Supporting Information

Investigating the iodide and bromide ion exchange in metal halide

perovskite single crystals and thin films

Qingyi Huang^{1#}, Zhe Li^{2#}, Xiayan Chen¹, Yongkang Xia¹, Ziwei Zheng¹, Anyi Mei¹, Kai Zhu³, Yue Hu¹, Ti Wang², Yaoguang Rong¹*, Hongwei Han¹

¹ Wuhan National Laboratory for Optoelectronics, China-EU Institute for Clean and Renewable Energy, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China

² School of Physics and Technology and Key Laboratory of Artificial Micro- and Nanostructures of Ministry of Education, Wuhan University, Wuhan 430072, China.
³ School of Information Science and Engineering, Nanjing University Jinling College, No. 8 Xuefu Road, Nanjing 210089, Jiangsu, P. R. China.
E-mail: ygrong@hust.edu.cn

[#]*These authors contributed equally to this work.*

Experiment

Materials:

Lead(II) iodide (PbI₂, 99.99%) was purchased from Tokyo Chemical Industry (TCI). Methylammonium iodide (MAI), methylammonium bromide (MABr) and lead bromide (PbBr₂, 99.9%) were purchased from Xi'an Polymer Light Technology Corp. γ -butyrolactone (GBL), *N*,*N*-Dimethylformamide (DMF) and ethanol were purchase from Sigma-Aldrich. All the chemicals were used as received without further purification. The FTO glass substrates were purchased from Yingkou OPV Tech Co., Ltd. .

Synthesis of perovskite single crystals:

The perovskite single crystals were synthesized according to previous report¹. MAPbI₃ single crystal: MAI and PbI₂ (molar ratio 1:1) were dissolved in GBL with a concentration of 1.23 M. Then the solution was heated up to 100°C for overnight, forming small seed crystals in size of $1\sim2$ mm. One of the seed crystals was selected and transferred into a fresh solution at 100°C for further crystal growth. After $1\sim2$ days, the seed crystal grew to a single crystal in size of $7\sim10$ mm. MAPbBr₃ single crystal: MABr and PbBr (molar ratio 1:1) were dissolved in DMF with a concentration of 0.7 M. Then the solution was heated up to 100°C for overnight, forming small seed crystals in size of $1\sim2$ mm. One of the seed crystals crystals in size of $1\sim2$ mm. One of the seed crystal growth a concentration of 0.7 M. Then the solution was heated up to 100°C for overnight, forming small seed crystals in size of $1\sim2$ mm. One of the seed crystals was selected and transferred into a fresh solution to 100°C for overnight, forming small seed crystals in size of $1\sim2$ mm. One of the seed crystals was selected and transferred into a fresh solution at 100°C for further crystal growth. After $1\sim2$ days, the seed crystal grew to a single crystal in size of $7\sim10$ mm.

Characterization: The digital images were captured by Leica Q camera and Leica DM2700M. The UV-visible absorption (UV-vis) spectrum was tested by a UV-vis-NIR spectrophotometer (SolidSpec-3700). The X-Ray Diffraction (XRD) spectra were measured with an X'pert PRO X-ray diffractometer by Cu K α radiation under conditions of 40 mA and 40 kV with a range from 10° to 40°, the scanning speed is 5° per min. The Scanning electron microscope (SEM) was obtained by a Nova NanoSEM 450 field emission SEM. The Photoluminescence (PL) images and spectra were obtained using a mercury lamp as excitation after passing through a 460-490 nm bandpass filter. Then the signal passed through a 520 nm long-pass filter before collected by a CCD camera (Tucsen, TCH-1.4CICE) or a spectrometer (Renishaw inVia).

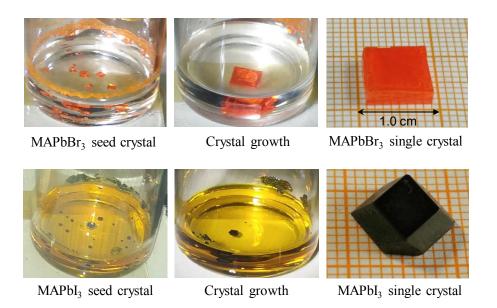


Figure S1. The process for synthesizing MAPbBr₃ and MAPbI₃ single crystals.

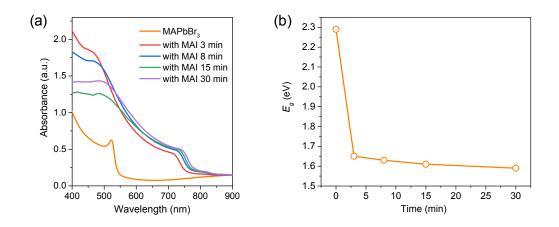


Figure S2. (a) UV-Vis spectra of $MAPbBr_3$ thin films before and after dipping in

MAI solution for different time. (b) $E_{\rm g}$ dependence on dipping time.

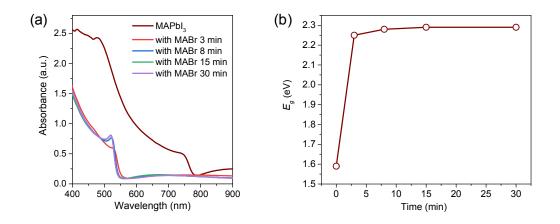


Figure S3. (a) UV-Vis spectra of $MAPbI_3$ thin films before and after dipping in

MABr solution for different time. (b) $E_{\rm g}$ dependence on dipping time.

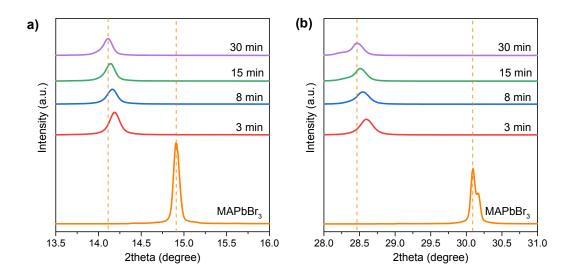


Figure S4. XRD pattern of MAPbBr₃ thin film before and after anion exchange

reaction for different time.

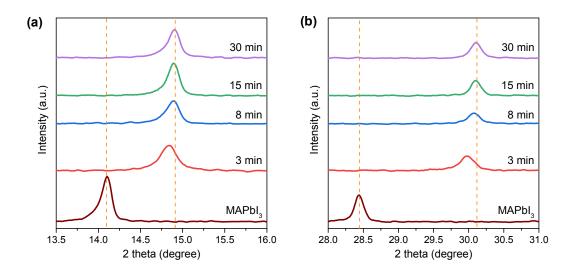


Figure S5. XRD pattern of MAPbBr₃ thin film before and after anion exchange

reaction for different time.

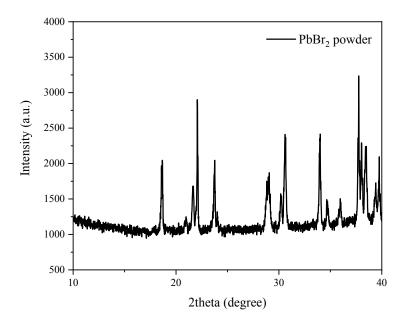


Figure S6. XRD pattern of PbBr₂ powders.

Reference

Y. Liu, Z. Yang, D. Cui, X. Ren, J. Sun, X. Liu, J. Zhang, Q. Wei, H. Fan, F. Yu, X. Zhang, C. Zhao and S. Liu, *Advanced Materials*, 2015, 27, 5176-5183.