 27.3, 26.6, 25.3. HRMS (ESI-TOF) *m/z*: [M + Na]⁺ calcd for C₂₄H₂₃NO₃Na 412.1525; found 412.1526.

1-benzyl-3-(4-fluorophenyl)-4-(2-methyltetrahydrofuran-2-yl)-1H-pyrrole-2,5-dione (7d):

Colourless oil, 73% (38.7 mg). ¹H NMR (600 MHz, CDCl₃) δ 7.44 – 7.27 (m, 7H), 7.06 (t, *J* = 8.7 Hz, 2H), 4.70 (s, 2H), 3.58 (dd, *J* = 14.5, 7.6 Hz, 1H), 3.02 (dd, *J* = 14.1, 8.0 Hz, 1H), 2.27 (t, *J* = 13.1 Hz, 1H), 2.05 – 1.94 (m, 1H), 1.92 – 1.80 (m, 1H), 1.69 (dd, *J* = 13.2, 6.9 Hz, 1H), 1.66 (s, 3H).¹³C NMR (151 MHz, CDCl₃) δ 170.5, 164.0, 162.4, 144.2, 136.7, 136.3, 132.6, 128.7, 127.9, 124.6, 114.4, 114.2, 82.2, 67.0, 41.9, 38.1, 27.3, 25.3. HRMS (ESI-TOF) *m/z*: [M + Na]⁺ calcd for C₂₂H₂₀FNO₃Na 388.1325; found 388.1326.

General procedure for the nucleophilic substitution:

Compound **3e** (60 mg, 0.15 mmol) and the secondary amine (33.3 μ l, 0.30 mmol) were successively added to dichloromethane (0.45 ml). The mixture was stirred at 25 °C for 24 h. after the completion of the reaction as detected by TLC, the mixture was directly purified by column chromatography on

silica gel (9a, hexane/ethyl acetate = 8:1; 9b, dichloromethane/methanol = 10:1) to give the product.

1-benzyl-3-(2-methyltetrahydrofuran-2-yl)-4-morpholino-1*H*-pyrrole-2,5-dione (9a):

Yellow oil, 84% (45 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.41 – 7.26 (m, 5H), 4.57 (s, 2H), 3.96 – 3.76 (m, 5H), 3.68 (dt, *J* = 13.9, 4.7 Hz, 3H), 3.53 – 3.44 (m, 2H), 2.46 – 2.32 (m, 1H), 2.06 – 1.74 (m, 3H), 1.49 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 171.0, 167.8, 143.4, 136.9, 128.5, 127.5, 112.2, 81.3, 67.4, 67.2, 51.8, 41.0, 39.1, 27.6, 25.0. HRMS (ESI-TOF) *m/z*: [M + Na]⁺ calcd for C₂₀H₂₄N₂O₄Na 379.1634; found 379.1633.

1-benzyl-3-(4-methylpiperazin-1-yl)-4-(2-methyltetrahydrofuran-2-yl)-1*H*-pyrrole-2,5-dione (9b):

Yellow oil, 94% (52 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.36 – 7.22 (m, 5H), 4.56 (s, 2H), 3.90 (td, J = 8.1, 5.2 Hz, 2H), 3.75 – 3.60 (m, 2H), 3.50 (dd, J = 11.5, 5.4 Hz, 2H), 2.57 – 2.37 (m, 5H), 2.30 (s, 3H), 2.04 – 1.70 (m, 3H), 1.50 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 171.1, 167.9, 143.8, 137.0, 128.5, 127.5, 111.7, 81.3, 67.1, 55.5, 51.3, 46.1, 41.0, 39.2, 27.6, 24.9. HRMS (ESI-TOF) *m/z*: [M + H]⁺ calcd for C₂₁H₂₈N₃O₃ 370.2131; found 370.2132.

Mechanism study

Initiator *tert*-butyl peroxy-2-ethylhexanoate (TBPO) (0.13 mL, 0.75 mmol) and Na₂CO₃ (47.70 mg, 0.45 mmol) was dissolved in 2-MeTHF (2.5 mL, excess, as well as solvent) in a sealed tube. The mixture was stirred in an oil bath at 70 °C for 3 d. The mixture was then subjected for ESI-TOF analysis.

Figure S1. ESI-TOF spectrum for the mechanism study reaction.

Copies of ¹H and ¹³C NMR Spectra

¹H NMR spectrum of compound **3d's** (600 MHz, CDCl₃)

¹H NMR spectrum of compound **3d'** (600 MHz, CDCl₃)

¹³C NMR spectrum of compound **3a** (151 MHz, CDCl₃)

¹³C NMR spectrum of compound **3b** (151 MHz, CDCl₃)

¹H NMR spectrum of compound **3c** (400 MHz, CDCl₃)

¹³C NMR spectrum of compound **3c** (151 MHz, CDCl₃)

¹H NMR spectrum of compound **3d** (600 MHz, CDCl₃)

¹³C NMR spectrum of compound **3d** (151 MHz, CDCl₃)

¹³C NMR spectrum of compound **3e** (151 MHz, CDCl₃)

¹H NMR spectrum of compound **3f** (400 MHz, CDCl₃)

¹³C NMR spectrum of compound **3f** (151 MHz, CDCl₃)

¹H NMR spectrum of compound **3g** (600 MHz, CDCl₃)

¹³C NMR spectrum of compound **3g** (151 MHz, CDCl₃)

¹H NMR spectrum of compound **3i** (400 MHz, CDCl₃)

¹³C NMR spectrum of compound **3i** (151 MHz, CDCl₃)

¹H NMR spectrum of compound **5a** (400 MHz, CDCl₃)

¹³C NMR spectrum of compound **5a** (151 MHz, CDCl₃)

¹H NMR spectrum of compound **5b** (400 MHz, CDCl₃)

¹H NMR spectrum of compound **5c** (400 MHz, CDCl₃)

¹H NMR spectrum of compound **7a** (400 MHz, CDCl₃)

¹³C NMR spectrum of compound **7a** (151 MHz, CDCl₃)

¹H NMR spectrum of compound **7b** (400 MHz, CDCl₃)

¹³C NMR spectrum of compound **7b** (151 MHz, CDCl₃)

¹H NMR spectrum of compound **7c** (400 MHz, CDCl₃)

¹³C NMR spectrum of compound **7c** (151 MHz, CDCl₃)

¹H NMR spectrum of compound **7d** (600 MHz, CDCl₃)

¹³C NMR spectrum of compound **7d** (151 MHz, CDCl₃)

¹H NMR spectrum of compound **9a** (400 MHz, CDCl₃)

¹³C NMR spectrum of compound **9a** (151 MHz, CDCl₃)

¹H NMR spectrum of compound **9b** (400 MHz, CDCl₃)

¹³C NMR spectrum of compound **9b** (151 MHz, CDCl₃)

