Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2021

Supporting Information

Self-assembly of chiral BINOL cages via imine condensation

E. Ramakrishna,‡^a Jia-Dong Tang,‡^b Jia-Ju Tao,^b Qiang Fang,^{a,b} Zibin Zhang,^b Jianying Huang^{*a} and Shijun Li^{*b}

^a School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, P. R. China

^b College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China

Email address: huangjy@zjgsu.edu.cn, l_shijun@hznu.edu.cn

[‡]These two authors contribute equally to this work.

1. Materials and Methods	<i>S</i> 2
2. Synthesis of chiral BINOL cages 5	S3
3. Reduction of the [2+3] imine cages	<i>S17</i>
4. UV-vis and fluorescence spectra of the imine cages	<i>S21</i>
5. Fluorescence spectra for chiral recognition	<i>S22</i>
6. Single-crystal structure and X-ray analysis data of (R) -5	<i>S24</i>
7. Compared ¹ H NMR spectra for chiral recognition	<i>S26</i>
8. References	<i>S</i> 28

1. Materials and Methods

Tetrahydrofuran (THF) was dried over sodium metal and freshly distilled under nitrogen atmosphere prior to use. Other reactants are of reagent-grade quality and used as commercially purchased without further purification. 2,2'-Bis(methoxymethoxy)-1,1'-binaphthalene (1) was prepared according to the literature procedures.^{S1} Column chromatography was performed by using silica gel (Yantai Institute of Chemical Industry) packed columns and with low pressure or atmospheric pressure operation.

NMR spectra were collected on a Bruker AVANCE DMX-500 spectrometer and chemical shifts were reported relative to internal standard tetramethylsilane (TMS) at 0.00 ppm or the residual solvent signals. Electrospray ionization mass spectra (ESI-MS) were obtained on an Agilent 1290-6530 UPLC-Q-TOF spectrometer using electrospray ionization. UV-vis spectra were measured with a Hitachi UH-5300 at room temperature. Fluorescence spectra were recorded on an F-7000 FL spectrophotometer at room temperature. Optical rotation analyses were performed on an MCP 500 optical instrument.

Circular dichroism (CD) spectra were recorded on a JASCO J-815 circular dichroism chiroptical spectrometer at room temperature. After adding a 0.3 mL solution of chiral cages in CHCl₃ (c = 0.13 mM) to the sample cell (l = 1 mm), the CD data were then recorded in a wavelength range of 230–500 nm with a scanning speed of 500 nm/min.

Single crystals of (R)-5 were obtained by rapid addition of a chloroform solution of (R)-5 into excess methanol and then standing the mixture for 3 days. A suitable crystal was selected and measured on a Bruker APEX-II CCD diffractometer. The crystal was kept at 170.0 K during data collection. The structure was solved with the ShelXT structure solution program using Intrinsic Phasing and refined with the ShelXL refinement package using Least Squares minimisation.

2. Synthesis of chiral BINOL cages 5

(S)- or (R)-BINOL cage 5

2.1 Synthesis of (S)- and (R)-3,3'-diiodo-2,2'-bis(methoxymethoxy)-1,1'-binaphthalene 2^{S1}

To a solution of (*S*)- or and (*R*)-1 (6.5 g, 17.4 mmol) in 100 mL of dried THF, *n*-butyllithium (20.8 mL, 2.5 M in hexanes, 52.0 mmol) was added dropwise at - 78 °C. The reaction mixture was stirred at the same temperature for 30 min followed by 3 h at room temperature. After the solution was cooled to -78 °C, a solution of iodine (13.0 g, 52.0 mmol) in 30 mL of THF was added dropwise. The mixture was slowly warmed up to room temperature and was further stirred at room temperature for 2 h. The reaction was then quenched with methanol and washed with saturated sodium thiosulfate solution to remove unreacted iodine. After the solution was extracted three times with ethyl acetate, the organic phases were combined, washed

with brine, dried over anhydrous Na_2SO_4 , and concentrated in vacuo. The resulted residue was purified by column chromatography over silica gel (petroleum ether : ethyl acetate = 200 : 1) to afford product.

(*S*)-**2** (7.85 g, 72% yield): m.p. 115–116 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.55 (s, 2H), 7.78 (d, *J* = 8.2 Hz, 2H), 7.43 (ddd, *J* = 8.1, 6.9, 1.0 Hz, 2H), 7.30 (ddd, *J* = 8.2, 6.8, 1.2 Hz, 2H), 7.18 (d, *J* = 8.4 Hz, 2H), 4.82 (d, *J* = 5.7 Hz, 2H), 4.70 (d, *J* = 5.7 Hz, 2H), 2.61 (s, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 152.2, 140.0, 133.8, 132.2, 127.1, 126.8, 126.5, 126.3, 125.9, 99.4, 92.5, 56.5. ESI-TOF-MS (*m*/*z*) Calcd. for C₂₄H₂₀I₂NaO₄ [M + Na]⁺: 648.9343; Found: 648.9374, error: 4.7 ppm. Calcd. for C₄₈H₄₀I₄NaO₈ [2M + Na]⁺: 1274.8794; Found: 1274.8821, error: 2.1 ppm.

(*R*)-2 (7.72 g, 71% yield): m.p. 112–114 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.54 (s, 2H), 7.78 (d, *J* = 8.2 Hz, 2H), 7.43 (ddd, *J* = 8.1, 6.8, 1.1 Hz, 2H), 7.30 (ddd, *J* = 8.2, 6.8, 1.3 Hz, 2H), 7.17 (d, *J* = 8.2 Hz, 2H), 4.81 (d, *J* = 5.7 Hz, 2H), 4.69 (d, *J* = 5.7 Hz, 2H), 2.60 (s, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 152.2, 140.0, 133.8, 132.2, 127.1, 126.8, 126.5, 126.3, 125.9, 99.4, 92.5, 56.5. ESI-TOF-MS (*m*/*z*) Calcd. for C₂₄H₂₀I₂NaO₄ [M + Na]⁺: 648.9343; Found: 648.9377, error: 5.2 ppm. Calcd. for C₄₈H₄₀I₄NaO₈ [2M + Na]⁺: 1274.8794; Found: 1274.8823, error: 2.3 ppm.

2.2 Synthesis of (S)- and (R)-4,4'-(2,2'-bis(methoxymethoxy)-[1,1'-binaphthalene]-3,3'-divl)dibenzaldehyde **3**

After (*S*)- or and (*R*)-**2** (2.00 g, 3.19 mmol), 4-formylphenylboronic acid (980.6 mg, 6.54 mmol), tripotassium phosphate (4.07 mg, 19.2 mmol), tris(dibenzylideneacetone)dipalladium (58.4 mg, 0.064 mmol), and

tricyclohexylphosphine (42.0 mg, 0.146 mmol) were added to a three-necked round bottom flask, a mixture of 1,4-dioxane and H₂O (4:1, v/v, 50 mL) was added under nitrogen atmosphere. The reaction mixture was stirred at 110 °C for 18 h. After complete consumption of the starting material, the mixture was cooled down to room temperature and quenched with saturated ethylenediaminetetraacetic acid (EDTA) solution. The mixture was extracted three times with dichloromethane and the organic phases were combined, washed with brine, dried over anhydrous Na₂SO₄, and concentrated in vacuo. The residue was purified by column chromatography over silica gel (petroleum ether : ethyl acetate = 10 : 1) to afford (*S*)- or (*R*)-**3** as a white solid.

(*S*)-**3** (1.23 g, 66% yield): m.p. 186–188 °C. ¹H NMR (500 MHz, CDCl₃) δ 10.10 (s, 2H), 8.03–7.99 (m, 6H), 7.95 (dd, J = 14.9, 8.2 Hz, 6H), 7.46 (dd, J = 10.7, 3.9 Hz, 2H), 7.36–7.29 (m, 4H), 4.41 (d, J = 5.9 Hz, 2H), 4.37 (d, J = 5.9 Hz, 2H), 2.38 (s, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 192.0, 151.1, 145.4, 135.2, 134.2, 134.0, 131.0, 130.8, 130.4, 129.8, 128.2, 127.0, 126.6, 126.4, 125.6, 98.9, 56.1. ESI-TOF-MS (*m/z*): Calcd. for C₃₈H₃₀NaO₆ [M + Na]⁺: 605.1935, Found: 605.1932, error: –0.5 ppm.

(*R*)-**3** (1.36 g, 68% yield): m.p. 185–187 °C. ¹H NMR (500 MHz, CDCl₃) δ 10.10 (s, 2H), 8.07–7.99 (m, 6H), 7.95 (dd, *J* = 14.3, 8.2 Hz, 6H), 7.46 (dd, *J* = 10.7, 3.9 Hz, 2H), 7.37–7.28 (m, 4H), 4.41 (d, *J* = 5.9 Hz, 2H), 4.37 (d, *J* = 5.9 Hz, 2H), 2.38 (s, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 192.0, 151.2, 145.4, 135.2, 134.3, 134.0, 131.0, 130.8, 130.4, 129.8, 128.2, 127.0, 126.6, 126.4, 125.6, 98.9, 56.1. ESI-TOF-MS (*m*/*z*): Calcd. for C₃₈H₃₀NaO₆ [M + Na]⁺: 605.1935, Found: 605.1940, error: 0.8 ppm.

2.3 Synthesis of (S)- and (R)-BINOL cages 5

A solution of tris(2-aminoethyl)amine (0.2 M in chloroform, 308 μ L, 0.063 mmol) was added dropwise into a solution of (*S*)- or (*R*)-**3** (50 mg, 0.086 mmol) in 5 mL of chloroform or dichloromethane. After the reaction mixture was stirred at 25 °C for 24 h, the mixture was poured into 50 mL of methanol. The precipitate was filtered and dried under vacuum to afford (*S*)- or (*R*)-BINOL cage **5** as a white solid.

(*S*)-**5** (52 mg, 94% yield): ¹H NMR (500 MHz, CDCl₃) δ 7.96 (s, 6H), 7.82–7.80 (m, 18H), 7.66 (s, 6H), 7.33–7.28 (m, 18H), 7.21–7.13 (m, 6H), 7.05 (d, *J* = 8.6 Hz, 6H), 4.48 (d, *J* = 5.1 Hz, 6H), 4.30 (d, *J* = 5.4 Hz, 6H), 3.59 (s, 12H), 3.15–3.02 (m, 6H), 3.01–2.93 (m, 6H), 2.33 (s, 18H). ESI-TOF-MS (*m*/*z*): Calcd. for C₁₂₆H₁₁₄N₈NaO₁₂ [M + Na]⁺: 1954.8481, Found: 1954.8469, error: –0.6 ppm. Calcd. for C₁₂₆H₁₁₅N₈O₁₂ [M + H]⁺: 1932.8662, Found: 1932.8644, error: –0.9 ppm. Calcd. for C₁₂₆H₁₁₆N₈O₁₂ [M + 2H]²⁺: 966.9367, Found: 966.9350, error: –1.8 ppm. $[\alpha]_D^{20}$ = +98 (*c* = 0.004 in CHCl₃).

(*R*)-**5** (51 mg, 92% yield): ¹H NMR (500 MHz, CDCl₃) δ 7.96 (s, 6H), 7.80 (d, *J* = 8.3 Hz, 18H), 7.66 (s, 6H), 7.37–7.28 (m, 18H), 7.19–7.13 (m, 6H), 7.05 (d, *J* = 8.6 Hz, 6H), 4.47 (d, *J* = 5.3 Hz, 6H), 4.30 (d, *J* = 5.5 Hz, 6H), 3.59 (s, 12H), 3.10–3.02 (m, 6H), 3.01–2.94 (m, 6H), 2.33 (s, 18H). ¹³C NMR (126 MHz, CDCl₃) δ 160.5, 150.8, 141.1, 135.5, 134.1, 131.0, 130.9, 130.0, 128.1, 127.7, 126.9, 126.5, 125.3, 100.0, 98.2, 60.4, 58.9, 55.4. ESI-TOF-MS (*m*/*z*): Calcd. for C₁₂₆H₁₁₄N₈NaO₁₂ [M + Na]⁺: 1954.8481, Found: 1954.8451, error: –1.5 ppm. Calcd. for C₁₂₆H₁₁₅N₈O₁₂ [M + H]⁺: 1932.8662, Found: 1932.8658, error: –0.2 ppm. Calcd. for C₁₂₆H₁₁₆N₈O₁₂ [M + 2H]²⁺:

966.9367, Found: 966.9371, error: 0.4 ppm. $[\alpha]_D^{20} = -96$ (c = 0.004 in CHCl₃). (R)-5: ¹H NMR (500 MHz, CD₂Cl₂) δ 7.97 (s, 6H), 7.81 (d, J = 8.1 Hz, 6H), 7.75 (d, J = 8.4 Hz, 12H), 7.63 (s, 6H), 7.32–7.29 (m, 6H), 7.26 (d, J = 7.6 Hz, 12H), 7.16–7.11 (m, 6H), 6.99 (d, J = 8.6 Hz, 6H), 4.45 (d, J = 5.4 Hz, 6H), 4.30 (d, J = 5.5 Hz, 6H), 3.61–3.47 (m, 12H), 3.01 (dd, J = 10.3, 4.5 Hz, 6H), 2.95–2.90 (m, 6H), 2.32 (s, 18H).

2.4¹H NMR, ¹³C NMR and ESI-MS spectra of the compounds 2, 3 and 5

Fig. S1 ¹H NMR spectrum of (S)-**2** in CDCl₃ at 22 °C.

Fig. S2 13 C NMR spectrum of (*S*)-2 in CDCl₃ at 22 °C.

Fig. S3 ESI-MS spectrum of (*S*)-**2**. ESI-TOF-MS (m/z) Calcd. for C₂₄H₂₀I₂NaO₄ [M + Na]⁺: 648.9343; Found: 648.9374, error: 4.7 ppm. Calcd. for C₄₈H₄₀I₄NaO₈ [2M + Na]⁺: 1274.8794; Found: 1274.8821, error: 2.1 ppm.

Fig. S4 ¹H NMR spectrum of (R)-**2** in CDCl₃ at 22 °C.

Fig. S5 ¹³C NMR spectrum of (R)-**2** in CDCl₃ at 22 °C.

Fig. S6 ESI-MS spectrum of (*R*)-2. ESI-TOF-MS (*m*/*z*) Calcd. for $C_{24}H_{20}I_2NaO_4$ [M + Na]⁺: 648.9343; Found: 648.9377, error: 5.2 ppm. Calcd. for $C_{48}H_{40}I_4NaO_8$ [2M + Na]⁺: 1274.8794; Found: 1274.8823, error: 2.3 ppm.

Fig. S7 ¹H NMR spectrum of (S)-**3** in CDCl₃ at 22 °C.

Fig. S8 ¹³C NMR spectrum of (*S*)-**3** in CDCl₃ at 22 $^{\circ}$ C.

Fig. S9 ESI-MS spectrum of (*S*)-**3**. ESI-TOF-MS (m/z): Calcd. for C₃₈H₃₀NaO₆ [M + Na]⁺: 605.1935, Found: 605.1932, error: -0.5 ppm.

Fig. S10 ¹H NMR spectrum of (R)-**3** in CDCl₃ at 22 °C.

Fig. S11 ¹³C NMR spectrum of (R)-**3** in CDCl₃ at 22 °C.

Fig. S12 ESI-MS spectrum of (*R*)-**3**. ESI-TOF-MS (m/z): Calcd. for C₃₈H₃₀NaO₆ [M + Na]⁺: 605.1935, Found: 605.1940, error: 0.8 ppm.

Fig. S13 ¹H NMR spectrum of (*S*)-**5** in $CDCl_3$ at 22 °C.

Fig. S14 ESI-MS spectrum of (*S*)-**5**. ESI-TOF-MS (*m*/*z*): Calcd. for $C_{126}H_{114}N_8NaO_{12}$ [M + Na]⁺: 1954.8481, Found: 1954.8459, error: -1.1 ppm. Calcd. for $C_{126}H_{115}N_8O_{12}$ [M + H]⁺: 1932.8662, Found: 1932.8644, error: -0.9 ppm. Calcd. for $C_{126}H_{116}N_8O_{12}$ [M + 2H]²⁺: 966.9367, Found: 966.9350, error: -1.8 ppm.

Fig. S15 ¹H NMR spectrum of (R)-**5** in CDCl₃ at 22 °C.

Fig. S16 13 C NMR spectrum of (*R*)-**5** in CDCl₃ at 22 °C.

Fig. S17 ESI-MS spectrum of (*R*)-**5**. ESI-TOF-MS (*m*/*z*): Calcd. for $C_{126}H_{114}N_8NaO_{12}$ [M + Na]⁺: 1954.8481, Found: 1954.8451, error: -1.5 ppm. Calcd. for $C_{126}H_{115}N_8O_{12}$ [M + H]⁺: 1932.8662, Found: 1932.8658, error: -0.2 ppm. Calcd. for $C_{126}H_{116}N_8O_{12}$ [M + 2H]²⁺: 966.9367, Found: 966.9371, error: 0.4 ppm.

Fig. S18 ¹H NMR spectrum of (R)-**5** in CD₂Cl₂ at 22 °C.

3. Reduction of the [2+3] imine cages

3.1 Synthesis of (S)- and (R)-BINOL cages 6^{S2}

NaBH(OAc)₃ (200 mg, 0.944 mmol) was directly added into a reaction solution of **5** (from 0.086 mmol of **3**) at room temperature to selectively reduce the imine bonds. After the mixture was stirred for 8 h, NaHCO₃ aqueous was added for neutralization. The organic phase was collected, dried by anhydrous Na₂SO₄ and concentrated to get the crude product. The crude product was then recrystallized in chloroform/hexane and chloroform/methanol, respectively, to afford the pure product.

(*S*)-**6** (53 mg, 95% yield); mp 314–315 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.99–7.57 (m, 24H), 7.55–7.12 (m, 30H), 4.46–4.16 (m, 12H), 3.82 (t, *J* = 8.6 Hz, 12H), 2.72–2.64 (m, 18H), 2.29–2.14 (m, 24H). ¹³C NMR (126 MHz, CDCl₃) δ 151.3, 139.4, 137.7, 135.1, 133.6, 130.8, 130.4, 129.6, 128.1, 127.8, 126.6, 126.4, 126.2, 125.1, 98.4, 55.7, 54.4, 53.7, 47.2.ESI-TOF-MS (*m*/*z*): Calcd. for C₁₂₆H₁₂₇N₈O₁₂ [M + H]⁺: 1944.9602, Found: 1944.9540, error: –3.2 ppm. Calcd. for C₁₂₆H₁₂₈N₈O₁₂ [M + 2H]²⁺: 972.9837, Found: 972.9822, error: –1.5 ppm. [α]_D²⁰= +82.5 (*c* = 0.004 in CHCl₃).

(*R*)-**6** (52 mg, 94% yield); mp 310–312 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.87–7.68 (m, 24H), 7.39–7.22 (m, 30H), 4.47–4.16 (m, 12H), 3.82 (t, *J* = 12.4 Hz, 4H), 2.71–2.63 (m, 18H), 2.29–1.99 (m, 24H). ¹³C NMR (126 MHz, CDCl₃) δ 151.3, 139.4, 137.7, 135.2, 133.6, 130.8, 130.5, 129.6, 128.2, 127.8, 126.6, 126.4, 126.2, 125.1, 98.4, 55.8, 54.4, 53.7, 47.2. ESI-TOF-MS (*m*/*z*): Calcd. for C₁₂₆H₁₂₇N₈O₁₂ [M + H]⁺:

1944.9602, Found: 1944.9490, error: -5.8 ppm. Calcd. for $C_{126}H_{128}N_8O_{12}$ [M + 2H]²⁺: 972.9837, Found: 972.9820, error: -1.7 ppm. [α]_D²⁰= -82.8 (c = 0.004 in CHCl₃).

3.2 ¹H NMR, ¹³C NMR and ESI-MS spectra of (S)- and (R)-BINOL cages 6

Fig. S19 ¹H NMR spectrum of (*S*)-6 in CDCl₃ at 22 $^{\circ}$ C.

Fig. S20 13 C NMR spectrum of (*S*)-6 in CDCl₃ at 22 °C.

Fig. S21 ESI-MS spectrum of (*S*)-6. ESI-TOF-MS (m/z): Calcd. for C₁₂₆H₁₂₇N₈O₁₂ [M + H]⁺: 1944.9602, Found: 1944.9540, error: -3.2 ppm. Calcd. for C₁₂₆H₁₂₈N₈O₁₂ [M + 2H]²⁺: 972.9837, Found: 972.9822, error: -1.5 ppm.

Fig. S22 ¹H NMR spectrum of (R)-6 in CDCl₃ at 22 °C.

Fig. S23 ¹³C NMR spectrum of (R)-6 in CDCl₃ at 22 °C.

Fig. S24 ESI-MS spectrum of (*R*)-6. ESI-TOF-MS (*m/z*): Calcd. for $C_{126}H_{127}N_8O_{12}$ [M + H]⁺: 1944.9602, Found: 1944.9490, error: -5.8 ppm. Calcd. for $C_{126}H_{128}N_8O_{12}$ [M + 2H]²⁺: 972.9837, Found: 972.9820, error: -1.7 ppm.

4. UV-vis and fluorescence spectra of the imine cages

Fig. S25 UV-vis spectra of (*R*)-**5** and (*S*)-**5** (0.07 mM in CHCl₃).

Fig. S26 UV-vis spectra of (*R*)-6 and (*S*)-6 (0.07 mM in CHCl₃).

5. Fluorescence spectra for chiral recognition

Fig. S27 Fluorescence spectral changes of (*R*)-**3** (0.03 mM in CH₂Cl₂, $\lambda_{ex} = 300$ nm) upon the addition of (1*R*,2*R*)-1,2-diaminocyclohexane and (1*S*,2*S*)-1,2-diaminocyclohexane.

Fig. S28 Fluorescence spectral changes of (*R*)-5 (0.03 mM in CHCl₃, $\lambda_{ex} = 300$ nm) upon the addition of (*R*)-1-phenylethanol and (*S*)-1-phenylethanol.

Fig. S29 Fluorescence spectral changes of (*R*)-**5** (0.03 mM in CHCl₃, $\lambda_{ex} = 300$ nm) upon the addition of (*R*)-2-phenylglycinol and (*S*)-2-phenylglycinol.

6. Single-crystal structure and X-ray analysis data of (R)-5

Fig. S30 Side view of (*R*)-**5**. The counterions have been omitted for clarity. Color code: gray = C; blue = N; red = O.

Fig. S31 Top view of (*R*)-**5**. The counterions have been omitted for clarity. Color code: gray = C; blue = N; red = O.

Table S1 Crystal data of (*R*)-5.

Deposition Number	2096620
Empirical formula	$C_{126}H_{113}N_8O_{12}$
Formula weight	1931.24
Temperature/K	170.0
Crystal system	monoclinic
Space group	P2 ₁
a/Å	16.0819(6)
b/Å	25.9667(8)
c/Å	17.0515(6)
<i>α</i> /°	90
β/°	117.912(2)
γ/°	90
Volume/Å ³	6292.2(4)
Ζ	2
$ ho_{ m calc} { m g/cm}^3$	1.019
μ/mm^{-1}	0.522
F(000)	2042.0
Crystal size/mm ³	$0.49 \times 0.35 \times 0.29$
Radiation	$CuK\alpha (\lambda = 1.54178)$
20 range for data collection/°	5.866 to 133.854
Index ranges	$-19 \le h \le 19, -30 \le k \le 31, -20 \le l \le 20$
Reflections collected	84942
Independent reflections	22246 [$R_{\text{int}} = 0.0524, R_{\text{sigma}} = 0.0408$]
Data/restraints/parameters	22246/62/1346
Goodness-of-fit on F^2	1.037
Final R indexes [$I >= 2\sigma(I)$]	$R_1 = 0.0582, wR_2 = 0.1648$
Final R indexes [all data]	$R_1 = 0.0657, wR_2 = 0.1723$
Largest diff. peak/hole / e Å ⁻³	0.36/-0.23
Flack parameter	0.00(7)

7. Compared ¹H NMR spectra for chiral recognition

(e), (R)-5 + 2 equiv (1S,2S)-1,2-diaminocyclohexane (f), and (1S,2S)-1,2-diaminocyclohexane (g).

(1*S*,2*S*)-1,2-diaminocyclohexane (g).

8. References

- S1. T. Hong, Z. Zhang, Y. Sun, J.-J. Tao, J.-D. Tang, C. Xie, M. Wang, F. Chen, S.-S. Xie, S. Li, and P. J. Stang, Chiral Metallacycles as Catalysts for Asymmetric Conjugate Addition of Styrylboronic Acids to α,β -Enones. J. Am. Chem. Soc., 2020, **142**, 10244–10249.
- S2. (a) Y. Jin, B. A. Voss, R. D. Noble and W. Zhang, *Angew. Chem., Int. Ed.*, 2010, 49, 6348; (b) P. Li, S. Xu, C. Yu, Z.-Y. Li, J. Xu, Z.-M. Li, L. Zou, X. Leng, S. Gao, Z. Liu, X. Liu and S. Zhang, *Angew. Chem., Int. Ed.*, 2020, 59, 7113.