Supporting Information

A binuclear Co-based metal-organic framework towards efficient oxygen

evolution reaction

Ning Liu, Qiaoqiao Zhang, and Jingqi Guan*

Institute of Physical Chemistry, College of Chemistry, Jilin University, Changchun 130012, PR China.

*E-mail: guanjq@jlu.edu.cn (J. Guan)

Materials

All chemicals were analytical grade and were used as purchased without further purification. Solutions were prepared using high purity water (Millipore Milli-Q purification system, resistivity > 18 M Ω ·cm).

Synthesis of Co₂-tzpa

291 mg $Co(NO_3)_2 \cdot 6H_2O$ and 155 mg H_3 tzpa were dissolved in a mixture of H_2O (3 mL) and DMF (4 mL), which was transferred into 20 mL Teflon autoclave and heated at 105 °C for 72 h. After filtrated, washed with deionized water and dried at 60 °C overnight, the red block crystals were obtained, which is nominated as Co_2 -tzpa.

Material characterizations

Scanning electron microscope (SEM) images were observed by a Hitachi SU8020. The valence state of metal was determined using XPS recorded on a Thermo ESCALAB 250Xi. The X-ray source selected was monochromatized Al Kα source (15 kV, 10.8 mA). Region scans were collected using a 20 eV pass energy.

Electrochemical activity characterizations

All electrochemical measurements were performed in a three-electrode system with a glassy carbon electrode (GCE) as the substrate for the working electrode, a graphite rod as the counter electrode and a saturated calomel electrode as the reference electrode. The reference electrode was calibrated with respect to a reversible hydrogen electrode before each experiment. The glassy carbon electrode was pre-polished using 0.05 μ m alumina and distilled water. To prepare the working electrode, 2 mg of the catalyst was dispersed in a 0.5 mL mixed solvent of ethanol and Nafion (0.25 wt%) and sonicated to obtain a homogeneous ink. 5 μ L of the catalyst ink was drop-casted on the glassy carbon electrode and dried at room temperature (catalyst loading: 0.28 mg·cm⁻²).

For OER, the working electrode was first activated by steady-state cyclic voltammetry (CV) performed in the potential range from 1.0 to 1.6 V vs RHE at a scan rate of 50 mV s⁻¹ for 50 cycles. Linear scan voltammetry (LSV) curves were then collected at a scan rate of 5 mV s⁻¹. All of the potentials in the LSV polarization curves

were with 90% iR compensation unless specifically illustrated.

Figure S1. (a) N_2 adsorption–desorption isotherms and (b) pore size distribution of

Co₂-tzpa.

Figure S2. TEM image of Co₂-tzpa.

Figure S3. (a) CVs measured in a non-Faradaic region at scan rate of 10 mV s⁻¹, 20 mV s⁻¹, 40 mV s⁻¹, 60 mV s⁻¹, 80 mV s⁻¹, and 100 mV s⁻¹ for Co₂-tzpa. (b) The cathodic (black) and anodic (red) currents measured at 1.203 V vs RHE as a function of the scan rate. The average of the absolute value of the slope is taken as the double-layer capacitance of the electrode.

Figure S4. (a) CVs measured in a non-Faradaic region at scan rate of 10 mV s⁻¹, 20 mV s⁻¹, 40 mV s⁻¹, 60 mV s⁻¹, 80 mV s⁻¹, and 100 mV s⁻¹ for nano-Co₃O₄. (b) The cathodic (black) and anodic (red) currents measured at 1.203 V vs RHE as a function of the scan rate. The average of the absolute value of the slope is taken as the double-layer capacitance of the electrode.

Figure S5. (a) Nyquist plots of the EIS test for commercial IrO_2 , nano- Co_3O_4 , and Co_2 tzpa. (b) The equivalent circuit used for fitting the Nyquist plots. Rs represents the uncompensated electrolyte resistance, CPE represents the constant phase element, and R_{ct} represents the resistance of charge transfer.

Figure S6. (a) Fitted EIS spectrum and (b) the specific fitting data for Co₂-tzpa.

Figure S7. (a) Fitted EIS spectrum and (b) the specific fitting data for IrO_2 .

Figure S8. (a) Fitted EIS spectrum and (b) the specific fitting data for nano- Co_3O_4 .

Figure S9. The molar number of O_2 produced as a function of time. The straight line represents the theoretically calculated amounts of O_2 assuming 100% Faradaic efficiency, and the scattered blocks represent the produced O_2 measured by gas chromatography. The overlapping of these two sets of data indicates that nearly all the current is due to O_2 evolution.

Figure S10. (a) XPS survey spectrum. (b-e) high resolution XPS spectra of the used Co_2 -tzpa catalyst after OER stability test.

MOF	Catalyst	Electrolyte	Overpotenti al (mV) at 10 mA cm^2	Ref.
Co ₂ -tzpa	Co ₂ -tzpa	1 M KOH	336	This work
Co ₂ -tzpa	Co ₂ -tzpa	0.1 M KOH	396	This work
Co _x Fe _v NH ₂ -MIL-88B	Co _{0.17} Fe _{0.79} P/NC	1 M KOH	299	1
Co-MOF-74	LaCoO _{3-δ}	0.1 M KOH	330	2
Co-MOF-74	BC/Co ₃ O ₄	1 M KOH	310	3
Co-MOF-74	Fe(OH) ₃ @Co-MOF-	1 M KOH	292	4
Ni-MOF-74	Fe_2O_3 (a) Ni-MOF-74	1 M KOH	264	5
NiMOF-74	NGO/Ni ₇ S ₆	0.1 M KOH	380	6
NiO-MOF-74	Porous Ni ₂ P	1 M KOH	320	7
	nanosheets			
Co-	BMM-11	1 M KOH	362	8
$(III)_2(HCOO)_2(BPTC)$			200	0
$[Co(L1)(HL3)_2 \cdot (H_2O)]$	$[Co(L1)(HL3)_2 \cdot (H_2)]$	І М КОН	398	9
2]n Ca (hanzimidazala)	O_{2}_{n}		210	10
$Co_2(denzimidazole)_4$	M-PCBN/CC		348	11
Co ₃ -btca	$Co_{2.36}Fe_{0.19}N1_{0.45}$ -	1 М КОН	292	11
Co ₃ (µ ₃ -OH)(COO) ₆	Co@NPC	1 M NaOH	540	12
$Co_3[Co(CN)_6]_2$	PB-Co/Co-NPHCS	0.1 M KOH	370	13
$[Co_4(OH)_2]^{6+}$	TMOF-4 nanosheets	1 M KOH	318	14
UTSA-16	UTSA-16	1 M KOH	408	15
Co ₄ (2-	Co/W-C@NCNSs	1 M KOH	323	16
min) ₆ WO ₄ ·1.5DMF	-			
CTGU-14	SnO ₂ & CTGU-14	0.1 M KOH	388	17
Co ₂ (OH) ₂ DBC	Co-MONs	1 M KOH	309	18
Co-BTC	CoSe ₂	1 M KOH	330	19
Co-BTC	Co2P@C	1 M KOH	328	20

Table S1. Comparison of OER performance of Co_2 -tzpa with results in recent literature

References

- J. Chen, Y. Zhang, H. Ye, J.-Q. Xie, Y. Li, C. Yan, R. Sun and C.-P. Wong, ACS Appl. Energy Mater., 2019, 2, 2734-2742.
- X. Wang, L. Ge, Q. Lu, J. Dai, D. Guan, R. Ran, S.-C. Weng, Z. Hu, W. Zhou and Z. Shao, *J. Power Sources*, 2020, 468, 228377.
- 3. L. Zou and Q. Xu, *Chem Asian J*, 2020, **15**, 490-493.
- Z. Gao, Z. W. Yu, F. Q. Liu, C. Yang, Y. H. Yuan, Y. Yu and F. Luo, ChemSusChem, 2019, 12, 4623-4628.
- Z. Gao, Z. W. Yu, F. Q. Liu, Y. Yu, X. M. Su, L. Wang, Z. Z. Xu, Y. L. Yang, G.
 R. Wu, X. F. Feng and F. Luo, *Inorg. Chem.*, 2019, 58, 11500-11507.
- K. Jayaramulu, J. Masa, O. Tomanec, D. Peeters, V. Ranc, A. Schneemann, R. Zboril, W. Schuhmann and R. A. Fischer, *Adv. Funct. Mater.*, 2017, 27, 1700451.
- Q. Wang, Z. Liu, H. Zhao, H. Huang, H. Jiao and Y. Du, J. Mater. Chem. A, 2018, 6, 18720-18727.
- L. Zhong, J. Ding, X. Wang, L. Chai, T. T. Li, K. Su, Y. Hu, J. Qian and S. Huang, *Inorg. Chem.*, 2020, **59**, 2701-2710.
- D. Han, K. Huang, X. Li, M. Peng, L. Jing, B. Yu, Z. Chen and D. Qin, *RSC Advances*, 2019, 9, 33890-33897.
- W. Zhang, Y. Wang, H. Zheng, R. Li, Y. Tang, B. Li, C. Zhu, L. You, M. R. Gao,
 Z. Liu, S. H. Yu and K. Zhou, *ACS Nano*, 2020, 14, 1971-1981.
- 11. J. T. Yuan, J. J. Hou, X. L. Liu, Y. R. Feng and X. M. Zhang, Dalton Trans,

2020, 49, 750-756.

- K. Nath, K. Bhunia, D. Pradhan and K. Biradha, *Nanoscale Advances*, 2019, 1, 2293-2302.
- X. Ma, C. Chang, Y. Zhang, P. Niu, X. Liu, S. Wang and L. Li, ACS Sustainable Chemistry & Engineering, 2020, 8, 8318-8326.
- 14. X. Song, C. Peng and H. Fei, ACS Appl. Energy Mater., 2018, 1, 2446-2451.
- J. Jiang, L. Huang, X. Liu and L. Ai, ACS Appl Mater Interfaces, 2017, 9, 7193-7201.
- T. Zhao, J. Gao, J. Wu, P. He, Y. Li and J. Yao, *Energy Technology*, 2019, 7, 1800969.
- J. W. Tian, Y. P. Wu, Y. S. Li, J. H. Wei, J. W. Yi, S. Li, J. Zhao and D. S. Li, *Inorg. Chem.*, 2019, **58**, 5837-5843.
- X. Wang, H. Zhang, Z. Yang, C. Zhang and S. Liu, *Ultrason. Sonochem.*, 2019, 59, 104714.
- 19. X. Liu, Y. Liu and L.-Z. Fan, J. Mater. Chem. A, 2017, 5, 15310-15314.
- 20. M. Yang, W. Zhu, R. Zhao, H. Wang, T.-N. Ye, Y. Liu and D. Yan, *J. Solid* State Chem., 2020, **288**, 121456.