Supplemental material

Designing a cross-linked redox network for a mediated enzyme-based

electrode

Motaher M. Hossain, Jannatul Morshed, and Seiya Tsujimura*

Division of Materials Science, Faculty of Pure and Applied Science, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki 305-5358, Japan.

Materials

FAD-GDH from *Aspergillus terreus* and glucose oxidase from *Aspergillus* species were obtained from Ikeda Tohka Industries Co., Ltd. and Toyobo Japan. The concentration of FAD-GDH and GOx was 25.2 mg mL⁻¹. Poly (ethylene glycol) diglycidyl ether (PEGDGE, Mn 500), and azure A chloride was purchased from Sigma-Aldrich Co. Methylene blue hydrate and Toluidine blue (Basic blue 17) were purchased from Tokyo Chemical Industry Co., Ltd., Japan. Thionine acetate, D(+)-glucose, potassium dihydrogen phosphate (KH₂PO₄), and dipotassium hydrogen phosphate (K₂HPO₄) were purchased from Fujifilm Wako Pure Chemical Corporation, Japan. A phosphate buffer (100 mM (M = mol dm⁻³), pH 7.0) was prepared by mixing KH₂PO₄ and K₂HPO₄. A glucose solution was prepared using the phosphate buffer (100 mM, pH 7.0) and kept overnight at 4 °C to achieve mutarotation equilibrium.

Figure S1 Amperometric glucose oxidation current at 500 s, at 0.2 V vs. Ag|AgCl (KCl sat.) on FAD-GDH/PEGDGE/TH electrode (black bar) and FAD-GDH/Glutaraldehyde(GA)/TH electrode (blue bar). 200 mM of glucose in 100 mM phosphate buffer (pH 7.0), wt% ratio of FAD-GDH:PEGDGE(or GA):TH = 45:25:30, loading 635 μ g/cm², curing time 30 hours for FAD-GDH/PEGDGE/TH and 10 hours for FAD-GDH/GA/TH .

Figure S2 Midpoint potential vs. pH of cross-linked TH on FAD-GDH/PEGDGE/TH electrode (red circle) and free TH in solution (black square).

Figure S3 Cyclic voltammograms of FAD-GDH/PEGDGE/TH (black curve), GOx/PEGDGE/TH (green curve) and FAD-GDH/TH (orange curve) electrode. 200 mM glucose in 100 mM phosphate buffer, scan rate 5 mV s⁻¹, and 25 °C.

Figure S4 Dependence of [A] wt% ratio (molar ratio) of TH and PEGDGE, [B] loading amount, and [C] curing time on glucose oxidation current density of the FAD-GDH/PEGDGE/TH electrode at 0.2 V vs. Ag|AgCl (KCl sat.), 200 mM glucose in 100 mM phosphate buffer, pH 7.0 and 25 °C.

Figure S5 FAD-GDH/PEGDGE/TH-immobilized electrode performance at various (A) pHs (under 25 °C) and (B) temperatures (pH 7.0). Amperometric glucose oxidation current density at 0.2 V vs. Ag|AgCl (KCl sat.). 200 mM glucose. Wt% ratio of FAD-GDH:PEGDGE:TH = 45:25:30, 30 hours curing time, loading 635 μ g/cm².

Figure S6 Storage stability test of FAD-GDH/PEGDGE/TH-modified electrodes stored at 4 (red) and at 25 °C (black). Amperometric glucose oxidation current at 500 s, at 0.2 V vs. Ag|AgCl (KCl sat.), 200 mM of glucose in 100 mM phosphate buffer (pH 7.0), wt% ratio of FAD-GDH:PEGDGE :TH = 45:25:30, loading 635 µg/cm², and 25°C.

Immobilizati on type [*]	Enzyme	Mediator	Electrode	Enzyme Loading (µg cm ⁻²)	Operational Conditions: pH/glucose conc./mM	Current Density (mA cm ⁻²)	Current Production Efficiency (µA µg ⁻¹)	Reference
A	FAD-CDH	Toluidine blue	Graphite	307	7.8/120	0.056	0.18	1
Α	FAD-GDH	Thionine	Buckypaper with MWCNT	353	7/50	3.7	10.48	2
В	FAD-GDH	2- Carboxyethy I-1,4-NQ	GC	1126	6.0/50	1.2	1.07	3
В	FAD-GDH	1,2-NQ-4- glycidyl	GC with MWCNT	367	6.5/22	0.8	2.18	4
С	FAD-GDH	1,2-NQ-4- glycidyl		1980	6.5/210	0.6	0.30	
D	FAD-GDH	Thionine	GC	282	7.0/200	0.4	1.42	This work

* immobilization type

References:

1 Poller et al., *Electrochim. Acta*, 2013, **110**, 152–158.

2 Fritea et al., J. Mater. Chem. A, 2019, 7, 1447-1450.

3 Hou et al., *Electrochim. Acta*, 2016, **211**, 663–670.

4 Milton et al., Chem. Sci., 2015, 6, 4867-4875.