Supporting Information

Intermolecular Trifluoromethyl-Alkenylation of Alkenes Enabled by Metal-Free Photoredox Catalysis

Arun D. Kulthe,^{a,b} Prathama S. Mainkar*^{a,b} and Srirama Murthy Akondi*^{a,b}

^a Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR- IICT), Hyderabad 500007, India; Email: sriramakondi@iict.res.in; sriramiict@gmail.com

^b Academy of scientific and innovative research (AcSIR), Ghaziabad 201002, India

Table of Contents:

1.	General information	S2
2.	Optimization of the stoichiometry of the starting materials	S 3
3.	Trifluoromethyl-alkenylation of alkenes	S 3
4.	Gram scale experiment	S 13
5.	Radical inhibition and trapping experiment	S14
6.	Radical clock cyclization experiment	S15
7.	References	S 16
8.	NMR spectra	S17

1. General information: Unless otherwise noted, all the solvents and chemicals from commercial suppliers were used without further purification. Silica gel thin-layer chromatography (TLC) was used to monitor the reactions. Silica gel (100-200 mesh) packed in glass column was used for the column chromatography. NMR spectra were recorded at 400, 500 MHz (H) and at 101, 126 MHz (C), respectively. ³¹P and ¹⁹F NMR spectra were recorded at 162 and 376 MHz respectively. Chemical shifts (δ) are reported in ppm, using the residual solvent peak in CDCl₃ (H: δ = 7.26 and C: δ = 77.0 ppm) as internal standard, and coupling constants (*J*) are measured in hertz (Hz). High-resolution mass spectra (HRMS) were recorded using ESI-TOF techniques. Melting points of solids were recorded using Electrothermal (IA9100) melting point apparatus. Irradiation was performed with Penn *PhD* photoreactor m2 (PR m2) (blue LED, 450 nm) purchased from Sigma- Aldrich.

2. Optimization of the stoichiometry of the starting materials:

Entry	Deviation from the above condition	Isolated yields of
		3aa and 4a
1	None	71% and trace
2	2 equiv. of alkene and 2	53% and 12%
	equiv. of Langlois reagent	
3	1 equiv. of alkene and 1	39% and 21%
	equiv. of Langlois reagent	

3. General procedure for the visible-light promoted trifluoromethyl-alkenylation of alkenes:

Alkene 1 (0.3 mmol), Langlois reagent (0.3 mmol) and nitroalkene 2 (0.1 mmol) were weighed in a round bottomed flask and MeCN (3.0 mL) was added to this mixture. The flask was introduced into Penn *PhD* photoreactor m2 (blue LED 450 nm) and allowed to stir under N₂ atmosphere. After completion of reaction (4 hours), the reaction mixture was concentrated using rotary evaporation and the crude reaction mixture was purified by column chromatography to get the desired compound **3**. Alkenes **1b-1g** are commercially available. Alkenes **1a**, **1h-1o** were synthesized from the known procedures available in the literature.¹ Nitrostyrenes **2a-2i** are commercially available. Nitrostyrenes **2j-2o** were prepared by following the known procedures in the literature.²

(*E*)-1-methoxy-4-(3,3,3-trifluoroprop-1-en-1-yl)benzene (4a): ¹H NMR (500 MHz, CDCl₃) δ 7.40 (d, *J* = 8.7 Hz, 1H), 7.09 (dd, *J* = 16.1, 2.1 Hz, 1H), 6.91 (d, *J* = 8.8 Hz, 2H), 6.06 (dq, *J* = 16.1, 6.6 Hz, 1H), 3.84 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 161.1, 137.1 (q, *J* = 6.7 Hz), 129.0, 126.1, 123.9 (q, *J* = 268.4Hz), 114.3, 113.4 (q, *J* = 33.7 Hz), 55.4; ¹⁹F NMR (376 MHz, CDCl₃) δ -62.9. This analytical data is in consistent with the one reported in the literature.^{2c}

Benzyl (*E*)-7-(4-methoxyphenyl)-5-(2,2,2-trifluoroethyl)hept-6-enoate (3aa): Colorless oil (29.2 mg, 71%); ¹H NMR (400 MHz, CDCl₃) δ 7.37 – 7.29 (m, 5H), 7.26 (d, *J* = 8.6 Hz, 2H), 6.84 (d, *J* = 8.8 Hz, 2H), 6.36 (d, *J* = 15.8 Hz, 1H), 5.77 (dd, *J* = 15.8, 9.0 Hz, 1H), 5.10 (s, 2H), 3.80 (s, 3H), 2.59 – 2.46 (m, 1H), 2.40 – 2.31 (m, 2H), 2.23 – 2.11 (m, 2H), 1.78 – 1.68 (m, 1H), 1.67 – 1.50 (m, 2H), 1.47 – 1.38 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 173.2, 159.1, 136.0, 130.7, 129.8, 129.1, 128.6, 128.3, 127.4, 126.7 (q, *J* = 277.6 Hz), 114.0, 66.2, 55.3, 39.4 (q, *J* = 26.7 Hz), 37.4 (q, *J* = 2.3 Hz), 34.4, 34.0, 22.4; ¹⁹F NMR (376 MHz, CDCl₃) δ -63.1; HRMS (ESI) calcd for C₂₃H₂₆O₃F₃ [M+H]⁺: 407.1829; found: 407.1830.

Benzyl (*E*)-7-(3-methoxyphenyl)-5-(2,2,2-trifluoroethyl)hept-6-enoate (3ab): Colorless oil (23.5 mg, 58%); ¹H NMR (500 MHz, CDCl₃) δ 7.37 – 7.29 (m, 5H), 7.22 (t, *J* = 7.9 Hz, 1H), 6.93 (d, *J* = 7.7 Hz, 1H), 6.89 – 6.85 (m, 1H), 6.78 (dd, *J* = 8.0, 2.3 Hz, 1H), 6.39 (d, *J* = 15.8 Hz, 1H), 5.92 (dd, *J* = 15.7, 9.1 Hz, 1H), 5.11 (s, 2H), 3.81 (s, 3H), 2.59 – 2.50 (m, 1H), 2.42 – 2.31 (m, 2H), 2.27 – 2.12 (m, 2H), 1.77 – 1.68 (m, 1H), 1.63 – 1.54 (m, 2H), 1.48 – 1.39 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 173.1, 159.8, 138.4, 136.0, 131.6, 131.3, 129.5, 128.6, 128.3, 126.6 (q, *J* = 277.6 Hz), 118.9, 113.1, 111.6, 66.3, 55.2, 39.3 (q, *J* = 26.8 Hz), 37.4 (q,

J = 1.4 Hz), 34.3, 34.0, 22.4; ¹⁹F NMR (376 MHz, CDCl₃) δ -63.1; HRMS (ESI) calcd for C₂₃H₂₉O₃NF₃ [M+NH₄]⁺: 424.2094; found: 424.2074.

Benzyl (*E*)-7-(2-methoxyphenyl)-5-(2,2,2-trifluoroethyl)hept-6-enoate (3ac): Colorless oil (29.2 mg, 72%); ¹H NMR (400 MHz, CDCl₃) δ 7.39 (dd, J = 7.6, 1.6 Hz, 1H), 7.36 – 7.29 (m, 5H), 7.21 (td, J = 8.2, 1.7 Hz, 1H), 6.91 (t, J = 7.5 Hz, 1H), 6.86 (d, J = 8.2 Hz, 1H), 6.74 (d, J = 15.9 Hz, 1H), 5.93 (dd, J = 15.9, 9.0 Hz, 1H), 5.11 (s, 2H), 3.83 (s, 3H), 2.65 – 2.49 (m, 1H), 2.39 – 2.35 (m, 2H), 2.23 – 2.15 (m, 2H), 1.79 – 1.67 (m, 1H), 1.67 – 1.51 (m, 2H), 1.48 – 1.38 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 173.2, 156.6, 136.0, 131.8, 128.6, 128.4, 128.2, 126.6, 126.7 (q, J = 277.8 Hz), 126.1, 126.0, 120.6, 111.0, 66.2, 55.5, 39.3 (q, J = 26.9 Hz), 37.7 (q, J = 1.7 Hz), 34.3, 34.0, 22.4; ¹⁹F NMR (376 MHz, CDCl₃) δ -63.0; HRMS (ESI) calcd for C₂₃H₂₆O₃F₃ [M+H]⁺: 407.1829; found: 407.1830

Benzyl (*E*)-7-(2,5-dimethoxyphenyl)-5-(2,2,2-trifluoroethyl)hept-6-enoate (3ad): Colorless oil (24.4 mg, 56%); ¹H NMR (400 MHz, CDCl₃) δ 7.35 – 7.32 (m, 5H), 6.95 (d, *J* = 2.9 Hz, 1H), 6.81 – 6.69 (m, 3H), 5.93 (dd, *J* = 15.9, 9.0 Hz, 1H), 5.11 (s, 2H), 3.78 (s, 6H), 2.62 – 2. (m, 1H), 2.229 (m, 2H), 2.24 – 2.12 (m, 2H), 1.79 – 1.67 (m, 1H), 1.67 – 1.51 (m, 2H), 1.48 – 1.38 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 173.2, 153.7, 151.1, 136.0, 132.1, 128.6, 128.2, 127.0, 125.9, 126.7 (q, *J* = 277.4 Hz), 113.3, 112.5, 112.1, 66.2, 56.3, 55.8, 39.3 (q, *J* = 26.8 Hz), 37.6 (q, *J* = 1.1 Hz), 34.3, 34.0, 22.4; ¹⁹F NMR (376 MHz, CDCl₃) δ -63.0; HRMS (ESI) calcd for C₂₄H₂₈O₄F₃ [M+H]⁺: 437.1934; found: 437.1917.

Benzyl (*E*)-7-(3-chlorophenyl)-5-(2,2,2-trifluoroethyl)hept-6-enoate (3ae): Colorless oil (25.4 mg, 62%); ¹H NMR (400 MHz, CDCl₃) δ 7.45 – 7.28 (m, 6H), 7.24 – 7.15 (m, 3H), 6.36 (d, *J* = 15.7 Hz, 1H), 5.93 (dd, *J* = 15.7, 9.2 Hz, 1H), 5.11 (s, 2H), 2.63 – 2.49 (m, 1H), 2.43 – 2.30 (m, 2H), 2.28 – 2.10 (m, 2H), 1.78 – 1.67 (m, 1H), 1.66 – 1.51 (m, 2H), 1.49 – 1.34 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 173.1, 138.8, 135.9, 134.5, 132.8, 130.2, 129.8, 128.6, 128.3, 127.9, 126.5 (q, *J* = 277.5 Hz), 126.1, 125.1, 66.3, 39.2 (q, *J* = 26.9 Hz), 37.5 (q, *J* = 1.2

Hz), 34.2, 33.9, 22.4; ¹⁹F NMR (376 MHz, CDCl₃) δ -63.1; HRMS (ESI) calcd for C₂₂H₂₁O₂ClF₃ [M-H]⁻: 409.1177; found: 409.1152.

Benzyl (*E*)-7-(2,4-dichlorophenyl)-5-(2,2,2-trifluoroethyl)hept-6-enoate (3af): Colorless oil (29.7 mg, 67%); ¹H NMR (400 MHz, CDCl₃) δ 7.38 – 7.30 (m, 7H), 7.18 (dd, *J* = 8.4, 2.0 Hz, 1H), 6.72 (d, *J* = 15.8 Hz, 1H), 5.88 (dd, *J* = 15.8, 9.1 Hz, 1H), 5.11 (s, 2H), 2.65 – 2.58 (m, 1H), 2.43 – 2.33 (m, 2H), 2.29 – 2.12 (m, 2H), 1.77 – 1.68 (m, 1H), 1.67 – 1.54 (m, 2H), 1.48 – 1.40 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 173.1, 135.9, 134.8, 133.9, 133.4, 133.3, 129.4, 128.6, 128.3, 127.7, 127.2, 126.9, 126.5 (q, *J* = 277.5 Hz), 66.3, 39.1 (q, *J* = 27.0 Hz), 37.6 (q, *J* = 1.4 Hz), 34.1, 33.9, 22.3; ¹⁹F NMR (376 MHz, CDCl₃) δ -63.0; HRMS (ESI) calcd for C₂₂H₂₅O₂NCl₂F₃ [M+NH₄]⁺: 462.1209; found: 462.1183.

Benzyl (*E*)-7-(2,6-dichlorophenyl)-5-(2,2,2-trifluoroethyl)hept-6-enoate (3ag): Colorless oil (25.3 mg, 57%); ¹H NMR (400 MHz, CDCl₃) δ 7.40 – 7.31 (m, 5H), 7.30 (d, *J* = 8.1 Hz, 2H), 7.08 (t, *J* = 8.1 Hz, 1H), 6.40 (d, *J* = 16.1 Hz, 1H), 5.90 (dd, *J* = 16.1, 9.2 Hz, 1H), 5.12 (s, 2H), 2.67 – 2.58 (m, 1H), 2.47 – 2.34 (m, 2H), 2.27 – 2.17 (m, 2H), 1.92 – 1.82 (m, 1H), 1.74 – 1.57 (m, 2H), 1.50 – 1.43 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 173.1, 139.8, 136.0, 134.5, 134.4, 130.7, 128.6, 128.3, 128.2, 128.1, 126.5 (q, *J* = 277.5 Hz), 125.3, 66.3, 39.1 (q, *J* = 27.3 Hz), 37.9 (q, *J* = 1.8 Hz), 34.0, 33.9, 22.3; ¹⁹F NMR (376 MHz, CDCl₃) δ -63.1; HRMS (ESI) calcd for C₂₂H₂₅O₂NCl₂F₃ [M+NH₄]⁺: 462.1209; found: 462.1183.

Benzyl (*E*)-7-(4-fluorophenyl)-5-(2,2,2-trifluoroethyl)hept-6-enoate (3ah): Colorless oil (25.5 mg, 64%); ¹H NMR (400 MHz, CDCl₃) δ 7.37 – 7.32 (m, 5H), 7.31 – 7.27 (m, 2H), 7.01 – 6.96 (m, 2H), 6.38 (d, *J* = 15.8 Hz, 1H), 5.83 (dd, *J* = 15.8, 9.1 Hz, 1H), 5.11 (s, 2H), 2.58 – 2.50 (m, 1H), 2.42 – 2.32 (m, 2H), 2.24 – 2.13 (m, 2H), 1.78 – 1.68 (m, 1H), 1.66 – 1.52 (m, 2H), 1.46 – 1.39 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 173.1, 162.2 (d, *J* = 246.4 Hz), 138.1, 136.0, 133.1 (d, *J* = 3.1 Hz), 131.0, 130.3, 128.6, 128.3, 127.7 (d, *J* = 7.9 Hz), 126.6 (q, *J* = 277.6 Hz), 115.4 (d, *J* = 21.6 Hz), 66.3, 39.3 (q, *J* = 26.9 Hz), 37.4 (q, *J* = 1.6 Hz), 34.3, 34.0,

22.4; ¹⁹F NMR (376 MHz, CDCl₃) δ -63.1, -114.8; HRMS (ESI) calcd for C₂₂H₂₆O₂NF₄ [M+NH₄]⁺: 412.1894; found: 412.1880.

Benzyl (*E*)-7-phenyl-5-(2,2,2-trifluoroethyl)hept-6-enoate (3ai): Colorless oil (22.9 mg, 61%); ¹H NMR (400 MHz, CDCl₃) δ 7.37 – 7.29 (m, 9H), 7.24 – 7.21 (m, 1H), 6.42 (d, J = 15.8 Hz, 1H), 5.92 (dd, J = 15.8, 9.1 Hz, 1H), 5.11 (s, 2H), 2.59 – 2.52 (m, 1H), 2.42 – 2.32 (m, 2H), 2.25 – 2.14 (m, 2H), 1.77 – 1.69 (m, 1H), 1.67 – 1.53 (m, 2H), 1.47 – 1.40 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 173.1, 137.0, 136.0, 131.4, 131.3, 128.6, 128.5, 128.3, 127.4, 126.6 (q, J = 277.6 Hz), 126.2, 66.3, 39.3 (q, J = 26.9 Hz), 37.4 (q, J = 1.6 Hz), 34.3, 34.0, 22.4; ¹⁹F NMR (376 MHz, CDCl₃) δ -63.1; HRMS (ESI) calcd for C₂₂H₂₇O₂NF₃ [M+NH₄]⁺: 394.1988; found: 394.1968.

Benzyl (E)-7-(naphthalen-1-yl)-5-(2,2,2-trifluoroethyl)hept-6-enoate (3aj): Colorless oil (29.4 mg, 69%); ¹H NMR (400 MHz, CDCl₃) δ 8.08 – 8.06 (m, 1H), 7.86 – 7.84 (m, 1H), 7.78 (d, J = 8.2 Hz, 1H), 7.53 – 7.47 (m, 3H), 7.45 – 7.42 (m, 1H), 7.36 – 7.31 (m, 5H), 7.17 (d, J = 15.5 Hz, 1H), 5.93 (dd, J = 15.5, 9.2 Hz, 1H), 5.13 (s, 2H), 2.75 – 2.68 (m, 1H), 2.46 – 2.38 (m, 2H), 2.30 – 2.22 (m, 2H), 1.87 – 1.79 (m, 1H), 1.76 – 1.70 (m, 1H), 1.66 – 1.59 (m, 1H), 1.55 – 1.47 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 173.1, 136.0, 135.0, 134.7, 133.6, 131.2, 129.0, 128.6, 128.5, 128.3, 127.8, 126.7 (q, J = 277.6 Hz), 126.1, 125.8, 125.6, 124.0, 123.9, 66.3, 39.4 (q, J = 26.9 Hz), 37.8 (q, J = 1.5 Hz), 34.4, 34.0, 22.5; ¹⁹F NMR (376 MHz, CDCl₃) δ -62.9; HRMS (ESI) calcd for C₂₆H₂₆O₂F₃ [M+H]⁺: 427.1879; found: 427.1864.

Benzyl (*E*)-7-(furan-2-yl)-5-(2,2,2-trifluoroethyl)hept-6-enoate (3ak): Colorless oil (18.7 mg, 51%); ¹H NMR (400 MHz, CDCl₃) δ 7.31 – 7.22 (m, 6H), 6.28 (dd, *J* = 3.3, 1.8 Hz, 1H), 6.16 (d, *J* = 15.8 Hz, 1H), 6.11 (d, *J* = 3.3 Hz, 1H), 5.81 (dd, *J* = 15.8, 9.2 Hz, 1H), 5.04 (s, 2H), 2.47 – 2.38 (m, 1H), 2.31 – 2.27 (m, 2H), 2.17 – 2.04 (m, 2H), 1.70 – 1.60 (m, 1H), 1.60 – 1.44 (m, 2H), 1.39 – 1.32 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 172.1, 151.3, 140.7, 134.9,129.0, 127.6, 127.2, 125.5 (q, *J* = 277.6 Hz), 118.9, 110.2, 106.3, 65.2, 38.2 (q, *J* = 26.8

Hz), 36.2 (q, J = 1.2 Hz), 33.3, 32.9, 21.3; ¹⁹F NMR (376 MHz, CDCl₃) δ -63.2; HRMS (ESI) calcd for C₂₀H₂₀O₃F₃ [M-H]⁻: 365.1359; found: 365.1359.

Benzyl (*6E*,*8E*)-9-phenyl-5-(2,2,2-trifluoroethyl)nona-6,8-dienoate (3al): Colorless oil (21.3 mg, 53%); ¹H NMR (500 MHz, CDCl₃) δ 7.40 – 7.28 (m, 9H), 7.21 (t, *J* = 7.3 Hz, 1H), 6.72 (dd, *J* = 15.6, 10.4 Hz, 1H), 6.49 (d, *J* = 15.7 Hz, 1H), 6.23 (dd, *J* = 15.1, 10.4 Hz, 1H), 5.53 (dd, *J* = 15.1, 9.1 Hz, 1H), 5.11 (s, 2H), 2.53 – 2.43 (m, 1H), 2.43 – 2.29 (m, 2H), 2.23 – 2.07 (m, 2H), 1.77 – 1.65 (m, 1H), 1.65 – 1.48 (m, 2H), 1.43 – 1.33 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 173.1, 137.3, 136.0, 135.5, 131.9, 131.8, 128.6, 128.5, 128.3, 127.5, 126.6 (q, *J* = 277.7 Hz), 126.3, 66.3, 39.2 (q, *J* = 26.8 Hz), 37.2 (q, *J* = 1.7 Hz), 34.3, 34.0, 22.4; ¹⁹F NMR (376 MHz, CDCl₃) δ -63.2; HRMS (EI) calcd for C₂₄H₂₅O₂F₃ [M]⁺: 402.1807; found: 402.1826.

(*E*)-1-(3-Benzyl-5,5,5-trifluoropent-1-en-1-yl)-4-methoxybenzene (3ba): White solid, mp: 81- 83 °C (19.8 mg, 62%); ¹H NMR (500 MHz, CDCl₃) δ 7.33 – 7.19 (m, 5H), 7.16 (d, *J* = 7.1 Hz, 2H), 6.83 (d, *J* = 8.7 Hz, 2H), 6.28 (d, *J* = 15.8 Hz, 1H), 5.89 (dd, *J* = 15.8, 8.7 Hz, 1H), 3.80 (s, 3H), 2.90 – 2.81 (m, 1H), 2.81 – 2.72 (m, 2H), 2.30 – 2.10 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 159.1, 141.7, 131.0, 129.9, 129.4, 128.4, 128.4, 127.4, 126.7 (q, *J* = 277.7 Hz), 125.9, 114.0, 55.4, 39.5 (q, *J* = 26.8 Hz), 37.2 (q, *J* = 1.7 Hz), 36.7, 33.2 159.1, 138.7, 130.41, 130.0, 129.4, 129.1, 128.4, 127.4, 126.5, 126.8 (q, *J* = 277.6 Hz), 114.0, 55.3, 41.9, 39.1 (q, *J* = 1.3 Hz), 38.2 (q, *J* = 26.8 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -62.9; HRMS (ESI) calcd for C₁₉H₁₉OF₃ [M]⁺: 320.1388; found: 320.1375.

(*E*)-1-Methoxy-4-(5,5,5-trifluoro-3-phenethylpent-1-en-1-yl)benzene (3ca): Colorless oil (19.4 mg, 58%); ¹H NMR (400 MHz, CDCl₃) δ 7.33 – 7.25 (m, 4H), 7.21 – 7.13 (m, 3H), 6.86 (d, *J* = 8.8 Hz, 2H), 6.38 (d, *J* = 15.8 Hz, 1H), 5.85 (dd, *J* = 15.8, 9.1 Hz, 1H), 3.81 (s, 3H), 2.77 – 2.66 (m, 1H), 2.62 – 2.51 (m, 2H), 2.33 – 2.18 (m, 2H), 1.94 – 1.82 (m, 1H), 1.78 – 1.66 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 159.1, 141.7, 131.0, 129.9, 129.4, 128.5, 128.4, 127.4,

126.7 (q, J = 277.7 Hz), 125.9, 114.0, 55.4, 39.5 (q, J = 26.8 Hz), 37.2 (q, J = 1.7 Hz), 36.7, 33.2; ¹⁹F NMR (376 MHz, CDCl₃) δ -63.0; HRMS (ESI) calcd for C₂₀H₂₁OF₃ [M]⁺: 334.1544; found: 334.1536.

(E)-1,2-Dimethoxy-4-(4-(4-methoxyphenyl)-2-(2,2,2-trifluoroethyl)but-3-en-1-yl)benzene (3da): Colorless oil (25.4 mg, 67%); ¹H NMR (500 MHz, CDCl₃) δ 7.24 (d, *J* = 8.7 Hz, 2H), 6.83 (d, *J* = 8.8 Hz, 2H), 6.79 (d, *J* = 8.1 Hz, 1H), 6.70 (dd, *J* = 8.1, 2.0 Hz, 1H), 6.66 (d, *J* = 1.9 Hz, 1H), 6.28 (d, *J* = 15.8 Hz, 1H), 5.90 (dd, *J* = 15.8, 8.5 Hz, 1H), 3.86 (s, 3H), 3.81 (s, 3H), 3.79 (s, 3H), 2.87 – 2.76 (m, 1H), 2.77 – 2.66 (m, 2H), 2.32 – 2.20 (m, 1H), 2.20 – 2.09 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 159.1, 148.7, 147.6, 131.2, 130.4, 129.9, 129.2, 127.3, 126.7 (q, *J* = 277.7 Hz), 121.4, 114.0, 112.6, 111.1, 55.9, 55.8, 55.3, 41.4, 39.1, 38.5 (q, *J* = 26.8 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -62.9; HRMS (ESI) calcd for C₂₁H₂₃O₃F₃ [M+H]⁺: 380.1599; found: 380.1597.

(E)-(5,5,5-Trifluoro-1-(4-methoxyphenyl)pent-1-en-3-yl)cyclooctane (3ea): Colorless oil (14.6 mg, 43%); ¹H NMR (500 MHz, CDCl₃) δ 7.21 (d, *J* = 8.7 Hz, 2H), 6.78 (d, *J* = 8.7 Hz, 2H), 6.27 (d, *J* = 15.7 Hz, 1H), 5.80 (dd, *J* = 15.7, 9.3 Hz, 1H), 3.73 (s, 3H), 2.39 – 2.32 (m, 1H), 2.24 – 2.07 (m, 2H), 1.65 – 1.58 (m, 2H), 1.56 – 1.45 (m, 8H), 1.42 – 1.25 (m, 5H); ¹³C NMR (101 MHz, CDCl₃) δ 158.9, 131.0, 130.2, 128.1, 127.3, 127.2 (q, *J* = 277.1 Hz), 114.0, 55.4, 44.3, 41.6, 36.7 (q, *J* = 26.4 Hz), 31.6, 29.7, 29.4, 26.7, 26.6, 26.5, 26.4, 25.8; ¹⁹F NMR (376 MHz, CDCl₃) δ -63.1; HRMS (ESI) calcd for C₂₀H₂₇F₃O [M+H]⁺: 341.2092; found: 341.2072.

(E)-1-Methoxy-4-(3-(2,2,2-trifluoroethyl)henicos-1-en-1-yl)benzene (3fa): Colorless oil
(30.9 mg, 64%); ¹H NMR (500 MHz, CDCl₃) δ 7.28 (d, J = 8.7 Hz, 2H), 6.85 (d, J = 8.8 Hz, 2H), 6.34 (d, J = 15.8 Hz, 1H), 5.81 (dd, J = 15.7, 9.0 Hz, 1H), 3.80 (s, 3H), 2.57 – 2.44 (m, 1H), 2.26 – 2.10 (m, 2H), 1.78 – 1.43 (m, 4H), 1.39 – 1.13 (m, 30H), 0.88 (t, J = 6.8 Hz, 3H);
¹³C NMR (101 MHz, CDCl₃) δ 159.0, 130.1, 130.0, 127.3, 126.8 (q, J = 277.7 Hz), 114.0,

55.3, 39.4 (q, J = 26.8 Hz), 37.5 (q, J = 1.2 Hz), 35.2, 32.0, 29.7, 29.6, 29.5, 29.4, 26.9, 22.7, 14.2; ¹⁹F NMR (376 MHz, CDCl₃) δ -63.1; HRMS (ESI) calcd for C₃₀H₄₉OF₃ [M]⁺: 482.3735; found: 482.3741.

±(E)-1-methoxy-4-(2-(2-(trifluoromethyl)cyclohexyl)vinyl)benzene (3ga): Colorless oil (16.8 mg, 59%); ¹H NMR (500 MHz, CDCl₃) δ 7.27 (d, J = 8.7 Hz, 2H), 6.83 (d, J = 8.7 Hz, 2H), 6.33 (d, J = 15.7 Hz, 1H), 5.94 (dd, J = 15.7, 9.0 Hz, 1H), 3.80 (s, 3H), 2.31 – 2.22 (m, 1H), 2.06 – 1.93 (m, 2H), 1.85 – 1.83 (m, 1H), 1.79 – 1.77 (m, 2H), 1.39 – 1.25 (m, 4H); ¹³C NMR (101 MHz, CDCl₃) δ 158.8, 131.2, 130.5, 128.5, 127.7 (q, J = 277.7 Hz), 127.2, 113.9, 55.3, 46.9 (q, J = 23.8 Hz), 41.9 (q, J = 1.1 Hz), 33.6, 25.3, 24.8; ¹⁹F NMR (376 MHz, CDCl₃) δ -68.5; HRMS (ESI) calcd for C₁₆H₂₀OF₃ [M+H]⁺: 285.1466; found: 285.1458.These NMR values are in accordance with the known *trans* compound in the literature.³

(E)-tert-Butyl((6-(4-methoxyphenyl)-4-(2,2,2-trifluoroethyl)hex-5-en-1-

yl)oxy)dimethylsilane (3ha): Colorless oil (24.6 mg, 61%); ¹H NMR (500 MHz, CDCl₃) δ 7.28 (d, J = 8.7 Hz, 2H), 6.84 (d, J = 8.8 Hz, 2H), 6.36 (d, J = 15.8 Hz, 1H), 5.81 (dd, J = 15.8, 9.0 Hz, 1H), 3.80 (s, 3H), 3.61 (t, J = 6.0 Hz, 2H), 2.59 – 2.50 (m, 1H), 2.29 – 2.12 (m, 2H), 1.67 – 1.54 (m, 2H), 1.53 – 1.39 (m, 2H), 0.89 (s, 9H), 0.04 (s, 3H), 0.04 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 159.0, 130.4, 130.0, 129.7, 127.3, 126.8 (q, J = 277.7 Hz), 114.0, 62.9, 55.3, 39.5 (q, J = 26.8 Hz), 37.3 (q, J = 1.5 Hz), 31.4, 26.0, 18.9, -5.3; ¹⁹F NMR (376 MHz, CDCl₃) δ -63.1; HRMS (ESI) calcd for C₂₁H₃₄O₂F₃Si [M+H]⁺: 403.2275; found: 403.2276.

(E)-6-(4-Methoxyphenyl)-4-(2,2,2-trifluoroethyl)hex-5-en-1-yl 4-methylbenzenesulfonate (3ia): Colorless oil (27.8 mg, 63%); ¹H NMR (500 MHz, CDCl₃) δ 7.77 (d, *J* = 8.3 Hz, 2H), 7.32 (d, *J* = 8.0 Hz, 2H), 7.25 (d, *J* = 8.7 Hz, 2H), 6.84 (d, *J* = 8.8 Hz, 2H), 6.30 (d, *J* = 15.8 Hz, 1H), 5.71 (dd, *J* = 15.8, 9.1 Hz, 1H), 4.03 (t, *J* = 6.2 Hz, 2H), 3.80 (s, 3H), 2.43 (s, 3H), 2.23 – 2.08 (m, 2H), 1.77 – 1.67 (m, 1H), 1.67 – 1.52 (m, 3H), 1.43 – 1.33 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 159.2, 144.8, 133.1, 131.2, 129.9, 129.6, 128.5, 127.9, 127.4, 126.6 126.7 (q, J = 277.7 Hz), 114.0, 70.2, 55.3, 39.5 (q, J = 26.8 Hz), 37.2 (q, J = 1.6 Hz), 30.8, 26.5, 21.6;¹⁹F NMR (376 MHz, CDCl₃) δ -63.1; ³¹P NMR (162 MHz, CDCl₃) δ -0.8; HRMS (ESI) calcd for C₂₂H₂₆O₄F₃S [M+H]⁺: 443.1498; found: 443.1496.

(E)-Diethyl (6-(4-methoxyphenyl)-4-(2,2,2-trifluoroethyl)hex-5-en-1-yl) phosphate (3ja): Colorless oil (27.6 mg, 65%); ¹H NMR (500 MHz, CDCl₃) δ 7.28 (d, *J* = 8.7 Hz, 2H), 6.85 (d, *J* = 8.7 Hz, 2H), 6.37 (d, *J* = 15.8 Hz, 1H), 5.79 (dd, *J* = 15.8, 9.1 Hz, 1H), 4.13 – 4.01 (m, 6H), 3.81 (s, 3H), 2.59 – 2.50 (m, 1H), 2.26 – 2.16 (m, 2H), 1.73 – 1.59 (m, 4H), 1.32 (t, *J* = 7.1 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 159.2, 131.0, 129.7, 129.0, 127.4, 126.7 (q, *J* = 277.7 Hz), 114.0, 67.2 (d, *J* = 6.0 Hz), 63.8 (d, *J* = 5.6 Hz), 55.3, 39.5 (q, *J* = 26.8 Hz), 37.3 (q, *J* = 1.4 Hz), 30.9, 27.8 (d, *J* = 6.8 Hz), 16.2 (d, *J* = 6.5 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -63.1; ³¹P NMR (162 MHz, CDCl₃) δ -0.8; HRMS (ESI) calcd for C₁₉H₂₈O₅F₃P [M]⁺: 424.1626; found: 424.1630.

(E)-2-(6-(4-Methoxyphenyl)-4-(2,2,2-trifluoroethyl)hex-5-en-1-yl)isoindoline-1,3-dione (3ka): Colorless oil (30.5 mg, 73%); ¹H NMR (500 MHz, CDCl₃) δ 7.83 (dd, *J* = 5.4, 3.0 Hz, 2H), 7.70 (dd, *J* = 5.5, 3.0 Hz, 2H), 7.26 (d, *J* = 8.7 Hz, 2H), 6.83 (d, *J* = 8.8 Hz, 2H), 6.36 (d, *J* = 15.7 Hz, 1H), 5.77 (dd, *J* = 15.7, 9.1 Hz, 1H), 3.79 (s, 3H), 3.69 (t, *J* = 7.2 Hz, 2H), 2.61 – 2.51 (m, 1H), 2.26 – 2.14 (m, 2H), 1.80 – 1.55 (m, 3H), 1.51 – 1.40 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 168.4, 159.1, 134.0, 132.1, 130.9, 129.8, 128.9, 126.6 (q, *J* = 277.7 Hz), 127.4, 123.3, 114.0, 55.3, 39.5 (q, *J* = 26.7 Hz), 37.7, 37.4 (q, *J* = 1.4 Hz), 32.2, 26.2; ¹⁹F NMR (376 MHz, CDCl₃) δ -63.1; HRMS (ESI) calcd for C₂₃H₂₃O₃NF₃ [M+H]⁺: 418.1624; found: 418.1621.

(E)-(6-(4-methoxyphenyl)-4-(2,2,2-trifluoroethyl)hex-5-en-1-yl)(phenyl)sulfane (3la): Colorless oil (21.3 mg, 56%); ¹H NMR (400 MHz, CDCl₃) δ 7.32 – 7.28 (m, 2H), 7.27 – 7.21 (m, 4H), 7.17 – 7.12 (m, 1H), 6.84 (d, J = 8.8 Hz, 2H), 6.33 (d, J = 15.8 Hz, 1H), 5.77 (dd, J = 15.8, 9.0 Hz, 1H), 3.81 (s, 3H), 2.99 – 2.85 (m, 2H), 2.59 – 2.47 (m, 1H), 2.25 – 2.11 (m, 2H), 1.77 – 1.49 (m, 4H); ¹³C NMR (101 MHz, CDCl₃) δ 159.1, 136.5, 130.8, 129.8, 129.2, 129.2, 128.9, 127.4, 126.6 (q, J = 277.7 Hz), 125.9, 114.0, 55.35, 39.5 (q, J = 26.7 Hz), 37.2 (q, J = 1.2 Hz), 34.0, 33.6, 26.5; ¹⁹F NMR (376 MHz, CDCl₃) δ -63.1; HRMS (ESI) calcd for C₂₁H₂₃OF₃S [M]⁺: 380.1422; found: 380.1432.

(E)-1-Methoxy-4-(6-(phenylsulfinyl)-3-(2,2,2-trifluoroethyl)hex-1-en-1-yl)benzene

(3ma): Colorless oil (23.0 mg, 58%); ¹H NMR (400 MHz, CDCl₃) δ 7.60 – 7.55 (m, 2H), 7.49 – 7.44 (m, 3H), 7.25 (d, *J* = 8.8 Hz, 2H), 6.85 (d, *J* = 8.7 Hz, 2H), 6.33 (d, *J* = 15.7 Hz, 1H), 5.73 (dd, *J* = 15.7, 9.1 Hz, 1H), 3.81 (s, 3H), 2.85 – 2.68 (m, 2H), 2.58 – 2.46 (m, 1H), 2.24 – 2.14 (m, 2H), 1.93 – 1.79 (m, 1H), 1.78 – 1.45 (m, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 159.2, 143.7, 131.2, 131.1, 129.6, 129.2, 128.6, 127.4, 126.5 (q, *J* = 277.7 Hz), 124.0, 114.0, 56.9, 55.4, 39.4 (q, *J* = 26.9 Hz), 37.5 (q, *J* = 1.8 Hz), 33.8, 20.1; ¹⁹F NMR (376 MHz, CDCl₃) δ - 63.2; HRMS (ESI) calcd for C₂₁H₂₄O₂F₃S [M+H]⁺: 397.1444; found: 397.1434.

3-(((E)-4-(4-methoxyphenyl)-2-(2,2,2-trifluoroethyl)but-3-en-1-yl)oxy)-13-methyl-

6,7,8,9,11,12,13,14,15,16-decahydro-17H-cyclopenta[a]phenanthren-17-one (**3na**): (1:1 diastereomeric mixture) Colorless oil (31.2 mg, 61%); ¹H NMR (500 MHz, CDCl₃) δ 7.30 (d, J = 8.7 Hz, 2H), 7.20 (d, J = 8.4 Hz, 1H), 6.85 (d, J = 8.8 Hz, 2H), 6.72 (dd, J = 8.6, 2.7 Hz, 1H), 6.66 (d, J = 2.4 Hz, 1H), 6.51 (d, J = 15.9 Hz, 1H), 6.02 (dd, J = 15.9, 8.6 Hz, 1H), 4.06 – 3.99 (m, 1H), 3.95 – 3.86 (m, 1H), 3.81 (s, 3H), 3.07 – 2.97 (m, 1H), 2.93 – 2.86 (m, 2H), 2.71 – 2.56 (m, 1H), 2.50 (dd, J = 18.8, 8.5 Hz, 1H), 2.44 – 2.36 (m, 1H), 2.35 – 2.24 (m, 2H), 2.19 – 1.92 (m, 4H), 1.69 – 1.41 (m, 6H), 0.91 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 220.9, 159.3, 156.6, 137.9, 132.6, 132.0, 129.6, 127.5, 126.8 (q, J = 277.8 Hz), 126.4, 125.8, 114.7, 114.0, 112.2, 70.3, 55.3, 50.4, 48.0, 44.0, 38.4, 37.6, 36.0 (q, J = 17.0 Hz), 31.6, 29.7 (q, J = 6.9 Hz), 26.5, 25.9, 21.6, 13.9; ¹⁹F NMR (376 MHz, CDCl₃) δ -63.1, -63.1 (1:1 ratio); HRMS (ESI) calcd for C₃₁H₃₆ O₃F₃ [M+H]⁺: 513.2617; found: 513.2593.

(E)-4-(4-Methoxyphenyl)-2-(2,2,2-trifluoroethyl)but-3-en-1-yl 2-((3-chloro-2-

methylphenylamino)isonicotinate (30a): Colorless oil (34.3 mg, 68%); ¹H NMR (500 MHz, CDCl₃) δ 9.85 (s, 1H), 8.33 (dd, J = 4.7, 2.0 Hz, 1H), 8.21 (dd, J = 7.8, 2.0 Hz, 1H), 7.84 (dd, J = 7.6, 1.6 Hz, 1H), 7.28 (d, J = 8.7 Hz, 2H), 7.19 – 7.11 (m, 2H), 6.84 (d, J = 8.8 Hz, 2H), 6.72 (dd, J = 7.8, 4.7 Hz, 1H), 6.53 (d, J = 15.8 Hz, 1H), 5.96 (dd, J = 15.8, 8.6 Hz, 1H), 4.39 (ddd, J = 28.4, 11.0, 6.4 Hz, 2H), 3.80 (s, 3H), 3.14 – 3.05 (m, 1H), 2.56 – 2.43 (m, 1H), 2.37 (s, 3H), 2.42 – 2.29 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 167.3, 159.5, 156.6, 153.7, 140.0, 139.1, 134.9, 132.6, 129.2, 129.1, 127.5, 126.6, 126.5 (q, J = 277.7 Hz), 125.1, 124.8, 122.2, 114.1, 113.5, 106.7, 66.9, 55.3, 37.1 (q, J = 0.8 Hz), 36.1 (q, J = 27.9 Hz), 15.1; ¹⁹F NMR (376 MHz, CDCl₃) δ -63.2; HRMS (ESI) calcd for C₂₆H₂₅O₃N₂ClF₃ [M+H]⁺: 505.1500; found: 505.1490.

4. Gram-scale experiment:

Alkene **1a** (12.0 mmol), Langlois reagent (12.0 mmol) and nitroalkene **2a** (4.0 mmol) were weighed in a round bottomed flask and MeCN (40 mL) was added to this mixture. The flask was back filled with N_2 and it was introduced into Penn *PhD* photoreactor m2 (blue LED 450 nm). After completion of reaction (8 hours), the reaction mixture was concentrated using rotary evaporation and the crude reaction mixture was purified by column chromatography to get the desired compound **3aa** (1.1 g, 68%).

5. Radical inhibition and radical trapping experiment:

Alkene **1a** (0.3 mmol), Langlois reagent (0.3 mmol), nitroalkene **2a** (0.1 mmol) and TEMPO (0.3 mmol) were weighed in a screw capped vial and MeCN (3.0 mL) was added to this mixture. The vial was back filled with N₂ and it was introduced into Penn *PhD* photoreactor m2 (blue LED 450 nm). After completion of reaction (4 hours), the reaction mixture was concentrated using rotary evaporation and the crude reaction mixture was analyzed by ¹⁹F nmr.

6. Radical clock cyclization experiment:

Diethyl (E)-3-(3-(4-methoxyphenyl)allyl)-4-(2,2,2-trifluoroethyl)cyclopentane-1,1-

dicarboxylate (3pa): (19:1 diastereomeric mixture)

Under the standard conditions, the dialkene **1p** was converted to the radical clock cyclized product **3pa** upon reaction with the Langlois reagent and **2a.** Colorless oil (18.1 mg, 41%); ¹H NMR (500 MHz, CDCl₃) δ 7.27 (d, *J* = 8.7 Hz, 2H), 6.84 (d, *J* = 8.8 Hz, 2H), 6.34 (d, *J* = 15.7 Hz, 1H), 6.03 – 5.89 (m, 1H), 4.23 – 4.13 (m, 4H), 3.80 (s, 3H), 2.51 – 1.91 (m, 10H), 1.23 (t, *J* = 7.1 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 172.6, 172.5, 158.9, 131.3, 131.2, 130.2, 127.1, 127.0 (q, *J* = 277.7 Hz), 125.8, 113.9, 61.6, 58.5, 55.3, 42.0, 38.4, 37.8, 36.2 (q, *J* = 1.2 Hz), 33.5 (q, *J* = 27.8 Hz), 32.3, 14.0; ¹⁹F NMR (376 MHz, CDCl₃) δ -63.2; HRMS (ESI) calcd for C₂₃H₃₀O₅F₃ [M+H]⁺: 443.2039; found: 443.2024.

7. References:

1. a) M. R. Nadiveedhi, S. R. Cirandur and S. M. Akondi, Green Chem., 2020, 22, 5589–5593;

b) B. R. Kusuma, L. B. Peterson, H. Zhao, G. Vielhauer, J. Holzbeierlein and B. S. J. Blagg, J.

Med. Chem., 2011, 54, 6234–6253; c) G. Ma, W. Wan, J. Li, Q. Hu, H. Jiang, S. Zhu, J. Wang

and J. Hao, Chem. Commun., 2014, 50, 9749-9752 d) T. Balalas, C. Peperidou, D. J.

Hadjipavlou-Litina and K. E. Litinas, Synthesis., 2016, 48, 281-292; e) L. W. Lawrence Woo,

B. Leblond, A. Purohit and B. V. L. Potter, *Bioorganic Med. Chem.*, 2012, 20, 2506–2519.

2. a) R. N. Mitra, K. Show, D. Barman, S. Sarkar and D. K. Maiti, J. Org. Chem., 2019, 84,

42–52; b) J. M. Rodríguez and M. Dolors Pujol, Tetrahedron Lett., 2011, 52, 2629–2632; c) S.

P. Midya, J. Rana, T. Abraham, B. Aswin and E. Balaraman, Chem. Commun., 2017, 53, 6760-

6763; d) N. Zhang, Z. J. Quan, Z. Zhang, Y. X. Da and X. C. Wang, Chem. Commun., 2016,

52, 14234–14237; e) T. P. Kogan and F. C. A. Gaeta, Synth., 1988, 9, 706–707.

3. J. Zhao, R. X. Liu, C. P. Luo and L. Yang, Org. Lett., 2020, 22, 6776-6779

8. NMR Spectra:

✓CF₃ MeO **4a**, ¹⁹F nmr (CDCl₃, 376 MHz)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 fl (ppm)

3aa, H¹ nmr (CDCl₃, 400 MHz)

CF₃ o ∦ OBn MeO

3aa, ¹⁹F nmr (CDCl₃, 376 MHz)

 7.7.7
 7.7.7

 7.7.7
 7.7.7

 7.7.7
 7.7.7

 7.7.7
 7.7.7

 7.7.7
 7.7.7

 7.7.7
 7.7.7

 7.7.7
 7.7.7

 7.7.7
 7.7.7

 7.7.7
 7.7.7

 7.7.7
 7.7.7

 7.7.7
 7.7.7

 7.7.7
 7.7.7

 7.7.7
 7.7.7

 7.7.7
 7.7.7

 7.7.7
 7.7.7

 7.7.7
 7.7.7

 7.7.7
 7.7.7

 7.7.7
 7.7.7

 7.7.7
 7.7.7

 7.7.7
 7.7.7

 7.7.7
 7.7.7

 7.7.7
 7.7.7

 7.7.7
 7.7.7

 7.7.7
 7.7.7

 7.7.7
 7.7.7

 7.7.7
 7.7.7

 7.7.7
 7.7.7

 7.7.7
 7.7.7

 7.7.7
 7.7.7

 7.7.7
 7.7.7

 7.7.7
 7.7.7

 7.7.7</t

CF₃ 0 ↓ OBn J I OMe **3ab**, ¹⁹F nmr (CDCI₃, 376 MHz)

 CF_3 0 J OBn OMe

3ac, ¹⁹F nmr (CDCl₃, 376 MHz)

MeC ЭBn ОМе 3ad, ¹⁹F nmr (CDCl₃, 376 MHz)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

CF₃ 0 L OBn

3ae, ¹⁹F nmr (CDCl₃, 376 MHz)

S28

77.73 77.74 77.75 77.75 77.75 77.75 77.75 77.75 77.75 77.75 77.75 77.75 77

OBn CI-**3af**, ¹³C nmr (CDCl₃, 101 MHz)

200 190 170 160 140 130 120 110 80 70 60 40 30 20 10 0 -10 180 150 100 90 f1 (ppm) 50

,⊂F₃ 0 , ↓ OBn CI. CI

3af, ¹⁹F nmr (CDCI₃, 376 MHz)

CF₃ OBn CI

3ag, ¹⁹F nmr (CDCl₃, 376 MHz)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

CF₃ 0 II OBn \bigcirc

3ah, ¹⁹F nmr (CDCl₃, 376 MHz)

3ai, H¹ nmr (CDCl₃, 400 MHz)

ЭBn

 CF_3 0 II OBn

3ai, ¹⁹F nmr (CDCl₃, 376 MHz)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fi (ppm)

3aj, ¹³C nmr (CDCI₃, 101 MHz)

3aj, ¹⁹F nmr (CDCI₃, 376 MHz)

3ak, ¹⁹F nmr (CDCl₃, 376 MHz)

3al, H¹ nmr (CDCl₃, 500 MHz)

CF₃ î ЭBn Í **3al**, ¹³C nmr (CDCl₃, 126 MHz)

- 159.06 - 138.69 - 138.69 - 138.69 - 129.40 - 128.45 - 128.45 - 128.45 - 128.45

- 55.33 41.88 39.05 39.04 39.05 38.25 38.25 38.25 38.25 38.25 37.75

OMe **3ba**, ¹³C nmr (CDCl₃, 101 MHz)

 \bigcirc F3 Me

3ba, ¹⁹F nmr (CDCl₃, 376 MHz)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

7.25
7.23
7.23
6.84
6.82
6.82
6.82
6.82
6.82
6.82
6.82
6.82
6.82
6.82
6.82
6.82
6.82
6.82
6.82
6.82
6.82
6.82
6.82
6.82
6.82
6.82
6.82
6.82
6.82
6.82
6.82
6.82
6.82
6.82
6.82
6.82
6.82
6.82
6.82
6.82
6.82
6.82
6.82
6.82
6.82
6.82
6.82
6.82
6.82
6.82
6.82
6.82
6.82
6.82
6.82
6.82
6.82
6.82
6.82
6.82
6.82
6.82
6.82
6.82
6.82
6.82
6.82
6.82
6.82
6.82
6.82
6.82
6.82
6.82
6.82
6.82
6.82
6.82
6.82
6.82
6.82
6.82
6.82
6.82
6.82
6.82
6.82
6.82
6.82
6.82
6.82
6.82
6.82
6.82
6.82
6.82
6.82
6.82
6.82
6.82
6.82
6.82
6.82
6.82
6.82
6.82
6.82
6.82
6.82
6.82
6.82
6.82
6.82
<li

100 90 f1 (ppm) . 170 . 150 . 130 . 50 . 30 -10

S47

3ea, ¹⁹F nmr (CDCl₃, 376 MHz)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

S51

CF₃ 12 OMe **3fa**, ¹⁹F nmr (CDCl₃, 376 MHz)

S53

OMe

3ga, ¹⁹F nmr (CDCl₃, 376 MHz)

3ha, ¹³C nmr (CDCl₃, 101 MHz)

CF₃ Me

3ha, ¹⁹F nmr (CDCl₃, 376 MHz)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

 CF_3 ò OMe

3ia, ¹⁹F nmr (CDCl₃, 376 MHz)

3ja, ¹⁹F nmr (CDCI₃, 376 MHz)

140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 -130 -160 -190 -220 f1 (ppm)

100 90 f1 (ppm) 80

70 60

50

. 40 . 30 20

10

0 -10

110

200

. 190 180

170

. 160 . 150 140 130 120

 CF_3 OMe **3ka**, ¹⁹F nmr (CDCl₃, 376 MHz)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

 CF_3 0 I ОМе

3ma, ¹⁹F nmr (CDCl₃, 376 MHz)

3na, ¹⁹F nmr (CDCl₃, 376 MHz)

F₃ J .0. Å OMe

3oa, ¹⁹F nmr (CDCl₃, 376 MHz)

7.2.8 6.83 6.83 6.82 6.83 6.83 6.82 6.83 6.84 <l

CF₃ MeO EtOOC COOEt

3pa, ¹⁹F nmr (CDCl₃, 376 MHz)

