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S1. General considerations.
2-Nitrophenyl isocyanate and 4-nitrophenyl isocyanate were purchased from Alfa Aesar and used as

received. (TBA),SO, were purchased from Alfa Aesar and diluted the 50% water solution to 0.625 mol/L
water solution. All solvents and other reagents were of reagent grade quality. All *H NMR, COSY and
DOSY spectra were obtained at 300 K by using Bruker AVANCE I11-400 MHz spectrometers; *C NMR
spectra were obtained at 300 K by using Bruker AVANCE 111-400 MHz spectrometers and JEOL
RESONANCE ECZ600R; *H and **C NMR chemical shifts were reported relative to residual solvent peaks
(*H NMR: 2.50 ppm for DMSO-dg; **C NMR: 39.52 for DMSO-dg). ESI-MS measurements were carried

out using a Bruker micro TOF-Q Il ESI-Q-TOF LC/MS/MS spectrometer and Waters Synapt-G2.
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S2. Synthesis of the ligands.
$2.1 Synthesis of ligand L*
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Scheme S1. Synthesis of the ligand L% (1) and (3) NH,NH,H,0, Pd/C 10% cat, EtOH; (2)
2-nitrophenylisocyanate, THF; (4) 4-nitrophenylisocyanate, THF/DMF.

Ligand L*

L was prepared according to reported literature procedures.* *H NMR (400 MHz,DMSO-ds, ppm): &
9.84 (s, 3H, NHd), 8.99 (s, 3H, NHc), 8.26 (s, 3H, NHb), 8.18 (d, J = 9.2 Hz, 6H, H8), 8.05 (s, 3H, NHa),
7.70 (d, J =9.2 Hz, 2H, H7), 7.64 (d, J = 8.0 Hz, 1H, H6), 7.53 (d, J = 8.0 Hz, 1H, H3), 7.36 (d, J = 8.8 Hz,
2H, H2), 7.12 (m, 2H, H4/5), 6.89 (d, J = 8.8 Hz, 2H, H1).
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Fig. S1. 'H NMR spectrum of L* (400 MHz, DMSO-ds, 300 K).

$2.2 Synthesis of ligand L?
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Scheme S2. Synthesis of ligand L% (1) K,COs, Pd(0), dioxane/H,0O; (2) 2-nitrophenyl isocyanate, THF; (3)
NH,NH; H,0, Pd/C 10% cat., EtOH; (4) 4-nitrophenyl isocyanate, THF.

Compound 2a:

Tris(4-iodophenyl)amine (0.5 g, 0.8 mmol), 4-Aminophenylboronic acid pinacol ester (0.7 mg, 3.1
mmol), potassium carbonate (460 mg), and tetrakis(triphenylphosphine)palladium (50 mg) were added in
dioxane (22.5 mL) under an inert atmosphere. After refluxing under intense stirring for 12 h, the solid was
filtered through celite, and the solution was purified over a column of silica gel by eluting with
CH,Cl,/MeOH (100:1 v/v). White compound 2a was obtained by solvent evaporation (yield: 300 mg, 72%).
'H NMR (400 MHz, DMSO-dg, ppm): §7.46 (d, J = 8.8 Hz, 1H, H2), 7.32 (s, J = 8.4 Hz,1H, H3), 7.03 (d,
J=8.8Hz, 1H, H1), 6.61 (d, J = 8.4 Hz, 1H, H4), 5.18 (s, 2H, Ha). *C NMR (100 MHz, DMSO-dg, ppm):
153.2(C), 150.3(C), 140.38(C), 132.4(C), 132.0(CH), 131.5(CH), 129.13(CH), 119.5(CH).
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Fig. S2. "H NMR spectrum of compound 2a (400 MHz, DMSO-dg, 300 K)
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Fig. S3. *C NMR spectrum of 2a (100 MHz, DMSO-dg, 300 K).

Compound 2b:
Compound 2a (0.35 g, 0.65 mmol) was dissolved in THF (15 mL) and was added to a THF (15 mL)

solution of 2-nitro-phenylisocyanate (0.33 g, 2.0 mmol). After stirring overnight, the solvent was removed
under reduced pressure, and the residue was washed several times with diethyl ether. It was then dried to
yield analytically pure 2b as a yellow solid (0.45 g, 0.44 mmol, 66%). ‘H NMR (400 MHz, DMSO-dg,
ppm): §9.94 (s, 1H, Hb), 9.63 (s, 1H, Ha), 8.30 (d, J = 8.4 Hz, 1H, H8), 8.10 (d, J = 8.4 Hz, 1H, H5), 7.72
(m, 1H, H6), 7.63 (d, J = 8.8 Hz, 4H, H2/3), 7.59 (d, J = 8.8 Hz, 2H, H1), 7.22 (m, 1H, H7), 7.14 (d, J =
8.8 Hz, 2H, H4). *C NMR (100 MHz, DMSO-ds, ppm): J 157.1 (CO), 151.1 (C), 143.6 (C), 142.8 (C),
140.2 (C), 140.1 (C), 139.5 (C), 138.9 (CH), 132.4 (CH), 131.8 (CH), 130.6 (CH), 129.4 (CH), 127.8 (CH),
127.4 (CH), 124.2 (CH). ESI-MS: m/z 100.00%, 1011.35 [M+H]".
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Fig. S4. "H NMR spectrum of 2b (400 MHz, DMSO-ds, 300 K).
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Fig. S5. *C NMR spectrum of 2b (100 MHz, DMSO-dg, 300 K).

Compound 2c:

Compound 2b (0.30 g, 0.30 mmol) and Pd/C 10% (0.03 g, cat.) were mixed in ethanol (10 mL), and
hydrazine monohydrate (10 mL) was added to this suspension. After heating at reflux with stirring
overnight, the solid was filtered off via suction filtration and then dissolved in DMF (20 mL) and filtered
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through celite to remove the Pd/C. The resulting DMF solution was poured into water (100 mL) to induce
precipitation. The precipitate was collected and washed several times with ethanol and diethyl ether, then
dried under vacuum to give 2c as a white solid (0.23 g, 0.25 mmol, 84%). ‘H NMR (400 MHz, DMSO-d,
ppm): 68.90 (s, 1H, Ha), 7.78 (s, 1H, Hb), 7.62 (m, 4H, H2/4), 7.55 (d, J = 8.4 Hz, 2H, H3), 7.37 (d, J =
8.0 Hz, 1H, H5), 7.16 (d, J = 8.8 Hz, 2H, H1), 6.86 (t, J = 8.0 Hz, 1H, H7), 6.77 (d, J = 8.0 Hz, 1H, H8),
6.59 (t, J = 8.0 Hz, 1H, H6), 4.79 (s, 2H, Hc). *C NMR (100 MHz, DMSO-ds, ppm): 6 153.1 (CO), 145.8
(C), 140.9 (C), 139.3 (C), 134.5 (C), 132.7 (C), 127.1 (C), 126.5 (CH), 124.7 (CH), 124.4 (CH), 124.1
(CH), 123.78 (CH), 118.3 (CH), 116.8 (CH), 115.9 (CH). ESI-MS: m/z 100.00%, 943.40 [M+Na]".
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Fig. S6. *H NMR spectrum of compound 2c¢ (400 MHz, DMSO-ds, 300 K).
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Fig. S7. *C NMR spectrum of 2¢ (100 MHz, DMSO-ds, 300 K).

Ligand L?:

Compound 2¢ (0.39 g, 0.42 mmol) was dissolved in 10 mL of DMF and the solution was added dropwise
into a 10 mL THF solution of 4-nitro-phenylisocyanate (0.33 g, 2.0 mmol). The mixture was refluxed for 6
hours, then the solution was evaporated under reduced pressure to give a solid, which was washed several
times with toluene and diethyl ether and then dried to get pure L? as a gray solid (0.53 g, 0.37 mmol, 88%).
'H NMR (400 MHz, DMSO-ds, ppm): & 9.87 (s, 1H, Ha), 9.18 (s, 1H, Hb), 8.29 (s, 1H, Hc), 8.18 (d, J =
8.8 Hz, 2H, H10), 8.14 (s, 1H, Hd), 7.73 (d, J = 8.8 Hz, 2H, H9), 7.59 (m, 8H, H1/2/3/4), 7.12 (m, 4H,
H5/6/7/8). *C NMR (100 MHz, DMSO-dg, ppm): d 153.2 (CO), 152.8 (CO), 146.6 (C), 145.9 (C), 141.1
(C), 138.9 (C), 134.4 (C), 133.1 (C), 131.9 (C), 130.4 (C), 127.2 (CH), 126.6 (CH), 125.2 (CH), 124.8
(CH), 124.7 (CH), 124.1 (CH), 124.0 (CH), 123.8 (CH), 118.7 (CH), 117.4 (CH). ESI-MS: m/z 100.00%,
1435.47 [M+Na]".
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Fig. S8. 'H NMR spectrum of L? (400 MHz, DMSO-dg, 300 K).
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Fig. S9. *C NMR spectrum of L? (100 MHz, DMSO-dg, 300 K).

S2.3 Synthesis of ligand L?
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Scheme S3. Synthesis of ligand L*: (1) PdCI,(PPhs),, Cul, DBU, rt; (2) 4-nitrophenyl chloroformate, THF;
(3) 4-nitrophenyl isocyanate, THF. (4) EtzN, DMF/THF, rt.
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Compound 3a:

4-Ethynylbenzenamine (0.49 g, 4.2 mmol), tris(4-iodophenyl)amine (0.84 mg, 1.35 mmol), PdCl,(PPhs),
(0.02 g), Cul (0.006 g), and DBU (2.1 mL) were added to toluene (20 mL) under a nitrogen atmosphere.
After stirring overnight at room temperature, the solution was purified over a column of silica gel, eluted
with CH,CI,. White product of compound 3a was obtained by solvent evaporation (yield: 0.56 g, 0.95
mmol, 70%). *H NMR (400 MHz, DMSO-dg, ppm): §7.41 (d, J = 8.0 Hz, 1H, H2), 7.16 (s, J = 8.0 Hz, 2H,
H3), 7.00 (d, J = 8.0 Hz, 2H, H1), 6.54 (d, J = 8.0 Hz, 2H, H4), 5.54 (s, 2H, Ha). *C NMR (100 MHz,
DMSO-ds, ppm): & 149.3 (C), 145.6 (C), 132.4 (C), 132.2 (C), 123.8 (CH), 118.1 (CH), 113.6 (CH), 108.3
(CH), 90.9 (C=), 86.0 (C=).
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Fig. $10. *H NMR spectrum of 3a (400 MHz, DMSO-dg, 300 K).
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Fig. S11. **C NMR spectrum of 3a (100 MHz, DMSO-dg, 300 K).

Compound 3b:

Compound 3a (118 mg, 0.2 mmol) was dissolved in THF (10 mL) and added dropwise to a solution of
4-nitrophenyl chloroformate (141 mg, 0.7 mmol) in THF (10 mL). After refluxed overnight, a precipitate
was obtained. It was collected, washed several times with diethyl ether, and then dried under vacuum to
give 3b as a yellow solid (169.4 mg, 0.156 mmol, 78%). "H NMR (400 MHz, DMSO-dg, ppm): 510.73 (s,
1H, Ha), 8.33 (d, J = 8.0 Hz, 2H, H6), 7.58 (m, 8H, H1/H2/H3/H5), 7.09 (d, J = 8.0 Hz, 2H, H4). *C NMR
(100 MHz, DMSO-dg, ppm): d 155.5 (CO), 150.5 (C), 146.3 (C), 144.8 (C), 138.6 (C), 132.8 (C), 132.2 (C),
125.3 (CH), 124.1 (CH), 123.0 (CH), 118.6 (CH), 117.4 (CH), 117.1 (CH), 89.2 (C=), 88.7 (C=). ESI-MS:
m/z 1086.26, [M+H]".
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Fig. S$13. *C NMR spectrum of 3b (100 MHz, DMSO-dg, 300 K).

Compound 3c:

To a THF solution (125 mL) of 4-nitrophenyl isocyanate (0.80 g, 4.80 mmol) was added a THF solution
(20 mL) of 4-phenylenediamine (0.63 g, 5.8 mmol). Stirring 4 h at 0 °C afforded a precipitate, which was
washed several times with diethyl ether and then dried in vacuum to yield 3c as a yellow solid (1.14 g, 4.2
mmol, 87%). *H NMR (400 MHz, DMSO-ds, ppm): 5 9.52 (s, 1H, Hc), 8.17 (d, J = 9.2 Hz, 2H, H6), 7.92
(s, 1H, Hb), 7.67 (d, J = 9.2 Hz, 2H, H5), 7.30 (d, J = 8.0 Hz, 1H, H4), 6.88 (t, J = 8.0 Hz, 1H, H3), 6.74 (d,
J =8.0 Hz, 1H, H1), 6.59 (t, J = 8.0 Hz, 1H, H2), 4.84 (s, 1H, Ha). BC NMR (100 MHz, DMSO-dg, ppm):
6 153.1 (CO), 147.3 (C), 141.9 (C), 141.2 (C), 125.8 (C), 125.6 (CH), 124.9 (CH), 124.3 (CH), 117.7(CH),
117.24 (CH), 116.45 (CH), ESI-MS: m/z 273.09, [M+H]".
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Fig. S14. *H NMR spectrum of 3c (400 MHz, DMSO-ds, 300 K).
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Fig. S15. *C NMR spectrum of 3¢ (100 MHz, DMSO-dg, 300 K).
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Ligand L*:

Compound 3b (108 mg, 0.1 mmol) was dissolved in THF (10 mL) and added dropwise in a mixture of 3c
(113.6 mg) and Et3N (0.1 mL) in THF (5 mL) and DMF (1 mL). Stirring overnight at room temperature
afforded a precipitate, which was collected and washed several times with toluene, ethanol and diethyl ether,
and then dried under vacuum to give L* as a yellow solid (110 mg, 74%). ‘*H NMR (400 MHz, DMSO-d,
ppm): & 9.85 (s, 1H, NHa), 9.31 (s, 1H, NHb), 8.29 (s, 1H, NHc), 8.19 (d, J = 9.2 Hz, 2H, H10), 8.16 (s, 1H,
NHd), 7.73 (d, J = 9.2 Hz, 2H, H9), 7.62 (m, 2H, H5/8), 7.53 (d, J = 8.8 Hz, 1H, H4), 7.48 (d, J = 8.8 Hz,
2H, H2), 7.45 (d, J = 8.8 Hz, 2H, H3), 7.15 (t, 2H, H6/7), 7.09 (d, J = 8.8 Hz, 2H, H1). *C NMR (100
MHz, DMSO-ds, ppm): § 153.0 (CO), 152.7 (CO), 146.5 (C), 146.1 (C), 141.0 (C), 138.9 (C), 140.2 (C),
132.7 (C), 132.1 (C), 131.7 (C), 130.6 (CH), 125.1 (CH), 124.7 (CH), 124.6 (CH), 124.2 (CH), 124.1 (CH),
123.9 (CH), 118.4 (CH), 117.4 (CH), 115.3 (CH), 89.5 (C=), 88.1 (C=). ESI-MS: m/z 1485.47, [M+H]".
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Fig. S16. *H NMR spectrum of L® (400 MHz, DMSO-dg, 300 K).

wn o;m (=] =0 w

88 2 88 3 § 33 =
oo @ ool 9 9 O~ b A
DI T D B N e o= e @ e
- - ‘I- ‘_‘_|' -— ‘I— - <«
— — | — Ve

Fig. S17. *C NMR spectrum of L* (100 MHz, DMSO-ds, 300 K).

S3. Synthesis of anion complexes
$3.1 (TBA)s[(SO4)s(L)2]

Compound (TBA)g[(LY)2(SO.)s] was prepared according to reported procedures.” *H NMR (400 MHz,
DMSO-ds, ppm): 6 10.62 (s, 1H, NHd), 9.67 (s, 1H, NHc), 9.53 (s, 1H, NHb), 9.39 (s, 1H, Ha), 7.84 (m,
2H, H3/6), 7.78 (d, J = 8.4 Hz, H8), 7.55 (d, J = 8.4 Hz, 1H, H7), 7.40 (d, J = 8.4 Hz, 2H, H2), 7.02 (m, 2H,
H4/5), 6.63 (d, J = 8.4 Hz, 2H, H1), 3.06 (t, 8H), 1.61 (m, 8H), 1.32 (m, 8H) and 0.88 (t, 12H) (TBA").
13C NMR (150 MHz, DMSO-ds, ppm): & 153.1 (CO), 152.4 (CO), 147.1 (C), 141.9 (C), 140.7 (C), 153.0
(C), 130.5 (C), 129.8 (C), 124.9 (CH), 123.7 (CH), 123.5 (CH), 123.1 (CH), 119.8 (CH), 117.3 (CH), 57.5,
23.1,19.2 and 13.5 (TBA").
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Fig. S18. "H NMR spectrum of complex (TBA)s[(SO4)s(L")-] (400 MHz, DMSO-dg, 300 K). * indicates

signals of TBA.
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Fig. $19. °C NMR spectrum of complex (TBA)s[(SO4)s(L1);] (150 MHz, DMSO-ds, 300 K). © indicates

signals of TBA.
S3.2 (TBA)12[(PO.)4(L")d]

Compound (TBA)1,[(PO4)4(LY)s] was prepared according to reported procedures.” *H NMR (400 MHz,
DMSO-dg, ppm): J 12.52 (s, 1H, NHd), 11.88 (s, 1H, NHc), 11.74 (s, 1H, NHb), 11.64 (s, 1H, Ha), 8.25 (d,
J = 8.0 Hz, 1H, H6), 7.66 (m, 3H, H2/3), 7.56 (d, J = 8.4 Hz, 2H, H8), 7.36 (d, J = 8.4 Hz, 2H, H7), 6.96
(m, 1H, H4), 6.85 (m, 2H, H5), 6.35 (s, br, 2H, H1), 3.03 (t, 8H), 1.45 (m, 8H), 1.20 (m, 8H) and 0.83 (t,
12H) (TBA"). *C NMR (150 MHz, DMSO-ds, ppm): 6 153.8 (CO), 153.2 (CO), 148.2 (C), 141.1 (C),
139.5 (C), 135.3 (C), 132.8 (C), 128.6 (C), 124.0 (CH), 122.8 (CH), 120.5 (CH), 119.0 (CH), 117.6 (CH),
57.5,23.0, 19.2 and 13.5 (TBA").
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Fig. S20. *H NMR spectrum of complex (TBA)2[(PO4)a(L")4] (400 MHz, DMSO-dg, 300 K). * indicates

signals of TBA.
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Fig. S21. *C NMR spectrum of complex (TBA)1,[(PO4)4(L")4] (150 MHz, DMSO-ds, 300 K). ® indicates

signals of TBA.

$3.3 (TBA)12[(POL)u(L?)4]

(TBA)3PO, (12 puL, 0.625 mol/L; generated in situ from H3PO, and (TBA)OH in water) was added to a
suspension of L? (10 mg, 0.007 mmol) in acetonitrile (1 mL). After stirring 3 h at room temperature, a clear
orange solution was obtained. Slow vapor diffusion of diethyl ether into this solution provided product
(TBA)1[(PO4)4(L?)4] within two weeks (yield > 90%). *H NMR (400 MHz, DMSO-dg, ppm): 6 12.68 (s,
1H, NHd), 12.11 (s, 1H, NHc), 11.94 (s, 1H, NHb), 11.68 (s, 1H, Ha), 8.20 (d, J = 7.2 Hz, 1H, H8), 7.87 (d,
J =8.0 Hz, 2H, H4), 7.82 (d, J = 7.2 Hz, 1H, H5), 7.61 (d, J = 8.4 Hz, 2H, H10), 7.42 (d, J = 8.4 Hz, 2H,
H9), 7.12 (s, br, 2H, H2), 6.96 (m, 2H, H6/7), 6.69 (s, br, 2H, N3), 6.58 (s, br, 2H, H1), 3.05 (t, 8H), 1.47
(m, 8H), 1.24 (m, 8H) and 0.86 (t, 12H) (TBA™).**C NMR (150 MHz, DMSO-ds, ppm):  154.4 (CO),
153.6 (CO), 149.6 (C), 148.6 (C), 146.2 (C), 141.1 (C), 140.1 (C), 135.0 (C), 132.5 (C), 128.8 (C), 127.1
(CH), 126.5 (CH), 124.6 (CH), 124.0 (CH), 123.5 (CH), 121.7 (CH), 120.4 (CH), 118.0 (CH), 57.5, 23.0,
19.2 and 13.5 (TBA").
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Fig. S22. "H NMR spectrum of complex (TBA)12[(PO4)s(L?)4] (400 MHz, DMSO-dg, 300 K). * indicates

signals of TBA.
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Fig. $23. *C NMR spectrum of complex (TBA)1,[(PO4)4(L?)4] (150 MHz, DMSO-ds, 300 K). ® indicates

signals of TBA.
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Fig. S24. DOSY spectrum of (TBA)1[(PO.)a(L?)4] (400 MHz, DMSO-ds, 300 K).

The hydrodynamic radius was estimated according to the Stokes-Einstein Equation, D = kT/6zxr, where
D is the diffusion constant, k is the Boltzmann's constant, T is the temperature, # is the viscosity of solvents,
and r is the radius. D = 5.36*10™ m’s™, k = 1.38*10% NmK™, T = 300 K, 5 = 1.991*10% g cm™s™. r =
kT/6z57D = 20.6 A. The radius of the DFT-optimized (TBA)1,[(PO4)4(L?).] structure was 20.5 A.

8 45 2 6/7 31

8.3 79 75 71 6.7

Fig. S25. *H-'H COSY spectrum of (TBA)1,[(PO4)4(L?)4] (400 MHz, DMSO-ds, 300 K).
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$3.4 (TBA)[(SO4)s(L)z]

(TBA),SO, (17 pL, 0.625 mol/L;) was added to a suspension of L* (10 mg, 0.007 mmol) in acetonitrile
(1 mL). After stirring 3 h at room temperature, a clear orange solution was obtained. Slow vapor diffusion
of diethyl ether into this solution provided product (TBA)s[(SO4)3(L?),] within two weeks (yield > 90 % ).
'H NMR (400 MHz, DMSO-ds, ppm): 6 10.70 (s, 1H, Hd), 9.88 (s, 1H, Hc), 9.50 (s, 1H, Hb/a), 7.90 (m,
4H, H5/8/10), 7.65 (d, J = 8.0 Hz, 4H, H4/9), 7.49 (d, J = 8.0 Hz, 2H, H2), 7.40 (d, J = 8.0 Hz, 2H, H3),
7.08 (s, br, 2H, H6/7), 6.98 (d, J = 8.0 Hz, 2H, H3), 3.12 (t, 8H), 1.53 (m, 8H), 1.27 (m, 8H) and 0.90 (t,
12H) (TBA"). *C NMR (150 MHz, DMSO-ds, ppm): 6 153.0 (CO), 152.3 (CO), 147.1 (C), 145.6 (C),
140.6 (C), 1395 (C), 134.1 (C), 1325 (C), 130.0 (C), 129.7 (C), 127.0 (CH), 126.2 (CH), 124.9 (CH),
124.1 (CH), 123.6 (CH), 123.4 (CH), 123.1 (CH), 122.9 (CH), 119.1 (CH), 117.3 (CH), 57.6, 23.1, 19.2
and 13.6 (TBA").
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d cba
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& S8 8888969 S S8 o
11.0 95 85 75 65 55 45 35 25 15 05
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Fig. S$26. 'H spectrum of (TBA)s[(SO4)s(L?)2](400 MHz, DMSO-ds, 300 K). * indicates signals of TBA.
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Fig. S27. *C NMR spectrum of complex (TBA)g[(SO4)s(L?).] (150 MHz, DMSO-ds, 300 K). * indicates

signals of TBA.
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Fig. S28. COSY spectra of (TBA)s[(S04)3(L?),] (400 MHz, DMSO-ds, 300 K).
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Fig. $29. DOSY spectrum of (TBA)s[(SO4)s(L?),] (400 MHz, DMSO-dg, 300 K).

The sphere's hydrodynamic radius was estimated according to the Stokes-Einstein Equation, D = kT/6zr,
where D is the diffusion constant, k is the Boltzmann's constant, T is the temperature, # is the viscosity of
solvents, and r is the radius. D = 6.72*10™ m%™, k = 1.38*10% NmK™, T = 300 K, 5 = 1.991*10° g
cm's™. r = kT/6z51D = 16.4 A. The radius of the optimized (TBA)s[(SO4)3(L?),] structure was 19.4 A.

$3.5 (TBA)12[(PO.)u(L°)4]

(TBA)3;PO, (11 pL, 0.625 mol/L; generated in situ from HsPO,4 and (TBA)OH in water) was added to a
suspension of L (10 mg, 0.007 mmol) in acetonitrile (1 mL). After stirring 3 h at room temperature, a clear
yellow solution was obtained. Slow vapor diffusion of diethyl ether into this solution provided product of
(TBA)1,[(PO.)4(L?),] within two weeks (yield > 90 %)."H NMR (400 MHz, DMSO-ds, ppm): 6 12.89 (s,
1H, NHd), 12.04 (s, 2H, NHc/b), 11.61 (s, 1H, Ha), 8.19 (s, br, 1H, H8), 8.04 (s, br, 1H, H5), 7.75 (d, J =
8.0 Hz, 2H, H4), 7.63 (d, J = 8.0 Hz, 2H, H10), 7.44 (d, J = 8.0 Hz, 2H, H9), 7.30 (d, J = 8.0 Hz, 2H, H1),
6.96(m, 2H, H6/7), 6.83 (d, J = 8.0 Hz, 2H, H2), 6.80 (d, J = 8.0 Hz, 2H, H3), 3.08 (t, 8H), 1.50 (m, 8H),
1.26 (m, 8H) and 0.88 (t, 12H) (TBA®). *C NMR (150 MHz, DMSO-ds, ppm): d 153.5 (CO), 153.2 (CO),
148.2 (C), 145.9 (C), 141.8 (C), 139.7 (C), 132.6 (C), 131.3 (C), 128.7 (C), 124.1 (C), 123.6 (CH), 123.1
(CH), 122.9 (CH), 121.3 (CH), 120.8 (CH), 118.5 (CH), 117.4 (CH), 113.8 (CH), 89.9 (C=), 87.5 (C=),57.5,
23.1, 19.2 and 13.5 (TBA").
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Fig. S30. *H spectrum of complex (TBA)12[(PO4)a(L>)] (400 MHz, DMSO-dg, 300 K). * indicates signals

of TBA.
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Fig. S31. 23C spectrum of complex (TBA)12[(PO4)a(L3)4] (150 MHz, DMSO-dg, 300 K). * indicates signals

of TBA.
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Fig. $32. DOSY spectrum of (TBA)1,[(PO4)4(L%)4](400 MHz, DMSO-ds, 300 K).
The sphere's hydrodynamic radius was estimated according to the Stokes-Einstein Equation, D = kT/6zr,
where D is the diffusion constant, k is the Boltzmann's constant, T is the temperature, # is the viscosity of

solvents, and r is the radius. D = 4.30*10™ m%™, k = 1.38*10% NmK™, T = 300 K, 5 = 1.991*10? g
cm™s™. r = KT/6z5yD = 25.7 A. The radius of the optimized (TBA)1,[(PO.)s(L®)4] structure was 23.8 A.
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Fig. $33. *H-'"H COSY spectrum of (TBA)12[(PO4)4(L>)4] (400 MHz, DMSO-ds, 300 K).

$3.6 (TBA)s[(SO4)s(L)z]

(TBA),SO, (16 pL, 0.625 mol/L;) was added to a suspension of L® (10 mg, 0.007 mmol) in acetonitrile
(1 mL). After stirring 3 h at room temperature, a clear yellow solution was obtained. Slow vapor diffusion
of diethyl ether into this solution provided product (TBA)s[(SO.)s(L%),] within two weeks (yield > 90 % ).
'H NMR (400 MHz, DMSO-dg, ppm): J 10.56 (s, 1H, NHd), 9.94 (s, 1H, NHc), 9.38 (s, 1H, Hb/a), 7.87 (m,
4H, H5/8/10), 7.62 (d, J=8.0 Hz, 4H, H4/9), 7.41 (d, J=8.0 Hz, 2H, H1), 7.27 (d, J=8.0 Hz, 2H, H2), 7.07 (s,
br, 2H, H6/7), 6.88 (d, J=8.0 Hz, 2H, H3), 3.11 (t, 8H), 1.52 (m, 8H), 1.27 (m, 8H) and 0.90 (t, 12H)
(TBA"). C NMR (150 MHz, DMSO-ds, ppm): § 152.8 (CO), 152.3 (CO), 147.1 (C), 145.7 (C), 140.8 (C),
140.7 (C), 132.8 (C), 131.9 (C), 129.8 (C), 124.9 (C), 123.8 (CH), 123.6 (CH), 123.4 (CH), 122.8 (CH),
118.5 (CH), 117.6 (CH), 117.3 (CH), 115.1 (CH), 89.7 (C=), 88.0 (C=), 57.6, 23.1, 19.3 and 13.6 (TBA").
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Fig. S34. *H spectrum of (TBA)s[(SO4)s(L%),] (400 MHz, DMSO-dg, 300 K). * indicates signals of TBA.
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Fig. $35. *C NMR spectrum of complex (TBA)s[(SO4)3(L%),] (150 MHz, DMSO-ds, 300 K). * indicates

signals of TBA.
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Fig. S36. DOSY spectra of (TBA)s[(SO4)s(L°);] (400 MHz, DMSO-ds, 300 K).

The sphere's hydrodynamic radius was estimated according to the Stokes-Einstein Equation, D = kT/6zr,
where D is the diffusion constant, k is the Boltzmann's constant, T is the temperature, # is the viscosity of
solvents, and r is the radius. D = 5.47*10™ m%™, k = 1.38*10% NmK™, T = 300 K, 5 = 1.991*102 g
cm™s™. R = kT/6z5D = 20.2 A. The radius of the optimized (TBA)g[(L*)2(SO.)s] structure was 22.7 A.
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Fig. S37. COSY spectra of (TBA)s[(SO4)s(L?),] (400 MHz, DMSO-ds, 300 K).
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$3.7 Synthesis of (TBA)s[(SO4)3(LY)2], (TBA)s[(SO4)s(L?),] and (TBA)G[(SO.)s(L3),] by self-sorting.
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Fig. S38. 'H NMR spectrum of self-sorted (TBA)s[(SOs)s(LY),], (TBA)[(SOu)s(L?),] and
(TBA)s[(SO4)3(L3),] (400 MHz, DMSO-dg, 300 K). * (red) indicates signals of TBA, * (light green)

indicates signals of (TBA)s[(SO4)3(L1)], + (blue) indicates signals of (TBA)[(SO4)s(L?).], * (purple)
indicates signals of (TBA)s[(SO4)s(L3).].
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Fig. $39. *C NMR spectra of sulfate complexes (TBA)s[(SO.)s(L).]: &) with L3, b) with L% c) with L*; d)
complex mixture from ligands L, L? and L* (150 MHz, 300 K, DMSO-d).
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Fig. S40. Section of the *C NMR spectra of sulfate complexes (TBA)s[(SO4)s(L).]: &) with L*; b) with L?;
¢) with L*; d) complex mixture from ligands L*, L? and L* (150 MHz, 300 K, DMSO-d).
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Fig. S41. DOSY spectra of self-sorted (TBA)s[(SO4)3(LY)], (TBA)s[(SO.)3(L?),] and (TBA)[(SO4)3(L3),]
(400 MHz, DMSO-ds, 300 K). Diffusion coefficient for (TBA)s[(SO4)s(L*),], D = 5.128 x 10 m*™*, log
D=-10.29, r = 21.5 A, for (TBA)s[(SO4)3(L?),] D = 5.495 x10 ™ m’s™ , log D = —10.26, r = 20.0 A, for
(TBA)6[(SO4)3(LY),] D = 6.310 <10 m*™ , log D = -10.20, r = 17.5 A. = (light green) indicates signals
of (TBA)s[(SO4)s(LY)], * (blue) indicates signals of (TBA)s[(SO4)s(L?)-], * (purple) indicates signals of
(TBA)[(SOx)s(L)z].

$3.8 Synthesis of (TBA)12[(PO.)a(L)a], (TBA)12[(PO.)a(L)a] and (TBA)1[(POL)4(L3)s] by self-sorting.
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Fig. S42. *H spectrum of self-sorted complex mixture (TBA)1[(PO4)a(LN)a], (TBA)1[(PO4)4(L?)] and
(TBA)[(POL)4(L),] (400 MHz, DMSO-ds, 300 K). * (red) indicates signals of TBA, * (light green)
indicates signals of (TBA)1[(PO4)s(LY)4], * (blue) indicates signals of (TBA)[(PO4)a(L?)4], * (purple)
indicates signals of (TBA)15[(PO.)4(L)4].
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Fig. S43. 3C NMR spectra of phosphate complexes (TBA)12[(PO.)a(L).]: a) with L*; b) with L?; ¢) with L;
d) complex mixture from ligands L*, L? and L® (150 MHz, 300 K, DMSO-ds).
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Fig. S44. Section of the **C NMR spectra of phosphate complexes (TBA)1,[(PO4)s(L)4]: &) with L*; b) with
L% c) with L?; d) complex mixture from ligands L*, L? and L® (150 MHz, 300 K, DMSO-d).
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Fig. S45. DOSY spectra of self-sorted complex mixture (TBA)12[(PO4)a(LY)a], (TBA)15[(PO4)a(L?).] and
(TBA)[(POL)4(L)4] (400 MHz, DMSO-dg, 300 K). Diffusion coefficient for (TBA)1,[(PO4)4(L3).], D =
4365 10" m%s™, log D =—-10.36, r = 25.3 A, for (TBA)12[(PO.)4(L?)4] D = 4.898 <10 m’s™ , log D =
-10.31, r =22.5 A, for (TBA)1,[(PO.)4(L")s] D = 5.495 x10 ™™ m*s™ , log D =-10.26, r = 20.0 A. * (light
green) indicates signals of (TBA)y[(POs)4(LY)4], * (blue) indicates signals of (TBA)1[(PO4)(L)], *
(purple) indicates signals of (TBA)12[(PO4)a(L?)a].
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S4. HR ESI-MS studies.
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Fig. S46. HR ESI-MS spectrum of (TBA)s[(SO.)s(L"),] with measured and simulated peaks (negative
ions).
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Fig. S47. HR ESI-MS spectrum of (TBA)1,[(PO4)s(L")4] with measured and simulated peaks (negative

ions).
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Fig. S48. HR ESI-MS spectrum of (TBA)s[(SO4)s(L?),]. Measured and simulated peaks (negative ions).
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Fig. S49. HR ESI-MS spectrum of (TBA)1,[(PO4)s(L)4]. Measured and simulated peaks (negative ions).
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Fig. S50. HR ESI-MS spectrum of (TBA)s[(SO4)s(L3)]. Measured and simulated peaks (negative ions).
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Fig. S51. HR ESI-MS spectrum of (TBA)1[(PO4)4(L?)s]. Measured and simulated peaks (negative ions).
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Fig. S52. HR ESI-MS spectrum of the complex mixture of (TBA)s[(SO4)s(LY)2], (TBA)s[(SO.)s(L?),] and
(TBA)s[(SO4)3(L>),] with measured and simulated peaks (negative ions).
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Fig. S53. HR ESI-MS spectrum of the complex mixture of (TBA)12[(PO)4(LY)4], (TBA)1[(PO4)4(L?)4] and
(TBA)1[(PO4)4(L>)4] with measured and simulated peaks (negative ions).

S5. Simulated molecular model of complexes.

The geometries of the sulfate complexes were optimized at B97-3c level® of theory as implemented in
the ORCA package (version 4.1.0)° while the phosphate complexes at semiempirical density functional
tight binding (DFTB) GFN-xTB* level using a stand-alone program xtb (version 6.1) from Prof. Grimme’s
group.” The initial geometry was built manually from the crystal structures of [(SO4)s(LY),]® and
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Fig. S54. Optimized structures of the “pinwheel” helical sulfate complexes: (a) [(SO4)s(LY)2]%; (b, c) top
and side view of the space-filling representation of [(SO.)s(L%)2]%". (d) [(SO4)s(L?),]%; (e, ) top and side
view of the space-filling representation of [(SO4)s(L?)-]1°". (9) [(SO4)s(L?)2]°; (h, i) top and side view of the
space-filling representation of [(SO.)3(L%),]®". Only a AAA enantiomer is shown.

Fig. S55. The distance between ligands (a) [(SO4)s(LY)2]1°; (b) [(SO.)s(L?)2]%; (€) [(SO4)s(L3),]°.
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Fig. S56. Optimized structures of the tetrahedral complexes: (a) [(PO)4(LY)a]**; (b) [(POL)4(LA)a]**; (c)
[(POLAL"%; and space-filling representations: (d) [(PO.4(LY"*; (€) [(POL)4LAI™: (P
[(POL)4(L?)4]**". Only a AAAA enantiomer is shown.

Fig. S57. Measured radius of the assemblies in the DFT-optimized structures: (a) [(SO4)s(L?)2]%; (b)
[(SO4)s(L%)21%; (©) [(POLa(L?)a] 5 (d) [(POL)a(L)a]™ .

S6. Volume calculations
A virtual probe with the minimum radius such that it would not exit the cavity of the largest structure
was employed. The cavity volume of [(PO.).(LY).]** is 77.07 A% (1.4 Probe) (Figure S58). Because it was

observed that the larger probe could not enter the host cavity during the calculation.
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Primary grid spacing: 0.100

Maximum number of volume-refinement cycles: 30
Min size of secondary grid: 3

Grid for plot files: 0.100

Fig. S58. Cavity surface (gray) of [(PO)a(L")4]**.

A virtual probe with the minimum radius such that it would not exit the cavity of the largest structure
was employed. The cavity volume of the [(L?)4(PO4)4] is 79.19 A® (1.4 Probe, water-sized) (Fig. 59).

Primary grid spacing: 0.100

Maximum number of volume-refinement cycles: 30

Min size of secondary grid: 3

Grid for plot files: 0.100

Fig. S59. Cavity surface (gray) of [(PO)a(L%)4]**".
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A virtual probe with the minimum radius such that it would not exit the cavity of the largest structure
was employed. The cavity volume of the [(L®)4(PO4)4] is 68.38 A% (1.4 Probe, water-sized) (Fig. S60).

Primary grid spacing: 0.100

Maximum number of volume-refinement cycles: 30

Min size of secondary grid: 3

Grid for plot files: 0.100

Fig. S60. Cavity surface (gray) of [(PO.)a(L%)]**.
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