Supporting Information

For
Copper-Catalyzed Monochloromethylazidation to Access

Transformable Terminal Alkyl Chlorides Using Stoichiometric

 $\mathrm{BrCH}_{2} \mathrm{Cl}$Ya-Xuan Zhang, Kang-Jie Bian, Ruo-Xing Jin, Chi Yang and Xi-Sheng Wang* Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, Centers for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China 96 Jinzhai Road, Hefei, Anhui 230026, China xswang77@ustc.edu.cn.
Table of Contents
General Information S3
Tables of the Optimization of Reaction Conditions S4
Temperature Screening S4
Copper Catalyst Screening S4
Ligand Screening S5
Base Screening S6
Solvent Screening S7
Reaction Conditions Screening S7
Finnal Variation S8
Preparation of Styrenes S9
General Procedure for Copper-Catalyzed Monochloro- methylazidation S10
Large Scale Experiment S23
Mechanistic Studies S24
Monochloromethylazidation of the Estrone Derivative S28
Derivatizations of Products S29
References S37
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, and ${ }^{19} \mathrm{~F}$ NMR Spectra S38

General Information:

NMR spectra were recorded on Bruker- 400 MHz or Bruker-500 MHz NMR spectrometer $\left(400 \mathrm{MHz}\right.$ or 500 MHz for $1 \mathrm{H} ; 101 \mathrm{MHz}$ or 126 MHz for ${ }^{13} \mathrm{C}$ and 376 MHz or 471 MHz for ${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H},{ }^{1} 3 \mathrm{C}\right.$ decoupled $\left.\}\right) .{ }^{1} \mathrm{H}$ NMR spectra were referenced relative to internal $\mathrm{Si}(\mathrm{Me})_{4}(\mathrm{TMS})$ at $\delta 0.00 \mathrm{ppm}$ or CDCl_{3} at $\delta 7.26 \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR spectra were recorded at ambient temperature on Bruker-400 (101 MHz) or Bruker-500 $(126 \mathrm{MHz})$ spectrometers and are referenced relative to CDCl_{3} at $\delta 77.16 \mathrm{ppm}$. The ${ }^{13} \mathrm{C}$ NMR spectra were obtained with ${ }^{1} \mathrm{H}$ de-coupling. Data for ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C},{ }^{19} \mathrm{~F}$ NMR are recorded as follows: chemical shift (δ, ppm), multiplicity ($\mathrm{s}=\operatorname{singlet}, \mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{m}=$ multiplet, $\mathrm{q}=$ quartet, quint $=$ quintet, $\mathrm{br}=$ broad $)$, integration, and coupling constant (Hz). High resolution mass spectra were recorded on P-SIMS-Gly of Bruker Daltonics Inc. using ESI-TOF (electrospray ionization-time of flight) or Micromass GCT using EI (electron impact). Bromochloromethane was obtained from Energy and used as received. Cupric acetylacetonate was obtained from Energy and used as received. Tris(2-dimethylaminoethyl)amine (L1, Me6TREN) was obtained from Energy and used as received. Azidotrimethylsilane was obtained from Energy and used as received. Potassium carbonate was purchased from Sinopharm and used as received. Diisopropylamine was purchased from Adamas and used as received. Anhydrous methanol was purchased from Infinity Scientific and used as received.

Tables of the Optimization of Reaction Conditions
Table S1. Temperature Screening ${ }^{a}$, related to Table 1.

${ }^{a}$ Unless otherwise noted, the reaction conditions as follows: 1 a ($0.2 \mathrm{mmol}, 1.0$ equiv), $\mathrm{BrCH}_{2} \mathrm{Cl}\left(0.4 \mathrm{mmol}, 2.0\right.$ equiv), $\mathrm{Cu}(\mathrm{OH})_{2}(0.02 \mathrm{mmol}, 10 \mathrm{~mol} \%), \mathbf{L 1}(0.04 \mathrm{mmol}, 20 \mathrm{~mol} \%)$, $\mathrm{TMSN}_{3}\left(0.3 \mathrm{mmol}, 1.5\right.$ equiv), $\mathrm{K}_{2} \mathrm{CO}_{3}\left(0.24 \mathrm{mmol}, 1.2\right.$ equiv), $\mathrm{CH}_{3} \mathrm{OH}(1.0 \mathrm{~mL}), 12 \mathrm{~h}, \mathrm{~N}_{2} .{ }^{b}$ Yield determined by ${ }^{1} \mathrm{H}$ NMR using dibromomethane as internal standard. ${ }^{c}$ Isolated yield. L1 $=\mathrm{Me}_{6}$ TREN .

Table S2. Copper Catalyst Screening ${ }^{a}$, related to Table 1.

entry	[Cu]	yield (\%) ${ }^{\text {b }}$	entry	[Cu]	yield (\%) ${ }^{\text {b }}$
1	CuCN	63	18	CuO	nd
2	$\mathrm{Cu}_{2} \mathrm{O}$	57	19	CuSO_{4}	nd
3	CuOAc	53	20	CuF_{2}	43
4	CuSCN	72	21	CuCl_{2}	26
5	CuCl	49	22	CuBr_{2}	9
6	CuBr	51	23	$\mathrm{Cu}_{2}(\mathrm{OH})_{2} \mathrm{CO}_{3}$	39
7	Cul	38	24	$\mathrm{Cu}\left(\mathrm{COO}^{\text {s }} \mathrm{Oct}\right)_{2}$	29
8	$\mathrm{Cu}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{Br}$	44	25	$\mathrm{Cu}\left(\mathrm{COO}^{5} \mathrm{Bu}\right)_{2}$	41
9	$\mathrm{CuBr} \cdot \mathrm{Me}_{2} \mathrm{~S}$	48	26	$\mathrm{Cu}(\mathrm{hfacac})_{2} \cdot \mathrm{XH}_{2} \mathrm{O}$	75
10	CuTc	53	27	$\mathrm{Cu}\left(\mathrm{CF}_{3} \mathrm{CO}_{2}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	33
11	$\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4} \mathrm{PF}_{6}$	39	28	$\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$	nd
12	$\mathrm{Cu}(\mathrm{acac})_{2}$	$79\left(78^{\text {c }}\right.$)	29	$\mathrm{CuF}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$	48
$13^{\text {d }}$	$\mathrm{Cu}(\mathrm{acac})_{2}$	79 (789)	30	$\mathrm{CuCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$	37
14	$\mathrm{Cu}(\mathrm{hfacac})_{2}$	43	31	$\mathrm{Cu}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$	30
15	$\mathrm{Cu}\left(\mathrm{CF}_{3} \mathrm{COCH}_{2} \mathrm{COCH}_{3}\right)_{2}$	67	32	$\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	28
16	$\mathrm{Cu}(\mathrm{OAc})_{2}$	trace	33	$\mathrm{Cu}\left(\mathrm{BF}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$	40
17	$\mathrm{Cu}(\mathrm{OTf})_{2}$	nd	34	$\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	39
18	$\mathrm{Cu}(\mathrm{OH})_{2}$	47			

[^0]Table S3. Ligand Screening ${ }^{a}$, related to Table 1.

Ph		$\begin{array}{r} \mathrm{Cu}(\mathrm{ao} \\ \mathrm{L} \\ \hline \mathrm{TMS} \\ \mathrm{~K}_{2} \mathrm{CO}_{3}, \end{array}$	10 mol mol\%) 2 equiv) OH, 100		
entry	L	yield (\%) ${ }^{\text {b }}$	entry	L	yield (\%) ${ }^{\text {b }}$
1	NEt_{3}	nd	7	bpy	nd
2	TMEDA	trace	8	dtbpy	nd
3	PMDTA	trace	9	phen	nd
4	L1	79	10	PPh_{3}	nd
5	L2	trace	11	dppp	nd
6	L3	32			

${ }^{2}$ Unless otherwise noted, the reaction conditions as follows: 1a ($0.2 \mathrm{mmol}, 1.0$ equiv), $\mathrm{BrCH}_{2} \mathrm{Cl}\left(0.4 \mathrm{mmol}, 2.0\right.$ equiv), $\mathrm{Cu}(\mathrm{acac})_{2}(0.02 \mathrm{mmol}, 10 \mathrm{~mol} \%), \mathrm{L}(0.04 \mathrm{mmol}, 20$ $\mathrm{mol} \%$), TMSN_{3} ($0.24 \mathrm{mmol}, 1.2$ equiv), $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($0.24 \mathrm{mmol}, 1.2$ equiv), $\mathrm{CH}_{3} \mathrm{OH}$ (1.0 $\mathrm{mL}), 100{ }^{\circ} \mathrm{C}, 12 \mathrm{~h}, \mathrm{~N}_{2} .{ }^{b}$ Yield determined by ${ }^{1} \mathrm{H}$ NMR using dibromomethane as internal standard.

Table S4. Base Screening ${ }^{a}$, related to Table 1.

	$+\mathrm{Br}$	$\begin{array}{cc} \\ \mathrm{H}_{2} \mathrm{Cl} & \begin{array}{c} \mathrm{Cu} \\ \\ \\ \text { bas } \end{array} \\ \mathrm{TN} \end{array}$	$\begin{aligned} & \mathrm{c})_{2}(10 \\ & (20 \mathrm{mo} \\ & \mathrm{J}_{3}(1.2 \\ & \mathrm{H}_{3} \mathrm{OH}, \end{aligned}$	(\%) iv)	
entry	base	yield (\%) ${ }^{\text {b }}$	entry	base	yield (\%) ${ }^{\text {b }}$
1	LiOAc	31	18	$t \mathrm{BuOLi}$	65
2	NaOAc	22	19	$t \mathrm{BuONa}$	45
3	KOAc	39	20	$t \mathrm{BuOK}$	58
4	CsOAc	33	21	$\mathrm{CH}_{3} \mathrm{OLi}$	62
5	NaHCO_{3}	58	22	$\mathrm{CH}_{3} \mathrm{ONa}$	38
6	KHCO_{3}	50	23	$\mathrm{CH}_{3} \mathrm{OK}$	32
7	$\mathrm{Na}_{2} \mathrm{HPO}_{4}$	13	24	CsF	26
8	$\mathrm{K}_{2} \mathrm{HPO}_{4}$	57	25	$\mathrm{Et}_{3} \mathrm{~N}$	47
9	$\mathrm{Li}_{2} \mathrm{CO}_{3}$	44	26	TMEDA	36
10	$\mathrm{Na}_{2} \mathrm{CO}_{3}$	72	27	DIPEA	61
11	$\mathrm{K}_{2} \mathrm{CO}_{3}$	79	28	DABCO	6
12	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	78	29	DMAP	15
13	$\mathrm{Na}_{3} \mathrm{PO}_{4}$	15	30	TMG	68
14	$\mathrm{K}_{3} \mathrm{PO}_{4}$	62	31	DBU	61
15	$\mathrm{LiOH} \cdot \mathrm{H}_{2} \mathrm{O}$	67	32	PMP	54
16	NaOH	66	33	HMTA	29
17	KOH	55	34	proton sponge	47

${ }^{\text {a }}$ Unless otherwise noted, the reaction conditions as follows: 1 a ($0.2 \mathrm{mmol}, 1.0$ equiv), $\mathrm{BrCH}_{2} \mathrm{Cl}\left(0.4 \mathrm{mmol}, 2.0\right.$ equiv), $\mathrm{Cu}(\mathrm{acac})_{2}(0.02 \mathrm{mmol}, 10 \mathrm{~mol} \%), \mathrm{L} 1(0.04 \mathrm{mmol}, 20 \mathrm{~mol}$ $\%$), TMSN_{3} ($0.24 \mathrm{mmol}, 1.2$ equiv), base ($0.24 \mathrm{mmol}, 1.2$ equiv), $\mathrm{CH}_{3} \mathrm{OH}(1.0 \mathrm{~mL}), 100^{\circ} \mathrm{C}$, $12 \mathrm{~h}, \mathrm{~N}_{2} .{ }^{b}$ Yield determined by ${ }^{1} \mathrm{H}$ NMR using dibromomethane as internal standard.
DABCO

Table S5. Solvent Screening ${ }^{a}$, related to Table 1.

	$+\mathrm{BrC}$	$\begin{array}{r} \mathrm{Cu}(\mathrm{ac} \\ \mathrm{L} \\ \hline \mathrm{TMS} \\ \mathrm{~K}_{2} \mathrm{CO}_{3} \end{array}$	(10 mo mol\% 1.2 equiv) ent, 100		
entry	solvent	yield (\%) ${ }^{\text {b }}$	entry	solvent	yield (\%) ${ }^{\text {b }}$
1	DCE	nd	7	$\mathrm{CH}_{3} \mathrm{CN}$	5
2	MeOH	79	8	DME	nd
3	EtOH	61	9	DMF	nd
4	HFIP	nd	10	DMA	nd
5	THF	nd	11	DMSO	nd
6	1,4-dioxane	nd	12	NMP	nd

${ }^{2}$ Unless otherwise noted, the reaction conditions as follows: 1 a ($0.2 \mathrm{mmol}, 1.0$ equiv), $\mathrm{BrCH}_{2} \mathrm{Cl}\left(0.4 \mathrm{mmol}, 2.0\right.$ equiv), $\mathrm{Cu}(\mathrm{acac})_{2}(0.02 \mathrm{mmol}, 10 \mathrm{~mol} \%), \mathrm{L} 1(0.04 \mathrm{mmol}, 20 \mathrm{~mol}$ $\%$), TMSN_{3} ($0.24 \mathrm{mmol}, 1.2$ equiv), $\mathrm{K}_{2} \mathrm{CO}_{3}(0.24 \mathrm{mmol}, 1.2$ equiv), solvent (1.0 mL), 100 ${ }^{\circ} \mathrm{C}, 12 \mathrm{~h}, \mathrm{~N}_{2} .{ }^{b}$ Yield determined by ${ }^{1} \mathrm{H}$ NMR using dibromomethane as internal standard.

Table S6. Reaction Conditions Screening ${ }^{a}$, related to Table 1.

${ }^{a}$ Unless otherwise noted, the reaction conditions as follows: 1a ($0.2 \mathrm{mmol}, 1.0$ equiv), $\mathrm{Cu}(\mathrm{acac})_{2}(0.02 \mathrm{mmol}, 10 \mathrm{~mol} \%)$, $\mathrm{L} 1(0.04 \mathrm{mmol}, 20 \mathrm{~mol} \%), \mathrm{TMSN}_{3}(0.24 \mathrm{mmol}, 1.2$ equiv), $\mathrm{CH}_{3} \mathrm{OH}(1.0 \mathrm{~mL}), 12 \mathrm{~h}, \mathrm{~N}_{2} .{ }^{b}$ Yield determined by ${ }^{1} \mathrm{H}$ NMR using dibromomethane as internal standard.

Table S7. Final Variation ${ }^{a}$, related to Table 1.

 1a		
entry	conditions	yield (\%) ${ }^{\text {b }}$
1	standard conditons	86
2	$\mathrm{Cu}(\mathrm{acac})_{2}(5 \mathrm{~mol} \%$) was used	58
3	$\mathrm{BrCH}_{2} \mathrm{Cl}$ (1.5 equiv) was used.	85
4	$\mathrm{t}=24 \mathrm{~h}$	86
5	$\mathrm{K}_{2} \mathrm{CO}_{3}$ (3.0 equiv) was used.	87
6	$\mathrm{K}_{2} \mathrm{CO}_{3}$ (3.0 equiv) and $\mathrm{t}=24 \mathrm{~h}$ were used.	$90\left(90^{c}\right)$
7	NaN_{3} instead of TMSN_{3}	83
8	TsN_{3} instead of TMSN_{3}	61
9	$(\mathrm{PhO})_{2} \mathrm{P}(\mathrm{O}) \mathrm{N}_{3}$ instead of TMSN_{3}	70

${ }^{a}$ Unless otherwise noted, the reaction conditions as follows: 1 a ($0.2 \mathrm{mmol}, 1.0$ equiv), $\mathrm{Cu}(\mathrm{acac})_{2}(0.02 \mathrm{mmol}, 10 \mathrm{~mol} \%)$, $\mathbf{L 1}$ ($0.04 \mathrm{mmol}, 20 \mathrm{~mol} \%$), TMSN_{3} ($0.24 \mathrm{mmol}, 1.2$ equiv), $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($0.4 \mathrm{mmol}, 2.0$ equiv), $\mathrm{CH}_{3} \mathrm{OH}(1.0 \mathrm{~mL}), 60^{\circ} \mathrm{C}, 12 \mathrm{~h}, \mathrm{~N}_{2} .{ }^{b}$ Yield determined by ${ }^{1} \mathrm{H}$ NMR using dibromomethane as internal standard. ${ }^{c}$ Isolated yield.

Preparation of Alkenes

The styrenes $\mathbf{1 b} \mathbf{- 1 d}, \mathbf{1 f} \mathbf{- 1 h}, \mathbf{1} \mathbf{j}, \mathbf{1 p} \mathbf{- 1 r}, \mathbf{1 u}, \mathbf{1 a c} \mathbf{1 a e}$ were purchased and used directly from commercial sources, and substrates $\mathbf{1 a}, \mathbf{1 e}, \mathbf{1}, \mathbf{1 k} \mathbf{- 1}, \mathbf{1 0}, \mathbf{1 s} \mathbf{- 1 t}, \mathbf{1 v - 1} \mathbf{a b}, \mathbf{1 a f} \mathbf{- 1 a k}$ were prepared in accordance with method described in the reference. ${ }^{1} \mathbf{1 m} \mathbf{- 1 n}$, Estrone Derivative 6 were prepared in accordance with method described in the reference. ${ }^{2}$ 1ap was prepared in accordance with method described in the reference. ${ }^{3}$

General Procedure for Copper-Catalyzed Monochloromethylazida

tion of Alkenes

To a 25 mL of Schlenk tube was added $\mathrm{Cu}(\mathrm{acac})_{2}(5.2 \mathrm{mg}, 0.02 \mathrm{mmol}, 10 \mathrm{~mol} \%)$, $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($82.9 \mathrm{mg}, 0.60 \mathrm{mmol}, 3.0$ equiv) or DIPA ($100 \mu \mathrm{~L}, 0.60 \mathrm{mmol}, 3.0$ equiv) under air atmosphere. The mixture was evacuated and backfilled with N_{2} (3 times), then methanol (1.0 mL), $\mathbf{1}$ ($0.2 \mathrm{mmol}, 1.0$ equiv), $\mathrm{BrCH}_{2} \mathrm{Cl}(26 \mu \mathrm{~L}, 0.4 \mathrm{mmol}, 2.0$ equiv), $\mathbf{L} 1\left(11 \mu \mathrm{~L}, 0.04 \mathrm{mmol}, 20 \mathrm{~mol} \%\right.$) and $\mathrm{TMSN}_{3}(32 \mu \mathrm{~L}, 0.24 \mathrm{mmol}, 1.2$ equiv) were added subsequently. The Schlenk tube was then sealed with a Teflon lined cap and put into a preheated oil bath $\left(60-100{ }^{\circ} \mathrm{C}\right)$. After stirring for 24 h , the reaction mixture was cooled to room temperature. The reaction mixture was diluted with EtOAc and filtered through a pad of celite. The filtrate was concentrated under vacuum and purified by flash column chromatography on silica gel to give the product 2 .

4-(1-azido-3-chloropropyl)-1, 1'-biphenyl (2a)

The product 2a was purified with silica gel chromatography $(\mathrm{PE} / \mathrm{EA}=100: 1)$ as a white solid ($48.9 \mathrm{mg}, 90 \%$ yield); mp $31-32{ }^{\circ} \mathrm{C} .{ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.67-7.55(\mathrm{~m}, 4 \mathrm{H})$, $7.50-7.35(\mathrm{~m}, 5 \mathrm{H}), 4.82(\mathrm{dd}, J=8.6,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{ddd}, J=11.1,7.9,5.3 \mathrm{~Hz}$, $1 \mathrm{H}), 3.54(\mathrm{dt}, J=11.3,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.34-2.23(\mathrm{~m}, 1 \mathrm{H}), 2.20-2.08(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl_{3}) $\delta 141.7,140.5,137.6,129.0,127.9,127.7,127.5,127.2,63.0,41.5$, 39.0. HRMS (ESI) m/z: $\left[\mathrm{M}+\mathrm{H}-\mathrm{N}_{2}\right]^{+}$Calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{ClN}$: 244.0893; Found 244.0911.

(1-azido-3-chloropropyl)benzene (2b)

The product $\mathbf{2 b}$ was purified with silica gel chromatography $(\mathrm{PE} / \mathrm{EA}=100: 1)$ as a colorless oil $\left(30.5 \mathrm{mg}, 78 \%\right.$ yield). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.46-7.29(\mathrm{~m}, 5 \mathrm{H}), 4.77(\mathrm{dd}, J=8.6$, $5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.67$ (ddd, $J=11.2,8.0,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{dt}, J=11.3,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.30$ $-2.19(\mathrm{~m}, 1 \mathrm{H}), 2.15-2.03(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ 138.8, 129.2, 128.8, 127.1, 63.2, 41.5, 39.1. HRMS (ESI) m/z: $\left[\mathrm{M}+\mathrm{H}-\mathrm{N}_{2}\right]^{+}$Calcd for $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{ClN}$: 168.0580; Found 168.0590.

1-(1-azido-3-chloropropyl)-4-methylbenzene (2c)

The product $2 \mathbf{c}$ was purified with silica gel chromatography $(\mathrm{PE} / \mathrm{EA}=100: 1)$ as a colorless oil ($36.5 \mathrm{mg}, 87 \%$ yield). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.22(\mathrm{~s}, 4 \mathrm{H}), 4.73(\mathrm{dd}, J=8.6,5.9$ $\mathrm{Hz}, 1 \mathrm{H}), 3.65(\mathrm{ddd}, J=11.0,7.9,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{dt}, J=11.4,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.37(\mathrm{~s}$, $3 \mathrm{H}), 2.30-2.18(\mathrm{~m}, 1 \mathrm{H}), 2.15-2.02(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 138.6$, 135.6, 129.8, 127.0, 63.0, 41.6, 39.0, 21.3. HRMS (ESI) m/z: $\left[\mathrm{M}+\mathrm{H}-\mathrm{N}_{2}\right]^{+}$Calcd for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{ClN}$: 182.0737; Found 182.0746.

1-(1-azido-3-chloropropyl)-4-(tert-butyl)benzene (2d)

The product $\mathbf{2 d}$ was purified with silica gel chromatography $(\mathrm{PE} / \mathrm{EA}=100: 1)$ as a colorless oil $(47.3 \mathrm{mg}, 94 \%$ yield $) .{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.45-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.22$ $(\mathrm{m}, 2 \mathrm{H}), 4.73(\mathrm{dd}, J=8.6,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{ddd}, J=11.1,7.9,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{dt}$, $J=11.3,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.29-2.18(\mathrm{~m}, 1 \mathrm{H}), 2.14-1.99(\mathrm{~m}, 1 \mathrm{H}), 1.33(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 151.7, 135.6, 126.7, 126.0, 62.9, 41.6, 39.0, 34.8, 31.4. HRMS (ESI) (m/z): $\left[\mathrm{M}+\mathrm{H}-\mathrm{N}_{2}\right]^{+}$Calcd for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{ClN}$: 224.1206; Found 224.1215.

1-(1-azido-3-chloropropyl)-4-fluorobenzene (2e)

The product $\mathbf{2 e}$ was purified with silica gel chromatography $(\mathrm{PE} / \mathrm{EA}=50: 1)$ as a colorless oil ($32.0 \mathrm{mg}, 75 \%$ yield). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.35-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.14-7.06$ (m, 2H), 4.76 (dd, $J=8.7,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{ddd}, J=11.2$, $8.0,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.47$ (ddd, $J=11.4,6.3,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.28-2.16(\mathrm{~m}, 1 \mathrm{H}), 2.11-2.00$ $(\mathrm{m}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 162.8\left(\mathrm{~d}, \mathrm{C}-\mathrm{F}, 1 J_{C-F}=247.6 \mathrm{~Hz}\right), 134.5(\mathrm{~d}, \mathrm{C}-$ F, $\left.4 J_{C-F}=3.2 \mathrm{~Hz}\right), 128.8\left(\mathrm{~d}, \mathrm{C}-\mathrm{F}, 3 J_{C-F}=8.2 \mathrm{~Hz}\right), 116.1\left(\mathrm{~d}, C-F, 2 J_{C-F}=21.6 \mathrm{~Hz}\right), 62.5$, 41.4, 39.1. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-113.0. HRMS (ESI) m/z: $\left[\mathrm{M}+\mathrm{H}-\mathrm{N}_{2}\right]^{+}$ Calc for $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{ClFN}: 186.0486$; Found 186.0498 .

1-(1-azido-3-chloropropyl)-4-chlorobenzene (2f)

The product $\mathbf{2 f}$ was purified with silica gel chromatography $(P E / E A=50: 1)$ as a colorless oil $\left(42.8 \mathrm{mg}, 93 \%\right.$ yield). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.41-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.23$ $(\mathrm{m}, 2 \mathrm{H}), 4.76(\mathrm{dd}, J=8.7,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{ddd}, J=11.2,8.1,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.47$ (ddd, $J=11.3,6.2,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.28-2.14(\mathrm{~m}, 1 \mathrm{H}), 2.12-1.98(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 137.3,134.6,129.4,128.4,62.5,41.3,39.0$. HRMS (ESI) m/z: $[\mathrm{M}+$ $\left.\mathrm{H}-\mathrm{N}_{2}\right]^{+}$Calcd for $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{~N}$: 202.0190; Found 202.0202.

1-(1-azido-3-chloropropyl)-4-bromobenzene (2g)

The product $\mathbf{2 g}$ was purified with silica gel chromatography $(\mathrm{PE} / \mathrm{EA}=100: 1)$ as a colorless oil $\left(46.1 \mathrm{mg}, 84 \%\right.$ yield). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.58-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.18$ (m, 2H), 4.75 (dd, $J=8.7,5.7 \mathrm{~Hz}, 1 \mathrm{H}$), 3.66 (ddd, $J=11.1,8.1,5.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.47 (dt, $J=11.3,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.27-2.14(\mathrm{~m}, 1 \mathrm{H}), 2.05(\mathrm{ddt}, J=14.0,8.1,5.6 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 137.8,132.3,128.7,122.7,62.5,41.3,39.0$. HRMS (ESI) $\mathrm{m} / \mathrm{z}:\left[\mathrm{M}+\mathrm{H}-\mathrm{N}_{2}\right]^{+}$Calcd for $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{BrClN}: ~ 245.9685$; Found 245.9693.

1-(1-azido-3-chloropropyl)-4-iodobenzene (2h)

The product $\mathbf{2 h}$ was purified with silica gel chromatography $(\mathrm{PE} / \mathrm{EA}=100: 1)$ as a colorless oil $\left(51.4 \mathrm{mg}, 80 \%\right.$ yield). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.79$ - 7.71 (m, 2H), 7.13 - 7.02 (m, 2H), 4.73 (dd, $J=8.7,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{ddd}, J=11.2,8.1,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.47$ (ddd, $J=11.3,6.2,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.26-2.13(\mathrm{~m}, 1 \mathrm{H}), 2.04(\mathrm{ddt}, J=14.0,8.1,5.6 \mathrm{~Hz}, 1 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 138.4,138.3,128.9,94.4,62.6,41.3,39.0$. HRMS (ESI) $\mathrm{m} / \mathrm{z}:\left[\mathrm{M}+\mathrm{H}-\mathrm{N}_{2}\right]^{+}$Calcd for $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{ClIN}$: 293.9546; Found 293.9549.

1-(1-azido-3-chloropropyl)-4-methoxybenzene (2i)

The product $\mathbf{2 i}$ was purified with silica gel chromatography $(\mathrm{PE} / \mathrm{EA}=50: 1)$ as a colorless oil $\left(32.5 \mathrm{mg}, 72 \%\right.$ yield). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.30-7.23(\mathrm{~m}, 2 \mathrm{H}), 6.97-6.88(\mathrm{~m}, 2 \mathrm{H}), 4.71(\mathrm{dd}, J=8.5,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H})$, 3.64 (ddd, $J=11.1,7.8,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.47$ (ddd, $J=11.1,6.4,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.30-2.17$ (m, 1H), 2.13-2.01 (m, 1H). ${ }^{13}$ C NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 159.9,130.5,128.4,114.5$,
62.7, 55.4, 41.6, 38.9. HRMS (ESI) m/z: $\left[\mathrm{M}+\mathrm{H}-\mathrm{N}_{2}\right]^{+}$Calcd for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{ClNO}$: 198.0686; Found 198.0696.

1-(1-azido-3-chloropropyl)-4-phenoxybenzene (2 j)

The product $\mathbf{2} \mathbf{j}$ was purified with silica gel chromatography $(\mathrm{PE} / \mathrm{EA}=50: 1)$ as a colorless oil ($47.8 \mathrm{mg}, 83 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.41-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.27$ $(\mathrm{m}, 2 \mathrm{H}), 7.15(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.10-7.00(\mathrm{~m}, 4 \mathrm{H}), 4.76(\mathrm{dd}, J=8.6,5.8 \mathrm{~Hz}, 1 \mathrm{H})$, 3.68 (ddd, $J=11.1,7.9,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.51(\mathrm{dt}, J=11.4,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.25(\mathrm{ddt}, J=14.4$, $8.6,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.10(\mathrm{ddt}, J=13.9,7.9,5.7 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 157.8, 156.7, 133.2, 130.0, 128.5, 123.9, 119.4, 119.0, 62.7, 41.5, 39.0. HRMS (ESI) $\mathrm{m} / \mathrm{z}:\left[\mathrm{M}+\mathrm{H}-\mathrm{N}_{2}\right]^{+}$Calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{ClNO}$ 260.0842; Found 260.0854 .

(4-(1-azido-3-chloropropyl)phenyl)(methyl)sulfane (2k)

The product $\mathbf{2 k}$ was purified with silica gel chromatography $(\mathrm{PE} / \mathrm{EA}=50: 1)$ as a colorless oil ($39.2 \mathrm{mg}, 81 \%$ yield). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.31$ - 7.19 (m, 4H), 4.72 (dd, J $=8.6,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{ddd}, J=11.1,7.9,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.47(\mathrm{dt}, J=11.4,5.9 \mathrm{~Hz}, 1 \mathrm{H})$, $2.49(\mathrm{~s}, 3 \mathrm{H}), 2.29-2.15(\mathrm{~m}, 1 \mathrm{H}), 2.06(\mathrm{ddt}, J=14.0,7.9,5.7 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{~ N M R}(101$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 139.4,135.2,127.5,126.9,62.8,41.4,38.9,15.7$. HRMS (ESI) m/z: $\left[\mathrm{M}+\mathrm{H}-\mathrm{N}_{2}\right]^{+}$Calcd for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{ClNS}: 214.0457$; Found 214.0465.

1-(4-(1-azido-3-chloropropyl)phenyl)ethan-1-one (21)

 DIPA (3.0 equiv) was used as base. The product $2 \mathbf{l}$ was purified with silica gel chromatography $(\mathrm{PE} / \mathrm{EA}=20: 1)$ as a colorless oil ($29.0 \mathrm{mg}, 61 \%$ yield). ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.03-7.96(\mathrm{~m}, 2 \mathrm{H}), 7.48-7.40(\mathrm{~m}, 2 \mathrm{H}), 4.84(\mathrm{dd}, J=8.8,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.68$ (ddd, $J=11.2,8.3,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{dt}, J=11.3,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.61(\mathrm{~s}, 3 \mathrm{H}), 2.28-$ $2.17(\mathrm{~m}, 1 \mathrm{H}), 2.08(\mathrm{ddt}, J=14.1,8.3,5.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 197.5, 143.9, 137.4, 129.2, 127.2, 62.7, 41.2, 39.0, 26.8. HRMS (ESI) m/z: [M + H $\left.\mathrm{N}_{2}\right]^{+}$Calcd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{ClNO}: 210.0686$; Found 210.0696.

4-(1-azido-3-chloropropyl)benzonitrile (2m)

DIPA (3.0 equiv) was used as base. The product $\mathbf{2 m}$ was purified with silica gel chromatography $(\mathrm{PE} / \mathrm{EA}=20: 1)$ as a colorless oil ($29.6 \mathrm{mg}, 67 \%$ yield). ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.71(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.47(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.85(\mathrm{dd}, J=9.0,5.4 \mathrm{~Hz}$, $1 \mathrm{H}), 3.69$ (ddd, $J=11.3,8.4,4.8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.49 (dt, $J=11.2,5.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.20 (ddt, J $=14.3,9.0,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.06(\mathrm{ddt}, J=14.0,8.6,5.3 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}(101 \mathrm{MHz}$, CDCl_{3}) $\delta 144.2,133.0,127.7,118.4,112.7,62.5,41.0,39.1$ HRMS (ESI) m/z: $[\mathrm{M}+$ $\left.\mathrm{H}-\mathrm{N}_{2}\right]^{+}$Calcd for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{ClN}_{2}$: 193.0533; Found 193.0542.

1-(1-azido-3-chloropropyl)-4-(methylsulfonyl)benzene (2n)

DIPA (3.0 equiv) was used as base. The product $\mathbf{2 n}$ was purified with silica gel chromatography $(\mathrm{PE} / \mathrm{EA}=3: 1)$ as a colorless oil ($32.8 \mathrm{mg}, 60 \%$ yield). ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.02-7.94(\mathrm{~m}, 2 \mathrm{H}), 7.59-7.52(\mathrm{~m}, 2 \mathrm{H}), 4.89(\mathrm{dd}, J=8.9,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.69$ (ddd, $J=11.2,8.4,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{dt}, J=11.2,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.07(\mathrm{~s}, 3 \mathrm{H}), 2.28-$ $2.14(\mathrm{~m}, 1 \mathrm{H}), 2.07(\mathrm{ddt}, J=14.1,8.4,5.3 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 145.2, 140.8, 128.3, 128.0, 62.4, 44.5, 41.1, 39.1. HRMS (ESI) m/z: $\left[\mathrm{M}+\mathrm{H}-\mathrm{N}_{2}\right]^{+}$ Calcd. for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{ClNO}_{2} \mathrm{~S}: 246.0356$; Found 246.0368.

Methyl 4-(1-azido-3-chloropropyl)benzoate (2o)

DIPA (3.0 equiv) was used as base. The product $\mathbf{2 0}$ was purified with silica gel chromatography $(\mathrm{PE} / \mathrm{EA}=20: 1)$ as a colorless oil ($30.4 \mathrm{mg}, 60 \%$ yield). ${ }^{1} \mathbf{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.11-8.04(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.37(\mathrm{~m}, 2 \mathrm{H}), 4.83(\mathrm{dd}, J=8.8,5.6 \mathrm{~Hz}, 1 \mathrm{H})$, 3.92 (s, 3H), 3.67 (ddd, $J=11.2,8.2,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{dt}, J=11.3,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.22$ (dddd, $J=14.8,8.9,6.0,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.08$ (ddt, $J=14.6,8.3,5.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl_{3}) $\delta 166.6,143.8,130.5,130.4,127.0,62.7,52.4,41.2,39.0$. HRMS (ESI) m/z: $\left[\mathrm{M}+\mathrm{H}-\mathrm{N}_{2}\right]^{+}$Calcd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{ClNO}_{2}$: 226.0635; Found 226.0647.

1-(1-azido-3-chloropropyl)-4-(trifluoromethyl)benzene (2p)

DIPA (3.0 equiv) was used as base. The product $\mathbf{2 p}$ was purified with silica gel chromatography $(\mathrm{PE} / \mathrm{EA}=50: 1)$ as a colorless oil ($32.2 \mathrm{mg}, 61 \%$ yield). ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.69(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.48(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.87(\mathrm{dd}, J=8.8,5.6 \mathrm{~Hz}$, $1 \mathrm{H}), 3.70$ (ddd, $J=11.3,8.2,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.50(\mathrm{dt}, J=11.3,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.24$ (ddt, J $=14.4,8.9,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.09(\mathrm{ddt}, J=14.1,8.5,5.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{~ N M R}(101 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 142.9,130.9\left(\mathrm{q}, \mathrm{C}-\mathrm{F}, 2 J_{C-F}=32.5 \mathrm{~Hz}\right), 127.4,126.2\left(\mathrm{q}, \mathrm{C}-\mathrm{F}, 3 J_{C-F}=3.8 \mathrm{~Hz}\right)$, $124.0\left(\mathrm{q}, \mathrm{C}-\mathrm{F}, 1 J_{C-F}=272.3 \mathrm{~Hz}\right), 62.6,41.2,39.1 .{ }^{19} \mathbf{F} \mathbf{N M R}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-62.7$. HRMS (ESI) m/z: [M + H - N $\left.{ }_{2}\right]^{+}$Calcd for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{ClF}_{3} \mathrm{~N}$: 236.0454; Found 236.0455.

1-(1-azido-3-chloropropyl)-4-nitrobenzene (2q)

DIPA (3.0 equiv) was used as base. The product $\mathbf{2 q}$ was purified with silica gel chromatography $(\mathrm{PE} / \mathrm{EA}=50: 1)$ as a colorless oil ($20.2 \mathrm{mg}, 42 \%$ yield). ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.30-8.24(\mathrm{~m}, 2 \mathrm{H}), 7.58-7.49(\mathrm{~m}, 2 \mathrm{H}), 4.92(\mathrm{dd}, J=9.0,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.71$ (ddd, $J=11.3,8.5,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.51(\mathrm{ddd}, J=11.2,5.9,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.23$ (dddd, $J=$ $14.8,9.0,5.9,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.08$ (ddt, $J=14.5,8.5,5.3 \mathrm{~Hz}, 1 \mathrm{H}$). ${ }^{13} \mathbf{C}$ NMR (101 MHz , CDCl_{3}) δ 148.1, 146.2, 127.9, 124.4, $62.3,41.0,39.2$. HRMS (ESI) m/z: $\left[\mathrm{M}+\mathrm{H}-\mathrm{N}_{2}\right]^{+}$ Calcd for $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{ClN}_{2} \mathrm{O}_{2} 213.0431$; Found 213.0433.

1-(1-azido-3-chloropropyl)-2-methylbenzene (2r)

The product $2 \mathbf{r}$ was purified with silica gel chromatography $(\mathrm{PE} / \mathrm{EA}=100: 1)$ as a colorless oil $(26.4 \mathrm{mg}, 63 \%$ yield $) .{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.34$ (dd, $J=6.7,2.2 \mathrm{~Hz}, 1 \mathrm{H}$), $7.31-$ 7.17 (m, 3H), 5.05 (dd, $J=9.1,4.9 \mathrm{~Hz}, 1 \mathrm{H}$), 3.72 (ddd, $J=11.1,8.8,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.57$ (dt, $J=11.0,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 2.19(\mathrm{ddt}, J=14.4,9.2,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.08$ (ddt, $J=14.3,8.8,5.2 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 136.9,135.7,131.1,128.4$, 126.8, 126.3, 59.4, 41.8, 38.4, 19.3. HRMS (ESI) m/z: $\left[\mathrm{M}+\mathrm{H}-\mathrm{N}_{2}\right]^{+}$Calcd for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{ClN}$: 182.0737; Found 182.0747.

1-(1-azido-3-chloropropyl)-2-methoxybenzene (2s)

The product $2 \mathbf{s}$ was purified with silica gel chromatography $(\mathrm{PE} / \mathrm{EA}=50: 1)$ as a colorless oil $\left(38.8 \mathrm{mg}, 86 \%\right.$ yield). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.35-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.00(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $6.93(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.18(\mathrm{dd}, J=8.7,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.67(\mathrm{ddd}, J=$ $11.0,8.0,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{dt}, J=11.2,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.29-2.12(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.9,129.6,127.4,126.9,121.0,111.0,57.5,55.6,41.8,37.5$. HRMS (ESI) m/z: $\left[\mathrm{M}+\mathrm{H}-\mathrm{N}_{2}\right]^{+}$Calcd for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{ClNO}: 198.0686$; Found 198.0696.

1-(1-azido-3-chloropropyl)-3-methylbenzene (2t)

The product $\mathbf{2 t}$ was purified with silica gel chromatography $(P E / E A=100: 1)$ as a colorless oil ($35.2 \mathrm{mg}, 84 \%$ yield). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.33-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.20-7.10$ (m, 3H), 4.73 (dd, $J=8.6,5.8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.66 (ddd, $J=11.1,8.0,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.50$ (dt, $J=11.3,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 2.24(\mathrm{ddt}, J=14.4,8.7,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.10(\mathrm{ddt}, J=$ $14.0,8.0,5.7 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 138.9,138.6,129.5,129.0,127.7$, 124.1, 63.2, 41.6, 39.0, 21.6. HRMS (ESI) m/z: $\left[\mathrm{M}+\mathrm{H}-\mathrm{N}_{2}\right]^{+}$Calcd for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{ClN}$: 182.0737; Found 182.0747.

1-(1-azido-3-chloropropyl)-3-methoxybenzene (2u)

The product $\mathbf{2 u}$ was purified with silica gel chromatography $(\mathrm{PE} / \mathrm{EA}=50: 1)$ as a colorless oil $(37.0 \mathrm{mg}, 82 \%$ yield $) .{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.32(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.94$ 6.85 (m, 3H), 4.73 (dd, $J=8.6,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.83$ (s, 3H), 3.66 (ddd, $J=11.1,7.9,5.2$ $\mathrm{Hz}, 1 \mathrm{H}), 3.49$ (dt, $J=11.4,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.22$ (ddt, $J=14.3,8.6,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.14-$ $2.03(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 160.2,140.3,130.2,119.3,114.0,112.7$, 63.1, 55.4, 41.5, 39.0. HRMS (ESI) m/z: $\left[\mathrm{M}+\mathrm{H}-\mathrm{N}_{2}\right]^{+}$Calcd for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{ClNO}$: 198.0686; Found 198.0694.

3-(1-azido-3-chloropropyl)benzonitrile (2v)

DIPA (3.0 equiv) was used as base. The product $\mathbf{2 v}$ was purified with silica gel chromatography $(\mathrm{PE} / \mathrm{EA}=40: 1)$ as a colorless oil ($26.5 \mathrm{mg}, 60 \%$ yield). ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.69-7.63(\mathrm{~m}, 2 \mathrm{H}), 7.62-7.56(\mathrm{~m}, 1 \mathrm{H}), 7.56-7.49(\mathrm{~m}, 1 \mathrm{H}), 4.84(\mathrm{dd}, J=$
8.9, 5.4 Hz, 1H), 3.69 (ddd, $J=11.2,8.4,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{dt}, J=11.2,5.6 \mathrm{~Hz}, 1 \mathrm{H})$, $2.27-2.15(\mathrm{~m}, 1 \mathrm{H}), 2.06(\mathrm{ddt}, J=14.1,8.4,5.3 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 140.7,132.3,131.4,130.5,130.1,118.4,113.4,62.3,41.0,39.1$. HRMS (ESI) m/z: $\left[\mathrm{M}+\mathrm{H}-\mathrm{N}_{2}\right]^{+}$Calcd for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{ClN}_{2}$: 193.0533; Found 193.0540.

4-(1-azido-3-chloropropyl)-1,2-dimethylbenzene (2w)

The product $\mathbf{2 w}$ was purified with silica gel chromatography $(\mathrm{PE} / \mathrm{EA}=100: 1)$ as a colorless oil ($38.5 \mathrm{mg}, 86 \%$ yield). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.17(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.12-$ 7.04 (m, 2H), 4.70 (dd, $J=8.6,5.9 \mathrm{~Hz}, 1 \mathrm{H}$), 3.65 (ddd, $J=11.0,7.9,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.50$ (dt, $J=11.4,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}), 2.27-2.19(\mathrm{~m}, 1 \mathrm{H}), 2.09$ (ddt, J $=14.0,7.9,5.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 137.4,137.3,136.0,130.3$, 128.3, 124.5, 63.1, 41.6, 39.0, 20.0, 19.6. HRMS (ESI) m/z: $\left[\mathrm{M}+\mathrm{H}-\mathrm{N}_{2}\right]^{+}$Calcd for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{ClN}$: 196.0893; Found 196.0908

1-(1-azido-3-chloropropyl)-2,4,5-trimethoxybenzene (2x)

The product $\mathbf{2 x}$ was purified with silica gel chromatography $(\mathrm{PE} / \mathrm{EA}=10: 1)$ as a colorless oil $\left(46.9 \mathrm{mg}, 82 \%\right.$ yield). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.81$ (s, 1H), 6.53 ($\mathrm{s}, 1 \mathrm{H}$), 5.13 (dd, $J=8.8,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{~s}$, 3H), $3.66-3.51(\mathrm{~m}, 2 \mathrm{H}), 2.26-2.05(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 151.5$, 149.8, 143.3, 117.9, 111.1, 97.4, 57.2, 56.8, 56.5, 56.2, 41.7, 37.8. HRMS (ESI) m/z: $\left[\mathrm{M}+\mathrm{H}-\mathrm{N}_{2}\right]^{+}$Calcd for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{ClNO}_{3}$: 258.0897; Found 258.0903 .
(2-azido-4-chlorobutan-2-yl)benzene (2y)

The product 2 y was purified with silica gel chromatography $(\mathrm{PE} / \mathrm{EA}=100: 1)$ as a colorless oil $\left(34.8 \mathrm{mg}, 83 \%\right.$ yield). ${ }^{1} \mathbf{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 7.44-7.36(\mathrm{~m}, 4 \mathrm{H}), 7.35-7.29(\mathrm{~m}$, 1 H), 3.47 (ddd, $J=10.8,9.4,7.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.23 (ddd, $J=10.7,9.1,7.1 \mathrm{~Hz}, 1 \mathrm{H}$), $2.40-$ $2.23(\mathrm{~m}, 2 \mathrm{H}), 1.75(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.2,129.0,127.9,125.4$, 66.1, 45.4, 39.8, 26.0. HRMS (ESI) m/z: [M + H - N 2$]^{+}$Calcd for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{CIN}$: 182.0737; Found 182.0746.

(1-azido-3-chloro-1-cyclohexylpropyl)benzene (2z)

The product $\mathbf{2 z}$ was purified with silica gel chromatography $(\mathrm{PE} / \mathrm{EA}=100: 1)$ as a colorless oil $\left(44.4 \mathrm{mg}, 80 \%\right.$ yield). ${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl_{3}) $\delta 7.39$ - $7.32(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.24$ (m, $3 H), 3.54-3.40(\mathrm{~m}, 1 \mathrm{H}), 3.29-3.12(\mathrm{~m}, 1 \mathrm{H}), 2.67-2.50(\mathrm{~m}, 2 \mathrm{H}), 1.98-1.86(\mathrm{~m}$, $1 \mathrm{H}), 1.84-1.66(\mathrm{~m}, 3 \mathrm{H}), 1.61(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.56-1.49(\mathrm{~m}, 1 \mathrm{H}), 1.28-1.09$ $(\mathrm{m}, 2 \mathrm{H}), 1.08-0.85(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 139.1,128.4,127.5$, 126.6, 72.3, 48.9, 40.1, 39.9, 27.9, 27.6, 26.6, 26.6, 26.2. HRMS (ESI) m/z: [M + H $\left.\mathrm{N}_{2}\right]^{+}$Calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{ClN}: 250.1363$; Found 250.1375 .

4,4'-(1-azido-3-chloropropane-1,1-diyl)bis(methylbenzene) (2aa)

The product 2aa was purified with silica gel chromatography $(\mathrm{PE} / \mathrm{EA}=100: 1)$ as a colorless oil $(58.8 \mathrm{mg}, 98 \%$ yield $) .{ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl_{3}) $\delta 7.22-7.15(\mathrm{~m}, 8 \mathrm{H}), 3.39-3.32$ (m, 2H), 2.89 - 2.81 (m, 2H), $2.36(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 139.0,137.8,129.4,126.8,71.6,42.5,40.2$, 21.1. HRMS (ESI) m/z: $\left[\mathrm{M}+\mathrm{H}-\mathrm{N}_{2}\right]^{+}$Calcd for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{ClN}$: 272.1206; Found 272.1220.

(1-azido-3-chloro-2-methylpropyl) benzene (2ab)

The product 2ab was purified with silica gel chromatography $(\mathrm{PE} / \mathrm{EA}=100: 1)$ as a colorless oil ($22.2 \mathrm{mg}, 53 \%$ yield, $\mathrm{dr}=1: 1.25$). ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.45-7.28(\mathrm{~m}, 5 \mathrm{H}), 4.69(\mathrm{~d}, J=7.0$ $\mathrm{Hz}, 0.42 \mathrm{H}), 4.49(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 0.58 \mathrm{H}), 3.81(\mathrm{dd}, J=10.9,5.0 \mathrm{~Hz}, 0.58 \mathrm{H}), 3.61(\mathrm{dd}, J$ $=10.9,3.9 \mathrm{~Hz}, 0.58 \mathrm{H}), 3.51(\mathrm{dd}, J=11.0,5.8 \mathrm{~Hz}, 0.42 \mathrm{H}), 3.27(\mathrm{dd}, J=11.0,5.0 \mathrm{~Hz}$, $0.42 \mathrm{H}), 2.27-2.10(\mathrm{~m}, 1.0 \mathrm{H}), 1.08(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1.26 \mathrm{H}), 0.85(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1.74 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 138.3,137.5,129.0,128.7,128.5,127.8,127.3,68.1$, 68.0, 48.3, 48.1, 41.7, 40.4, 14.8, 13.9. HRMS (ESI) m/z: $\left[\mathrm{M}+\mathrm{H}-\mathrm{N}_{2}\right]^{+}$Calcd for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{ClN}$: 182.0737; Found 182.0743.

1-azido-2-(chloromethyl)-1,2,3,4-tetrahydronaphthalene (2ac)

The product 2ac was purified with silica gel chromatography $(\mathrm{PE} / \mathrm{EA}=100: 1)$ as a colorless oil $(25.7 \mathrm{mg}, 58 \%$ yield, $\mathrm{dr}=1.1: 1)$. ${ }^{1}$ H NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.42-7.11(\mathrm{~m}, 4 \mathrm{H}), 4.79(\mathrm{~d}, J=$ $2.7 \mathrm{~Hz}, 0.53 \mathrm{H}), 4.50(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 0.47 \mathrm{H}), 3.77-3.64(\mathrm{~m}, 1.47 \mathrm{H}), 3.57(\mathrm{dd}, J=10.9$, $5.7 \mathrm{~Hz}, 0.52 \mathrm{H}), 2.99-2.75(\mathrm{~m}, 2.0 \mathrm{H}), 2.29-2.08(\mathrm{~m}, 1.41 \mathrm{H}), 1.90-1.67(\mathrm{~m}, 1.59 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl_{3}) $\delta 136.8,136.6,133.0,132.9,130.0,129.7,129.3,129.0$, 128.3, 126.7, 126.3, 61.8, 60.6, 46.6, 46.3, 41.7, 41.7, 28.6, 27.0, 24.0, 22.2. HRMS (ESI) m/z: $\left[\mathrm{M}+\mathrm{H}-\mathrm{N}_{2}\right]^{+}$Calcd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{ClN}$: 194.0737; Found 194.0745.
(1-azido-3-chloropropane-1,2-diyl)dibenzene (2ad)

The product 2ad was purified with silica gel chromatography $(\mathrm{PE} / \mathrm{EA}=100: 1)$ as a colorless oil $(30.0 \mathrm{mg}, 55 \%$ yield, $\mathrm{dr}=$ 1:2.5). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.36-7.00(\mathrm{~m}, 10 \mathrm{H}), 5.11$ (d, $J=7.1 \mathrm{~Hz}, 0.29 \mathrm{H}), 4.93(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 0.71 \mathrm{H}), 4.02-3.92$ (m, 1.42H), 3.81 (dd, $J=11.1,6.6 \mathrm{~Hz}, 0.29 \mathrm{H}$), 3.61 (dd, $J=11.1,6.4 \mathrm{~Hz}, 0.29 \mathrm{H}), 3.35$ (ddd, $J=8.6,7.5,5.0 \mathrm{~Hz}, 0.71 \mathrm{H}), 3.24(\mathrm{q}, J=6.6 \mathrm{~Hz}, 0.29 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 137.8,137.6,137.5,137.0,129.1,128.9,128.7,128.6,128.5,128.4,128.4$, 127.9, 127.8, 127.6, 127.5, 68.2, 67.2, 53.7, 53.0, 46.2, 46.1. HRMS (ESI) m/z: [M + $\left.\mathrm{H}-\mathrm{N}_{2}\right]^{+}$Calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{ClN}$: 244.0893; Found 244.0902.

(1-azido-3-chloro-2-methylpropane-1,1-diyl)dibenzene (2ae)

The product 2ae was purified with silica gel chromatography $(\mathrm{PE} / \mathrm{EA}=100: 1)$ as a colorless oil ($30.3 \mathrm{mg}, 53 \%$ yield). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.43-7.28(\mathrm{~m}, 10 \mathrm{H}), 3.85(\mathrm{dd}, J=10.5,2.2$ $\mathrm{Hz}, 1 \mathrm{H}), 3.13-3.03(\mathrm{~m}, 1 \mathrm{H}), 2.98(\mathrm{t}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.19(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 140.2,139.9,128.6,128.5,128.0,127.9,127.7,75.8,47.8$, 43.9, 14.4. HRMS (ESI) m/z: [M + H - N $\left.\mathrm{N}_{2}\right]^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{ClN}: ~ 258.1050$; Found 258.1063.

2-(1-azido-3-chloropropyl)naphthalene (2af)

The product 2af was purified with silica gel chromatography $(\mathrm{PE} / \mathrm{EA}=100: 1)$ as a colorless oil $\left(45.2 \mathrm{mg}, 92 \%\right.$ yield). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.95-7.86(\mathrm{~m}, 3 \mathrm{H}), 7.83(\mathrm{~s}, 1 \mathrm{H})$, $7.59-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.47(\mathrm{dd}, J=8.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.96(\mathrm{dd}, J=8.5,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.71$ (ddd, $J=11.0,7.9,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.52(\mathrm{dt}, J=11.3,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.40-2.29(\mathrm{~m}, 1 \mathrm{H})$, 2.20 (ddt, $J=13.9,7.8,5.7 \mathrm{~Hz}, 1 \mathrm{H}$). ${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 136.0,133.4$, 133.3, 129.2, 128.1, 127.9, 126.7, 126.6, 126.5, 124.2, 63.4, 41.5, 38.9. HRMS (ESI) $\mathrm{m} / \mathrm{z}:\left[\mathrm{M}+\mathrm{H}-\mathrm{N}_{2}\right]^{+}$Calcd for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{ClN}$: 218.0737; Found 218.0742.

2-(1-azido-3-chloropropyl)benzofuran (2ag)

The product 2ag was purified with silica gel chromatography $(\mathrm{PE} / \mathrm{EA}=50: 1)$ as a colorless oil $\left(37.2 \mathrm{mg}, 79 \%\right.$ yield). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.57$ (d, $J=7.7,1 \mathrm{H}$), 7.49 (d, $J=$ $8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.32$ (td, $J=8.3,7.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.22(\mathrm{~m}, 1 \mathrm{H}), 6.74(\mathrm{~s}, 1 \mathrm{H}), 4.90$ (dd, $J=7.9,6.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.73 (ddd, $J=11.2,7.6,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{dt}, J=11.3,5.7$ $\mathrm{Hz}, 1 \mathrm{H}), 2.37(\mathrm{dtd}, J=7.8,5.8,2.1 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.2$, 153.7, 127.6, 125.1, 123.3, 121.5, 111.6, 105.4, 56.5, 41.1, 35.4. HRMS (ESI) m/z: [M $\left.+\mathrm{H}-\mathrm{N}_{2}\right]^{+}$Calcd for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{ClNO}$: 208.0529; Found 208.0539.

3-(1-azido-3-chloropropyl)benzo[b]thiophene (2ah)

The product 2ah was purified with silica gel chromatography $(\mathrm{PE} / \mathrm{EA}=50: 1)$ as a colorless oil $(39.3 \mathrm{mg}, 78 \%$ yield $) .{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.98$ - 7.84 (m, 2H), $7.50-7.37$ $(\mathrm{m}, 3 \mathrm{H}), 5.19(\mathrm{dd}, J=8.7,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{ddd}, J=11.1,8.3,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{dt}$, $J=11.1,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.44-2.28(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 141.1,136.9$, 133.5, 125.1, 124.6, 124.4, 123.3, 122.1, 58.0, 41.6, 37.4. HRMS (ESI) m/z: [M + H $\left.\mathrm{N}_{2}\right]^{+}$Calcd for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{ClNS}: 224.0301$; Found 224.0307.

3-(1-azido-3-chloropropyl)quinolone (2ai)

The product 2ai was purified with silica gel chromatography $(\mathrm{PE} / \mathrm{EA}=10: 1)$ as a colorless oil ($33.6 \mathrm{mg}, 68 \%$ yield). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.90(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.17-$ 8.09 (m, 2H), 7.85 (dd, $J=8.2,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.80-7.70(\mathrm{~m}, 1 \mathrm{H}), 7.59(\mathrm{t}, J=7.5 \mathrm{~Hz}$,
$1 \mathrm{H}), 5.01$ (dd, $J=8.9,5.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.74 (ddd, $J=11.2,8.4,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.53$ (dt, $J=$ $11.2,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{ddt}, J=14.5,9.0,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.24-2.13(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 149.4,148.2,134.2,131.6,130.2,129.5,128.0,127.6,127.5,61.1$, 41.2, 38.9. HRMS (ESI) m/z: [$\left.\mathrm{M}+\mathrm{H}-\mathrm{N}_{2}\right]^{+}$Calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{ClN}_{2}$: 219.0689; Found 219.0696
(3-azido-5-chloro-3-methylpentyl)benzene (2aj)

The product 2aj was purified with silica gel chromatography $(\mathrm{PE} / \mathrm{EA}=100: 1)$ as a colorless oil ($19.0 \mathrm{mg}, 40 \%$ yield). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.34-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.17$ (m, 3H), $3.61(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.75-2.64(\mathrm{~m}, 2 \mathrm{H}), 2.17-1.99(\mathrm{~m}, 2 \mathrm{H}), 1.92-1.79$ $(\mathrm{m}, 2 \mathrm{H}), 1.38(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ 141.3, 128.7, 128.4, 126.3, 63.2, 42.5, 41.9, 39.7, 30.5, 23.4. HRMS (ESI) (m / z): $\left[\mathrm{M}+\mathrm{H}-\mathrm{N}_{2}\right]^{+}$Calcd for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{ClN}$: 210.1050; Found 210.1058.

(4-azido-4-(2-chloroethyl)cyclohexyl)benzene (2ak)

The product 2ak was purified with silica gel chromatography $(\mathrm{PE} / \mathrm{EA}=100: 1)$ as a colorless oil $(21.1 \mathrm{mg}, 40 \%$ yield, $\mathrm{dr}=$ 1:3.8). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.37$ - 7.29 (m, 2H), $7.25-7.18(\mathrm{~m}, 3 \mathrm{H}), 3.72-3.58(\mathrm{~m}, 2 \mathrm{H}), 2.66-2.45(\mathrm{~m}, 1 \mathrm{H}), 2.22-2.08(\mathrm{~m}, 2 \mathrm{H})$, $1.97-1.87(\mathrm{~m}, 2 \mathrm{H}), 1.86-1.64(\mathrm{~m}, 4 \mathrm{H}), 1.63-1.45(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 146.3,145.5,128.7,128.6,126.9,126.9,126.5,126.4,63.0,62.9,44.5,43.5$, 43.1, 39.7, 39.4, 37.9, 35.0, 34.6, 30.1, 29.4. HRMS (ESI) m/z: $\left[\mathrm{M}+\mathrm{H}-\mathrm{N}_{2}\right]^{+}$Calcd for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{ClN}: 236.1206$; Found 236.1215.

1-(3-chloro-1-methoxypropyl)-4-methoxybenzene (2al)

The product 2al was purified with silica gel chromatography $(\mathrm{PE} / \mathrm{EA}=100: 1)$ as a colorless oil $(36.5 \mathrm{mg}, 85 \%$ yield $) .{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.30-7.19(\mathrm{~m}, 2 \mathrm{H}), 6.96-6.86$ $(\mathrm{m}, 2 \mathrm{H}), 4.31(\mathrm{dd}, J=8.2,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.64-3.73(\mathrm{~m}, 1 \mathrm{H}), 3.48$ (dddd, $J=11.9,7.0,4.3,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.20(\mathrm{~s}, 3 \mathrm{H}), 2.31-2.17(\mathrm{~m}, 1 \mathrm{H}), 2.05-1.93(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl_{3}) $\delta 159.4,133.1,128.0,114.1,80.1,56.6,55.4,41.9,40.9$. HRMS (EI) m/z: [M] ${ }^{+}$Calcd for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{ClO}_{2}: 214.0761$; Found 214.0752.

1-(3-chloro-1-ethoxypropyl)-4-methoxybenzene (2am)

$\mathrm{Cu}(\mathrm{OAc})_{2}(10 \mathrm{~mol} \%)$ was used as catalyst, morpholine(3.0 equiv) was used as base. The product 2am was purified with silica gelchromatography $(\mathrm{PE} / \mathrm{EA}=100: 1)$ as a colorless oil ($27.9 \mathrm{mg}, 61 \%$ yield). ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.28-7.21(\mathrm{~m}, 2 \mathrm{H}), 6.93-6.85(\mathrm{~m}$, $2 \mathrm{H}), 4.43$ (dd, $J=8.4,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.71$ (ddd, $J=10.8,8.1,5.6 \mathrm{~Hz}, 1 \mathrm{H}$), $3.54-3.47(\mathrm{~m}, 1 \mathrm{H}), 3.35(\mathrm{ddq}, J=36.5,9.3,7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.29-2.17(\mathrm{~m}, 1 \mathrm{H}), 1.98$ (ddt, $J=11.0,8.1,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.17(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.3,134.0,127.8,114.0,78.1,77.4,77.2,76.9,64.2,55.4,42.0,41.1,15.4$ HRMS (EI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}]^{+}$Calcd for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{ClO}_{2}: 228.0917$; Found 228.0910.

1-(3-chloro-1-isopropoxypropyl)-4-methoxybenzene (2an)

The product 2an was purified with silica gel chromatography $(\mathrm{PE} / \mathrm{EA}=100: 1)$ as a colorless oil $\left(25.7 \mathrm{mg}, 53 \%\right.$ yield). ${ }^{1} \mathbf{H}$ NMR (500 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 7.33-7.21(\mathrm{~m}, 2 \mathrm{H}), 6.94-6.84$ (m, 2H), $4.55(\mathrm{dd}, J=9.0,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.71(\mathrm{ddd}, J=10.8,8.7,5.3 \mathrm{~Hz}$, $1 \mathrm{H}), 3.57-3.45(\mathrm{~m}, 2 \mathrm{H}), 2.16$ (ddt, $J=14.3,8.9,5.3 \mathrm{~Hz}, 1 \mathrm{H}$), 1.94 (dddd, $J=14.4$, $8.6,5.7,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.16(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.06(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.2,134.9,127.8,114.0,75.2,69.0,55.4,42.1,41.6,23.6,21.4$.

HRMS (EI) m/z: [M] ${ }^{+}$Calcd for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{ClO}_{2}: 242.1074$; Found 242.1068.

Large Scale Experiment

To a 50 mL of Schlenk tube were added 4 -vinyl-1,1'-biphenyl 1a ($0.1805 \mathrm{~g}, 1.0 \mathrm{mmol}$, 1.0 equiv), $\mathrm{Cu}(\mathrm{acac})_{2}(26.0 \mathrm{mg}, 0.1 \mathrm{mmol}, 10 \mathrm{~mol} \%)$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(414.5 \mathrm{mg}, 3.0 \mathrm{mmol}$, 3.0 equiv) under air atmosphere. The mixture was evacuated and backfilled with N_{2} (3 times), then methanol (5.0 mL), $\mathrm{BrCH}_{2} \mathrm{Cl}(130 \mu \mathrm{~L}, 2.0 \mathrm{mmol}, 2.0$ equiv), $\mathbf{L 1}(55 \mu \mathrm{~L}$, $0.2 \mathrm{mmol}, 20 \mathrm{~mol} \%$) and $\mathrm{TMSN}_{3}(160 \mu \mathrm{~L}, 2.4 \mathrm{mmol}, 1.2$ equiv) were added sequentially. The Schlenk tube was then sealed with a Teflon lined cap and put into a preheated oil bath $\left(60^{\circ} \mathrm{C}\right)$. After stirring for 24 h , the reaction mixture was cooled to room temperature. The reaction mixture was diluted with EtOAc and filtered through a pad of celite. The filtrate was concentrated under vacuum and purified by flash column chromatography on silica gel $(\mathrm{PE} / \mathrm{EA}=100: 1)$ to give the product $\mathbf{2 a}$ in 89% yield.

Mechanistic Studies

1. Radical Inhibiting Experiment with TEMPO

To a 25 mL of Schlenk seal tube were added 4-vinyl-1,1'-biphenyl 1a ($36.0 \mathrm{mg}, 0.2$ $\mathrm{mmol}, 1.0$ equiv), $\mathrm{Cu}(\mathrm{acac})_{2}(5.2 \mathrm{mg}, 0.02 \mathrm{mmol}, 10 \mathrm{~mol} \%)$, TEMPO $(15.7 \mathrm{mg}, 0.1$ mmol, 0.5 equiv) and $\mathrm{K}_{2} \mathrm{CO}_{3}(82.9 \mathrm{mg}, 0.60 \mathrm{mmol}, 3.0$ equiv) under air atmosphere. The mixture was evacuated and backfilled with N_{2} (3 times). Methanol (1.0 mL), $\mathrm{BrCH}_{2} \mathrm{Cl}\left(26 \mu \mathrm{~L}, 0.4 \mathrm{mmol}, 2.0\right.$ equiv), $\mathbf{L} 1\left(11 \mu \mathrm{~L}, 0.04 \mathrm{mmol}, 20 \mathrm{~mol} \%\right.$) and TMSN_{3} ($32 \mu \mathrm{~L}, 0.24 \mathrm{mmol}, 1.2$ equiv) were added sequentially. The Schlenk tube was then sealed with a Teflon lined cap and put into a preheated oil bath $\left(60^{\circ} \mathrm{C}\right)$. After stirring for 24 h , the reaction mixture was cooled to room temperature. The reaction mixture was diluted with EtOAc and filtered through a pad of celite. The filtrate was concentrated under vacuum, no product 2a can be detected by ${ }^{1} \mathrm{H}$ NMR and GC-MS.

2. Radical Trapping Experiment with BHT

To a 25 mL of Schlenk seal tube were added 4 -vinyl-1,1'-biphenyl 1a ($36.0 \mathrm{mg}, 0.2$ mmol, 1.0 equiv), $\mathrm{Cu}(\mathrm{acac})_{2}(5.2 \mathrm{mg}, 0.02 \mathrm{mmol}, 10 \mathrm{~mol} \%)$, BHT ($66.1 \mathrm{mg}, 0.3 \mathrm{mmol}$, 1.5 equiv) and $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($82.9 \mathrm{mg}, 0.60 \mathrm{mmol}, 3.0$ equiv) under air atmosphere. The mixture was evacuated and backfilled with N_{2} (3 times). Methanol (1.0 mL), $\mathrm{BrCH}_{2} \mathrm{Cl}$ ($26 \mu \mathrm{~L}, 0.4 \mathrm{mmol}, 2.0$ equiv), $\mathbf{L} 1\left(11 \mu \mathrm{~L}, 0.04 \mathrm{mmol}, 20 \mathrm{~mol} \%\right.$) and $\mathrm{TMSN}_{3}(32 \mu \mathrm{~L}$, $0.24 \mathrm{mmol}, 1.2$ equiv) were added sequentially. The Schlenk tube was then sealed with a Teflon lined cap and put into a preheated oil bath $\left(60^{\circ} \mathrm{C}\right)$. After stirring for 24 h , the reaction mixture was cooled to room temperature. The reaction mixture was diluted with EtOAc and filtered through a pad of celite. The filtrate was concentrated under vacuum and purified by flash column chromatography $(\mathrm{PE} / \mathrm{EA}=100: 1)$ on silica gel to
give the product $\mathbf{3}$ in 25% yield. When this reaction was performed without 1a, the product 3 could be obtained in 61% yield.

2,6-di-tert-butyl-4-(chloromethyl)-4-methylcyclohexa-2,5-dien-1-one (3)

The product $\mathbf{3}$ was purified with silica gel chromatography (PE/EA $=100: 1$) as a pale yellow solid ($32.8 \mathrm{mg}, 61 \%$ yield); $\mathbf{m p} 71-72^{\circ} \mathrm{C}$.
${ }^{1}{ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.46(\mathrm{~s}, 2 \mathrm{H}), 3.48(\mathrm{~s}, 2 \mathrm{H}), 1.29(\mathrm{~s}$, $3 \mathrm{H}), 1.23(\mathrm{~s}, 18 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 186.2, 148.2, 142.7, 52.6, 40.7, 35.0, 29.6, 24.2. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{ClO}$: 269.1672; Found 269.1683.

3. Radical Clock Experiment

To a 25 mL of Schlenk seal tube were added $\mathrm{Cu}(\mathrm{acac})_{2}(5.2 \mathrm{mg}, 0.02 \mathrm{mmol}, 10 \mathrm{~mol} \%)$ and $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($82.9 \mathrm{mg}, 0.60 \mathrm{mmol}, 3.0$ equiv) under air atmosphere. The mixture was evacuated and backfilled with N_{2} (3 times). Methanol (1.0 mL), β-pinene 1ao ($31 \mu \mathrm{~L}$, $0.2 \mathrm{mmol}, 1.0$ equiv), $\mathrm{BrCH}_{2} \mathrm{Cl}(26 \mu \mathrm{~L}, 0.4 \mathrm{mmol}, 2.0$ equiv), $\mathbf{L} 1(11 \mu \mathrm{~L}, 0.04 \mathrm{mmol}$, $20 \mathrm{~mol} \%$) and TMSN_{3} ($32 \mu \mathrm{~L}, 0.24 \mathrm{mmol}, 1.2$ equiv) were added sequentially. The Schlenk tube was then sealed with a Teflon lined cap and put into a preheated oil bath $\left(60{ }^{\circ} \mathrm{C}\right)$. After stirring for 24 h , the reaction mixture was cooled to room temperature. The reaction mixture was diluted with EtOAc and filtered through a pad of celite. The filtrate was concentrated under vacuum and purified by flash column chromatography $(\mathrm{PE} / \mathrm{EA}=100: 1)$ on silica gel to give the product 4 in 26% yield.

4-(2-azidopropan-2-yl)-1-(2-chloroethyl)cyclohex-1-ene (4)

The product 4 was purified with silica gel chromatography $(\mathrm{PE} / \mathrm{EA}=100: 1)$ as a colorless oil $\left(11.8 \mathrm{mg}, 26 \%\right.$ yield). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.50-5.48(\mathrm{~m}, 1 \mathrm{H}), 3.60-3.53(\mathrm{~m}$, $2 H), 2.46-2.37(\mathrm{~m}, 2 \mathrm{H}), 2.15-1.98(\mathrm{~m}, 3 \mathrm{H}), 1.93-1.81(\mathrm{~m}, 2 \mathrm{H}), 1.61-1.51(\mathrm{~m}, 1 \mathrm{H})$, 1.36 - 1.19 (m, 1H), 1.27 (s, 3H), $1.23(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 134.1$,
123.3, 64.2, 43.5, 43.1, 40.5, 29.0, 26.9, 24.1, 24.0, 23.2. HRMS (ESI) m/z: [M + H $\left.\mathrm{N}_{2}\right]^{+}$Calcd for $\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{ClN}: 200.1206$; Found: 200.1218

To a 25 mL of Schlenk seal tube were added $\mathrm{Cu}(\mathrm{acac})_{2}(5.2 \mathrm{mg}, 0.02 \mathrm{mmol}, 10 \mathrm{~mol} \%)$ and $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($82.9 \mathrm{mg}, 0.60 \mathrm{mmol}, 3.0$ equiv) under air atmosphere. The mixture was evacuated and backfilled with N_{2} (3 times). Methanol (1.0 mL), (1-(2phenylcyclopropyl)vinyl)benzene 1ap ($44 \mu \mathrm{~L}, 0.2 \mathrm{mmol}, 1.0$ equiv), $\mathrm{BrCH}_{2} \mathrm{Cl}(26 \mu \mathrm{~L}$, $0.4 \mathrm{mmol}, 2.0$ equiv), $\mathbf{L} 1\left(11 \mu \mathrm{~L}, 0.04 \mathrm{mmol}, 20 \mathrm{~mol} \%\right.$) and $\mathrm{TMSN}_{3}(32 \mu \mathrm{~L}, 0.24 \mathrm{mmol}$, 1.2 equiv) were added sequentially. The Schlenk tube was then sealed with a Teflon lined cap and put into a preheated oil bath $\left(60^{\circ} \mathrm{C}\right)$. After stirring for 24 h , the reaction mixture was cooled to room temperature. The reaction mixture was diluted with EtOAc and filtered through a pad of celite. The filtrate was concentrated under vacuum and purified by flash column chromatography $(\mathrm{PE} / \mathrm{EA}=100: 1)$ on silica gel to give the product 5 in 73\% yield.

(1-azido-6-chlorohex-3-ene-1,4-diyl)dibenzene (5)

The product $\mathbf{5}$ was purified with silica gel chromatography $(\mathrm{PE} / \mathrm{EA}=100: 1)$ as a colorless oil $\left(45.5 \mathrm{mg}, 73 \%\right.$ yield). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.48-7.26$ (m, 9.2H), $7.24-7.19$ $(\mathrm{m}, 0.4 \mathrm{H}), 7.06-7.01(\mathrm{~m}, 0.4 \mathrm{H}), 5.76(\mathrm{t}, J=7.4 \mathrm{~Hz}, 0.8 \mathrm{H}), 5.57(\mathrm{t}, J=7.3 \mathrm{~Hz}, 0.2 \mathrm{H})$, $4.64(\mathrm{dd}, J=7.7,6.5 \mathrm{~Hz}, 0.8 \mathrm{H}), 4.48(\mathrm{t}, J=7.1 \mathrm{~Hz}, 0.2 \mathrm{H}), 3.46-3.26(\mathrm{~m}, 2.0 \mathrm{H}), 2.92$ $(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1.6 \mathrm{H}), 2.85-2.64(\mathrm{~m}, 2.0 \mathrm{H}), 2.55-2.38(\mathrm{~m}, 0.4 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 141.4,140.4,139.32,139.26,139.2,139.1,129.0,128.8,128.6,128.5,128.3$, $128.3,127.5,127.3,127.0,127.0,126.6,126.5,125.3,66.22,66.19,42.8,42.6,42.5$, 36.0, 35.9, 33.5. HRMS ESI (m/z): [M + H - N $\left.{ }_{2}\right]^{+}$Calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{ClN}: 284.1206$; Found 284.1210.

4. Proposed mechanism

On the basis of our preliminary study and previous reports, ${ }^{4}$ a possible mechanism
was proposed as below. The single electron reduction of $\mathrm{BrCH}_{2} \mathrm{Cl}$ by $\mathrm{Cu}(\mathrm{I}) \mathrm{Ln}$ generated $\mathrm{Cu}(\mathrm{II}) \mathrm{Ln}$ species and monochloromethyl radical, which was captured by the terminal alkene $\mathbf{1}$ to afford the corresponding alkyl radical. The final azidation of this alkyl radical may process via two possible paths: a direct trap of cationic intermediate by TMSN_{3} or a reductive elimination from benzyl $\mathrm{Cu}(\mathrm{III}) \mathrm{N}_{3}$ intermediate.

Monochloromethylazidation of the estrone derivative

To a 25 mL of Schlenk seal tube were added estrone derivative 6 ($56.1 \mathrm{mg}, 0.2 \mathrm{mmol}$, 1.0 equiv), $\mathrm{Cu}(\mathrm{acac})_{2}(5.2 \mathrm{mg}, 0.02 \mathrm{mmol}, 10 \mathrm{~mol} \%)$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(82.9 \mathrm{mg}, 0.60 \mathrm{mmol}$, 3.0 equiv) under air atmosphere. The mixture was evacuated and backfilled with N_{2} (3 times). Methanol (1.0 mL), $\mathrm{BrCH}_{2} \mathrm{Cl}(26 \mu \mathrm{~L}, 0.4 \mathrm{mmol}, 2.0$ equiv), $\mathbf{L 1}(11 \mu \mathrm{~L}, 0.04$ $\mathrm{mmol}, 20 \mathrm{~mol} \%$) and $\mathrm{TMSN}_{3}(32 \mu \mathrm{~L}, 0.24 \mathrm{mmol}, 1.2$ equiv) were added sequentially. The Schlenk tube was then sealed with a Teflon lined cap and put into a preheated oil bath ($60{ }^{\circ} \mathrm{C}$). After stirring for 24 h , the reaction mixture was cooled to room temperature. The reaction mixture was diluted with EtOAc and filtered through a pad of celite. The filtrate was concentrated under vacuum and purified by flash column chromatography $(\mathrm{PE} / \mathrm{EA}=20: 1)$ on silica gel to give the product $7 \mathrm{in} 81 \%$ yield.
(8R,9S,13S,14S)-3-(1-azido-3-chloropropyl)-13-methyl-6,7,8,9,11,12,13,14,15,16-decahydro-17H-cyclopenta[a]phenanthren-17-one (7)

The product 7 was purified with silica gel chromatography $(\mathrm{PE} / \mathrm{EA}=20: 1)$ as a colorless oil ($60.2 \mathrm{mg}, 81 \%$ yield, $\mathrm{dr}=1: 1$). ${ }^{1} \mathbf{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.31(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{~d}, J=8.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.05(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.69(\mathrm{dd}, J=8.7,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{ddd}, J=11.1,8.0$, $5.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.50(\mathrm{dt}, J=11.3,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.93(\mathrm{dd}, J=9.0,4.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.56-2.47$ $(\mathrm{m}, 1 \mathrm{H}), 2.46-2.39(\mathrm{~m}, 1 \mathrm{H}), 2.38-2.28(\mathrm{~m}, 1 \mathrm{H}), 2.26-2.12(\mathrm{~m}, 2 \mathrm{H}), 2.11-2.01(\mathrm{~m}$, 3H), $2.00-1.93(\mathrm{~m}, 1 \mathrm{H}), 1.75-1.39(\mathrm{~m}, 6 \mathrm{H}), 0.92(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 220.8,140.3,137.3,136.0,127.6,127.6,126.1,124.4,124.3,62.9,62.9,50.6$, 48.1, 44.5, 41.6, 38.93, 38.88, 38.1, 35.9, 31. 7, 29.53, 29.51, 26.5, 25.8, 21.7, 13.9. HRMS (ESI) m/z: [$\left.\mathrm{M}+\mathrm{H}-\mathrm{N}_{2}\right]^{+}$Calcd for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{ClNO}$: 344.1781; Found 344.1780.

Derivatizations of the Products

1. The Click reaction of 2a with phenylacetylene

The mixture of $2 \mathbf{a}$ ($54.3 \mathrm{mg}, 0.2 \mathrm{mmol}, 1.0$ equiv), phenylacetylene ($44 \mu \mathrm{~L}, 0.4 \mathrm{mmol}$, 2.0 equiv), $\mathrm{CuI}(2.0 \mathrm{mg}, 0.01 \mathrm{mmol}, 5 \mathrm{~mol} \%), \mathrm{Et}_{3} \mathrm{~N}(3 \mu \mathrm{~L}, 0.02 \mathrm{mmol}, 10 \mathrm{~mol} \%)$ in $\mathrm{CH}_{3} \mathrm{CN}(2.0 \mathrm{~mL})$ were stirred at $60{ }^{\circ} \mathrm{C}$ for 4 h . After completion of the reaction, the solvent was removed under reduced pressure and purified by flash column chromatography $(\mathrm{PE} / \mathrm{EA}=10: 1)$ on silica gel to give the product $\mathbf{8}$ in 82% yield.

1-(1-([1,1'-biphenyl]-4-yl)-3-chloropropyl)-4-phenyl-1H-1,2,3-triazole (8)

The product $\mathbf{8}$ was purified with silica gel chromatography $(\mathrm{PE} / \mathrm{EA}=10: 1)$ as a white $\operatorname{solid}(61.3 \mathrm{mg}, 82 \%$ yield); $\mathbf{m p} 168-$ $169{ }^{\circ} \mathrm{C} .{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.88-7.75(\mathrm{~m}, 3 \mathrm{H})$, 7.59 (dd, $J=17.4,7.6 \mathrm{~Hz}, 4 \mathrm{H}), 7.51-7.28$ (m, 8H), 5.93 (dd, $J=8.7,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.23-3.08(\mathrm{~m}, 1 \mathrm{H}), 2.83-2.68(\mathrm{~m}, 1 \mathrm{H})$. ${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 148.0,142.0,140.3,137.1,130.5,129.0,129.0,128.4$, 128.0, 127.8, 127.5, 127.2, 125.8, 120.0, 62.0, 41.4, 37.9. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$ Calcd for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{ClN}_{3}$: 374.1424; Found 374.1425.

2. The Reaction of 8 with $\mathrm{H}_{2} \mathrm{O}$

The mixture of 8 ($74.8 \mathrm{mg}, 0.2 \mathrm{mmol}, 1.0$ equiv), $\mathrm{CuSO}_{4}(31.9 \mathrm{mg}, 0.2 \mathrm{mmol}, 1.0$ equiv) and $\mathrm{KI}(2.0 \mathrm{mg}, 0.12 \mathrm{mmol}, 6 \mathrm{~mol} \%)$ in $\mathrm{H}_{2} \mathrm{O}(0.3 \mathrm{~mL})$ and DMSO (0.7 mL) were stirred at $120{ }^{\circ} \mathrm{C}$ overnight. After completion of the reaction, the residue was transferred into a separatory funnel and added water (1.0 mL), extracted with DCM
three times. The last combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed under reduced pressure and purified by flash column chromatography $(\mathrm{PE} / \mathrm{EA}=5: 1)$ on silica gel to give the product 9 in 78% yield.

3-([1,1'-biphenyl]-4-yl)-3-(4-phenyl-1H-1,2,3-triazol-1-yl)propan-1-ol (9)

The product 9 was purified with silica gel chromatography $(\mathrm{PE} / \mathrm{EA}=5: 1)$ as a white solid ($55.4 \mathrm{mg}, 78 \%$ yield); mp 99$100{ }^{\circ} \mathrm{C} .{ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.84(\mathrm{~s}, 1 \mathrm{H}), 7.81-$ 7.78 (m, 2H), 7.61 - 7.55 (m, 4H), 7.48-7.41 (m, 6H), $7.39-$ $7.33(\mathrm{~m}, 2 \mathrm{H}), 4.83-4.69(\mathrm{~m}, 2 \mathrm{H}), 4.62(\mathrm{dt}, J=13.8,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.53-2.38(\mathrm{~m}, 2 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 147.8,142.8,140.8,140.7,131.0,130.3,129.0,128.9$, 128.6, 127.4, 127.4, 127.2, 126.3, 126.0, 71.2, 52.0, 38.8. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$ Calcd for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}$: 356.1763; Found 356.1741.

3. The Reaction of 2a with Phenol

The mixture of 2a ($54.3 \mathrm{mg}, 0.2 \mathrm{mmol}, 1.0$ equiv), Phenol ($37.6 \mathrm{mg}, 0.4 \mathrm{mmol}, 2.0$ equiv) and NaH ($16.0 \mathrm{mg}, 60 \%$, dispersion in mineral oil, $0.40 \mathrm{mmol}, 2.0$ equiv) in DMF (1.0 mL) were stirred at $100{ }^{\circ} \mathrm{C}$ for 3 h . After completion of the reaction, the residue was transferred into a separatory funnel and added water (1.0 mL), extracted with DCM three times. The last combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed under reduced pressure and purified by flash column chromatography $(\mathrm{PE} / \mathrm{EA}=100: 1)$ on silica gel to give the product 10 in 64% yield.

4-(1-azido-3-phenoxypropyl)-1,1'-biphenyl (10)

The product $\mathbf{1 0}$ was purified with silica gel chromatography $(\mathrm{PE} / \mathrm{EA}=100: 1)$ as a white solid ($42.2 \mathrm{mg}, 64 \%$ yield); mp $57-58{ }^{\circ} \mathrm{C} .{ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.68-7.60(\mathrm{~m}, 4 \mathrm{H})$, $\delta 7.52-7.43(\mathrm{~m}, 4 \mathrm{H}), 7.42-7.36(\mathrm{~m}, 1 \mathrm{H}), 7.36-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.03-6.90(\mathrm{~m}, 3 \mathrm{H})$, $4.89(\mathrm{dd}, J=8.5,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{ddd}, J=9.5,7.4,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{dt}, J=9.5,5.6$ $\mathrm{Hz}, 1 \mathrm{H}$), 2.39 - $2.17(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ 158.7, 141.4, 140.6,
138.3, 129.6, 129.0, 127.7, 127.6, 127.5, 127.2, 121.1, 114.6, 64.1, 62.7, 36.1. HRMS
(ESI) m/z: $\left[\mathrm{M}+\mathrm{H}-\mathrm{N}_{2}\right]^{+}$Calcd for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{NO}: 302.1545$; Found 302.1544.

4. The Reaction of 2a with KOAc

The mixture of 2a ($54.3 \mathrm{mg}, 0.2 \mathrm{mmol}, 1.0$ equiv), and KOAc ($39.3 \mathrm{mg}, 0.40 \mathrm{mmol}$, 2.0 equiv) in DMF (1.0 mL) were stirred at $80^{\circ} \mathrm{C}$ for 12 h . After completion of the reaction, the residue was transferred into a separatory funnel and added water $(1.0 \mathrm{~mL})$, extracted with DCM three times. The last combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed under reduced pressure and purified by flash column chromatography $(\mathrm{PE} / \mathrm{EA}=10: 1)$ on silica gel to give the product $\mathbf{1 1}$ in 97% yield.

3-([1,1'-biphenyl]-4-yl)-3-azidopropyl acetate (11)

The product 11 was purified with silica gel chromatography $(\mathrm{PE} / \mathrm{EA}=10: 1)$ as a colorless oil ($57.3 \mathrm{mg}, 97 \%$ yield). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.67-7.58(\mathrm{~m}, 4 \mathrm{H}), 7.51-7.35$ (m, 5H), $4.66(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.27-4.07(\mathrm{~m}, 2 \mathrm{H}), 2.26-2.02(\mathrm{~m}, 2 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.0,141.5,140.5,137.9,128.9,127.7,127.6,127.4$, 127.2, 62.8, 61.2, 35.2, 21.0. HRMS (ESI) m/z: $\left[\mathrm{M}+\mathrm{H}-\mathrm{N}_{2}\right]^{+}$Calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{NO}_{2}$: 268.1338; Found 268.1344.

5. The Reaction of 2a with Morpholine

$\mathbf{2 a}$ ($54.3 \mathrm{mg}, 0.2 \mathrm{mmol}, 1.0$ equiv) was dissolved in toluene (10.0 mL , dry), morpholine ($53 \mu \mathrm{~L}, 0.6 \mathrm{mmol}, 3.0$ equiv), KI ($4.0 \mathrm{mg}, 0.02 \mathrm{mmol}, 0.01$ equiv) were added in the mixture and stirred at $140^{\circ} \mathrm{C}$ for 60 h . After completion of the reaction, the solvent and excess morpholine were removed under reduced pressure and purified by flash column chromatography $(\mathrm{PE} / \mathrm{EA}=3: 1)$ on silica gel to give the product $\mathbf{1 2}$ in 82% yield.

4-(3-([1,1'-biphenyl]-4-yl)-3-azidopropyl)morpholine (12)

The product 12 was purified with silica gel chromatography (PE/EA $=3: 1$) as a colorless oil (52.9 mg , 82% yield). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.65-7.55(\mathrm{~m}$, 4H), $7.48-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.33(\mathrm{~m}, 3 \mathrm{H}), 4.64(\mathrm{dd}, J=8.2,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{t}, J$ $=4.7 \mathrm{~Hz}, 4 \mathrm{H}), 2.49-2.33(\mathrm{~m}, 6 \mathrm{H}), 2.10-1.87(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 141.3,140.6,138.7,128.9,127.62,127.60,127.4,127.2,67.1,64.0,55.3,53.8,33.3$.

HRMS (ESI) m/z: [M + H - $\left.\mathrm{N}_{2}\right]^{+}$calcd. for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}: 295.1810$; Found 295.1826.

6. The Reaction of 2a with NaN_{3}

The mixture of $\mathbf{2 a}$ ($54.3 \mathrm{mg}, 0.2 \mathrm{mmol}, 1.0$ equiv), and $\mathrm{NaN}_{3}(26.0 \mathrm{mg}, 0.4 \mathrm{mmol}, 2.0$ equiv) in DMF (2.0 mL) were stirred at $70^{\circ} \mathrm{C}$ for 4 h . After completion of the reaction, the residue was transferred into a separatory funnel and added water (1.0 mL), extracted with DCM three times. The last combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed under reduced pressure and purified by flash column chromatography $(\mathrm{PE} / \mathrm{EA}=100: 1)$ on silica gel to give the product 13 in 83% yield.

4-(1,3-diazidopropyl)-1,1'-biphenyl (13)

 The product 13 was purified with silica gel chromatography $(\mathrm{PE} / \mathrm{EA}=100: 1)$ as a colorless oil ($46.2 \mathrm{mg}, 83 \%$ yield). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.68-7.58(\mathrm{~m}, 4 \mathrm{H}), 7.50-7.44(\mathrm{~m}$, $2 \mathrm{H}), 7.42-7.35$ (m, 3H), 4.67 (dd, $J=8.6,5.9 \mathrm{~Hz}, 1 \mathrm{H}$), 3.48 (ddd, $J=12.4,7.7,6.0$ $\mathrm{Hz}, 1 \mathrm{H}), 3.37$ (dt, $J=12.4,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.09(\mathrm{ddt}, J=14.7,8.7,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.98$ (ddt, $J=14.0,7.7,6.2 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 141.7,140.5,137.7,129.0$, 127.8, 127.7, 127.4, 127.2, 63.1, 48.3, 35.6. HRMS (ESI) m/z: $\left[\mathrm{M}+\mathrm{H}-2 \mathrm{~N}_{2}\right]^{+}$Calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{~N}_{2}$: 223.1235 ; Found 223.1232.
7. The Reaction of 2a with KNPhth

The mixture of $\mathbf{2 a}(54.3 \mathrm{mg}, 0.2 \mathrm{mmol}, 1.0$ equiv), and KNPhth ($74.1 \mathrm{mg}, 0.40 \mathrm{mmol}$, 2.0 equiv) in DMF (1.0 mL) were stirred at $80^{\circ} \mathrm{C}$ for 13 h . After completion of the reaction, the residue was transferred into a separatory funnel and added water (1.0 mL), extracted with DCM three times. The last combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed under reduced pressure and purified by flash column chromatography $(\mathrm{PE} / \mathrm{EA}=10: 1)$ on silica gel to give the product 14 in 94% yield.

2-(3-([1,1'-biphenyl]-4-yl)-3-azidopropyl)isoindoline-1,3-dione (14)

The product 14 was purified with silica gel chromatography $(\mathrm{PE} / \mathrm{EA}=10: 1)$ as a white solid (71.9 $\mathrm{mg}, 94 \%$ yield); mp 121-122 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathbf{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.85-7.77(\mathrm{~m}, 2 \mathrm{H}), 7.70-7.63(\mathrm{~m}, 2 \mathrm{H}), 7.59-7.50(\mathrm{~m}, 4 \mathrm{H}), 7.47-$ $7.30(\mathrm{~m}, 5 \mathrm{H}), 4.58(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.29-2.14(\mathrm{~m}, 2 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.3,141.4,140.3,137.6,134.0,132.0,128.8,127.6$, 127.5, 127.4, 127.1, 123.2, 63.9, 35.3, 34.5. HRMS (ESI) m/z: [M + H - $\left.\mathrm{N}_{2}\right]^{+}$calcd. for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{2}$: 355.1447, Found 355.1452.

8. The Reaction of 2a with KSCN

The mixture of $\mathbf{2 a}$ ($54.3 \mathrm{mg}, 0.2 \mathrm{mmol}, 1.0$ equiv), TBAI ($7.4 \mathrm{mg}, 0.02 \mathrm{mmol}, 10 \mathrm{~mol} \%$) and KSCN ($38.9 \mathrm{mg}, 0.40 \mathrm{mmol}$, 2.0 equiv) in $\mathrm{CH}_{3} \mathrm{CN}\left(1.0 \mathrm{~mL}\right.$) were stirred at $90^{\circ} \mathrm{C}$ for 24 h . After completion of the reaction, the solvent was removed under reduced pressure and purified by flash column chromatography $(\mathrm{PE} / \mathrm{EA}=20: 1)$ on silica gel to give the product 15 in 80% yield.

4-(1-azido-3-thiocyanatopropyl)-1,1'-biphenyl (15)

The product 15 was purified with silica gel chromatography $(\mathrm{PE} / \mathrm{EA}=20: 1)$ as a white solid ($47.1 \mathrm{mg}, 80 \%$ yield); mp $73-73{ }^{\circ}{ }^{\circ} .^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.71-7.58(\mathrm{~m}, 4 \mathrm{H})$,
$7.53-7.35(\mathrm{~m}, 5 \mathrm{H}), 4.74(\mathrm{dd}, J=8.8,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.11-2.96(\mathrm{~m}, 2 \mathrm{H}), 2.40-2.17$
(m, 2H). ${ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl_{3}) $\delta 141.9,140.3,136.9,129.0,127.9,127.8,127.4$, 127.2, 111.7, 63.7, 36.4, 30.5. HRMS (ESI) m/z: $\left[\mathrm{M}+\mathrm{H}-\mathrm{N}_{2}\right]^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{~S}$: 267.0956; Found 267.0966.

9. The Reaction of 2 a with NaI

The mixture of 2a ($54.3 \mathrm{mg}, 0.2 \mathrm{mmol}, 1.0$ equiv), and $\mathrm{NaI}(149.9 \mathrm{mg}, 1.0 \mathrm{mmol}, 5.0$ equiv) in acetone (1.0 mL) were stirred under reflux overnight. After completion of the reaction, the solvent was removed under reduced pressure and purified by flash column chromatography $(\mathrm{PE} / \mathrm{EA}=100: 1)$ on silica gel to give the product 16 in 89% yield.

4-(1-azido-3-iodopropyl)-1,1'-biphenyl (16)

The product 16 was purified with silica gel chromatography $(\mathrm{PE} / \mathrm{EA}=100: 1)$ as a white solid $(64.7 \mathrm{mg}, 89 \%$ yield); $\mathbf{m p} 49-$ $50{ }^{\circ} \mathrm{C} .{ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.68-7.59(\mathrm{~m}, 4 \mathrm{H}), 7.51$ - 7.36 (m, 5H), 4.71 (dd, $J=8.2,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.28$ (ddd, $J=10.0,7.6,6.4 \mathrm{~Hz}, 1 \mathrm{H}$), 3.16 (dt, $J=9.9,6.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.26 (dddt, $J=41.0,14.4,7.7,6.4 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 141.7,140.4,137.4,129.0,127.8,127.7,127.5,127.2,66.0,39.7$, 2.1. HRMS (ESI) m/z: [$\left.\mathrm{M}+\mathrm{H}-\mathrm{N}_{2}\right]^{+}$Calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{IN}$: 336.0249; Found 336.0264.
10. The Reduction reaction of azide with PPh_{3}

i) 2a ($54.3 \mathrm{mg}, 0.2 \mathrm{mmol}, 1.0$ equiv) and $\mathrm{PPh}_{3}(131.1 \mathrm{mg}, 0.5 \mathrm{mmol}, 2.5$ equiv) were dissolved in a mixture of THF $(2.0 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(0.5 \mathrm{~mL})$. The reaction was stirred for 4 h at $60^{\circ} \mathrm{C}$ under N_{2}. After completion of the reaction, the residue was transferred into
a separatory funnel and added water (1.0 mL), extracted with DCM three times. The last combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under vacuum. The crude mixture was directly used in the next step without further purification.
ii) To the above residue was added $\mathrm{Boc}_{2} \mathrm{O}\left(55 \mu \mathrm{~L}, 0.24 \mathrm{mmol}, 1.2\right.$ equiv), $\mathrm{KHCO}_{3}(24.0$ $\mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ equiv) and THF (1.0 mL), and the reaction mixture was stirring at the room temperature overnight. After completion of the reaction, the solvent was removed under reduced pressure and the product was purified by flash column chromatography $(\mathrm{PE} / \mathrm{EA}=20: 1)$ on silica gel to give the product 17 in 64% yield. tert-butyl (1-([1,1'-biphenyl]-4-yl)-3-chloropropyl)carbamate (17)

The product 17 was purified with silica gel chromatography $(\mathrm{PE} / \mathrm{EA}=20: 1)$ as a white solid ($44.3 \mathrm{mg}, 64 \%$ yield); $\mathbf{m p} 133-$ $134{ }^{\circ} \mathrm{C} .{ }^{1} \mathbf{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 7.72-7.51(\mathrm{~m}, 5 \mathrm{H})$, $7.45(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.41-7.31(\mathrm{~m}, 3 \mathrm{H}), 4.72(\mathrm{dd}, J=8.3,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.73-3.60$ $(\mathrm{m}, 1 \mathrm{H}), 3.60-3.46(\mathrm{~m}, 1 \mathrm{H}), 2.23-1.95(\mathrm{~m}, 2 \mathrm{H}), 1.37(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz , DMSO) $\delta 155.0,142.5,139.9,138.8,128.9,127.3,126.9,126.7,126.6,77.9,51.4,42.3$, 38.9, 28.2. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{ClNO}_{2}$: 346.1574; Found 346.1574.

11. The Reaction of 17 with 4 '-Iodoacetophenone

The insertion step 1: 17 ($69.2 \mathrm{mg}, 0.2 \mathrm{mmol}$), indium ($45.9 \mathrm{mg}, 0.4 \mathrm{mmol}$), LiI (53.5 $\mathrm{mg}, 0.4 \mathrm{mmol})$, and THF (1.0 mL) was added in a flask equipped with a septum and a magnetic stir bar. The reaction mixture was vigorously stirred at $60{ }^{\circ} \mathrm{C}$ for 24 h . Then the solution was carefully separated by filtration. The remaining black precipitate was additionally stirred with THF (3.0 mL), and the THF layer was carefully separated by filtration. The combined organic layers were concentrated under vacuum. The crude mixture was directly used in the next step without further purification.

The cross-coupling step 2: To the above residue was added 4'-Iodoacetophenone (34.4
$\mathrm{mg}, 0.7 \mathrm{mmol}), \mathrm{LiCl}(17.0 \mathrm{mg}, 0.4 \mathrm{mmol})$, and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(7.0 \mathrm{mg}, 0.01 \mathrm{mmol})$, and DMF (1.0 mL), and the reaction mixture was stirred at $100{ }^{\circ} \mathrm{C}$ for 24 h . Upon completion of the reaction, the residue was transferred into a separatory funnel and added water (1.0 mL), extracted with DCM three times. The last combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed under reduced pressure and the product was purified by flash column chromatography ($\mathrm{PE} / \mathrm{EA}=10: 1$) on silica gel to give the product $\mathbf{1 8}$ in 85% yield.

tert-butyl (1-([1,1'-biphenyl]-4-yl)-3-(4-acetylphenyl)propyl)carbamate (18)

The product 18 was purified with silica gel chromatography ($\mathrm{PE} / \mathrm{EA}=10: 1$) as a white solid (51.1 $\mathrm{mg}, 85 \%$ yield); mp $118-119^{\circ} \mathrm{C} .{ }^{1} \mathbf{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.91-7.86(\mathrm{~m}, 2 \mathrm{H}), 7.62-7.53(\mathrm{~m}, 4 \mathrm{H}), 7.47-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.32$ $(\mathrm{m}, 3 \mathrm{H}), 7.29-7.25(\mathrm{~m}, 2 \mathrm{H}), 4.92(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.72(\mathrm{~s}, 1 \mathrm{H}), 2.81-2.62(\mathrm{~m}$, 2H), $2.58(\mathrm{~s}, 3 \mathrm{H}), 2.25-2.03(\mathrm{~m}, 2 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 197.9, 155.4, 147.3, 140.8, 140.5, 135.4, 128.9, 128.8, 127.6, 127. 5, 127.2, 127.0, 79.8, 54.4, 38.2, 32. 8, 28.5, 26.7. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{28} \mathrm{H}_{31} \mathrm{NNaO}_{3}$: 452.2202; Found 452.2198.

References:

1. N. Fu, G. S. Sauer, A. Saha, A. Loo and S. Lin, Science 2017, 357, 575.
2. L. Crespin, L. Biancalana, T. Morack, D. C. Blakemore and S. V. Ley, Org. Lett., 2017, 19, 1084.
3. K. Miyazawa, T. Koike and M. Akita, Chem. Eur. J. 2015, 21, 11677.
4. (a) B. Zhang and A. Studer, Org. Lett., 2014, 16, 1790; (b) A. Bunescu, T. M. Ha, Q. Wang and J. Zhu, Angew. Chem. Int., Ed. 2017, 56, 10555; (c) H. Zhou, W. Jian, B. Qian, C. Ye, D. Li, J. Zhou and H. Bao, Org. Lett., 2017, 19, 6120; (d) F. Wang, X. Qi, Z. Liang, P. Chen and G. Liu, Angew. Chem. Int. Ed., 2014, 53, 1881; (e) B. Chen, C. Fang, P. Liu and J. M. Ready, Angew. Chem. Int. Ed., 2017, 56, 8780; (f) C.-L. Zhu, C. Wang, Q.-X. Qin, S. Yruegas, C. D. Martin and H. Xu, ACS Catal., 2018, 8, 5032.

NMR Spectra of New Compounds (${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, ${ }^{19} \mathrm{~F}$ NMR)

${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{2 a}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{2 b}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

$\stackrel{\circ}{\circ} \stackrel{\infty}{\circ}$	$\stackrel{\infty}{+} \stackrel{\square}{\infty}$	$\stackrel{\square}{\square}$
$\stackrel{\sim}{\sim}$ N ${ }_{\sim}^{\sim}$	へべ心	\％
1 V	\checkmark	

${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{2 b}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{2 c}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{2 c}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

${ }^{19}$ F NMR Spectrum of $\mathbf{2 e}\left(\mathrm{CDCl}_{3}, 376 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{2 f}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{2 g}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$
(
${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{2 g}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{2 h}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{2 h}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{2 i}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{2} \mathbf{j}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{2 k}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{2 k}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{2 1}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR Spectrum of $21\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{2 m}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{2 n}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{2 n}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{2 o}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR Spectrum of $2 \mathrm{o}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{2 p}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

${ }^{19} \mathrm{~F}$ NMR Spectrum of $\mathbf{2 p}\left(\mathrm{CDCl}_{3}, 376 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{2 s}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{2 t}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{2 u}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

[^1]
${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{2 u}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{2 v}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{2 v}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{2 w}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{2 x}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{2 x}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

 200
${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{2 a a}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

-18000
-17000
-16000
-15000
-14000
-13000
-12000
-11000
-10000
9000
-8000
-7000
6000
5000
-4000
-3000
-2000
-1000
-0
-1000
10

${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{2 a a}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR Spectrum of 2ab $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{2 a b}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{2 a e}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{2 a f}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{2} \mathbf{a f}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{2 a g}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

-7500

${ }^{1} \mathrm{H}$ NMR Spectrum of 2ai $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

-2200
-2100
-2000

${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{2 a i}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$
2aj
${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{2 a j}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR Spectrum of 2am $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{2 a m}\left(\mathrm{CDCl}_{3}, 127 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR Spectrum of $4\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{5}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

 ભભ

8
 $\int /$

 1

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{8}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{8}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

$-\square$

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{1 1}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{1 1}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{1 2}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

$\stackrel{\text { ® }}{\text { M }}$

$\begin{array}{lllllllllllllllllllllllllllll}10 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$
${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{1 2}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{1 3}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{1 3}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$
か~

14

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{1 4}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{1 4}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{1 5}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{1 5}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

Cles)

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{1 7}$ (DMSO, 400 MHz)

17

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{1 8}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{1 8}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

[^0]: ${ }^{a}$ Unless otherwise noted, the reaction conditions as follows: 1 a ($0.2 \mathrm{mmol}, 1.0$ equiv), $\mathrm{BrCH}_{2} \mathrm{Cl}$ ($0.4 \mathrm{mmol}, 2.0$ equiv), [Cu] ($0.02 \mathrm{mmol}, 10 \mathrm{~mol} \%$), $\mathrm{L} 1\left(0.04 \mathrm{mmol}, 20 \mathrm{~mol} \%\right.$), $\mathrm{TMSN}_{3}(0.3 \mathrm{mmol}$, 1.5 equiv), $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($0.24 \mathrm{mmol}, 1.2$ equiv), $\mathrm{CH}_{3} \mathrm{OH}(1.0 \mathrm{~mL}), 100^{\circ} \mathrm{C}, 12 \mathrm{~h}, \mathrm{~N}_{2} .{ }^{b}$ Yield determined by ${ }^{1} \mathrm{H}$ NMR using dibromomethane as internal standard. ${ }^{c}$ Isolated yield. ${ }^{d} \mathrm{TMSN}_{3}(0.24 \mathrm{mmol}$, 1.2 equiv) was used. L1 $=\mathrm{Me}_{6}$ TREN.

[^1]: -3200
 -3000

