Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2021

Supporting Information

For

Copper-Catalyzed Monochloromethylazidation to Access

Transformable Terminal Alkyl Chlorides Using Stoichiometric

BrCH₂Cl

Ya-Xuan Zhang, Kang-Jie Bian, Ruo-Xing Jin, Chi Yang and Xi-Sheng Wang*

Hefei National Laboratory for Physical Sciences at the Microscale and Department

of Chemistry, Centers for Excellence in Molecular Synthesis of CAS, University of

Science and Technology of China

96 Jinzhai Road, Hefei, Anhui 230026, China

xswang77@ustc.edu.cn.

Table of Contents

General Information	S3
Tables of the Optimization of Reaction Conditions	S4
Temperature Screening	S4
Copper Catalyst Screening	S4
Ligand Screening	S5
Base Screening	S 6
Solvent Screening	S7
Reaction Conditions Screening	S7
Finnal Variation	S 8
Preparation of Styrenes	S9
General Procedure for Copper-Catalyzed Monochloro-	
methylazidation	S10
Large Scale Experiment	S23

Mechanistic Studies	S24
Monochloromethylazidation of the Estrone Derivative	S28
Derivatizations of Products	S29
References	S37
¹ H, ¹³ C, and ¹⁹ F NMR Spectra	S38

General Information:

NMR spectra were recorded on Bruker-400 MHz or Bruker-500 MHz NMR spectrometer (400 MHz or 500 MHz for 1H; 101 MHz or 126 MHz for ¹³C and 376 MHz or 471 MHz for ¹⁹F {¹H, ¹3C decoupled}). ¹H NMR spectra were referenced relative to internal Si(Me)₄ (TMS) at δ 0.00 ppm or CDCl₃ at δ 7.26 ppm. ¹³C NMR spectra were recorded at ambient temperature on Bruker-400 (101 MHz) or Bruker-500 (126 MHz) spectrometers and are referenced relative to CDCl₃ at δ 77.16 ppm. The ¹³C NMR spectra were obtained with ¹H de-coupling. Data for ¹H, ¹³C, ¹⁹F NMR are recorded as follows: chemical shift (δ , ppm), multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet, q = quartet, quint = quintet, br = broad), integration, and coupling constant (Hz). High resolution mass spectra were recorded on P-SIMS-Gly of Bruker Daltonics Inc. using ESI-TOF (electrospray ionization-time of flight) or Micromass GCT using EI (electron impact). Bromochloromethane was obtained from Energy and used as received. Cupric acetylacetonate was obtained from Energy and used as received. Tris(2-dimethylaminoethyl)amine (L1, Me6TREN) was obtained from Energy and used as received. Azidotrimethylsilane was obtained from Energy and used as received. Potassium carbonate was purchased from Sinopharm and used as received. Diisopropylamine was purchased from Adamas and used as received. Anhydrous methanol was purchased from Infinity Scientific and used as received.

Tables of the Optimization of Reaction Conditions

Ph 1a	+	$\begin{array}{c} Cu(OF\\ \\ BrCH_2CI & \frac{L1}{TMSF}\\ K_2CO_3 \end{array}$	H) ₂ (10 mol%) (<u>20 mol%)</u> N ₃ (1.5 equiv) , CH ₃ OH, T °C	Ph	N ₃ CH ₂ CI
entry	T (°C)	yield (%) ^b	entry	T (°C)	yield (%) ^b
 1	40	nd	5	80	30
2	50	nd	6	90	38
3	60	nd	7	100	47
4	70	25	8	110	44 (46 ^c)

 Table S1. Temperature Screening^a, related to Table 1.

^a Unless otherwise noted, the reaction conditions as follows: **1a** (0.2 mmol, 1.0 equiv), BrCH₂Cl (0.4 mmol, 2.0 equiv), Cu(OH)₂ (0.02 mmol, 10 mol%), **L1** (0.04 mmol, 20 mol%), TMSN₃ (0.3 mmol, 1.5 equiv), K₂CO₃ (0.24 mmol, 1.2 equiv), CH₃OH (1.0 mL), 12 h, N₂. ^b Yield determined by ¹H NMR using dibromomethane as internal standard. ^c Isolated yield. **L1**= Me₆TREN.

Ph	+ BrCH ₂ Cl	[Cu] (10 L1 (20 r TMSN ₃ (1. K ₂ CO ₃ , CH ₃ 0	mol%) nol%) 5 equiv) DH, 100	°C Ph 2a	∠CH₂CI
entry	[Cu]	yield (%) ^b	entry	[Cu]	yield (%) ^b
1	CuCN	63	18	CuO	nd
2	Cu ₂ O	57	19	CuSO ₄	nd
3	CuOAc	53	20	CuF ₂	43
4	CuSCN	72	21	CuCl ₂	26
5	CuCl	49	22	CuBr ₂	9
6	CuBr	51	23	Cu ₂ (OH) ₂ CO ₃	39
7	Cul	38	24	Cu(COO ^s Oct) ₂	29
8	Cu(PPh ₃) ₃ Br	44	25	Cu(COO ^s Bu) ₂	41
9	CuBr•Me ₂ S	48	26	Cu(hfacac) ₂ •xH ₂ O	75
10	CuTc	53	27	$Cu(CF_3CO_2)_2 \cdot H_2O$	33
11	Cu(CH ₃ CN) ₄ PF ₆	39	28	CuSO ₄ •5H ₂ O	nd
12	Cu(acac) ₂	79 (78 ^c)	29	CuF ₂ •2H ₂ O	48
13 ^d	Cu(acac) ₂	79 (78 ^c)	30	CuCl ₂ •2H ₂ O	37
14	Cu(hfacac) ₂	43	31	Cu(ClO ₄) ₂ •6H ₂ O	30
15	Cu(CF ₃ COCH ₂ COCH ₃) ₂	67	32	Cu(NO ₃) ₂ •H ₂ O	28
16	Cu(OAc) ₂	trace	33	Cu(BF ₄) ₂ •6H ₂ O	40
17	Cu(OTf) ₂	nd	34	Cu(OAc) ₂ •H ₂ O	39
18	Cu(OH) ₂	47			

 Table S2. Copper Catalyst Screening^a, related to Table 1.

^a Unless otherwise noted, the reaction conditions as follows: **1a** (0.2 mmol, 1.0 equiv), BrCH₂Cl (0.4 mmol, 2.0 equiv), [Cu] (0.02 mmol, 10 mol%), **L1** (0.04 mmol, 20 mol%), TMSN₃ (0.3 mmol, 1.5 equiv), K₂CO₃ (0.24 mmol, 1.2 equiv), CH₃OH (1.0 mL),100 °C, 12 h, N₂. ^b Yield determined by ¹H NMR using dibromomethane as internal standard. ^c Isolated yield. ^d TMSN₃ (0.24 mmol, 1.2 equiv) was used. **L1**= Me₆TREN.

Ph 1a	+ BrC	H ₂ CI $Cu(aca)$ H ₂ CI $TMSN$ K ₂ CO ₃ , C	c) ₂ (10 mol%) <u>20 mol%) I₃ (1.2 equiv) CH₃OH, 100 °</u>	c Ph	N ₃ CH ₂ CI 2a
entry	L	yield (%) ^b	entry	L	yield (%) ^b
1	NEt ₃	nd	7	bpy	nd
2	TMEDA	trace	8	dtbpy	nd
3	PMDTA	trace	9	phen	nd
4	L1	79	10	PPh_3	nd
5	L2	trace	11	dppp	nd
6	L3	32			

Table S3. Ligand	Screening ^{<i>a</i>} ,	related to	Table 1	
------------------	---------------------------------	------------	---------	--

^aUnless otherwise noted, the reaction conditions as follows: **1a** (0.2 mmol, 1.0 equiv), BrCH₂Cl (0.4 mmol, 2.0 equiv), Cu(acac)₂ (0.02 mmol, 10 mol%), **L** (0.04 mmol, 20 mol%), TMSN₃ (0.24 mmol, 1.2 equiv), K₂CO₃ (0.24 mmol, 1.2 equiv), CH₃OH (1.0 mL),100 °C, 12 h, N₂. ^bYield determined by ¹H NMR using dibromomethane as internal standard.

Ph 1	+ BrC	Cu(a CH ₂ CI <u>L</u> TMS base,	cac) ₂ (10 m <mark>1</mark> (20 mol% SN ₃ (1.2 eq CH ₃ OH, 1	hol%) b) uiv) 00 °C Ph	N ₃ └───CH ₂ CI 2a
entry	base	yield (%) ^b	entry	base	yield (%) ^b
1	LiOAc	31	18	<i>t</i> BuOLi	65
2	NaOAc	22	19	<i>t</i> BuONa	45
3	KOAc	39	20	<i>t</i> BuOK	58
4	CsOAc	33	21	CH ₃ OLi	62
5	NaHCO ₃	58	22	CH ₃ ONa	38
6	KHCO3	50	23	CH ₃ OK	32
7	Na ₂ HPO ₄	13	24	CsF	26
8	K ₂ HPO ₄	57	25	Et ₃ N	47
9	Li ₂ CO ₃	44	26	TMEDA	36
10	Na ₂ CO ₃	72	27	DIPEA	61
11	K ₂ CO ₃	79	28	DABCO	6
12	Cs_2CO_3	78	29	DMAP	15
13	Na ₃ PO ₄	15	30	TMG	68
14	K ₃ PO ₄	62	31	DBU	61
15	LiOH•H ₂ O	67	32	PMP	54
16	NaOH	66	33	HMTA	29
17	КОН	55	34	proton sponge	47

 Table S4. Base Screening^a, related to Table 1.

^aUnless otherwise noted, the reaction conditions as follows: **1a** (0.2 mmol, 1.0 equiv), BrCH₂Cl (0.4 mmol, 2.0 equiv), Cu(acac)₂ (0.02 mmol, 10 mol%), **L1** (0.04 mmol, 20 mol%), TMSN₃ (0.24 mmol, 1.2 equiv), base (0.24 mmol, 1.2 equiv), CH₃OH (1.0 mL),100 °C, 12 h, N₂. ^bYield determined by ¹H NMR using dibromomethane as internal standard.

Ph 1	+ BrCH	$\begin{array}{c} Cu(aca)\\ I_2CI & \underbrace{L1}\\ TMSN\\ K_2CO_3, \end{array}$	ac) ₂ (10 mol% I (20 mol%) N ₃ (1.2 equiv) solvent, 100	$\sim ^{\circ} C$ Ph	N ₃ CH ₂ CI 2a
entry	solvent	yield (%) ^b	entry	solvent	yield (%) ^b
1	DCE	nd	7	CH ₃ CN	5
2	MeOH	79	8	DME	nd
3	EtOH	61	9	DMF	nd
4	HFIP	nd	10	DMA	nd
5	THF	nd	11	DMSO	nd
6	1,4-dioxane	nd	12	NMP	nd

Table S5. Solvent Screening^a, related to Table 1.

^aUnless otherwise noted, the reaction conditions as follows: **1a** (0.2 mmol, 1.0 equiv), BrCH₂Cl (0.4 mmol, 2.0 equiv), Cu(acac)₂ (0.02 mmol, 10 mol%), **L1** (0.04 mmol, 20 mol%), TMSN₃ (0.24 mmol, 1.2 equiv), K₂CO₃ (0.24 mmol, 1.2 equiv), solvent (1.0 mL),100 °C, 12 h, N₂. ^bYield determined by ¹H NMR using dibromomethane as internal standard.

Ph 1a	+ BrCH ₂ Cl -	Cu(acac) ₂ (10 mol%) <u>L1 (20 mol%)</u> TMSN ₃ (1.2 equiv) K ₂ CO ₃ (x equiv), CH ₃ OH, T °C	Ph 2a
entry	х	T (°C)	yield (%) ^b
1	1.2	100	79
2	2.0	100	80
3	2.0	90	85
4	2.0	80	84
5	2.0	70	85
6	2.0	60	86

Table S6. Reaction Conditions Screening^a, related to Table 1.

^aUnless otherwise noted, the reaction conditions as follows: **1a** (0.2 mmol, 1.0 equiv), Cu(acac)₂ (0.02 mmol, 10 mol%), **L1** (0.04 mmol, 20 mol%), TMSN₃ (0.24 mmol, 1.2 equiv), CH₃OH (1.0 mL), 12 h, N₂. ^bYield determined by ¹H NMR using dibromomethane as internal standard.

Table S7. Fina	Variation ^a ,	related to	Table 1.
----------------	--------------------------	------------	----------

Ph 1a	$\begin{array}{c} & & & & & & & & & & $	N ₃ CH ₂ CI 2a
entry	conditions	yield (%) ^b
1	standard conditons	86
2	Cu(acac) ₂ (5 mol%) was used	58
3	BrCH ₂ CI (1.5 equiv) was used.	85
4	t = 24 h	86
5	K_2CO_3 (3.0 equiv) was used.	87
6	K_2CO_3 (3.0 equiv) and t = 24 h were used.	90 (90 [°])
7	NaN ₃ instead of TMSN ₃	83
8	TsN ₃ instead of TMSN ₃	61
9	(PhO) ₂ P(O)N ₃ instead of TMSN ₃	70

^aUnless otherwise noted, the reaction conditions as follows: **1a** (0.2 mmol, 1.0 equiv), $Cu(acac)_2$ (0.02 mmol, 10 mol%), **L1** (0.04 mmol, 20 mol%), TMSN₃ (0.24 mmol, 1.2 equiv), K_2CO_3 (0.4 mmol, 2.0 equiv), CH_3OH (1.0 mL), 60 °C, 12 h, N_2 . ^bYield determined by ¹H NMR using dibromomethane as internal standard. ^cIsolated yield.

Preparation of Alkenes

The styrenes 1b-1d, 1f-1h, 1j, 1p-1r, 1u, 1ac-1ae were purchased and used directly from commercial sources, and substrates 1a, 1e, 1i, 1k-1l, 1o, 1s-1t, 1v-1ab, 1af-1ak were prepared in accordance with method described in the reference.¹ 1m-1n, Estrone Derivative 6 were prepared in accordance with method described in the reference.² 1ap was prepared in accordance with method described in the reference.³

General Procedure for Copper-Catalyzed Monochloromethylazida

tion of Alkenes

To a 25 mL of Schlenk tube was added Cu(acac)₂ (5.2 mg, 0.02 mmol, 10 mol%), $K_2CO_3(82.9 \text{ mg}, 0.60 \text{ mmol}, 3.0 \text{ equiv})$ or DIPA (100 μ L, 0.60 mmol, 3.0 equiv) under air atmosphere. The mixture was evacuated and backfilled with N₂ (3 times), then methanol (1.0 mL), **1** (0.2 mmol, 1.0 equiv), BrCH₂Cl (26 μ L, 0.4 mmol, 2.0 equiv), **L1** (11 μ L, 0.04 mmol, 20 mol%) and TMSN₃ (32 μ L, 0.24 mmol, 1.2 equiv) were added subsequently. The Schlenk tube was then sealed with a Teflon lined cap and put into a preheated oil bath (60 - 100 °C). After stirring for 24 h, the reaction mixture was cooled to room temperature. The reaction mixture was diluted with EtOAc and filtered through a pad of celite. The filtrate was concentrated under vacuum and purified by flash column chromatography on silica gel to give the product **2**.

4-(1-azido-3-chloropropyl)-1, 1'-biphenyl (2a)

The product **2a** was purified with silica gel chromatography (PE/EA = 100:1) as a white solid (48.9 mg, 90% yield); **mp** 31-32 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.67 – 7.55 (m, 4H),

7.50 – 7.35 (m, 5H), 4.82 (dd, J = 8.6, 5.9 Hz, 1H), 3.70 (ddd, J = 11.1, 7.9, 5.3 Hz, 1H), 3.54 (dt, J = 11.3, 5.9 Hz, 1H), 2.34 – 2.23 (m, 1H), 2.20 – 2.08 (m, 1H). ¹³**C NMR** (101 MHz, CDCl₃) δ 141.7, 140.5, 137.6, 129.0, 127.9, 127.7, 127.5, 127.2, 63.0, 41.5, 39.0. **HRMS** (ESI) m/z: [M + H - N₂]⁺ Calcd for C₁₅H₁₅ClN: 244.0893; Found 244.0911.

(1-azido-3-chloropropyl)benzene (2b)

The product **2b** was purified with silica gel chromatography (PE/EA = 100:1) as a colorless oil (30.5 mg, 78% yield). ¹H **NMR** (400 MHz, CDCl₃) δ 7.46 – 7.29 (m, 5H), 4.77 (dd, *J* = 8.6,

5.8 Hz, 1H), 3.67 (ddd, J = 11.2, 8.0, 5.3 Hz, 1H), 3.49 (dt, J = 11.3, 5.9 Hz, 1H), 2.30 – 2.19 (m, 1H), 2.15 – 2.03 (m, 1H). ¹³**C NMR** (101 MHz, CDCl₃) δ 138.8, 129.2, 128.8, 127.1, 63.2, 41.5, 39.1. **HRMS** (ESI) m/z: [M + H - N₂]⁺ Calcd for C₉H₁₁ClN: 168.0580; Found 168.0590.

1-(1-azido-3-chloropropyl)-4-methylbenzene (2c)

The product **2c** was purified with silica gel chromatography (PE/EA = 100:1) as a colorless oil (36.5 mg, 87% yield). ¹H **NMR** (400 MHz, CDCl₃) δ 7.22 (s, 4H), 4.73 (dd, *J* = 8.6, 5.9

Hz, 1H), 3.65 (ddd, J = 11.0, 7.9, 5.3 Hz, 1H), 3.49 (dt, J = 11.4, 5.9 Hz, 1H), 2.37 (s, 3H), 2.30 – 2.18 (m, 1H), 2.15 – 2.02 (m, 1H). ¹³**C** NMR (101 MHz, CDCl₃) δ 138.6, 135.6, 129.8, 127.0, 63.0, 41.6, 39.0, 21.3. **HRMS** (ESI) m/z: [M + H - N₂]⁺ Calcd for C₁₀H₁₃ClN: 182.0737; Found 182.0746.

1-(1-azido-3-chloropropyl)-4-(tert-butyl)benzene (2d)

The product **2d** was purified with silica gel chromatography (PE/EA = 100:1) as a colorless oil (47.3 mg, 94% yield). ¹H **NMR** (400 MHz, CDCl₃) δ 7.45 – 7.36 (m, 2H), 7.28 – 7.22

(m, 2H), 4.73 (dd, J = 8.6, 5.8 Hz, 1H), 3.65 (ddd, J = 11.1, 7.9, 5.4 Hz, 1H), 3.49 (dt, J = 11.3, 5.9 Hz, 1H), 2.29 – 2.18 (m, 1H), 2.14 – 1.99 (m, 1H), 1.33 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 151.7, 135.6, 126.7, 126.0, 62.9, 41.6, 39.0, 34.8, 31.4. HRMS (ESI) (m/z): [M + H - N₂]⁺ Calcd for C₁₃H₁₉ClN: 224.1206; Found 224.1215.

1-(1-azido-3-chloropropyl)-4-fluorobenzene (2e)

The product **2e** was purified with silica gel chromatography (PE/EA = 50:1) as a colorless oil (32.0 mg, 75% yield). ¹H **NMR** (400 MHz, CDCl₃) δ 7.35 – 7.29 (m, 2H), 7.14 – 7.06 (m, 2H), 4.76 (dd, *J* = 8.7, 5.8 Hz, 1H), 3.66 (ddd, *J* = 11.2,

8.0, 5.1 Hz, 1H), 3.47 (ddd, J = 11.4, 6.3, 5.4 Hz, 1H), 2.28 – 2.16 (m, 1H), 2.11 – 2.00 (m, 1H). ¹³**C NMR** (101 MHz, CDCl₃) δ 162.8 (d, C-F, 1 $J_{C-F} = 247.6$ Hz), 134.5 (d, C-F, 4 $J_{C-F} = 3.2$ Hz), 128.8 (d, C-F, 3 $J_{C-F} = 8.2$ Hz), 116.1 (d, C-F, 2 $J_{C-F} = 21.6$ Hz), 62.5, 41.4, 39.1. ¹⁹F NMR (376 MHz, CDCl₃) δ -113.0. **HRMS** (ESI) m/z: [M + H - N₂]⁺ Calc for C₉H₁₀ClFN: 186.0486; Found 186.0498.

1-(1-azido-3-chloropropyl)-4-chlorobenzene (2f)

The product **2f** was purified with silica gel chromatography (PE/EA = 50:1) as a colorless oil (42.8 mg, 93% yield). ¹**H NMR** (400 MHz, CDCl₃) δ 7.41 – 7.35 (m, 2H), 7.32 – 7.23

(m, 2H), 4.76 (dd, J = 8.7, 5.8 Hz, 1H), 3.66 (ddd, J = 11.2, 8.1, 5.1 Hz, 1H), 3.47 (ddd, J = 11.3, 6.2, 5.3 Hz, 1H), 2.28 – 2.14 (m, 1H), 2.12 – 1.98 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 137.3, 134.6, 129.4, 128.4, 62.5, 41.3, 39.0. HRMS (ESI) m/z: [M + H - N₂]⁺ Calcd for C₉H₁₀Cl₂N: 202.0190; Found 202.0202.

1-(1-azido-3-chloropropyl)-4-bromobenzene (2g)

The product **2g** was purified with silica gel chromatography (PE/EA = 100:1) as a colorless oil (46.1 mg, 84% yield). ¹**H NMR** (400 MHz, CDCl₃) δ 7.58 – 7.50 (m, 2H), 7.25 – 7.18

(m, 2H), 4.75 (dd, J = 8.7, 5.7 Hz, 1H), 3.66 (ddd, J = 11.1, 8.1, 5.0 Hz, 1H), 3.47 (dt, J = 11.3, 5.8 Hz, 1H), 2.27 – 2.14 (m, 1H), 2.05 (ddt, J = 14.0, 8.1, 5.6 Hz, 1H). ¹³C **NMR** (101 MHz, CDCl₃) δ 137.8, 132.3, 128.7, 122.7, 62.5, 41.3, 39.0. **HRMS** (ESI) m/z: [M + H - N₂]⁺ Calcd for C₉H₁₀BrClN: 245.9685; Found 245.9693.

1-(1-azido-3-chloropropyl)-4-iodobenzene (2h)

The product **2h** was purified with silica gel chromatography (PE/EA = 100:1) as a colorless oil (51.4 mg, 80% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.79 – 7.71 (m, 2H), 7.13 – 7.02

(m, 2H), 4.73 (dd, J = 8.7, 5.7 Hz, 1H), 3.66 (ddd, J = 11.2, 8.1, 5.1 Hz, 1H), 3.47 (ddd, J = 11.3, 6.2, 5.4 Hz, 1H), 2.26 – 2.13 (m, 1H), 2.04 (ddt, J = 14.0, 8.1, 5.6 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 138.4, 138.3, 128.9, 94.4, 62.6, 41.3, 39.0. HRMS (ESI) m/z: [M + H - N₂]⁺ Calcd for C₉H₁₀ClIN: 293.9546; Found 293.9549.

1-(1-azido-3-chloropropyl)-4-methoxybenzene (2i)

The product **2i** was purified with silica gel chromatography (PE/EA = 50:1) as a colorless oil (32.5 mg, 72% yield). ¹H NMR (400 MHz, CDCl₃) ¹H NMR (400 MHz, CDCl₃) δ

7.30 – 7.23 (m, 2H), 6.97 – 6.88 (m, 2H), 4.71 (dd, J = 8.5, 6.0 Hz, 1H), 3.82 (s, 3H), 3.64 (ddd, J = 11.1, 7.8, 5.3 Hz, 1H), 3.47 (ddd, J = 11.1, 6.4, 5.5 Hz, 1H), 2.30 – 2.17 (m, 1H), 2.13 – 2.01 (m, 1H). ¹³**C NMR** (101 MHz, CDCl₃) δ 159.9, 130.5, 128.4, 114.5, 62.7, 55.4, 41.6, 38.9. **HRMS** (ESI) m/z: $[M + H - N_2]^+$ Calcd for $C_{10}H_{13}CINO$: 198.0686; Found 198.0696.

1-(1-azido-3-chloropropyl)-4-phenoxybenzene (2j)

The product **2j** was purified with silica gel chromatography (PE/EA = 50:1) as a colorless oil (47.8 mg, 83% yield). ¹H **NMR** (400 MHz, CDCl₃) δ 7.41 – 7.34 (m, 2H), 7.33 – 7.27 (m, 2H), 7.15 (t, J = 7.4 Hz, 1H), 7.10 – 7.00 (m, 4H), 4.76 (dd, J = 8.6, 5.8 Hz, 1H),

3.68 (ddd, J = 11.1, 7.9, 5.2 Hz, 1H), 3.51 (dt, J = 11.4, 5.9 Hz, 1H), 2.25 (ddt, J = 14.4, J)8.6, 5.8 Hz, 1H), 2.10 (ddt, J = 13.9, 7.9, 5.7 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 157.8, 156.7, 133.2, 130.0, 128.5, 123.9, 119.4, 119.0, 62.7, 41.5, 39.0. HRMS (ESI) m/z: $[M + H - N_2]^+$ Calcd for C₁₅H₁₅ClNO: 260.0842; Found 260.0854.

(4-(1-azido-3-chloropropyl)phenyl)(methyl)sulfane (2k)

The product **2k** was purified with silica gel chromatography (PE/EA = 50:1) as a colorless oil (39.2 mg, 81% yield). ¹H **NMR** (400 MHz, CDCl₃) δ 7.31 – 7.19 (m, 4H), 4.72 (dd, J

= 8.6, 5.9 Hz, 1H), 3.64 (ddd, J = 11.1, 7.9, 5.2 Hz, 1H), 3.47 (dt, J = 11.4, 5.9 Hz, 1H), 2.49 (s, 3H), 2.29 – 2.15 (m, 1H), 2.06 (ddt, J = 14.0, 7.9, 5.7 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 139.4, 135.2, 127.5, 126.9, 62.8, 41.4, 38.9, 15.7. HRMS (ESI) m/z: $[M + H - N_2]^+$ Calcd for C₁₀H₁₃ClNS: 214.0457; Found 214.0465.

1-(4-(1-azido-3-chloropropyl)phenyl)ethan-1-one (2l)

DIPA (3.0 equiv) was used as base. The product 21 was purified with silica gel chromatography (PE/EA = 20:1) as a colorless oil (29.0 mg, 61% yield). ¹H NMR (400 MHz,

CDCl₃) δ 8.03 – 7.96 (m, 2H), 7.48 – 7.40 (m, 2H), 4.84 (dd, J = 8.8, 5.6 Hz, 1H), 3.68 (ddd, J = 11.2, 8.3, 5.0 Hz, 1H), 3.49 (dt, J = 11.3, 5.7 Hz, 1H), 2.61 (s, 3H), 2.28 -2.17 (m, 1H), 2.08 (ddt, J = 14.1, 8.3, 5.5 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 197.5, 143.9, 137.4, 129.2, 127.2, 62.7, 41.2, 39.0, 26.8. HRMS (ESI) m/z: [M + H -N₂]⁺ Calcd for C₁₁H₁₃ClNO: 210.0686; Found 210.0696.

4-(1-azido-3-chloropropyl)benzonitrile (2m)

DIPA (3.0 equiv) was used as base. The product 2m was purified with silica gel chromatography (PE/EA = 20:1) as a colorless oil (29.6 mg, 67% yield). ¹H NMR (400 MHz,

CDCl₃) δ 7.71 (d, *J* = 8.2 Hz, 2H), 7.47 (d, *J* = 8.2 Hz, 2H), 4.85 (dd, *J* = 9.0, 5.4 Hz, 1H), 3.69 (ddd, *J* = 11.3, 8.4, 4.8 Hz, 1H), 3.49 (dt, *J* = 11.2, 5.5 Hz, 1H), 2.20 (ddt, *J* = 14.3, 9.0, 5.3 Hz, 1H), 2.06 (ddt, *J* = 14.0, 8.6, 5.3 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 144.2, 133.0, 127.7, 118.4, 112.7, 62.5, 41.0, 39.1. HRMS (ESI) m/z: [M + H - N₂]⁺ Calcd for C₁₀H₁₀ClN₂: 193.0533; Found 193.0542.

1-(1-azido-3-chloropropyl)-4-(methylsulfonyl)benzene (2n)

DIPA (3.0 equiv) was used as base. The product 2n was purified with silica gel chromatography (PE/EA = 3:1) as a colorless oil (32.8 mg, 60% yield). ¹H NMR (400 MHz,

CDCl₃) δ 8.02 – 7.94 (m, 2H), 7.59 – 7.52 (m, 2H), 4.89 (dd, *J* = 8.9, 5.4 Hz, 1H), 3.69 (dd, *J* = 11.2, 8.4, 4.9 Hz, 1H), 3.49 (dt, *J* = 11.2, 5.6 Hz, 1H), 3.07 (s, 3H), 2.28 – 2.14 (m, 1H), 2.07 (ddt, *J* = 14.1, 8.4, 5.3 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 145.2, 140.8, 128.3, 128.0, 62.4, 44.5, 41.1, 39.1. HRMS (ESI) m/z: [M + H- N₂]⁺ Calcd. for C₁₀H₁₃ClNO₂S: 246.0356; Found 246.0368.

Methyl 4-(1-azido-3-chloropropyl)benzoate (20)

DIPA (3.0 equiv) was used as base. The product **20** was purified with silica gel chromatography (PE/EA = 20:1) as a colorless oil (30.4 mg, 60% yield). ¹H NMR (400

MHz, CDCl₃) δ 8.11 – 8.04 (m, 2H), 7.45 – 7.37 (m, 2H), 4.83 (dd, J = 8.8, 5.6 Hz, 1H), 3.92 (s, 3H), 3.67 (ddd, J = 11.2, 8.2, 5.1 Hz, 1H), 3.48 (dt, J = 11.3, 5.7 Hz, 1H), 2.22 (dddd, J = 14.8, 8.9, 6.0, 5.1 Hz, 1H), 2.08 (ddt, J = 14.6, 8.3, 5.5 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 166.6, 143.8, 130.5, 130.4, 127.0, 62.7, 52.4, 41.2, 39.0. **HRMS** (ESI) m/z: [M + H - N₂]⁺ Calcd for C₁₁H₁₃ClNO₂: 226.0635; Found 226.0647.

1-(1-azido-3-chloropropyl)-4-(trifluoromethyl)benzene (2p)

DIPA (3.0 equiv) was used as base. The product 2p was purified with silica gel chromatography (PE/EA = 50:1) as a colorless oil (32.2 mg, 61% yield). ¹H NMR (400 MHz,

CDCl₃) δ 7.69 (d, *J* = 8.2 Hz, 2H), 7.48 (d, *J* = 8.1 Hz, 2H), 4.87 (dd, *J* = 8.8, 5.6 Hz, 1H), 3.70 (ddd, *J* = 11.3, 8.2, 4.9 Hz, 1H), 3.50 (dt, *J* = 11.3, 5.7 Hz, 1H), 2.24 (ddt, *J* = 14.4, 8.9, 5.6 Hz, 1H), 2.09 (ddt, *J* = 14.1, 8.5, 5.4 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) 142.9, 130.9 (q, C-F, 2*J*_{*C*-*F*} = 32.5 Hz), 127.4, 126.2 (q, C-F, 3*J*_{*C*-*F*} = 3.8 Hz), 124.0 (q, C-F, 1*J*_{*C*-*F*} = 272.3 Hz), 62.6, 41.2, 39.1. ¹⁹F NMR (376 MHz, CDCl₃) δ -62.7. HRMS (ESI) m/z: [M + H - N₂]⁺ Calcd for C₁₀H₁₀ClF₃N: 236.0454; Found 236.0455. **1-(1-azido-3-chloropropyl)-4-nitrobenzene (2q)**

$\begin{array}{c|c} & N_3 \\ & & CH_2CI \\ & & Q_2N \\ & & 2q \end{array}$

DIPA (3.0 equiv) was used as base. The product 2q was purified with silica gel chromatography (PE/EA = 50:1) as a colorless oil (20.2 mg, 42% yield). ¹H NMR (400 MHz,

CDCl₃) δ 8.30 – 8.24 (m, 2H), 7.58 – 7.49 (m, 2H), 4.92 (dd, *J* = 9.0, 5.3 Hz, 1H), 3.71 (ddd, *J* = 11.3, 8.5, 4.8 Hz, 1H), 3.51 (ddd, *J* = 11.2, 5.9, 5.3 Hz, 1H), 2.23 (dddd, *J* = 14.8, 9.0, 5.9, 4.7 Hz, 1H), 2.08 (ddt, *J* = 14.5, 8.5, 5.3 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 148.1, 146.2, 127.9, 124.4, 62.3, 41.0, 39.2. HRMS (ESI) m/z: [M + H - N₂]⁺ Calcd for C₉H₁₀ClN₂O₂ 213.0431; Found 213.0433.

1-(1-azido-3-chloropropyl)-2-methylbenzene (2r)

The product **2r** was purified with silica gel chromatography (PE/EA = 100:1) as a colorless oil (26.4 mg, 63% yield). ¹H **NMR** (400 MHz, CDCl₃) δ 7.34 (dd, *J* = 6.7, 2.2 Hz, 1H), 7.31 –

7.17 (m, 3H), 5.05 (dd, J = 9.1, 4.9 Hz, 1H), 3.72 (ddd, J = 11.1, 8.8, 4.9 Hz, 1H), 3.57 (dt, J = 11.0, 5.4 Hz, 1H), 2.41 (s, 3H), 2.19 (ddt, J = 14.4, 9.2, 5.1 Hz, 1H), 2.08 (ddt, J = 14.3, 8.8, 5.2 Hz, 1H). ¹³**C NMR** (101 MHz, CDCl₃) δ 136.9, 135.7, 131.1, 128.4, 126.8, 126.3, 59.4, 41.8, 38.4, 19.3. **HRMS** (ESI) m/z: [M + H - N₂]⁺ Calcd for C₁₀H₁₃ClN: 182.0737; Found 182.0747.

1-(1-azido-3-chloropropyl)-2-methoxybenzene (2s)

The product **2s** was purified with silica gel chromatography (PE/EA = 50:1) as a colorless oil (38.8 mg, 86% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.35 – 7.29 (m, 2H), 7.00 (t, *J* = 7.5 Hz, 1H),

6.93 (d, J = 8.5 Hz, 1H), 5.18 (dd, J = 8.7, 5.3 Hz, 1H), 3.87 (s, 3H), 3.67 (ddd, J = 11.0, 8.0, 6.4 Hz, 1H), 3.58 (dt, J = 11.2, 6.0 Hz, 1H), 2.29 – 2.12 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 156.9, 129.6, 127.4, 126.9, 121.0, 111.0, 57.5, 55.6, 41.8, 37.5. HRMS (ESI) m/z: [M + H - N₂]⁺ Calcd for C₁₀H₁₃ClNO: 198.0686; Found 198.0696.

1-(1-azido-3-chloropropyl)-3-methylbenzene (2t)

The product **2t** was purified with silica gel chromatography (PE/EA = 100:1) as a colorless oil (35.2 mg, 84% yield). ¹**H NMR** (400 MHz, CDCl₃) δ 7.33 – 7.27 (m, 1H), 7.20 – 7.10

(m, 3H), 4.73 (dd, J = 8.6, 5.8 Hz, 1H), 3.66 (ddd, J = 11.1, 8.0, 5.3 Hz, 1H), 3.50 (dt, J = 11.3, 5.9 Hz, 1H), 2.39 (s, 3H), 2.24 (ddt, J = 14.4, 8.7, 5.7 Hz, 1H), 2.10 (ddt, J = 14.0, 8.0, 5.7 Hz, 1H). ¹³**C NMR** (101 MHz, CDCl₃) δ 138.9, 138.6, 129.5, 129.0, 127.7, 124.1, 63.2, 41.6, 39.0, 21.6. **HRMS** (ESI) m/z: [M + H - N₂]⁺ Calcd for C₁₀H₁₃ClN: 182.0737; Found 182.0747.

1-(1-azido-3-chloropropyl)-3-methoxybenzene (2u)

The product **2u** was purified with silica gel chromatography (PE/EA = 50:1) as a colorless oil (37.0 mg, 82% yield). ¹**H NMR** (400 MHz, CDCl₃) δ 7.32 (t, *J* = 7.8 Hz, 1H), 6.94 –

6.85 (m, 3H), 4.73 (dd, J = 8.6, 5.9 Hz, 1H), 3.83 (s, 3H), 3.66 (ddd, J = 11.1, 7.9, 5.2 Hz, 1H), 3.49 (dt, J = 11.4, 5.9 Hz, 1H), 2.22 (ddt, J = 14.3, 8.6, 5.9 Hz, 1H), 2.14 – 2.03 (m, 1H). ¹³**C NMR** (101 MHz, CDCl₃) δ 160.2, 140.3, 130.2, 119.3, 114.0, 112.7, 63.1, 55.4, 41.5, 39.0. HRMS (ESI) m/z: [M + H - N₂]⁺ Calcd for C₁₀H₁₃ClNO: 198.0686; Found 198.0694.

3-(1-azido-3-chloropropyl)benzonitrile (2v)

DIPA (3.0 equiv) was used as base. The product 2v was purified with silica gel chromatography (PE/EA = 40:1) as a colorless oil (26.5 mg, 60% yield). ¹H NMR (400 MHz,

CDCl₃) δ 7.69 – 7.63 (m, 2H), 7.62 – 7.56 (m, 1H), 7.56 – 7.49 (m, 1H), 4.84 (dd, J =

8.9, 5.4 Hz, 1H), 3.69 (ddd, J = 11.2, 8.4, 4.8 Hz, 1H), 3.49 (dt, J = 11.2, 5.6 Hz, 1H), 2.27 – 2.15 (m, 1H), 2.06 (ddt, J = 14.1, 8.4, 5.3 Hz, 1H). ¹³**C NMR** (101 MHz, CDCl₃) δ 140.7, 132.3, 131.4, 130.5, 130.1, 118.4, 113.4, 62.3, 41.0, 39.1. **HRMS** (ESI) m/z: [M + H - N₂]⁺ Calcd for C₁₀H₁₀ClN₂: 193.0533; Found 193.0540.

4-(1-azido-3-chloropropyl)-1,2-dimethylbenzene (2w)

The product **2w** was purified with silica gel chromatography (PE/EA = 100:1) as a colorless oil (38.5 mg, 86% yield). ¹**H NMR** (400 MHz, CDCl₃) δ 7.17 (d, *J* = 7.7 Hz, 1H), 7.12 –

7.04 (m, 2H), 4.70 (dd, J = 8.6, 5.9 Hz, 1H), 3.65 (ddd, J = 11.0, 7.9, 5.4 Hz, 1H), 3.50 (dt, J = 11.4, 5.9 Hz, 1H), 2.30 (s, 3H), 2.28 (s, 3H), 2.27 – 2.19 (m, 1H), 2.09 (ddt, J = 14.0, 7.9, 5.8 Hz, 1H). ¹³**C NMR** (101 MHz, CDCl₃) δ 137.4, 137.3, 136.0, 130.3, 128.3, 124.5, 63.1, 41.6, 39.0, 20.0, 19.6. **HRMS** (ESI) m/z: [M + H - N₂]⁺ Calcd for C₁₁H₁₅ClN: 196.0893; Found 196.0908.

1-(1-azido-3-chloropropyl)-2,4,5-trimethoxybenzene (2x)

The product **2x** was purified with silica gel chromatography (PE/EA = 10:1) as a colorless oil (46.9 mg, 82% yield). ¹**H NMR** (400 MHz, CDCl₃) δ 6.81 (s, 1H), 6.53 (s, 1H), 5.13 (dd, *J* = 8.8, 5.4 Hz, 1H), 3.89 (s, 3H), 3.84 (s, 3H), 3.82 (s,

3H), 3.66 - 3.51 (m, 2H), 2.26 - 2.05 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 151.5, 149.8, 143.3, 117.9, 111.1, 97.4, 57.2, 56.8, 56.5, 56.2, 41.7, 37.8. **HRMS** (ESI) m/z: [M + H - N₂]⁺ Calcd for C₁₂H₁₇ClNO₃: 258.0897; Found 258.0903.

(2-azido-4-chlorobutan-2-yl)benzene (2y)

The product **2y** was purified with silica gel chromatography (PE/EA = 100:1) as a colorless oil (34.8 mg, 83% yield). ¹H **NMR** (400 MHz, CDCl₃) δ 7.44 – 7.36 (m, 4H), 7.35 – 7.29 (m,

1H), 3.47 (ddd, J = 10.8, 9.4, 7.0 Hz, 1H), 3.23 (ddd, J = 10.7, 9.1, 7.1 Hz, 1H), 2.40 – 2.23 (m, 2H), 1.75 (s, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 142.2, 129.0, 127.9, 125.4, 66.1, 45.4, 39.8, 26.0. **HRMS** (ESI) m/z: [M + H - N₂]⁺ Calcd for C₁₀H₁₃ClN: 182.0737; Found 182.0746.

(1-azido-3-chloro-1-cyclohexylpropyl)benzene (2z)

The product 2z was purified with silica gel chromatography (PE/EA = 100:1) as a colorless oil (44.4 mg, 80% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.39 – 7.32 (m, 2H), 7.32 – 7.24 (m,

3H), 3.54 - 3.40 (m, 1H), 3.29 - 3.12 (m, 1H), 2.67 - 2.50 (m, 2H), 1.98 - 1.86 (m, 1H), 1.84 - 1.66 (m, 3H), 1.61 (d, J = 12.6 Hz, 1H), 1.56 - 1.49 (m, 1H), 1.28 - 1.09 (m, 2H), 1.08 - 0.85 (m, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 139.1, 128.4, 127.5, 126.6, 72.3, 48.9, 40.1, 39.9, 27.9, 27.6, 26.6, 26.6, 26.2. **HRMS** (ESI) m/z: [M + H - N₂]⁺ Calcd for C₁₅H₂₁ClN: 250.1363; Found 250.1375.

4,4'-(1-azido-3-chloropropane-1,1-diyl)bis(methylbenzene) (2aa)

The product **2aa** was purified with silica gel chromatography (PE/EA = 100:1) as a colorless oil (58.8 mg, 98% yield). ¹H **NMR** (400 MHz, CDCl₃) δ 7.22 – 7.15 (m, 8H), 3.39 – 3.32 (m, 2H), 2.89 – 2.81 (m, 2H), 2.36 (s, 6H). ¹³C **NMR** (101 MHz, CDCl₃) δ 139.0, 137.8, 129.4, 126.8, 71.6, 42.5, 40.2,

21.1. **HRMS** (ESI) m/z: $[M + H - N_2]^+$ Calcd for C₁₇H₁₉ClN: 272.1206; Found 272.1220.

(1-azido-3-chloro-2-methylpropyl) benzene (2ab)

The product **2ab** was purified with silica gel chromatography (PE/EA = 100:1) as a colorless oil (22.2 mg, 53% yield, dr = 1:1.25). ¹**H NMR** (400 MHz, CDCl₃) δ 7.45 – 7.28 (m, 5H), 4.69 (d, *J* = 7.0

Hz, 0.42H), 4.49 (d, J = 9.1 Hz, 0.58H), 3.81 (dd, J = 10.9, 5.0 Hz, 0.58H), 3.61 (dd, J = 10.9, 3.9 Hz, 0.58H), 3.51 (dd, J = 11.0, 5.8 Hz, 0.42H), 3.27 (dd, J = 11.0, 5.0 Hz, 0.42H), 2.27 – 2.10 (m, 1.0H), 1.08 (d, J = 6.7 Hz, 1.26H), 0.85 (d, J = 6.8 Hz, 1.74H). ¹³C NMR (101 MHz, CDCl₃) δ 138.3, 137.5, 129.0, 128.7, 128.5, 127.8, 127.3, 68.1, 68.0, 48.3, 48.1, 41.7, 40.4, 14.8, 13.9. **HRMS** (ESI) m/z: [M + H - N₂]⁺ Calcd for C₁₀H₁₃ClN: 182.0737; Found 182.0743.

1-azido-2-(chloromethyl)-1,2,3,4-tetrahydronaphthalene (2ac)

The product **2ac** was purified with silica gel chromatography (PE/EA = 100:1) as a colorless oil (25.7 mg, 58% yield, dr = 1.1:1). **¹H NMR** (400 MHz, CDCl₃) δ 7.42 - 7.11 (m, 4H), 4.79 (d, *J* =

2.7 Hz, 0.53H), 4.50 (d, J = 7.3 Hz, 0.47H), 3.77 – 3.64 (m, 1.47H), 3.57 (dd, J = 10.9, 5.7 Hz, 0.52H), 2.99 – 2.75 (m, 2.0H), 2.29 – 2.08 (m, 1.41H), 1.90 – 1.67 (m, 1.59H). ¹³C NMR (101 MHz, CDCl₃) δ 136.8, 136.6, 133.0, 132.9, 130.0, 129.7, 129.3, 129.0, 128.3, 126.7, 126.3, 61.8, 60.6, 46.6, 46.3, 41.7, 41.7, 28.6, 27.0, 24.0, 22.2. HRMS (ESI) m/z: [M + H - N₂]⁺ Calcd for C₁₁H₁₃ClN: 194.0737; Found 194.0745.

(1-azido-3-chloropropane-1,2-diyl)dibenzene (2ad)

The product **2ad** was purified with silica gel chromatography (PE/EA = 100:1) as a colorless oil (30.0 mg, 55% yield, dr = 1:2.5). ¹H NMR (400 MHz, CDCl₃) δ 7.36 -7.00 (m, 10H), 5.11 (d, *J* = 7.1 Hz, 0.29H), 4.93 (d, *J* = 8.5 Hz, 0.71H), 4.02 - 3.92

(m, 1.42H), 3.81 (dd, J = 11.1, 6.6 Hz, 0.29H), 3.61 (dd, J = 11.1, 6.4 Hz, 0.29H), 3.35 (ddd, J = 8.6, 7.5, 5.0 Hz, 0.71H), 3.24 (q, J = 6.6 Hz, 0.29H). ¹³C NMR (101 MHz, CDCl₃) δ 137.8, 137.6, 137.5, 137.0, 129.1, 128.9, 128.7, 128.6, 128.5, 128.4, 128.4, 127.9, 127.8, 127.6, 127.5, 68.2, 67.2, 53.7, 53.0, 46.2, 46.1. HRMS (ESI) m/z: [M + H - N₂]⁺ Calcd for C₁₅H₁₅CIN: 244.0893; Found 244.0902.

(1-azido-3-chloro-2-methylpropane-1,1-diyl)dibenzene (2ae)

The product **2ae** was purified with silica gel chromatography (PE/EA = 100:1) as a colorless oil (30.3 mg, 53% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.43 – 7.28 (m, 10H), 3.85 (dd, *J* = 10.5, 2.2

Hz, 1H), 3.13 - 3.03 (m, 1H), 2.98 (t, J = 10.4 Hz, 1H), 1.19 (d, J = 6.5 Hz, 3H). ¹³C **NMR** (101 MHz, CDCl₃) δ 140.2, 139.9, 128.6, 128.5, 128.0, 127.9, 127.7, 75.8, 47.8, 43.9, 14.4. **HRMS** (ESI) m/z: [M + H - N₂]⁺ Calcd for C₁₆H₁₇ClN: 258.1050; Found 258.1063.

2-(1-azido-3-chloropropyl)naphthalene (2af)

The product **2af** was purified with silica gel chromatography (PE/EA = 100:1) as a colorless oil (45.2 mg, 92% yield). ¹H **NMR** (400 MHz, CDCl₃) δ 7.95 – 7.86 (m, 3H), 7.83 (s, 1H),

7.59 – 7.51 (m, 2H), 7.47 (dd, J = 8.5, 1.8 Hz, 1H), 4.96 (dd, J = 8.5, 6.0 Hz, 1H), 3.71 (ddd, J = 11.0, 7.9, 5.2 Hz, 1H), 3.52 (dt, J = 11.3, 5.9 Hz, 1H), 2.40 – 2.29 (m, 1H), 2.20 (ddt, J = 13.9, 7.8, 5.7 Hz, 1H). ¹³**C NMR** (101 MHz, CDCl₃) δ 136.0, 133.4, 133.3, 129.2, 128.1, 127.9, 126.7, 126.6, 126.5, 124.2, 63.4, 41.5, 38.9. **HRMS** (ESI) m/z: [M + H - N₂]⁺ Calcd for C₁₃H₁₃ClN: 218.0737; Found 218.0742.

2-(1-azido-3-chloropropyl)benzofuran (2ag)

The product **2ag** was purified with silica gel chromatography (PE/EA = 50:1) as a colorless oil (37.2 mg, 79% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.57 (d, *J* = 7.7, 1H), 7.49 (d, *J* =

8.3 Hz, 1H), 7.32 (td, J = 8.3, 7.8, 1.4 Hz, 1H), 7.28 – 7.22 (m, 1H), 6.74 (s, 1H), 4.90 (dd, J = 7.9, 6.5 Hz, 1H), 3.73 (ddd, J = 11.2, 7.6, 5.8 Hz, 1H), 3.60 (dt, J = 11.3, 5.7 Hz, 1H), 2.37 (dtd, J = 7.8, 5.8, 2.1 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 155.2, 153.7, 127.6, 125.1, 123.3, 121.5, 111.6, 105.4, 56.5, 41.1, 35.4. HRMS (ESI) m/z: [M + H - N₂]⁺ Calcd for C₁₁H₁₁ClNO: 208.0529; Found 208.0539.

3-(1-azido-3-chloropropyl)benzo[*b*]thiophene (2ah)

The product **2ah** was purified with silica gel chromatography (PE/EA = 50:1) as a colorless oil (39.3 mg, 78% yield). ¹H **NMR** (400 MHz, CDCl₃) δ 7.98 – 7.84 (m, 2H), 7.50 – 7.37

(m, 3H), 5.19 (dd, J = 8.7, 5.6 Hz, 1H), 3.77 (ddd, J = 11.1, 8.3, 5.2 Hz, 1H), 3.60 (dt, J = 11.1, 5.5 Hz, 1H), 2.44 – 2.28 (m, 2H). ¹³**C NMR** (101 MHz, CDCl₃) δ 141.1, 136.9, 133.5, 125.1, 124.6, 124.4, 123.3, 122.1, 58.0, 41.6, 37.4. **HRMS** (ESI) m/z: [M + H - N₂]⁺ Calcd for C₁₁H₁₁ClNS: 224.0301; Found 224.0307.

3-(1-azido-3-chloropropyl)quinolone (2ai)

The product **2ai** was purified with silica gel chromatography (PE/EA = 10:1) as a colorless oil (33.6 mg, 68% yield). ¹H **NMR** (400 MHz, CDCl₃) δ 8.90 (d, *J* = 2.2 Hz, 1H), 8.17 –

8.09 (m, 2H), 7.85 (dd, J = 8.2, 1.4 Hz, 1H), 7.80 – 7.70 (m, 1H), 7.59 (t, J = 7.5 Hz,

1H), 5.01 (dd, J = 8.9, 5.5 Hz, 1H), 3.74 (ddd, J = 11.2, 8.4, 4.8 Hz, 1H), 3.53 (dt, J = 11.2, 5.6 Hz, 1H), 2.35 (ddt, J = 14.5, 9.0, 5.4 Hz, 1H), 2.24 – 2.13 (m, 1H). ¹³**C NMR** (101 MHz, CDCl₃) δ 149.4, 148.2, 134.2, 131.6, 130.2, 129.5, 128.0, 127.6, 127.5, 61.1, 41.2, 38.9. **HRMS** (ESI) m/z: [M + H - N₂]⁺ Calcd for C₁₂H₁₂ClN₂: 219.0689; Found 219.0696.

(3-azido-5-chloro-3-methylpentyl)benzene (2aj)

The product **2aj** was purified with silica gel chromatography (PE/EA = 100:1) as a colorless oil (19.0 mg, 40% yield). ¹H **NMR** (400 MHz, CDCl₃) δ 7.34 – 7.28 (m, 2H), 7.25 – 7.17

(m, 3H), 3.61 (t, J = 8.0 Hz, 2H), 2.75 – 2.64 (m, 2H), 2.17 – 1.99 (m, 2H), 1.92 – 1.79 (m, 2H), 1.38 (s, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 141.3, 128.7, 128.4, 126.3, 63.2, 42.5, 41.9, 39.7, 30.5, 23.4. **HRMS** (ESI) (m/z): [M + H - N₂]⁺ Calcd for C₁₂H₁₇ClN: 210.1050; Found 210.1058.

(4-azido-4-(2-chloroethyl)cyclohexyl)benzene (2ak)

The product **2ak** was purified with silica gel chromatography (PE/EA = 100:1) as a colorless oil (21.1 mg, 40% yield, dr = 1:3.8). ¹H NMR (400 MHz, CDCl₃) δ 7.37 – 7.29 (m, 2H),

7.25 – 7.18 (m, 3H), 3.72 – 3.58 (m, 2H), 2.66 – 2.45 (m, 1H), 2.22 – 2.08 (m, 2H), 1.97 – 1.87 (m, 2H), 1.86 – 1.64 (m, 4H), 1.63 – 1.45 (m, 2H). ¹³**C NMR** (101 MHz, CDCl₃) δ 146.3, 145.5, 128.7, 128.6, 126.9, 126.9, 126.5, 126.4, 63.0, 62.9, 44.5, 43.5, 43.1, 39.7, 39.4, 37.9, 35.0, 34.6, 30.1, 29.4. **HRMS** (ESI) m/z: [M + H - N₂]⁺ Calcd forC₁₄H₁₉ClN:236.1206; Found 236.1215.

1-(3-chloro-1-methoxypropyl)-4-methoxybenzene (2al)

The product **2al** was purified with silica gel chromatography (PE/EA = 100:1) as a colorless oil (36.5 mg, 85% yield). ¹H **NMR** (400 MHz, CDCl₃) δ 7.30 – 7.19 (m, 2H), 6.96 – 6.86

(m, 2H), 4.31 (dd, J = 8.2, 5.1 Hz, 1H), 3.81 (s, 3H), 3.64 – 3.73 (m, 1H), 3.48 (dddd, J = 11.9, 7.0, 4.3, 1.2 Hz, 1H), 3.20 (s, 3H), 2.31 – 2.17 (m, 1H), 2.05 – 1.93 (m, 1H).¹³**C NMR** (101 MHz, CDCl₃) δ 159.4, 133.1, 128.0, 114.1, 80.1, 56.6, 55.4, 41.9, 40.9. **HRMS** (EI) m/z: [M]⁺ Calcd for C₁₁H₁₅ClO₂:214.0761; Found 214.0752.

1-(3-chloro-1-ethoxypropyl)-4-methoxybenzene (2am)

Cu(OAc)₂ (10 mol%) was used as catalyst, morpholine(3.0 equiv) was used as base. The product **2am** was purified with silica gelchromatography (PE/EA = 100:1) as a colorless oil

(27.9 mg, 61% yield). ¹**H NMR** (500 MHz, CDCl₃) δ 7.28 – 7.21 (m, 2H), 6.93-6.85 (m, 2H), 4.43 (dd, J = 8.4, 5.0 Hz,1H), 3.81 (s, 3H), 3.71 (ddd, J = 10.8, 8.1, 5.6 Hz, 1H), 3.54 – 3.47 (m, 1H), 3.35 (ddq, J = 36.5, 9.3, 7.0 Hz, 2H), 2.29 – 2.17 (m, 1H), 1.98 (ddt, J = 11.0, 8.1, 5.8 Hz, 1H), 1.17 (t, J = 7.0 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 159.3, 134.0, 127.8, 114.0, 78.1, 77.4, 77.2, 76.9, 64.2, 55.4, 42.0, 41.1, 15.4. **HRMS** (EI) m/z: [M]⁺ Calcd for C₁₂H₁₇ClO₂:228.0917; Found 228.0910.

1-(3-chloro-1-isopropoxypropyl)-4-methoxybenzene (2an)

The product **2an** was purified with silica gel chromatography (PE/EA = 100:1) as a colorless oil (25.7 mg, 53% yield). ¹H **NMR** (500 MHz, CDCl₃) δ 7.33 – 7.21 (m, 2H), 6.94 – 6.84

(m, 2H), 4.55 (dd, J = 9.0, 4.4 Hz, 1H), 3.81 (s, 3H), 3.71 (ddd, J = 10.8, 8.7, 5.3 Hz, 1H), 3.57 – 3.45 (m, 2H), 2.16 (ddt, J = 14.3, 8.9, 5.3 Hz, 1H), 1.94 (dddd, J = 14.4, 8.6, 5.7, 4.4 Hz, 1H), 1.16 (d, J = 6.0 Hz, 3H), 1.06 (d, J = 6.2 Hz, 3H). ¹³**C** NMR (126 MHz, CDCl₃) δ 159.2, 134.9, 127.8, 114.0, 75.2, 69.0, 55.4, 42.1, 41.6, 23.6, 21.4. HRMS (EI) m/z: [M]⁺ Calcd for C₁₃H₁₉ClO₂:242.1074; Found 242.1068.

Large Scale Experiment

To a 50 mL of Schlenk tube were added 4-vinyl-1,1'-biphenyl **1a** (0.1805 g, 1.0 mmol, 1.0 equiv), Cu(acac)₂ (26.0 mg, 0.1 mmol, 10 mol%) and K₂CO₃ (414.5 mg, 3.0 mmol, 3.0 equiv) under air atmosphere. The mixture was evacuated and backfilled with N₂ (3 times), then methanol (5.0 mL), BrCH₂Cl (130 μ L, 2.0 mmol, 2.0 equiv), **L1** (55 μ L, 0.2 mmol, 20 mol%) and TMSN₃ (160 μ L, 2.4 mmol, 1.2 equiv) were added sequentially. The Schlenk tube was then sealed with a Teflon lined cap and put into a preheated oil bath (60 °C). After stirring for 24 h, the reaction mixture was cooled to room temperature. The reaction mixture was diluted with EtOAc and filtered through a pad of celite. The filtrate was concentrated under vacuum and purified by flash column chromatography on silica gel (PE/EA = 100:1) to give the product **2a** in 89% yield.

Mechanistic Studies

1. Radical Inhibiting Experiment with TEMPO

To a 25 mL of Schlenk seal tube were added 4-vinyl-1,1'-biphenyl **1a** (36.0 mg, 0.2 mmol, 1.0 equiv), Cu(acac)₂ (5.2 mg, 0.02 mmol, 10 mol%), TEMPO (15.7 mg, 0.1 mmol, 0.5 equiv) and K₂CO₃ (82.9 mg, 0.60 mmol, 3.0 equiv) under air atmosphere. The mixture was evacuated and backfilled with N₂ (3 times). Methanol (1.0 mL), BrCH₂Cl (26 μ L, 0.4 mmol, 2.0 equiv), L1 (11 μ L, 0.04 mmol, 20 mol%) and TMSN₃ (32 μ L, 0.24 mmol, 1.2 equiv) were added sequentially. The Schlenk tube was then sealed with a Teflon lined cap and put into a preheated oil bath (60 °C). After stirring for 24 h, the reaction mixture was cooled to room temperature. The reaction mixture was concentrated under vacuum, no product **2a** can be detected by ¹H NMR and GC-MS.

2. Radical Trapping Experiment with BHT

To a 25 mL of Schlenk seal tube were added 4-vinyl-1,1'-biphenyl **1a** (36.0 mg, 0.2 mmol, 1.0 equiv), Cu(acac)₂ (5.2 mg, 0.02 mmol, 10 mol %), BHT (66.1 mg, 0.3 mmol, 1.5 equiv) and K₂CO₃ (82.9 mg, 0.60 mmol, 3.0 equiv) under air atmosphere. The mixture was evacuated and backfilled with N₂ (3 times). Methanol (1.0 mL), BrCH₂Cl (26 μ L, 0.4 mmol, 2.0 equiv), **L1** (11 μ L, 0.04 mmol, 20 mol %) and TMSN₃ (32 μ L, 0.24 mmol, 1.2 equiv) were added sequentially. The Schlenk tube was then sealed with a Teflon lined cap and put into a preheated oil bath (60 °C). After stirring for 24 h, the reaction mixture was cooled to room temperature. The reaction mixture was diluted with EtOAc and filtered through a pad of celite. The filtrate was concentrated under vacuum and purified by flash column chromatography (PE/EA = 100:1) on silica gel to

give the product **3** in 25% yield. When this reaction was performed without **1a**, the product **3** could be obtained in 61% yield.

2,6-di-tert-butyl-4-(chloromethyl)-4-methylcyclohexa-2,5-dien-1-one (3)

The product **3** was purified with silica gel chromatography (PE/EA = 100:1) as a pale yellow solid (32.8 mg, 61% yield); **mp** 71-72 °C. **¹H NMR** (400 MHz, CDCl₃) δ 6.46 (s, 2H), 3.48 (s, 2H), 1.29 (s, 3H), 1.23 (s, 18H). ¹³C NMR (101 MHz, CDCl₃) δ 186.2, 148.2,

142.7, 52.6, 40.7, 35.0, 29.6, 24.2. **HRMS** (ESI) m/z: [M + H]⁺ Calcd for C₁₆H₂₆ClO: 269.1672; Found 269.1683.

3. Radical Clock Experiment

To a 25 mL of Schlenk seal tube were added Cu(acac)₂ (5.2 mg, 0.02 mmol, 10 mol%) and K₂CO₃ (82.9 mg, 0.60 mmol, 3.0 equiv) under air atmosphere. The mixture was evacuated and backfilled with N₂ (3 times). Methanol (1.0 mL), β -pinene **1ao** (31 μ L, 0.2 mmol, 1.0 equiv), BrCH₂Cl (26 μ L, 0.4 mmol, 2.0 equiv), L1 (11 μ L, 0.04 mmol, 20 mol%) and TMSN₃ (32 μ L, 0.24 mmol, 1.2 equiv) were added sequentially. The Schlenk tube was then sealed with a Teflon lined cap and put into a preheated oil bath (60 °C). After stirring for 24 h, the reaction mixture was cooled to room temperature. The reaction mixture was diluted with EtOAc and filtered through a pad of celite. The filtrate was concentrated under vacuum and purified by flash column chromatography (PE/EA = 100:1) on silica gel to give the product **4** in 26% yield.

4-(2-azidopropan-2-yl)-1-(2-chloroethyl)cyclohex-1-ene (4)

The product **4** was purified with silica gel chromatography (PE/EA = 100:1) as a colorless oil (11.8 mg, 26% yield). ¹H NMR (400 MHz, CDCl₃) δ 5.50 – 5.48 (m, 1H), 3.60-3.53 (m,

2H), 2.46 – 2.37 (m, 2H), 2.15 – 1.98 (m, 3H), 1.93-1.81 (m, 2H), 1.61 – 1.51 (m, 1H), 1.36 – 1.19 (m, 1H), 1.27 (s, 3H), 1.23 (s, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 134.1,

123.3, 64.2, 43.5, 43.1, 40.5, 29.0, 26.9, 24.1, 24.0, 23.2. **HRMS** (ESI) m/z: [M + H - N₂]⁺ Calcd for C₁₁H₁₉ClN: 200.1206; Found: 200.1218.

Ph
$$\rightarrow$$
 Ph + BrCH₂Cl $\xrightarrow{\text{standard conditions}}$ ClH₂C $\xrightarrow{\text{Ph}}$ 5, 73%

To a 25 mL of Schlenk seal tube were added Cu(acac)₂ (5.2 mg, 0.02 mmol, 10 mol%) and K₂CO₃ (82.9 mg, 0.60 mmol, 3.0 equiv) under air atmosphere. The mixture was evacuated and backfilled with N₂ (3 times). Methanol (1.0 mL), (1-(2-phenylcyclopropyl)vinyl)benzene **1ap** (44 μ L, 0.2 mmol, 1.0 equiv), BrCH₂Cl (26 μ L, 0.4 mmol, 2.0 equiv), **L1** (11 μ L, 0.04 mmol, 20 mol%) and TMSN₃ (32 μ L, 0.24 mmol, 1.2 equiv) were added sequentially. The Schlenk tube was then sealed with a Teflon lined cap and put into a preheated oil bath (60 °C). After stirring for 24 h, the reaction mixture was cooled to room temperature. The reaction mixture was diluted with EtOAc and filtered through a pad of celite. The filtrate was concentrated under vacuum and purified by flash column chromatography (PE/EA = 100:1) on silica gel to give the product **5** in 73% yield.

(1-azido-6-chlorohex-3-ene-1,4-diyl)dibenzene (5)

The product **5** was purified with silica gel chromatography (PE/EA = 100:1) as a colorless oil (45.5 mg, 73% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.48 – 7.26 (m, 9.2H), 7.24 – 7.19

(m, 0.4H), 7.06 – 7.01 (m, 0.4H), 5.76 (t, J = 7.4 Hz, 0.8H), 5.57 (t, J = 7.3 Hz, 0.2H), 4.64 (dd, J = 7.7, 6.5 Hz, 0.8H), 4.48 (t, J = 7.1 Hz, 0.2H), 3.46 – 3.26 (m, 2.0H), 2.92 (t, J = 7.4 Hz, 1.6H), 2.85 – 2.64 (m, 2.0H), 2.55 – 2.38 (m, 0.4H). ¹³**C NMR** (101 MHz, CDCl₃) δ 141.4, 140.4, 139.32, 139.26, 139.2, 139.1, 129.0, 128.8, 128.6, 128.5, 128.3, 128.3, 127.5, 127.3, 127.0, 127.0, 126.6, 126.5, 125.3, 66.22, 66.19, 42.8, 42.6, 42.5, 36.0, 35.9, 33.5. **HRMS** ESI (m/z): [M + H - N₂]⁺ Calcd for C₁₈H₁₉ClN: 284.1206; Found 284.1210.

4. Proposed mechanism

On the basis of our preliminary study and previous reports,⁴ a possible mechanism

was proposed as below. The single electron reduction of BrCH₂Cl by Cu(I)Ln generated Cu(II)Ln species and monochloromethyl radical, which was captured by the terminal alkene **1** to afford the corresponding alkyl radical. The final azidation of this alkyl radical may process *via* two possible paths: a direct trap of cationic intermediate by TMSN₃ or a reductive elimination from benzyl Cu(III)N₃ intermediate.

Monochloromethylazidation of the estrone derivative

To a 25 mL of Schlenk seal tube were added **estrone derivative 6** (56.1 mg, 0.2 mmol, 1.0 equiv), Cu(acac)₂ (5.2 mg, 0.02 mmol, 10 mol%) and K₂CO₃ (82.9 mg, 0.60 mmol, 3.0 equiv) under air atmosphere. The mixture was evacuated and backfilled with N₂ (3 times). Methanol (1.0 mL), BrCH₂Cl (26 μ L, 0.4 mmol, 2.0 equiv), **L1** (11 μ L, 0.04 mmol, 20 mol%) and TMSN₃ (32 μ L, 0.24 mmol, 1.2 equiv) were added sequentially. The Schlenk tube was then sealed with a Teflon lined cap and put into a preheated oil bath (60 °C). After stirring for 24 h, the reaction mixture was cooled to room temperature. The reaction mixture was diluted with EtOAc and filtered through a pad of celite. The filtrate was concentrated under vacuum and purified by flash column chromatography (PE/EA = 20:1) on silica gel to give the product **7** in 81% yield.

(8R,9S,13S,14S)-3-(1-azido-3-chloropropyl)-13-methyl-6,7,8,9,11,12,13,14,15,16decahydro-17H-cyclopenta[a]phenanthren-17-one (7)

The product **7** was purified with silica gel chromatography (PE/EA = 20:1) as a colorless oil (60.2 mg, 81% yield, dr = 1:1). ¹H NMR (400 MHz, CDCl₃) δ 7.31 (d, *J* = 8.1 Hz, 1H), 7.10 (d, *J* = 8.6 Hz,

1H), 7.05 (d, J = 1.9 Hz, 1H), 4.69 (dd, J = 8.7, 5.7 Hz, 1H), 3.65 (ddd, J = 11.1, 8.0, 5.3 Hz, 1H), 3.50 (dt, J = 11.3, 5.8 Hz, 1H), 2.93 (dd, J = 9.0, 4.2 Hz, 2H), 2.56-2.47 (m, 1H), 2.46-2.39 (m, 1H), 2.38-2.28 (m, 1H), 2.26 – 2.12 (m, 2H), 2.11 – 2.01 (m, 3H), 2.00 – 1.93 (m, 1H), 1.75 – 1.39 (m, 6H), 0.92 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 220.8, 140.3, 137.3, 136.0, 127.6, 127.6, 126.1, 124.4, 124.3, 62.9, 62.9, 50.6, 48.1, 44.5, 41.6, 38.93, 38.88, 38.1, 35.9, 31. 7, 29.53, 29.51, 26.5, 25.8, 21.7, 13.9. HRMS (ESI) m/z: [M + H - N₂]⁺ Calcd for C₂₁H₂₇ClNO: 344.1781; Found 344.1780.

Derivatizations of the Products

1. The Click reaction of 2a with phenylacetylene

The mixture of **2a** (54.3 mg, 0.2 mmol, 1.0 equiv), phenylacetylene (44 μ L, 0.4 mmol, 2.0 equiv), CuI (2.0 mg, 0.01 mmol, 5 mol%), Et₃N (3 μ L, 0.02 mmol, 10 mol%) in CH₃CN (2.0 mL) were stirred at 60 °C for 4 h. After completion of the reaction, the solvent was removed under reduced pressure and purified by flash column chromatography (PE/EA = 10:1) on silica gel to give the product **8** in 82% yield.

1-(1-([1,1'-biphenyl]-4-yl)-3-chloropropyl)-4-phenyl-1H-1,2,3-triazole (8)

The product **8** was purified with silica gel chromatography (PE/EA = 10:1) as a white solid (61.3 mg, 82% yield); **mp** 168-169 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.88 – 7.75 (m, 3H), 7.59 (dd, J = 17.4, 7.6 Hz, 4H), 7.51 – 7.28 (m, 8H), 5.93 (dd,

J = 8.7, 6.3 Hz, 1H), 3.59 (t, J = 6.0 Hz, 2H), 3.23-3.08 (m, 1H), 2.83 – 2.68 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 148.0, 142.0, 140.3, 137.1, 130.5, 129.0, 129.0, 128.4, 128.0, 127.8, 127.5, 127.2, 125.8, 120.0, 62.0, 41.4, 37.9. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₃H₂₁ClN₃: 374.1424; Found 374.1425.

2. The Reaction of 8 with H₂O

The mixture of **8** (74.8 mg, 0.2 mmol, 1.0 equiv), $CuSO_4$ (31.9 mg, 0.2 mmol, 1.0 equiv) and KI (2.0 mg, 0.12 mmol, 6 mol%) in H₂O (0.3 mL) and DMSO (0.7 mL) were stirred at 120 °C overnight. After completion of the reaction, the residue was transferred into a separatory funnel and added water (1.0 mL), extracted with DCM

three times. The last combined organic layers were dried over Na_2SO_4 and the solvent was removed under reduced pressure and purified by flash column chromatography (PE/EA =5:1) on silica gel to give the product **9** in 78% yield.

3-([1,1'-biphenyl]-4-yl)-3-(4-phenyl-1H-1,2,3-triazol-1-yl)propan-1-ol (9)

The product **9** was purified with silica gel chromatography (PE/EA = 5:1) as a white solid (55.4 mg, 78% yield); **mp** 99-100 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 7.84 (s, 1H), 7.81 – 7.78 (m, 2H), 7.61 – 7.55 (m, 4H), 7.48-7.41 (m, 6H), 7.39 –

7.33 (m, 2H), 4.83 – 4.69 (m, 2H), 4.62 (dt, J = 13.8, 6.1 Hz, 1H), 2.53 – 2.38 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 147.8, 142.8, 140.8, 140.7, 131.0, 130.3, 129.0, 128.9, 128.6, 127.4, 127.4, 127.2, 126.3, 126.0, 71.2, 52.0, 38.8. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₃H₂₂N₃O: 356.1763; Found 356.1741.

3. The Reaction of 2a with Phenol

The mixture of **2a** (54.3 mg, 0.2 mmol, 1.0 equiv), Phenol (37.6 mg, 0.4 mmol, 2.0 equiv) and NaH (16.0 mg, 60%, dispersion in mineral oil, 0.40 mmol, 2.0 equiv) in DMF (1.0 mL) were stirred at 100 °C for 3 h. After completion of the reaction, the residue was transferred into a separatory funnel and added water (1.0 mL), extracted with DCM three times. The last combined organic layers were dried over Na₂SO₄ and the solvent was removed under reduced pressure and purified by flash column chromatography (PE/EA = 100:1) on silica gel to give the product **10** in 64% yield.

4-(1-azido-3-phenoxypropyl)-1,1'-biphenyl (10)

The product **10** was purified with silica gel chromatography (PE/EA = 100:1) as a white solid (42.2 mg, 64% yield); **mp** 57-58 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 7.68 – 7.60 (m, 4H),

δ 7.52 – 7.43 (m, 4H), 7.42 – 7.36 (m, 1H), 7.36 – 7.29 (m, 2H), 7.03 – 6.90 (m, 3H), 4.89 (dd, J = 8.5, 6.1 Hz, 1H), 4.14 (ddd, J = 9.5, 7.4, 4.9 Hz, 1H), 3.97 (dt, J = 9.5, 5.6 Hz, 1H), 2.39 – 2.17 (m, 2H). ¹³C **NMR** (101 MHz, CDCl₃) δ 158.7, 141.4, 140.6, 138.3, 129.6, 129.0, 127.7, 127.6, 127.5, 127.2, 121.1, 114.6, 64.1, 62.7, 36.1. **HRMS** (ESI) m/z: [M + H - N₂]⁺ Calcd for C₂₁H₂₀NO: 302.1545; Found 302.1544.

4. The Reaction of 2a with KOAc

The mixture of **2a** (54.3 mg, 0.2 mmol, 1.0 equiv), and KOAc (39.3 mg, 0.40 mmol, 2.0 equiv) in DMF (1.0 mL) were stirred at 80 °C for 12 h. After completion of the reaction, the residue was transferred into a separatory funnel and added water (1.0 mL), extracted with DCM three times. The last combined organic layers were dried over Na₂SO₄ and the solvent was removed under reduced pressure and purified by flash column chromatography (PE/EA = 10:1) on silica gel to give the product **11** in 97% yield.

3-([1,1'-biphenyl]-4-yl)-3-azidopropyl acetate (11)

The product **11** was purified with silica gel chromatography (PE/EA = 10:1) as a colorless oil (57.3 mg, 97% yield). ¹H **NMR** (400 MHz, CDCl₃) δ 7.67 – 7.58 (m, 4H), 7.51 – 7.35

(m, 5H), 4.66 (t, J = 7.3 Hz, 1H), 4.27 – 4.07 (m, 2H), 2.26 – 2.02 (m, 2H), 2.06 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 171.0, 141.5, 140. 5, 137.9, 128.9, 127.7, 127.6, 127.4, 127.2, 62.8, 61.2, 35.2, 21.0. **HRMS** (ESI) m/z: [M + H - N₂]⁺ Calcd for C₁₇H₁₈NO₂: 268.1338; Found 268.1344.

5. The Reaction of 2a with Morpholine

2a (54.3 mg, 0.2 mmol, 1.0 equiv) was dissolved in toluene (10.0 mL, dry), morpholine (53 μ L, 0.6 mmol, 3.0 equiv), KI (4.0 mg, 0.02 mmol, 0.01 equiv) were added in the mixture and stirred at 140 °C for 60 h. After completion of the reaction, the solvent and excess morpholine were removed under reduced pressure and purified by flash column chromatography (PE/EA = 3:1) on silica gel to give the product **12** in 82% yield.

4-(3-([1,1'-biphenyl]-4-yl)-3-azidopropyl)morpholine (12)

The product **12** was purified with silica gel chromatography (PE/EA = 3:1) as a colorless oil (52.9 mg, 82% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.65 – 7.55 (m,

4H), 7.48 - 7.42 (m, 2H), 7.41 - 7.33 (m, 3H), 4.64 (dd, J = 8.2, 6.2 Hz, 1H), 3.72 (t, J = 4.7 Hz, 4H), 2.49 - 2.33 (m, 6H), 2.10 - 1.87 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 141.3, 140.6, 138.7, 128.9, 127.62, 127.60, 127.4, 127.2, 67.1, 64.0, 55.3, 53. 8, 33.3. HRMS (ESI) m/z: [M + H - N₂]⁺ calcd. for C₁₉H₂₃N₂O: 295.1810; Found 295.1826.

6. The Reaction of 2a with NaN₃

The mixture of **2a** (54.3 mg, 0.2 mmol, 1.0 equiv), and NaN₃ (26.0 mg, 0.4 mmol, 2.0 equiv) in DMF (2.0 mL) were stirred at 70 °C for 4 h. After completion of the reaction, the residue was transferred into a separatory funnel and added water (1.0 mL), extracted with DCM three times. The last combined organic layers were dried over Na₂SO₄ and the solvent was removed under reduced pressure and purified by flash column chromatography (PE/EA = 100:1) on silica gel to give the product **13** in 83% yield.

4-(1,3-diazidopropyl)-1,1'-biphenyl (13)

The product **13** was purified with silica gel chromatography (PE/EA = 100:1) as a colorless oil (46.2 mg, 83% yield). ¹H **NMR** (400 MHz, CDCl₃) δ 7.68 – 7.58 (m, 4H), 7.50-7.44 (m,

2H), 7.42 – 7.35 (m, 3H), 4.67 (dd, J = 8.6, 5.9 Hz, 1H), 3.48 (ddd, J = 12.4, 7.7, 6.0 Hz, 1H), 3.37 (dt, J = 12.4, 6.2 Hz, 1H), 2.09 (ddt, J = 14.7, 8.7, 6.1 Hz, 1H), 1.98 (ddt, J = 14.0, 7.7, 6.2 Hz, 1H). ¹³**C NMR** (101 MHz, CDCl₃) δ 141.7, 140.5, 137.7, 129.0, 127.8, 127.7, 127.4, 127.2, 63.1, 48.3, 35.6. **HRMS** (ESI) m/z: [M + H - 2N₂]⁺ Calcd for C₁₅H₁₅N₂: 223.1235; Found 223.1232.

7. The Reaction of 2a with KNPhth

The mixture of **2a** (54.3 mg, 0.2 mmol, 1.0 equiv), and KNPhth (74.1 mg, 0.40 mmol, 2.0 equiv) in DMF (1.0 mL) were stirred at 80 °C for 13 h. After completion of the reaction, the residue was transferred into a separatory funnel and added water (1.0 mL), extracted with DCM three times. The last combined organic layers were dried over Na₂SO₄ and the solvent was removed under reduced pressure and purified by flash column chromatography (PE/EA = 10:1) on silica gel to give the product **14** in 94% yield.

2-(3-([1,1'-biphenyl]-4-yl)-3-azidopropyl)isoindoline-1,3-dione (14)

The product **14** was purified with silica gel chromatography (PE/EA = 10:1) as a white solid (71.9 mg, 94% yield); **mp** 121-122 °C. ¹**H NMR** (400 MHz,

CDCl₃) δ 7.85 - 7.77 (m, 2H), 7.70 - 7.63 (m, 2H), 7.59 - 7.50 (m, 4H), 7.47 - 7.30 (m, 5H), 4.58 (t, *J* = 7.2 Hz, 1H), 3.83 (t, *J* = 6.8 Hz, 2H), 2.29 - 2.14 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 168.3, 141.4, 140.3, 137.6, 134.0, 132.0, 128.8, 127.6, 127.5, 127.4, 127.1, 123.2, 63.9, 35.3, 34.5. **HRMS** (ESI) m/z: [M + H - N₂]⁺ calcd. for C₂₃H₁₉N₂O₂: 355.1447, Found 355.1452.

8. The Reaction of 2a with KSCN

The mixture of **2a** (54.3 mg, 0.2 mmol, 1.0 equiv), TBAI (7.4 mg, 0.02 mmol, 10 mol %) and KSCN (38.9 mg, 0.40 mmol, 2.0 equiv) in CH₃CN (1.0 mL) were stirred at 90 °C for 24 h. After completion of the reaction, the solvent was removed under reduced pressure and purified by flash column chromatography (PE/EA = 20:1) on silica gel to give the product **15** in 80% yield.

4-(1-azido-3-thiocyanatopropyl)-1,1'-biphenyl (15)

The product **15** was purified with silica gel chromatography (PE/EA = 20:1) as a white solid (47.1 mg, 80% yield); **mp** 73-73 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 7.71 – 7.58 (m, 4H),

7.53 – 7.35 (m, 5H), 4.74 (dd, J = 8.8, 5.4 Hz, 1H), 3.11 – 2.96 (m, 2H), 2.40 – 2.17 (m, 2H). ¹³**C NMR** (101 MHz, CDCl₃) δ 141.9, 140.3, 136.9, 129.0, 127.9, 127.8, 127.4, 127.2, 111.7, 63.7, 36.4, 30.5. **HRMS** (ESI) m/z: [M + H - N₂]⁺ Calcd for C₁₆H₁₅N₂S: 267.0956; Found 267.0966.

9. The Reaction of 2a with NaI

The mixture of **2a** (54.3 mg, 0.2 mmol, 1.0 equiv), and NaI (149.9 mg, 1.0 mmol, 5.0 equiv) in acetone (1.0 mL) were stirred under reflux overnight. After completion of the reaction, the solvent was removed under reduced pressure and purified by flash column chromatography (PE/EA = 100:1) on silica gel to give the product **16** in 89% yield.

4-(1-azido-3-iodopropyl)-1,1'-biphenyl (16)

The product **16** was purified with silica gel chromatography (PE/EA = 100:1) as a white solid (64.7 mg, 89% yield); **mp** 49-50 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 7.68 – 7.59 (m, 4H), 7.51

- 7.36 (m, 5H), 4.71 (dd, J = 8.2, 6.0 Hz, 1H), 3.28 (ddd, J = 10.0, 7.6, 6.4 Hz, 1H), 3.16 (dt, J = 9.9, 6.5 Hz, 1H), 2.26 (dddt, J = 41.0, 14.4, 7.7, 6.4 Hz, 2H). ¹³**C NMR** (101 MHz, CDCl₃) δ 141.7, 140.4, 137.4, 129.0, 127.8, 127.7, 127.5, 127.2, 66.0, 39.7, 2.1. **HRMS** (ESI) m/z: [M + H - N₂]⁺ Calcd for C₁₅H₁₅IN: 336.0249; Found 336.0264.

10. The Reduction reaction of azide with PPh₃

i) 2a (54.3 mg, 0.2 mmol, 1.0 equiv) and PPh₃ (131.1 mg, 0.5 mmol, 2.5 equiv) were dissolved in a mixture of THF (2.0 mL), H₂O (0.5 mL). The reaction was stirred for 4 h at 60 $^{\circ}$ C under N₂. After completion of the reaction, the residue was transferred into

a separatory funnel and added water (1.0 mL), extracted with DCM three times. The last combined organic layers were dried over Na₂SO₄ and concentrated under vacuum. The crude mixture was directly used in the next step without further purification.

ii) To the above residue was added Boc_2O (55 μ L, 0.24 mmol, 1.2 equiv), KHCO₃ (24.0 mg, 0.24 mmol, 1.2 equiv) and THF (1.0 mL), and the reaction mixture was stirring at the room temperature overnight. After completion of the reaction, the solvent was removed under reduced pressure and the product was purified by flash column chromatography (PE/EA = 20:1) on silica gel to give the product 17 in 64% yield.

tert-butyl (1-([1,1'-biphenyl]-4-yl)-3-chloropropyl)carbamate (17)

The product 17 was purified with silica gel chromatography (PE/EA = 20:1) as a white solid (44.3 mg, 64% yield); mp 133-CI 134 °C. ¹**H NMR** (400 MHz, DMSO-*d*₆) δ 7.72 – 7.51 (m, 5H), 7.45 (t, J = 7.6 Hz, 2H), 7.41 – 7.31 (m, 3H), 4.72 (dd, J = 8.3, 7.9 Hz, 1H), 3.73-3.60 (m, 1H), 3.60-3.46(m, 1H), 2.23 – 1.95 (m, 2H), 1.37 (s, 9H). ¹³C NMR (101 MHz, DMSO) § 155.0, 142.5, 139.9, 138.8, 128.9, 127.3, 126.9, 126.7, 126.6, 77.9, 51.4, 42.3, 38.9, 28.2. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₀H₂₅ClNO₂: 346.1574; Found 346.1574.

11. The Reaction of 17 with 4'-Iodoacetophenone

The insertion step 1: 17 (69.2 mg, 0.2 mmol), indium (45.9 mg, 0.4 mmol), LiI (53.5 mg, 0.4 mmol), and THF (1.0 mL) was added in a flask equipped with a septum and a magnetic stir bar. The reaction mixture was vigorously stirred at 60 °C for 24 h. Then the solution was carefully separated by filtration. The remaining black precipitate was additionally stirred with THF (3.0 mL), and the THF layer was carefully separated by filtration. The combined organic layers were concentrated under vacuum. The crude mixture was directly used in the next step without further purification.

The cross-coupling step 2: To the above residue was added 4'-Iodoacetophenone (34.4

mg, 0.7 mmol), LiCl (17.0 mg, 0.4 mmol), and Pd (PPh₃)₂Cl₂ (7.0 mg, 0.01 mmol), and DMF (1.0 mL), and the reaction mixture was stirred at 100 °C for 24 h. Upon completion of the reaction, the residue was transferred into a separatory funnel and added water (1.0 mL), extracted with DCM three times. The last combined organic layers were dried over Na₂SO₄ and the solvent was removed under reduced pressure and the product was purified by flash column chromatography (PE/EA =10:1) on silica gel to give the product **18** in 85% yield.

tert-butyl (1-([1,1'-biphenyl]-4-yl)-3-(4-acetylphenyl)propyl)carbamate (18)

The product **18** was purified with silica gel chromatography (PE/EA = 10:1) as a white solid (51.1 mg, 85% yield); **mp** 118-119 °C. ¹**H NMR** (400 MHz,

CDCl₃) δ 7.91 – 7.86 (m, 2H), 7.62 – 7.53 (m, 4H), 7.47 – 7.41 (m, 2H), 7.37 – 7.32 (m, 3H), 7.29 – 7.25 (m, 2H), 4.92 (d, J = 8.2 Hz, 1H), 4.72 (s, 1H), 2.81 – 2.62 (m, 2H), 2.58 (s, 3H), 2.25 – 2.03 (m, 2H), 1.44 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 197.9, 155.4, 147.3, 140.8, 140.5, 135.4, 128.9, 128.8, 127.6, 127. 5, 127.2, 127.0, 79.8, 54.4, 38.2, 32. 8, 28.5, 26.7. **HRMS** (ESI) m/z: [M + Na]⁺ Calcd for C₂₈H₃₁NNaO₃: 452.2202; Found 452.2198.
References:

- 1. N. Fu, G. S. Sauer, A. Saha, A. Loo and S. Lin, Science 2017, 357, 575.
- L. Crespin, L. Biancalana, T. Morack, D. C. Blakemore and S. V. Ley, *Org. Lett.*, 2017, 19, 1084.
- 3. K. Miyazawa, T. Koike and M. Akita, Chem. Eur. J. 2015, 21, 11677.
- (a) B. Zhang and A. Studer, Org. Lett., 2014, 16, 1790; (b) A. Bunescu, T. M. Ha, Q. Wang and J. Zhu, Angew. Chem. Int., Ed. 2017, 56, 10555; (c) H. Zhou, W. Jian, B. Qian, C. Ye, D. Li, J. Zhou and H. Bao, Org. Lett., 2017, 19, 6120; (d) F. Wang, X. Qi, Z. Liang, P. Chen and G. Liu, Angew. Chem. Int. Ed., 2014, 53, 1881; (e) B. Chen, C. Fang, P. Liu and J. M. Ready, Angew. Chem. Int. Ed., 2017, 56, 8780; (f) C.-L. Zhu, C. Wang, Q.-X. Qin, S. Yruegas, C. D. Martin and H. Xu, ACS Catal., 2018, 8, 5032.

NMR Spectra of New Compounds (¹H NMR, ¹³C NMR, ¹⁹F NMR)

¹³C NMR Spectrum of **2a** (CDCl₃, 101 MHz)

¹³C NMR Spectrum of **2b** (CDCl₃, 101 MHz)

¹³C NMR Spectrum of **2c** (CDCl₃, 101 MHz)

¹³C NMR Spectrum of 2d (CDCl₃, 101 MHz)

- 1500 - 1000 - 500 - 0 - -500

-10

¹³C NMR Spectrum of **2e** (CDCl₃, 101 MHz)

¹³C NMR Spectrum of **2p** (CDCl₃, 101 MHz)

¹⁹F NMR Spectrum of **2p** (CDCl₃, 376 MHz)

¹H NMR Spectrum of **2q** (CDCl₃, 400 MHz)

¹³C NMR Spectrum of **2q** (CDCl₃, 101 MHz)

¹³C NMR Spectrum of **2r** (CDCl₃, 101 MHz)

¹³C NMR Spectrum of **2s** (CDCl₃, 101 MHz)

¹³C NMR Spectrum of **2t** (CDCl₃, 101 MHz)

¹³C NMR Spectrum of **2u** (CDCl₃, 101 MHz)

¹³C NMR Spectrum of **2v** (CDCl₃, 101 MHz)

¹³C NMR Spectrum of **2w** (CDCl₃, 101 MHz)

10 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 13 C NMR Spectrum of **2x** (CDCl₃, 101 MHz) 0

20 10 0 -10

¹³C NMR Spectrum of **2y** (CDCl₃, 101 MHz)

¹³C NMR Spectrum of **2z** (CDCl₃, 10111111 MHz)

¹³C NMR Spectrum of 2aa (CDCl₃, 101 MHz)

¹³C NMR Spectrum of **2ab** (CDCl₃, 101 MHz)

¹³C NMR Spectrum of **2ac** (CDCl₃, 101 MHz)

¹³C NMR Spectrum of 2ad (CDCl₃, 101 MHz)

¹³C NMR Spectrum of 2ae (CDCl₃, 101 MHz)

¹³C NMR Spectrum of **2af** (CDCl₃, 101 MHz)

¹³C NMR Spectrum of **2ag** (CDCl₃, 101 MHz)

¹³C NMR Spectrum of **2ah** (CDCl₃, 101 MHz)

¹H NMR Spectrum of **2ai** (CDCl₃, 400 MHz)

¹³C NMR Spectrum of **2ai** (CDCl₃, 101 MHz)

¹³C NMR Spectrum of **2aj** (CDCl₃, 101 MHz)

¹³C NMR Spectrum of **2ak** (CDCl₃, 101 MHz)

¹³C NMR Spectrum of **2al** (CDCl₃, 101 MHz)

¹³C NMR Spectrum of **2am** (CDCl₃, 127 MHz)

¹³C NMR Spectrum of **2an** (CDCl₃, 127 MHz)

¹³C NMR Spectrum of 4 (CDCl₃, 101 MHz)

¹³C NMR Spectrum of **5** (CDCl₃, 101 MHz)

¹³C NMR Spectrum of 7 (CDCl₃, 101 MHz)

¹³C NMR Spectrum of **10** (CDCl₃, 1011111 MHz)

¹³C NMR Spectrum of **11** (CDCl₃, 101 MHz)

¹³C NMR Spectrum of **12** (CDCl₃, 101 MHz)

¹³C NMR Spectrum of **13** (CDCl₃, 101 MHz)

¹³C NMR Spectrum of **14** (CDCl₃, 101 MHz)

¹H NMR Spectrum of **16** (CDCl₃, 400 MHz)

¹³C NMR Spectrum of **16** (CDCl₃, 101 MHz)

¹³C NMR Spectrum of **17** (DMSO, 101 MHz)

¹³C NMR Spectrum of **18** (CDCl₃, 101 MHz)